
T H E  PROBABILITY OF E V E N T U A L  RUIN IN T H E  
C O M P O U N D  BINOMIAL M O D E L  

BY ELIAS S.W. SHIU 

University of Manitoba, Canada 

ABSTRACT 

This paper derives several formulas for the probability of  eventual ruin in a 
discrete-time model. In this model, the number of claims process is assumed to 
be binomial. The claim amounts, premium rate and initial surplus are assumed 
to be integer-valued. 
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l .  INTRODUCTION AND NOTATION 

This paper is motivated by the recent paper GERBER (1988b), which discusses 
the probability of  eventual ruin in a discrete-time model. We shall derive some 
of  GERBER'S results by alternative methods. As we shall point out below, our 
formulation and notation are not exactly the same as  GERBER'S.  

We consider a discrete-time model, in which the number of  insurance claims 
is governed by a binomial process N(t), t = 0, 1, 2 . . . . .  In any time period, 
the probability of  a claim is q (denoted by p in GERBER'S paper) and 
the probability of no claim is 1 - q .  The occurrences of a claim in different 
time periods are independent events. The individual claim amounts 
X~, X2, X 3 . . . .  are mutually independent, identically distributed, positive and 
integer-valued random variables; they are independent of the binomial process 
N(t). Put X = Xt,  and let p(x) = Pr(X = x). The value of the probability 
density function p(x) is zero unless x is a positive integer. We also assume that 
the premium received in each period is one and is larger than the net premium 
qE(X). Put E(,Y) = #; then the last assumption is 

(1.1)  1 > q~ 

For k = 1, 2, 3 . . . . .  define 

(1.2) Sk= X i + X 2 +  .. +Xk.  
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Put S o = 0. Let the initial risk reserve be a nonnegative integral amount  u. The 
probabili ty of  eventual ruin (ultimate ruin probability, infinite-time ruin 
probability) ~,(u) is the probability that the risk reserve 

(1.3) U(t) = l d ' ~  l - -  S N ( i )  

is ever negative. Since GERBER (1988b) defines ruin as the event that the risk 
reserve U(t) becomes nonpositive for some t. t > 0, the formulas derived 
below will not be exactly the same as his. 

2. THE PROBABILITY OF NONRUIN 

It is somewhat easier to work with the nonruin function 

O(u) = l - ~ , ( u ) .  

For u < 0, 4,(u) = 0. Consider an initial risk reserve of amount  j, j >__ O. If  
there is no claim in the first period, the risk reserve becomes j +  1 at the end of 
the period; if there is a claim of  amount  x in the first period, the risk reserve 
becomes j +  ! - x .  Hence, by the law of total probability, 

(2.1) 0 ( j )  = (1 -q) O(j+ l)+qE[O(j+ I - X ) ] ,  j = 0, 1, 2, . . . .  

Rearranging (2.1) yields 

(2.2) q i ( j+  l ) -  0(./)  = q{(~(j+I)-E[O(j+I-X)]}, j =  0 , 1 , 2  . . . . .  

Summing (2.2) from j = 0 to j = k -  I, we have 

k k 

o r  

(2.3) O(k)-(1-q)O(O)= q{ (~(jl-e ~ ¢(j-X) , 
j=O j = l  

Let I+ denote the function defined by 

l + ( j )  = I, j =  0 , 1 , 2  . . . . .  

l + ( j )  = 0, j =  - 1 ,  - 2 , . . . .  

For  each pair of  functions f and g, let f*g denote their convolution, 

(2.4) (f*g)(j)= ~ f ( j - i )g( i ) .  
i= - oO 

Note that, i f f ( i )  = g(i) = 0 for all negative integers i, then (2.4) becomes 

J 

(f*g)(J) = 2 f ( j - i )g( i ) .  
i=O 

k =  1 , 2 , 3 , . . .  
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Since the convolut ion  operat ion can be regarded as a multiplication opera t ion 
between functions, we sometimes write (f ,g)(j) as f(j)*g(j). 

The first sum in the r ight-hand side o f  (2.3) is ( 0 ,  1 +) (k). As X is a positive 
random variable, 

k k 

(2.5) Z O(J-X)= 2 O(J-X)= (O*l+)(k-X)" 
j= l  j=0 

Hence,  (2.3) becomes 

0 ( k ) - ( 1  - q )  0(0) = q{(0* 1+) ( k ) -  E l ( 0 *  1+) ( k -  X)]} 

(2.6) = q [ ( 0 * l + ) ( k ) - ( 0 * l + * p ) ( k ) ] ,  k = 1 , 2 , 3 , . . . .  

Since p(0)  = 0, it is easy to check that  (2.6) also holds for k =  0. To  solve for 0 
in (2.6), we first extend it as an equat ion for all integers k, positive and 
negative : 

(2.7) 0 ( k ) - ( l - q )  0 ( 0 ) l + ( k )  = q[(O*l+)(k)-(O*l+*p)(k)]. 

Let 6 be the function defined by 6(0) = I and 6 ( j )  = 0 f o r j  ¢ 0. Then the 
r ight-hand side o f  (2.7) can be expressed as 

q { 0 (k) * l + (k) * [3 (k) - p (k)]}. 

Rearranging (2.7) and writing 

(2.8) c = (1 - q )  0(0) 

yields 

(2.9) ¢ (k) * (O (k) - q { I + (k) * [6 (k) - p (k)]}) = c l + (k) .  

Equat ion  (2.9) is a Volterra equat ion of  the second kind. T o  solve for 0, we 
invert 

6 (k) - q { 1 + (k) * [6 (k) - p (k)]} 

as the N e u m a n n  series [BROWN and PAGE (1970, p. 226), RIESZ and Sz.-NAGY 
(1955, p. 146)] 

(2.1 o) 

(We use the 
Hence,  

(2.11) 

• q " { l .  (k) • [,~ ( k ) - p  (k)]}*". 
nlmO 

notat ion" f * ° = 6  and f , ,  = f , ( , - i ) , f ,  , 1=  1 ,2 ,3  . . . . .  ). 

O(k) = c ~ q"{[6(k)-p(k)]*"* l*+("+')(k)}. 
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Since 

(2.12) 

and 
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[3(k)-p(k)]*"= ~ (n)  ( - I ) j p * J ( k ) ' j = o  j 

n 

J 

l*("+t)(k)= (k+n) l + ( k ) ' n  

. =j n - j  

k + ] + l  

p*J(k) *f(k) = E[f(k - Sj)], 

by an interchange of the order of summation (2.1 I) becomes 

¢(k) = c E (-q)J p*J(k)* k+j 1 k+j+ 
j . o  j -i-5-q l 

)[( (2.13) = 0(0) -q JE k+j-Sj 
j=o 1 - ~  j 

1 + (k) 

(1 _q)Sj-k 1+ (k- Sj) ] . 

As Sj >j, there are at most k + l  nonzero terms in the right-hand side of 
(2.13). This formula corresponds to (4.6) of SHIu (1988) and (3.14) of 
SHIU (1989a). 

To derive the value of ~(0), we return to formula (2.6). Let P denote the 
probability distribution function of the individual claim amount random 
variable X. Then 

P =  l + * p .  

As k tends to positive infinity, the left-hand side of (2.6) tends to 

l - ( 1 - q )  ~ ( 0 ) ,  

while the right-hand side tends to 

q E [l+(j)-P(j)] q [ I - P ( j ) ]  
j=  -oo j=0 

= q/t 
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by the Lebesgue dominated convergence theorem. Hence. 

I - q ~  
(2.14) 0(0) - - -  

l - q  

3. GAMBLER'S RUIN 

As a verification of formulas (2.13) and (2.14), let us consider the special case 
that X=-2. This is a classical problem in the theory of random walk. The 
probability that, with an initial reserve of u (a nonnegative integer), the 
company's risk reserve will ever become - I is known to be [q/(1 _q)]U+l. 

Since Sj = 2j, formula (2.13) becomes 

ck(O.__~) ~ [_q(l_q)]j(u-J)l+(u_2j) 
O(u) - (1-q)U j=0 j 

(u j) _ i - 2 q  2 [-q(l-q)]J 
(3.1) ( l -q )U+ '  j=0 j " 

For a real number r, we let ~r~ denote the greatest integer less than or equal 
to r. The polynomial 

(3.3) 

N o w ,  

is related to the Chebyshev polynomials of the second kind and can be 
expressed as [KNUTH (1973, problem 1.2.9.15), RIORDAN (1968, p. 76)] 

(I + X / I + 4 x )  k + ' - ( i  - - X / I + 4 x )  k+l 

2 k+l X/I + 4 x  

x / I - 4 q ( l - q )  = I 2 q - I  I 

= I - 2 q  

by assumption (1.1). Hence, 

(3.4) 0(u) = 1 - 
q )u+l 

as required. 
For the case that X -  m > 2, formula (2.13) cannot be simplified. It has been 

given by BURMAN (1946). Also see GIRSHICK (1946, p. 290), SEAL (1962, p. 23; 
1969, p. 101) and GERBER (1988b, (43)). 
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4. ANOTHER RUIN PROBABILITY FORMULA 

GERBER (1988b) has derived another formula for the probability of eventual 
ruin, which is complementary to (2.13). It follows from condition (1.1) that 

Pr Film U(/)= +oo] = 1 .  
[ I ~ O 0  

(4.1) 

Since 

If ruin occurs, there is necessarily a last upcrossing of the risk reserve U(t) 
from level - 1 to level 0. By considering the number of claims n, prior to this 
last upcrossing, and the time t at which it occurs, we have 

~u(u) = [ ~,,=t ,=,,~ ( t)  -q)'-"Pr(S,, = u+t+l)] ( l - q )  0(0). 

I ~ t t  n 

= ~ [ ( s  u ,)~, q~s u ,+~ u n ,~] n 

we obtain the formula 

(4.2) ~u(u) = ( I - q l t )  E q 
n=l 

E [ ( ~  u ')~,-q~Sn ~ , ~ S  u n 

Continuous-time analogues of (4.2) can be found in PRABHU (1965, (5.55)), 
GERBER (1988a, (27)) and SHIU (1989a, (1.6)). 

Using the identity 

we can rewrite (2.13) as 

5. GERBER'S FANCY SERIES 

~5,~ 0~u~ ~, q~,~( ~ ) j E(~ -~,-,) ] j=o ~ - q  E . ( I -q )S j -~ - '  l+ (u-S]) . 
J 

~ l ~ j ( o ) ( a + J , ) j  J 
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Since 

0 ( u ) + ~ ( u )  = 1 

and u is an integer, adding (5.1) to (4.2) yields 

(5.5) 

Since 

if we put x = - ( u + l ) .  This interesting formula is Theorem la of 
GERBER (1988b). In this section we present some alternative proofs for (5.2); 
the assumption that x is an integer will not be used. 

Assume that all the moments of  the random variable X exist. Consider the 
linear operator G on the linear space of polynomials defined by 

(5.3) (G f )  (y) = E [ f ( y +  X)]. 

[Such operators have been considered by FELLZR (1971, section VIII.3)]. A s f  
is a polynomial, the random variable f ( y + X )  in (5.3) can be expressed as 

(5.4) 2 xJ fO)(Y) 
j~0 j !  

Consequently, the linear operator G can be represented as a power series in 
terms of the differentiation operator D: 

G = 2 E(j__) Dj " 
j~o j! 

G - I =  pD+ V2E(X2)D2 + . . . ,  

we have, for each nonnegative integer n, 

(5.6) (G-  l)"x" = n! p" 

and, for nonnegative integers n and m, m < n, 

(5.7) ( G - l ) n x  m = 0 .  

It follows from (5.6) and (5.7) that 

(5.8) ( G -  Z)" 

Multiplying (5.8) with qn and summing 

Xn ) = Itn" 

from n = 0 and n = oo yields 
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(5.9) 
n=O 

q"(G-I)" ( x)_ l 
n 1 - q / . t  

Applying the formulas 

(G - I)" = ( - 1)"- , 
k=0 k 

(x)(n): x(xk) 
n k k n -k  

and 

()xk E ( - - l ) " -k  q , -k  = ( l _ q ) x - k ,  
,,=k n-- k 

we obtain 

(5.10) 

Since 

k=0 ~ ( l--~q ) k G k [ ( X ) (1-- q ) X ] l --l q p 

(Gkf)(x) = E[f(X+Sk)], k = 0, 1,2 . . . . .  

formula (5.10) is the same as (5.2). 
An operational calculus proof  is (5.10) can be found in SHtu (1989b). 
If  the random variable X in formula (5.2) is degenerate, i.e., X -= p, then we 

have 

(5.11) ~ (X+lln)[q(l--q)"-I]n= 1 
,=0 n (1 --/xq) (1 -- q)" 

This result is quite well known; it and its variants can be found in POLYA 
(1922, (7)), WHITTAKER and WATSON (1927, p. 133, example 3), RIORDAN 
(1968, p. 147), POLYA and SZEG6 (1970, p. 126, problem 216), KNUTH (1973, 
problem 1.2.6.26), MELZAK (1973, p. 117, example 4), COMTET (1974, p. 153), 
HENRICl (1974, p. 121, problem 12), ROTA (1975, p. 56), ROMAN and ROTA 
(1978, p. 115) and HOFRt (1987, p. 34). The standard proof  of formula (5.11) is 
by an application of  the Lagrange series formula. The proof  can readily be 
generalized to one for (5.2), as we shall show below. (Also see section 5 of  
Snlu (1989a)). 

Let h be an analytic function and let 

(5.12) z = b+wh(z). 
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By the implicit function theorem, there is a unique root z = z(w) which 
reduces to b at w = 0. If f is an analytic function, t h e n f ( z )  = f ( z ( w ) )  may be 
expressed as follows [RIORDAN (1968, p. 146), POLYA and SZEG6 (1970, 
p. 125), GOULDEN and JACKSON (1983, p. 17)]: 

f (z) _ w J 
l - w h ' ( z )  j=o 7 [f(Y)[h(Y)]J] y=b (5.13) 

Now, consider b = l - q ,  

and 

Then 

and 

(5.14) 

f (y)  = yX 

h (y )  = E(yX) .  

[h(y)]  j = E(ySO 

• ~ y • 

j! dff j 

With w = q, the right-hand side of (5.13) is the same as the right-hand side of 
(5.2) and equation (5.12) becomes 

z = ( l - q ) + q E ( z X ) .  

Thus z = 1 and the left-hand side of (5.13) is identical to the left-hand side of 
(5.2). 

6. REMARKS 

(i) Consider formula (2.14). Since X >_ I by hypothesis, the number 4,(0) is 
always bounded above by one as it should be. If I_< q/2, then ruin is 
guaranteed; but this is ruled out by condition ( l . l ) .  It follows from (2.14) 
that 

q ( u -  1) 
(6.1) ~ (0) - 

l - q  

However, GERBER'S (1988b) result is that 

(0) = q u .  

This discrepancy exists because GERBER defines ruin to occur when the risk 
reserve U(t) becomes nonpositive, while we consider the insurance company to 
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be solvent even if its risk reserve is zero. An anonymous referee has kindly 
pointed out that our definition of ruin is equivalent to DUFRESNE'S (1988, 
section 3) and (2.14) is DUFRESNE'S formula (37). 

(ii) GERBER (1988b) first obtained formula (5.2) and then derived a formula 
corresponding to (4.1). With these two formulas, he derived formulas corre- 
sponding to (2.14) and (2.13). 

(iii) Formula (2.12) is a special case of the combinatorial identity 

k=0 m n r e + n +  1 

where m, n, r and s are nonnegatlve integers and n >_ s [RIORDAN (1968, p. 35, 
problem 13), KNUTH (1973, p. 58), HOFRI (1987, p. 39, problem 2b)]. 

(iv) Formula (2.1) can written as 

(6.2) 0 ( j + l ) - 0 ( j )  = [ q / ( 1 - q ) ] { 0 ( j ) - E [ 0 ( j + l - X ) ] } ,  j =  0, 1 , 2 , . . . .  

Hence, for each positive integer k, 

0 (k) - 0 (0) = [q/(l - q)] { 0 (k) - E [ 0 (k + 1 - X)]} * 1 + (k - i) 

(6.3) = [q/( 1 - q)] { 0 (k) * [ 1 + (k - 1 ) - P (k)]}, 

which is reminiscent of a renewal equation in the compound Poisson model 
[(FELLER, 1971, (XI.7.2)), (Smu, 1989a, (2.4))]. Let h denote the function 

h ( k )  = [ l + ( k - l ) - P ( k ) ] / ( l , - 1 ) ,  k = O, d: l ,  ± 2 , . . . .  

It follows from (6.3) and (6.1) that, for all integers k, 

0 (k) - 0 (0) 1 + (k) = V (0) [0 (k) * h (k)]. 

Define H*" = h*"* l+ .  Then 

(6.4) 0(u) = 0(0) ~ [~(0)]" H * " ( u ) .  
n=O 

Formula (6.4) is analogous to a convolution series formula.in the compound 
Poisson model; see SHIU (1988, (2.1); 1989a, (2.14)). Since h ( i )  = 0 for all 
i < 0, there are at most u +  1 nonzero terms in the right-hand side of (6.4), 
i.e., 

O(u) = 0(0) ~ [~(0)]"I-I*"(u).  
n=O 

~.~ [ ~ ( 0 ) ] "  : 1 / [ I - ~ ( 0 ) ]  = 1 / 0 ( 0 ) ,  
PI=0 
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we have, for each nonnegat ive  integer u, 

(6.6) ~ ( u )  = [ I - ~ ( 0 ) ]  ~ [ ~ ( 0 ) ] " [ I - H * " ( u ) ] .  
11 = I 

F o r m u l a  (6.6) has been derived by R. MICHEL and can be found in a 

for thcoming risk theory book  by C. HIPP and R. MICHEL. Observe that, when 

X =- 2, h ( j )  = O ( j -  I) and  formula  (3,4) immediate ly  follows from (6.5). I 

thank  C. HIPP for the in fo rmat ion  above. 
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