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ABSTRACT 

This article studies random variables whose stop-loss rank falls between a cer'tain 
risk (assumed to be integer-valued and non-negative, but not necessarily of  life- 
insurance type) and the compound Poisson approximation to this risk. They con- 
sist of  a compound Poisson part to which some independent Bernoulli-type 
variables are added. 

Replacing each term in an individual model with such a random variable leads 
to an approximating model for the total claims on a portfolio of  contracts that 
is computationally almost as attractive as the compound Poisson approximation 
used in the standard collective model. The resulting stop-loss premiums are much 
closer to the real values. 

1. INTRODUCTION 

Suppose we are interested in the distribution function of the total claims S on a 

certain insurance portfolio. If X; is the random claim of contract i, assumed to 
be non-negative and integer-valued, S can be written as 

(i) S =  k X;. 
i=1 

Unless n is small it is not advisable to use convolution to compute the distribution 
of  S directly. Even if the contracts are of  life-insurance type and one uses, like 
DE PRIL (1986), the additional structure present in the problem (integer contract 
sizes in a small range, only few different claim probabilities), already for 
moderately large n the computing time involved is prohibitive. 

Recently much progress has been made in constructing algorithms.to approxi- 
mate the distribution of the total claims with a controllable error bound. We 
mention KORNYA (1983), HIPP (1986), and DE PRIL (1988); see also KUON, 
REICH and REIMERS (1987) and REIMERS (1988). 
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In this paper we try to improve the standard collective model approximation 
in a transparent way, and at the cost of  only a small increase in computing time. 
We give an extension of the method introduced in KAAS, VAN HEERWAARDEN 
and GOOVAERTS (1988) for the case of  a life portfolio. 

One obtains good approximations by replacing the individual model (l) with 
a collective model S" having a compound Poisson distribution. See BOWERS et al. 
(1987, Chapter 13), or KAAS (1987, Chapter I). One way to obtain S" is to replace 
each summand Xi of  S in (1) by a compound Poisson sum (with parameter l) of  
iid random variables with the same distribution as the original term, as follows: 

N, 
(2) S"= ~ ~ Xi tiT. 

i=l j = l  

Being a sum of  compound Poisson random variables, the random variable S" is 
also a compound Poisson distribution with as claims distribution the arithmetic 
average of the distributions of  the individual contracts, and with Poisson 
parameter  n. 

A more standard way to derive a good fitting collective model is the following. 
One assumes the contracts to have claim probability qi and approximates the 
aggregate claims with a compound Poisson distribution with Poisson parameter 
X and as claims distribution a weighted average of  the conditional claims distri- 
butions, given that a claim occurs. Using k = Zqi, and weights qi/~, we obtain 
the same distribution as S". 

KAAS et al. (1988) assume the term Xi to be of Bernoulli type: either Xi = 0, 
or Xi equals some known amount Mi, as is common in life-insurance applic- 
ations. They replace most terms of  (1) by compound Poisson sums, but leave 
risks with high risk premiums unchanged. If V is the set of  indices of  risks with 
high risk premium, the following random variable S'  results: 

N~ 

(3) S'= Z Z xi(J)+ Z Xi. 
t ~ V j = l  iEV 

The distribution of  the first term of (3) can be computed using Panjer 's  recursion 
or an algorithm based on the Fast Fourier Transform.  The large risks in the set 
V are added using straightforward convolution. If the size of  V is small, this 
second step costs only little extra time. 

The stop-loss premiums with S '  are larger than those of S, but not as large as 
those of  S"; since both S'  and S" are integer-valued and non-negative, the dif- 
ference for S '  and S" of the total error of  the stop-loss premiums, summed over 
all integer retentions, equals ½(Var[S"] - V a r [ S ' ) ] .  This property is proven in 
KAAS et al. (1988). 

In this paper we assume the terms Xi of  S to be more general risks. Of  course 
one might still exclude the large risks when applying the Poisson approximation,  
as was proposed in KAAS et al. (1988). The convolution process then costs time 
proportional to the total number of  mass points of  the large risks, many of  which 
are not large at all. We will replace each term of S by a random variable with 
stop-loss premiums between those of the terms of S and S", and with a form 
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similar to (3). It will be obtained by replacing most mass points by a compound  
Poisson part, and only a few very large mass points by Bernoulli-type random 
variables. This way the same accuracy is achieved using less computa t ional  effort. 
Compared  to the approximate  methods mentioned above our  method is much 
more intuitive and easier to understand.  A further point we wish to make is the 
following. One should not spend too much energy on the exact calculation o f  this 
distribution, because there are other  sources of  error with much greater influence. 
For  instance if the probabilities of  a mortal i ty table are multiplied by a factor  
! + e, the relative change in the stop-loss premiums is o f  the same order o f  
magnitude e. 

2. ON STOP-LOSS ORDER 

If risk X (with E [ X ]  < oo) has stop-loss premiums lower than risk Y for all 
retentions uniformly,  we say that X precedes Y in stop-loss order and write 
X .,~ Y. Stop-loss order  is transitive: X .,~ Y and Y ~ Z implies X .,~ Z. It is not 
a complete order:  for many random variables X and Y we have neither X.,~ Y, 
nor Y.~ X. 

We quote  a theorem from GOOVAERTS, HAEZENDONCK and DE VYLDER 

(1984, Chapter  4) on the invariance properties o f  stop-loss order.  

THEOREM 1. I f  Ni, Xt,  22  . . . .  and Nz, Y,, Yz . . . .  are independent random 
variables with counting variables N~ and N2 satisfying N~ ~ Nz, and with 
Xi  ~ Yi f o r  all i, we have 

NL N2 

(4) E Xj~ E YJ. 
j=l j=l 

I f  E l  X] = E l  Y], a sufficient condit ion for X ,~ Y is the following: there exists 
an o~ E ~ with the property that Fx(x)  <~ Fy(x )  for x < ol, Fx(x )  >t Fy(x )  for 
x />  ~. We say then that risk Y is more dangerous than X. 

Some special cases of  Theorem I: first, taking N t -  N 2 -  2, we see 
X +  Y,~ X +  Z i f  Yand  Z a r e  independent o f  X a n d  Y.~ Z. Second, if N~ - 1, 
N2 is Poisson(l)  and Xt,  X2 . . . .  are iid r andom variables distributed as X, we 
have Nt -- N2 since N2 is more dangerous.  It follows that X precedes its com- 
pound Poisson approximat ion:  

N2 
(5) x ~ Z xj. 

j = l  

Taking N~ m n and using (5), we may conclude that the individual model (1) 
precedes the collective model (2). 

3. LESS CONSERVATIVE APPROXIMATIONS 

Consider  one o f  the terms X of  (I), omitt ing the index i for notat ional  con- 
venience. Suppose it either has range I 0, x~, x2 . . . . .  x,, } or I x~, x2 . . . . .  x,,, } with 



172 KAAS, VAN HEERWAARDEN AND GOOVAERTS 

0 ~< xj ~ xz .~ ... . ,~ x,,,. In t roduc ing  ind ica tor  var iables  Ig, j = I, 2 . . . . .  m, de- 
fined as l j  = 1 if X = xj, and 0 otherwise,  we may  write 

(6) X = ~ l j .  xj. 
j = l  

The margina l  d i s t r ibu t ion  o f  the r andom var iables  Ij is 'Bernou l l i (p j ) ,  with 
pi= P [ X =  .x:/]. They  are dependen t :  we have Z / j =  0 if X =  0, 1 otherwise.  

In the collective model  (2), X is replaced by a r a n d o m  var iable  Z having a com-  
pound  Po i s son( I )  d i s t r ibu t ion  with terms d is t r ibu ted  as X. See also (5). By 
Theorem 11.2 o f  BOWERS et al. (1987) Z may be writ ten a s .  

(7) Z = ~_~ Nj.  xj. 
j = l  

where the Nj are  independent  Po i s son (p j )  r andom variables ,  count ing  the 
number  o f  occurrences  o f  c laim size xj. Now define the fol lowing r andom 
var iable :  

(8) Y =  ~ Bj.  xj. 
j = l  

where the r a n d o m  variables  Bj have the same marg ina l  d i s t r ibu t ion  as I 9, but are 
independent .  Then we may  prove  

THEOREM 2. For X, Y and Z as defined in (6), (8) and (7), we have 

X ~  Y ~  Z. 

PROOF. We will show that  X ~ Y by induct ion  on the number  o f  terms in (6). 
I f  m = I, X has the same d i s t r ibu t ion  as Y, so cer ta in ly  X ~ Y. Now suppose  the 
s ta tement  proven  if the number  o f  non-zero  mass points  is m - 1 or  less. Let X "  
be defined as X -  L,," x,,,, so X m is zero when X = x,,, and equal  to X otherwise.  
We will compare  X = L,," x,,, + X ' "  to T= B,,,. x,,, + X'".  T is more  dangerous  
than X, since E[T]  = E [ X ] ,  and Fx(x) i> F r ( x )  for x / >  x,, t r ival ly since 
Fx(x, , )  = 1; for x < x,,, we have 

(9) F r ( x )  = P [ B , . .  Xm+ X'"~< x]  = P [ B m = 0 ]  • P[X'"~< x] 

= (1 - p , , ) .  [p , ,  + Fx(x)]  = Fx(x )  + p, , [  1 - Pm - Fx(X)] i> Fx(x) .  

So, we have es tabl ished X ~ T. By the induct ion  hypothesis ,  X "  precedes the 
sum o f  the first m -  1 terms in (8) in s top-loss  order .  Using Theorem 1 we im- 
media te ly  see that  T ~  Y, and so, by the t ransi t iv i ty  o f  s top- loss  order ,  we have 
X ~ Y .  

The second part  o f  the theorem is easy: since By ~ Nj for each j ,  by twice 
app ly ing  Theorem 1 we have Y.,~ Z. • 

In fact,  we have X ~< Y~< Z '  ~< Z with Z'  defined as 

IH -- I D'  

Z'  = ~ Nj .  x j+  ~ Bj. xj, (iO) 
j =  I j = m - t +  1 
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for some t = 1,2 . . . . .  So we have found random variables Z ' ,  that are the con- 
volution of a compound Poisson part and t Bernoulli parts, and such that Z '  is 
between X and Z in stop-loss order. 

Replacing each term Xi of S in (1) by a random variable Z/  as in (10) we obtain 
S ' ,  which is a sum of a compound Poisson distribution (the convolution of the 
first parts of (10)) and all the Bernoulli-type random variables that constitute the 
second parts of  (10). 

As remarked in the Introduction, the total increase in the error of  the resulting 
stop-loss premiums equals half the difference in variances between the different 
models (see KAAS et al, 1988). Term X contributes Var [X]  to the variance of  
the total claims, Z as in (7) contributes Var [Z]  = E [ X  z] and Z '  as in (10) 
contributes 

(11) V a r [ Z ' ]  = E [ X  2] - ~ p ) ' x ) .  
j ~ m - t +  I 

If, as in KAAS et al. (1988), we assume that the number of terms to be convoluted 
is fixed in advance, the mass points with the highest contributions to E[S]  should 
be treated separately. 

REMARK. There are many other random variables with stop-loss premiums 
between those of a certain random variable X and its compound Poisson approxi- 
mation Y as in (8). Let I be any indicator variable, not necessarily a function of 
X. The random variable I might indicate whether X came from a special source 
(e.g. material damageversus personal injury) or whether X is a large claim or 
not, and so on. Introduce independent random variables Xo and X~ with Xj 
distributed as XI  l = j .  Then X has the same distribution as I .  X~ + (1 - I ) .  Xo. 
If B~ and Bo are independent random variables distributed as I and I - I respect- 
ively, we have X ~ B~ • X~ + Bo- Xo. 

PROOF. Let p = 
taking conditional expectations depending on the values of I, Bt and Bo: 

E l ( X - d ) + ]  = p . E[ (X t  - d)+ ] + q . E [ ( X o - d ) + ]  

= (p2 + p q ) .  E [ ( X t  - d)+] + (q2 + p q ) .  E [ ( X o -  d)+] 

~< p2 . E[ (X~ - d)+ ] + qZ . E[  ( X o -  d)+ ] 

+ p q "  E[ (X~ + Xo - d)+ ] 

= E [ ( B i ' X i + B o ' X o - d ) + ] .  

The choice of  I = 1 

P [ I =  1] and q = 1 - p. For any retention d ~> 0, we have by 

if X = x,,, gives another proof that X ~ Tholds in Theorem 2. 

4. AN EXAMPLE 

Consider a portfolio consisting of many small risks, such that the total claims S 
can be taken to be compound Poisson distributed with parameter 1 and claims 
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TABLE 1 

STOP-LOSS PREMIUMS AT RETENTIONS 
d = 0 , 4 , 8  ..... 32. 

d= S+G" S+G' S+G 

0 3.01000 3.01000 3.01000 
4 1.07603 1.06498 1.06418 
8 0.44933 0.42025 0.41927 

12 0.12743 0.08722 0.08672 
16 0.03721 0.00829 0.00822 
20 0.01143 0.00049 0.00048 
24 0.00262 0.00002 0.00002 
28 0.00076 0.00000 0.00000 
32 0.00017 0.00000 0.00000 

d i s t r i b u t i o n  with  equa l  p r o b a b i l i t y  o f  c l a im 1, 2 and  3. I f  Nt ,  N2 and  N3 are  in- 

d e p e n d e n t  P o i s s o n ( l / 3 )  r a n d o m  var iab les ,  S has the  s a m e  d i s t r i bu t ion  as 

N~ + 2 .  N2 + 3 .  N3. T o  this  p o r t f o l i o  we add  a large  risk G,  wi th  p r o b a b i l i t y  0. l 

o f  a c l a im o f  10, 0.01 o f  a c l a im  o f  I and  0 .89 o f  no  c l a im.  Def ine  G '  to  be 

10 .B4  + Ns,  and  G"  as 10.  N4 + Ns,  whe re  B4 is Bernoul l i (0 .1 ) ,  N4 Po i s son (0 .1 )  

a n d  N5 Po i s son(0 .01 )  d i s t r i bu t ed ,  all i n d e p e n d e n t .  W e  will c o m p a r e  the  s top- loss  

p r e m i u m s  o f  S + G ,  S + G '  and  S + G "  at r e t en t ions  d = 0 , 4 , 8  . . . . .  32. T h e  

resul ts  a re  in T a b l e  I. N o t i c e  that  the  s top- loss  p r e m i u m s  for  S +  G '  and  S +  G 

are  p rac t i ca l ly  the  same .  T h e  fact  tha t  in S + G"  m o r e  than  one  c l a im o f  size l0  

m a y  o c c u r  leads to c o n s i d e r a b l y  h ighe r  s top- loss  p r e m i u m s .  
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