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ABSTRACT 

The variance of statistical estimates of outstanding claim payments for long-tailed 
general insurance portfolios is examined. The varlance's three components are 
discussed. As there is no accepted technique for measuring this variance three 
methods are investigated empirically for its measurement - -a  parametric method, 
the jackknife method, and the bootstrap method. No method stands out as 
superior to the others and it is recommended that all three be evaluated and used 
to gauge the possible errors in the estimation of outstanding claims. 

1. INTRODUCTION 

1.1. The Outstanding Clazms Problem 

The estimation of outstanding claims is a major component  of the determination 
of the profit of  a general insurance company. There is no one accepted technique 
for this estimation and, indeed, there cannot be. For each company (and possibly 
for each portfolio within the company) the nature of  the claims and their 
administration follows a sufficiently unique path as to make the application of 
any one method an unwise practice. Concominant  with this lack of a standard 
technique is the knowledge that the estimate from any one method is subject to 
a certain degree of error. This error arises partly because we have an inadequate 
model and partly because of the inherent stochastic nature of the claims process. 

1.2. Earlier Work on Second Moments 

As the computing power and statistical theory available to practitioners has 
increased over the years there has been an increase in the amount of  work being 
done on the statistical nature of the errors involved in the estimation. The natural 
step beyond the first moment  of  the distribution of outstanding claims (that is 
the amount  of  claims) is the second moment  and this has received the most 
attention. Investigation of the asymmetry and other esoteric features of  the 
distribution have not been feasible in general. 

Two approaches to determining the second moment  which are not demanding 
in their data requirements and are quite flexible are given by TAYLOR and ASHE 
(1983) and DE JONG and ZEHNWIRTH (1980, 1982). TAYLOR and ASHE use 
least-squares linear regression for their model estimation and a straightforward 
parametric method for the determination of  the second moment.  DE JONG and 
ZEHNWIRTH use a more flexible statistical structure, the Kalman Filter, for their 
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estimation. Again a parametric method is used to calculate the second moment 
of their estimate. 

This paper will follow the approach of TAYLOR and ASHE in that the models 
considered will be multiple linear regressions fitted using the linear regression 
package GLIM (BAKER and NELDER, 1978). However there are significant 
differences in the choice of error distribution. This is discussed in Section 3.1.1. 
Although the Kalman filter method includes the linear regression as a subset of 
its possible models the lack of widely available, easy to use packages inhibits its 
u s e .  

1.3. Sources of Error in Prediction 

The errors involved in a statistical prediction can be categorised in a three-fold 
way. Using the terminology of BARTHOLOMEW (1975) they are the statistical 
error, the estimation error and the specification error. These are usually measured 
as variances around the mean so that under the assumption of independence of 
the generation of those errors we may decompose the total error into exclusive 
and exhaustive parts. 

The specification error arises when we specify the model of reality to be used 
for our prediction. Almost surely this will be a simplification of reality as we try 
to concentrate on the major features of the claims process. Further our model 
may be wrong because of our ignorance of the important factors of the process 
being modelled, and because of the limitations of the available data. The very 
nature of the specification error implies a great difficulty in estimating its size. 
Little more will be said of this error. 

The estimation error arises because even with an accurately specified model 
of the process under study we must estimate the parameters governing the model. 
For instance in a dice tossing experiment we may have specified the multinomial 
model correctly but must still estimate the probabilities of obtaining each outcome 
of a toss by experiment. Although the standard error of parameter values is a 
widely used part of statistical theory, their effect on prediction error has received 
little acknowledgement. 

Statistical error is the inherent randomness associated with our model. Even 
when we have correctly speofied our model and accurately estimated its para- 
meters the stochastic nature of our process prevents accurate prediction. This 
source of error is by far the most tractable and thus is the most commonly 
calculated error when such things are calculated. 

Within the regression framework there is a great deal of interplay between the 
three errors and the model fitting process. Naively, in order to reduce the 
mis-specification of the model it is desirable to have a complex model in the 
sense that we have many regression terms. As well, the more terms in the regression 
model the smaller will be the estimate of the residual variance, all other things 
being equal. As the residual variance is used to calculate the variance of the 
underlying process this will lead to a reduction in the statistical error. To counter 
this complexity there is the tendency for an increase in the number of  terms in 
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the regression equation to be associated with an increase in the uncertainty of  
the estimates of  the coefficient of  the regression equation. 

MILLER (1984) discusses the difficulties of  selecting the regressor variables and 
of obtaining accurate estimates of the standard errors of  the coefficients of the 
variables. 

The notion of keeping the model simple in order that the estimation error does 
not swamp the statistical error dovetails neatly with the further notion that it is 
possible for the data to be "'more precise" than our explanations. By this is meant 
that any reasonable model proposed, either a priori or after some model fitting, 
will be shown to be incorrect if the data set is large enough. Given that there 
will almost always be a bad fit to the data when judged on the grounds of a 
purist statistician we need not try to fit the data to a high degree of accuracy. 
Here we are on the road leading to the redundancy concept of MARTIN°LOF 
(1974). 

2. D E S C R I P T I O N  O F  M E T H O D S  

2.1. Jackkmfe 

The Jackknife method was first proposed as a technique for the removal of  bias 
from statistical estimation by QUENOUILLE (1956). It can be summarised briefly 
as follows (a good starting paper  for the practitioner is R. G. MILLER (1974)). 
A statistic calculated from a sample of size n has value S, say. If we remove the 
tth element from the sample and recalculate the statistic we obtain a value S(i), 
say. From the n statistics S(.  ) found by removing each of the original n values 
we compute pseudo-values P ( - )  of the statistic by forming 

P(t) = n. S - ( n - 1 ) .  S(i) 

If the observations contribute equally to the determination of the value of the 
statistic and the bias term of the statistic is of  order 1In then the average of the 
P ( . )  will be unbiased to order 1/n. 

TUKEY (1958) proposed that the standard error of the average of the P is the 
standard error of  the original statistic This suggestion has been taken up and 
expanded so that distribution of the P ( . )  has been used to calculate many 
statistics of  interest regarding the second and higher order moments of  the original 
statistic. 

2.2. Bootstrap 

The Bootstrap is a recently developed tool (for example, see, FREEDMAN and 
PETERS (1984)) for the non-parametric evaluation of second moments of 'various 
statistics. In brief, after some model has been fitted the error distribution of the 
data is estimated by the deviations of the fitted data values from the observed 
values. Random drawings from this observed discrete distribution are applied to 
the fitted data values to give pseudo-data. The fitting process is re-applied to this 
pseudo-data to give a new value for the statistic of  interest. The random drawing 
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and refitting is iterated until a sufficiently good estimate of the distribution of 
the stattst~c of interest can be gained. 

2.3. Parametrzc Method 

TAYLOR and ASHE (1983) describe a method of estimating the second moment 
of the distribution of outstanding claims. Their algorithm makes use of the 
parametric assumption of the distnbunon of the residuals of their fitted model 
(in their case, Normal). The coefficients of this error distribution are estimated 
by regression techniques and these are applied to the future estimates of payments 
to give their estimated variance. 

Two ways of esnmating the amount of outstanding claims are given in 
Section 3. The first is very similar to that detailed in TAYLOR and ASHE but has 
a different assumpnon for the distribution of residual. Their parametric method 
has been adapted to this form of error distribution. The second estimation method 
is quite different and the parametric method has not been applied to it. 

2.4. Quantum of Outstanding Clatms as a Statistic 

Once a model has been fitted to the data it ~s a straightforward arithmetical 
exercise to calculate the future expected claims payments. This amount is a 
function of the estimated parameters of the regression model fitted and therefore 
a statistic of  the data. There is no reason why it cannot be treated in a purely 
statistical manner. The novelty of the approach to many people arises from the 
ad hoc and heuristic nature of the claims estimation procedure until recent time. 

It has been stated by some that the statistical approach to the errors of prediction 
in the claims reserving problem is too theoretical for an area where there is still 
a lot of judgment needed to come to a final decision on the quantum. Further it 
is said that the probabilisnc statements (such as quoting a 95% confidence limit 
on the quantum) do not make sense in this problem where we must also make 
judgments on future mflanon rates and rates of investment return, a field where 
the assumption of distributions is very subjective. Some doubt has also been cast 
on the large standard deviations calculated by such methods as in TAYLOR and 
ASHE. 

The author is in partial agreement with this hne of reasoning, and indeed, has 
argued at seminars that other mathematical and operational research tools have 
a place m the actuarial armoury. These tools include fuzzy set theory, fuzzy logic, 
and scenario analysis. However the various algorithms currently used in estima- 
tion (such as the naive PPCI method described in TAYLOR and ASHE, 1983) rely 
on 

(i) averages of past data collapsed in different ways, and 
(ii) projections of obvious trends. 

These analyses may not have an explicit statistical formulation but nevertheless 
they rely a great deal on simple statistical techmques. 
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The analyses included in this paper do have an explicit statistical formulation 
so it is natural to follow the statistical theory and produce the likely error in 
these predictions that flows from our explicit assumptions. Even for the forms 
of analysis which do not make explicit assumptions we may often be able to set 
up a statistical procedure which models the analysis and ask what is the prediction 
error of this model. If this error is thought to be too high by practitioners then 
the onus is on the practitioner to show where their more ad hoc procedures 
improve significantly on the statistical model of their procedures. 

3. IMPLEMENTATION 

In order to gauge the effect of the different methods of estimating the second 
moments the three techniques have been applied to two forms of estimating the 
claim payments with five long term liability insurance portfolios: 

Portfolio A compulsory insurance for injury to people involved in motor 
vehicle accidents who are not at fault, the portfolio is large and 
can be considered as having a monopoly in its area of insurance. 
The data are available for 10 payment years and 24 development 
years. 

Portfolio B a relatively small portfolio covering the same class as A and 
again can be considered as a monopoly. Data for the last 13 
accident years are available. 

Portfolio C small portfolio in the same class as A and B, not a monopoly. 
Data available for the last 13 accident years. 

Portfolio D workers' compensation insurance for a large group of employees 
of a Government. Data for 10 payment years and 20 development 
years. 

Portfolio E workers' compensation claims that give rise to some excess-of- 
loss reinsurance payments for a given reinsurer. Data for the 
last 12 accident years are available. 

These are all real portfolios with which the author has been involved in consulting 
on the amount of outstanding claims. The techniques of this paper have been 
evolved to give the author an understanding of the statistical uncertainties 
associated with the analysis of the portfolios. The techniques have thus been 
tried on a wide variety of real data with all its associated inadequacies, outliers 
and other pitfalls. The five portfolios have a variety of payment patterns and 
differing patterns of claims inflation. 

3.1. Estimation Methods 

Two methods are used for fitting the data; the invariant see-saw method of 
TAYLOR (1981), and a variation on the payment per claim incurred method. The 
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first method models the payment per claim finalised (PPCF) observed for each 
development year within each year of origin--the PPCF is defined simply as the 
total claim payments for a given period divided by the number of claims finalised 
within that period. The second method models the payment per claim incurred 
(PPCI) observed for the same periods as the invariant see-saw model. The PPCI 
is defined as the total claim payments for a development period divided by the 
total number of claims incurred for the relevant year of origin. 

There can be large differences in the denominator of the fraction used to 
evaluate PPCI and PPCF as experience changes. This leads to &fferent precisions 
being ascribed to these values in different cells. For example in the early develop- 
ment years the number of claims finalised in a year is measured in hundreds or 
thousands while in the later years we may have only one claim finalised per year. 
The average payment per claim finalised has a much lower standard error for 
thousands of claims finalised than for one. The weight in the regression for cells 
is initially set to the number of claims incurred for the year of origin for the 
PPCI analysis and the number of claims finalised for the PPCF analysis. This 
weighting is the first step in making the error distributions in the cells have equal 
variance. 

3.1.1. Invanant See-Saw 

The invariant see-saw method as described in TAYLOR (1981) and used in TAYLOR 
and ASHE (1983) has been slightly changed for this exercise. Where the previous 
authors used the least-squares technique to estimate the parameter coefficients 
the present paper makes more use of the power of GLIM and sets the error 
distribution of the fitted PPCFs as Gamma. GLIM then maximises the likelihood 
function to obtain the parameter coefficients. The choice of the Gamma distribu- 
tion is based on two pragmatic points. The first is the asymmetrical distribution 
of the claim payments. Payments are almost always positive with a large number 
of small payments to claimants and infrequent very large payments. Although 
the true distribution of claim payments is unknown it is felt that the Gamma 
distribution will be of better service than the Normal distribution implicit in the 
approach of previous authors. The second reason is based on a feature of GLIM, 
viz that when a Gamma distribution of error is specified it is further assumed 
that the standard deviation of the distribution is a constant multiple of mean of 
the distribution. Thus cells with different means have different standard deviations 
but there is a constant coefficient of variation across all cells (subject to the 
weighting mentioned in the preceding section). This is in accordance with the 
author's observations that the variance of payments per claim finalised is generally 
higher when their average is high than when it is low. 

3 1.2. Payment Per Claim Incurred 

The approach taken for this model has evolved primarily in order to estimate 
the inflation of claim payments over time. GLIM is used to estimate the natural 
logarithm of the PPCI by a linear additive model, thereby fitting a multiplicative 
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model to the PPCI themselves. When a variable representing time is incorporated 
into the model then its coefficient is the estimated force of inflation acting on 
average payments over the time period. 

Let 

The model fitted is 

P = year of payment 
x, = other variables used in the model 

a, b,, c = estimated coefficients. 

log (PPCI) = a + ~ b,x, ÷ cP 

exp ( c ) -  1 is the estimated rate of inflation of claim payments. 
The error distribution of the PPCI is taken to be Normal. GLIM estimates the 

coefficients of the parameters of the model by maximising the likelihood function 
determined by this logarithmic link and the Normal error distribution. 

The logarithmic relationship between the fitted value and the linear model 
leads to difficulties in the evaluation of the estimation error of the predicted 
payments using the parametric method. GLIM gives the first and second moments 
of the coefficients of the model in units of  log ($). This distribution must then 
be exponentiated to give the distribution in dollars. The Normal distribution of 
the statistical error can then be added to this estimation error. This algorithm is 
not yet implemented and so no parametric estimate of the errors of prediction 
are given. 

3.2. Jackknife Details 

3.2.1. Definition o f  an Element 

The jackknife algorithm proceeds by discarding one sample observation (datum) 
and re-estimating the statistic of interest. Data on individual claims is not 
available. "ISle smallest piece of data is on claim payments in a given development 
year for a given year of origin (a cell), so in implementing the jackkmfe this ts 
the datum discarded. 

3.2.2. Heteroscedasticity m the Observed Cells 

The Jackknife method is usually described for data sets where all the observations 
have equal weight in evaluating the final statistic. Unfortunately the real data 
from the above portfolios need major readjustment to their raw weights (Section 
3.1) before any decent analysis can be undertaken. The most usual form this 
takes is to reduce heterogeneity in the residual variance between development 
years. This is done by defining a function of development year, say V D ( D ) ,  
which is used to adjust the prior weight given to the cell multiplicatively. Rarely 
is something more complicated than a two or three valued step function used 
for a PPCF model. For the PPCI models VD is first taken as a function of the 
average payment per claim incurred for that development year. This effectively 
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w(i) 
W 
S 

s(~) 
P(z) 

(1) 
P 

sets the variance of the PPCI proportional to the average value. This assumption 
is somewhat different to that implicit in the Gamma  error distribution assumed 
for the PPCF Model where the coefficient of variation is taken as constant for 
all cells. 

The other form of adjustment made to the weight function is for obvious 
outliers. A weight of  zero is typically used in practice, though non-zero weights 
are perhaps preferable so that the datum still has some bearing on the final statistic. 

In practice the adjustment process described here is done on an ad hoc trial 
and error basis and is stopped when there is no obvious non-random pattern 
emerging when the standardlsed residuals from the latest model are fitted against 
explanatory variables. 

The usual jackkmfe procedure treats all sample observations with equal weight. 
Our analysis has observations with markedly different weights, so it is not obvious 
that the usual jackknife algorithm will give an appropriate answer. 

Consideration of the case where the statistic of interest is the mean of a sample 
and the weights represent repetitions of  a sample value leads to the following 
algorithm. 

Let 

= weight given to the cell ~; 
= sum of all weights, 
= statistic using the full sample; 
= statistic re-estimated after dropping cell i from regression; 
= pseudo-value, 
= (W.  S - ( W -  w(,)) .  S( t ) ) /w(i) ,  
= the jackknifed estimate, 
= Z  w(t)P( l ) /W.  

However the weights are used for the fitting of the model, they do not necessarily 
give the importance of the datum in the determination of the projected claims. 

The ambiguity as to the form that the jackknife estimate takes is a function of 
our ignorance of the series expansion that underlies the jackknife methodology 
which in its simplest form i s :  

S = l . ~ + a / n + . . . .  

where a is the bias term to order 1/n. 
Formula 1 is based on n being replaced by W = ~  w(Q. The true form is 

conjectural at present, indeed A. MILLER (1984) proposes that with stgnificant 
competition bias the highest order term is of  order n -t/2. Both (1) and the usual 
jackknife algorithm are used for estimation in this paper. 

3.3. Bootstrap Detads 

3.3.1. Evaluatton of Error Distribution 

The error distribution needed for the Bootstrap is formed from the scaled residuals 
of  the fitted model i.e. 
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PPCI = (observed va lue -  fitted value)/(weight)l/2/scaling factor 
PPCF = (observed va lue -  fitted value)/fitted value/(weight * scaling factor) I/2. 

These residuals are all on the same standardized scale. The scaling factor is given 
by GLIM. 

The residuals are presumed to be independent and identically distributed. The 
homoscedasticity is gained by the method outlined in Section 3.2.2. 

No attempt is made to model slight departures from the independence assump- 
tion when refitting the residuals in the simulation. An example of such a slight 
departure is when we observe a set of payments in one calendar year which may 
all be below the fitted values. We may not wish to model this feature of the data 
as there may be no convincing explanation of the phenomenon and therefore no 
way of predicting its possible recurrence. By leaving it out of the model we 
increase the residual variation and thus, ceterls paribus, the estimated error of 
prediction. 

3.3.2. Heteroscedasticity in the Prediction Cells 

Once the pseudo-data have been simulated and a re-estimation of the model 
parameters made there is another use which can be made of the error distribu- 
t i on - fu tu re  statistical error can be estimated by simulation techniques. The raw 
errors can be rescaled by the scale factor estimated by GLIM and by either the 
number of claims expected to be finalised (PPCF method) or the total number 
of claims incurred for the year of origin (PPCI method). The vector used to 
reduce heteroscedasticity in the fitted cells is also used to reintroduce that 
heteroscedastlcity in the predicted payments. Thus future payments can be esti- 
mated which vary both because of realisations of the estimation error (calculated 
by way of fitting the pseudo data) and the statistical error (fitting the observed 
residuals onto predicted average payments). 

The estimation error and the statistical error are assumed to be independent 
and so the total variance can be decomposed into these two parts and their 
relative importance gauged. 

3 . 4 .  

From the pseudo-estimates of the jackknife and the iterations of the bootstrap 
we have numerous estimates of future payments. As in TAYLOR and ASHE these 
payments are broken down by year of occurrence of the claim and the year of 
payment. These estimates are produced using GLIM and are output to a temporary 
computer file. A post-processor has been written which takes these numerous 
estimates and produces a covariance matrix of the estimated future payments for 
each of these cells. 

With the parametric method this covariance matrix is produced directly from 
the estimated covariance matrix of the parameter coefficients and the estimated 
variance of the payments. 
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This large covariance matrix can be collapsed in various ways to give such 
statistics as: 

(i) the standard deviation of the outstanding claims for each accident year 
and the correlation matrix of the '~ccident year estimates, or 

(ii) the standard deviations of the total claims in each payment year. 

From the covariance matrix we have directly the standard deviation of the 
expected payments in the next year for each accident year. This can be used to 
judge the suitability of  the model when the claims estimation is redone in one 
year's time. 

4. CONCLUSIONS AND DISCUSSION 

4.1. 

The following table shows the results of  applying the second moment estimators 
with the two estimation methods to the different portfolios. 

Estimate Standard devtatton 

Jackknife Jackknife 
Port- Wetghted Equal Para- Weighted Equal 
foho Model (a) (b) metric (a) (b) Parametric Bootstrap 

$M SM SM SM SM SM SM 
A PPCF 1639.9 1639 9 1660 0 75 4 59 9 50.3 50 9 
B PPCF 85 l 85.0 82 3 22 6 6 6 8 8 5 6 

PPCI 60 9 61.0 65 2 20 5 6.8 - -  5 2 
C PPCF 27 2 27.1 27 2 2 4 I 9 2 7 2 4 
D PPCI 140 6 140.6 144 2 52 9 14 7 - -  11 I 
E PPCF 126 7 126 7 128 4 12 0 9 0 13.2 9 8 

Notes. 
(a) Applying formula (1) 
(b) Applying the usual jackknife formula with equal weights given to all cells. 

4.2. 

The two methods for evaluating the jackknife outstanding claims give very 
different estimates for its standard deviation. The estimates deriving from the 
weighted jackknife are sometimes so far removed from the bootstrap and para- 
metric estimates that it can be confidently stated the approach is wrong. 

4.3. 

The three methods generally give similar results which gives us greater confidence 
that we know the level of  error in our estimate caused by the statistical procedures 
used. The variations in the results are not enough to discredit the high (to some) 
coefficients of  variation calculated using the approach of TAYLOR and ASHE. 
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In the absence o f  any indication that one method is superior to any other we 
can combine  the estimates with equal weight given to each but taking care to 
combine like with like. 

The jackknife gives an estimate of  only the estimation error. We should therefore 
compare  it to the estimation error of  the parametr ic  and boots t rap approaches.  
For the P P C F  models we find that the estimation and statistical errors are 
approximately  equal (it is assumed they are independent) .  We can then take the 
average o f  the three estimation errors and a second average of  the two statistical 
errors which we then combine  to give us a new estimate o f  the total error. 

For example,  in Portfolio C using the P P C F  method we find the statistical 
error is 46% of  the parametric  methods estimate and 44% of  the Bootstrap 
estimate. 

The estimation error is 

[(1.9)2+0.54(2.7)2+0.56(2.4)2]/3 = 3.59 = (1.9) 2. 

The statistical error is 

[0.46(2.7) 2 + 0.44(2.4)2]/2 = 2.94 = (1.7) 2. 

The total error o f  prediction is taken as 

3.59 + 2.94 = 6.53 = (2.6) 2. 

4 . 4 .  

There is the special form of  the specification error called compet i t ion bias by 
MILLER (1984). This error comes when a regression is at tempted with many 
variables which are entered into the model one at a time with that variable giving 
the greatest reduction o f  the residual variance entering at each step. The paradigm 
of  this technique is the stepwise regression of  Efroymson.  If  many  variables o f  
marginal significance are present then sampling variation can lead to one or more 
o f  these having the appearance  of  greater significance and therefore being included 
in the model.  This tends to lead to lower residual variation and lower estimates 
o f  variance o f  prediction. 

While the author  does not use a formal stepwise regression procedure  there is 
still the possibility that competi t ion bias will be a significant source o f  error. The 
parametric  and boots t rap methods will not  measure this error. The jackknife 
analysis may give some indication that it may exist if there are only a few cells 
which cause the variable to appear  significant. As these cells are deleted there 
may be a sufficiently large change in the coefficient o f  that variable so that the 
jackknife estimates o f  the values o f  the coefficient o f  the variable and the s tandard 
error of  the coefficient lead to it being judged  non-significant. 

The statistical error is assumed to be o f  a certain parametr ic  form. This 
assumption has little solid theoretical backing which raises doubts  on the accuracy 
of  the estimate o f  statistical error. 
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The bootstrap by using the distribution of the standardised residuals overcomes 
two problems of  the parametric analysis. The residuals show how the data differ 
from the fitted values given both the parametric assumption used in the fitting 
algorithm and the form of the fitted function. These residuals are then added to 
the fitted function for future years to give realisations of future payments. 

If  we assume that: 

(i) the same model would be fitted when information is finally available on 
the future payments,  and 

(ii) the observed residuals of the future payments would come from the same 
distribution as the past payments '  residuals 

then the bootstrap's  realisations are non-parametric to a large extent. 
This removes one possible source of specification error. 

4.5. 

The jackknife pseudo-estimates can give u~\an approximation to the i~'fluence 
function of  Hampel  (mentioned in REY, 1979). This function measures the 
influence on the statistic of  a particular cell. By observing how the estimated 
outstanding claims change when a particular cell is removed we can judge the 
relative influence of that cell on our estimate. Very large absolute values of this 
function indicate that the cell is having too great an influence on our estimation 
process. Particular attention should be paid to such cells in order to find out 
anything unusual that may have occurred such as large payments to some 
claimants or changes in the claim handling procedures that may have led to some 
departure from the trend of payment around them. If  too great a sensitivity is 
found then consideration could be given to changing the model to one that is 
more robust. 

Plotting the residual values against various parameters of  our model may not 
give sufficient indication of the effect of  certain cells on the estimation as such 
plots indicate more the effect of cells on the fitting process. 

4.6. 

The jackknife was originally introduced as a method for removing the bias from 
estimators. The table indicates that the PPCF estimator does not have a large 
bias, being at most of  th~ order of 2%. However the PPCI method has a larger 

b ias ,  reaching 7% for the taaive model fitted to Portfolio B and 2~% of Portfolio D. 

4.7. 

The parameter  estimates and their standard deviations from the jackknife agree 
substantially with those from the parametric approach except for the coefficient 
of  the inverse of  the speed of finalisation (perhaps the most important variable 
in the model). The coefficient of  this variable typically has approximately the 
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same estimate from the two approaches but its standard error is much higher for 
the jackknife approach. If the jackknife estimate is to be believed then the 
parametric approach will give an underestimate of the estimation error unless 
the changes in the covariance matrix of the parameter estimates counteracts this. 

4.8. 

The second moment of the claims distribution is used, inter alia, to judge the 
likelihood of  sufficiency of provisions made for these claims. In the author's 
experience this is usually made by making some parametric assumption for the 
distribution of  total claims (such as Normal or Lognormal) and then making a 
probabilistic statement on the adequacy. 

The bootstrap iterations give us simulated realisations of the claim amounts 
and so allow us to approximate the distribution. Adequacy of provisions can 
then be judged from this distribution thereby bypassing the errors caused by 
assumption of the wrong distribution. The observed distribution is, as expected, 
skewed towards higher values. The degree of skewness is only slight for the 
portfolios considered here. 

4.9.  

In a recent paper, TAYLOR (1984) has advocated a formal way of combining the 
estimates of outstanding claims from different models. In its most pure form it 
requires the covarlance matrix of the estimates for each year of occurrence from 
a given model and the covariance matrix of the years of occurrence between 
methods. While the first matrix could be obtained from the methods in his paper 
with ASHE the second covariance matrix was educated guesswork. 

The jackknife offers a way to obtain this esoteric second matrix in some cases. 
With the PPCI and PPCF methods giving pseudo-estimates on the same data the 
matrix can be built up observing the correlations of the pseudo-estimates as each 
cell is dropped in turn. This technique can be used to give a correlation matrix 
for each accident year's future payment as determined by the two methods which 
must then be collapsed to the total accident year payment covariance matrix. 

The correlation coefficient between the PPCF and PPCI estimates for all 
outstanding claims in Portfolio B has been calculated as 37%. 

A disturbing point arises from the consideration of the two estimates for 
Portfolio B. The estimated standard deviation for the PPCI method is $6.3M and 
for the PPCF method is $9.0M and there is a 37% correlation between the two 
central estimates. Yet there is a $24M difference between the two estimates which 
thus appear to be significantly different. Note that specification error has not 
been included in the quoted standard deviations. 

For Portfolio B the PPCF model was used in practice to help estimate the 
outstanding claims. The PPCI model was not considered suitable and the model 
quoted here was fitted as an example for this paper. The fit to the past data is 
as adequate as the PPCF model in the statistical sense. In practice the PPCI 
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method has been taken as having a large specification error while the PPCF was 
taken as having a relatively small specification error. 

This indicates the importance of analysing the data by more than one method. 
Although the specification error cannot be estimated formally an indication of 
its possible size can be gained by observing the range of estimates made by 
different techniques. 

4.10 

The PPCI bootstrap technique gives a comparatively low estimate of  the statistical 
error viz $2.2M for Portfolio B as compared to $4.4M for the PPCF method, and 
$1M for Portfolio D. These results are sufficiently unusual as to warrant suspicion 
on the technique used for their evaluation. This is currently being investigated 
further. 

4.11 

For the PPCF models the total variance of the estimated outstanding payments 
is appreximately half estimation error and half statistical error. However for the 
individual accident years the statistical error rises to about 80% of the total 
variance or higher. This can be explained by the independence of the statistical 
errors between cells and therefore between accident years and the positive 
correlation of the estimation errors. As the accident years are combined the 
statistical errors add simply but the estimation errors become more important as 
they add together with the positive covariances. 

5. CONCLUSION 

No method for measuring the second moment  of  the estimate of  outstanding 
claims stands out from the others as superior. Their features can be summarised 
thus: 

Parametric small number of  calculations 
estimation and statistical errors available 
accurate if the parametric assumptions are correct 

Jackknife influence of individual data points on the estimate is available 
only estimation error is available 
estimate of  outstanding claims with possible reduced bias 

Bootstrap non-parametric 
estimation and statistical errors available 
distribution of outstanding claims given. 

As the estimates of the second moment are generally different for the three 
methods it is recommended that all three be evaluated then combined. The study 
of the three estimates will give greater insight to the evaluation of the quantum 
of outstanding claims. 
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