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1. INTRODUCTION

This paper considers a particular credibility model for the claim numbers N,
N,,...,N, ... of a single nsk within a collecive tn successive periods
1,2,...,n,....Inthe terminology of JeweLL (1975) the model 1s an evolutionary
credibility model, which means that the underlying risk parameter A is allowed
to vary in successive periods (the structure function 1s allowed to be time
dependent). Evolutionary credibility models for claim amounts have been studied
by BUHLMANN (1969, pp. 164-165), GERBER and JoNEs (1975), JEweLL (1975,
1976), TayLor (1975), SUNDT (1979, 1981, 1983) and KREMER (1982). Again in
Jewell’s terminology the considered model is on the other hand stationary, in the
sense that the conditional distribution of N, given the underlying risk parameter
does not vary with i

The computation of the credibility estimate of N, , involves the considerable
labor of inverting an n X n covariance matrix (n is the number of observations).
The above mentioned papers have therefore typically looked for model structures
for which this inversion is unnecessary and instead a recursive formula for the
credibility forecast can be obtained. Typically nth order stationary a prioni
sequences (e.g., ARMA (p, q)-processes) lead to an nth order recursive scheme.
In this paper we impose the restriction that the conditional distribution of N, is
Poisson (which by the way leads to a model identical to the so called “doubly
stochastic Poisson sequences’ considered in the theory of stochastic point pro-
cesses). What we gain is a recursive formula for the coefficients of the credibility
estimate (not for the estimate itself!) in case of an arbitrary weakly stationary a
priort sequence. In addition to this central result the estimation of the structural
parameters is considered in this case and some more special models are analyzed.
Among them are EARMA-processes (which are positive-valued stationary
sequences possessing exponentially distributed marginals and the same autocorre-
lation structure as ARMA-processes) as a priort sequence and models which can
be considered as (discrete) generalizations of the Pdlya process.

* 1 thank the editor and an anonymous referee for valuable suggestions
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2 ALBRECHT

2. DEFINITION OF THE MODEL AND BASIC PROPERTIES

Let A, denote the risk parameter in period 1 and let U, (A, . .., A, )—the structure
function of the considered collective—denote the joint distribution function of
Ay, ..., A, We make the following assumptions:

ASSUMPTION |
(l) P(Nl:kla,anknl{Ar})=l—l P(Nl=kI|Al)
=1
This means that the { N,} are condutionally independent given the {A,}.

AssuMPTION 2. The conditional distribution of N, given A,= A is a Poisson
distribution

Ak
(2) P(N,=k|A, =/\)=F e

It is Assumption 2 which creates the difference to the other above mentioned
evolutionary models. The price we have to pay is the specification of the condi-
tional distribution—which, however, is very natural for claim number models—
what we get on the other hand are more specific and useful results.

Combining (1) and (2) we obtain the multivariate distribution of the claim
numbers

© © g Kk
(3) P(N,=k,,...,N,,=k,,)=J' J‘ n{)" e_"'}dU,,()\,,...,)\,,).

0 o.—l_l?:?

This, however, means that the sequence {N,},cn is a ““doubly stochastic Poisson
sequence’’. Such sequences have been studied by GranpeLL (1971, 1972, 1976)
as a special case of the doubly stochastic Poisson process, which itself can be
considered as an evolutionary credibility model for claim numbers in continuous
time. We will for practical purposes, however, consider only the discrete time
model. A main implication of (3) is that it is possible to establish more properties
of the model than just the form of the conditional linear forecast of N, ., as in
the usual credibility models. E.g., one can solve other statistical problems and
one can give limit theorems for the process. For a lot of detailed results, cf.
GRANDELL (1971, 1972, 1976) and SNYDER {1975).
If we denote

@) {E(A,) =m, Cov(A,A)=r,

Var (Al) = rll = rl)
we obtain the corresponding moments of {N,} as

) {E(N,)=m,, Cov(N,N)=r, 15
Var(N,))=r,+m,
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From (2) we see that the marginal distributions of the process { N,} are mixed
Poisson distributions

@ 4y k

(6) P(N,=k)=j /\—e“ dU, (A).
o k! :

This implies that P{N, = k) can be calculated for various mixing distributions
U, (A). For some recent results see ALBRECHT (1984). The multivariate counting
distribution of the process is given by (3), but can alternatively be derived as
follows.

Let Ly(s,,...,S,) denote the Laplace functional of (A,,...,A,) and let
®N(1,,...,1,) denote the probability generating functional of (N, ..., N,).

As e *!'"" is the probability generating function of a Poisson variable with
parameter A, we obtain from (3)

(7) oN(n,. .., t")=Jw- x Jm ﬁ E[tM A =A1dU, (A, ..., A,)

0 0 =1
o =

=J e J [T e "% dU,(Ay, ..., An)
0 0 1=l

=LM1—1t,...,1—1t,).
The multivariate counting distribution then is given by the relation

[" L] 3P (1., 1)

il P R

(8) P(lekh'--,Nn:kn): k'

We now come to the central problem of credibility, the calculation of the optimal
linear forecast of N,., given the N,,..., N,. If f,(N,,..., N,)=a,+¥ _, a,N,
denotes the linear forecast function, the parameters which make E{N,,, —
fo{Ny, ..., N} a minimum are determined in the following way (this is easily
established by straightforward calculation, or as a special case from the general
result of JEWELL (1971, p. 15) or GRANDELL (1976, p. 128)).

a, is given by a single equation which makes the forecast unbiased

) Go= E(Nypuy) — Z, a,E(N,)=my., _é. am,
The remaining coefficients are given by the n X n system of linear equations
(10) i, Cov (N, N)a,=Cov (N, Novy),  i=1,...
S
or more specifically
(1) a,m,+iI ra, = sy, i=1,...,n
)=

We note, that because of the identical expectation and covariance structure the
optimal linear forecast of N,,, given the N,..., N, equals the optimal linear
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forecast of A,.; = E[N,4i[A.+1] given Ny, ..., N,. In turn this means that it 1s
also 1dentical to the optimal linear forecast of Var (N, |A,.)=A,., given
Ny, ..., N,

We now consider in detail a rather general class of doubly stochastic Poisson
sequences, which turns out to have nice properties with respect to the calculation
of the credibility forecast and the estimation of the structural parameters.

3. WEAKLY STATIONARY A PRIORI SEQUENCES

We require that {A,},.n is @ weakly stationary sequence characterized by the
following moment structure:

(12) E(A)=m forallieN
(13) Cov(A,A)=r., forallyjeN

The main result in connection with this special model s that we are able to
simplify the calculation of the credibility forecast. Whereas the general case only
allows that the inverse of C(n)=(Cov(N, N,)),-,, .. can be calculated recur-
sively we are able to give a recursive formula for the optimal coefficients a,
however, not a recursive formula for the credibility forecast.

Let now

(14) j’,',‘(N,,...,N,,)=ao(n)+'; a(m)N,
denote the optimal linear forecast of N,,, given N,,..., N, and
(15) C(n)=(Cov (N, N))yy=1, #=(c,)
denote the covariance matrix of (N, ..., N,).
We have
rtm 1=},
(16) C"={r|0,_1| t;éj'.
Let
(17) a(n)={(a,(n),...,a,(n))
(18) a(n) =(ay(n),..., a,(n))
(19) rin)y=(r,..., r,)
and
(20) Fn)=(ry,...,n).

From (10) we obtain that the optimal coefficients of the credibility forecast are
given by

(21 a(n)=C~(n)F(n).



EVOLUTIONARY CREDIBILITY MODEL 5
The following lemma gives the form of the inverse of a partitioned matrix.
LEMMA 1. Let the symmetric (n, n) matrix C be decomposed to
Ci u'
C =( ),
ul|D

where D s of order (n—1, n—1). Then we have

I 1

- ~-—v

s s
(22) C'= 1 t

— v | D' +-v0

s s
where

v=D""u

s=c,—vu=c,~u'D'u

The following lemma gives some useful elementary properties of the covariance
matrix C(n).

LEMMA 2.
1. C(n+1) can for n=1 be decomposed in the following way:
_fro+m]| r(n)y
(23) C(n+l)—( o C(n))'
2.
(24) C(n)a(n)=r(n).
This implies
3.
(25) C7'(n)r(n)=d(n).

We now define (the a,(n) are the coefficients of the credibility forecast

ﬁ(Nl’ B | Nn))

26)  s(n)=rotm—r(nY@(n)=rotm—3 ray_n(n), n=1

ree |

n

27) kiny=ry —r(n)Ya(n)=r,p— 2 ra(n), n=1.

=1

REMARK. s(n)= E{N,.,—f¥(N,,. ., N,)} ie., the minimum mean square
error of a linear forecast of N, ., given N,..., N,.
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We now come to the central result.

THEOREM. For the coefficients al(n+1), a(n-+1) of the credibility forecast

Jar1i(Ny, ..., Nou) the following relations are valid (n=1):
k
(28) ao(n+l)=(l -s((:))) ao(n)
(29) a,(n+1) =<0
s(n)
(30) a,(n+l)=a,_.(n)—k(—n2a,,_,+2(n), 2<isn+1.
s(n)

The starting values are ay(1)=m(1=r,/(ro+m}) and a,(1)=r,/(r,+ m).

REMARK. (30) can alternatively be written as

31 (az(n-H),...,a,,+|(n+l))'=a(n)—Mﬁ(n).
s(n)
ProoF.
(32) a(n+1)=C '(n+D)F(n+1).

From the decomposition (23) of C(n+1), we obtain in the notation of lemma
1, using (25):

v=C~'(n)r(n)=a(n)
=(rgc+m)—a(n)'r(n)=s(n).

The following partitioned form of C~'(n+1) results:

1 i 1.,
———a(n)
C-'(n+1)= T(") s(”l) :
———a(n) C '(n)+——d(n)a(n)
s(n) s(n)

From (32), the relations (29) and (30) easily follow. Then (28) is obtained from
(9).

CoroLLaRY. For the mean square error s(n) of the credibility forecast the
Sollowing recursive formula is valid:
k(n)’ ri

(33) s(n+1)=s(n) - s(n)’ n=l; S(1)=ro+m—ro+m.

Proor. From (26)

n
S(’l+l)=ro+m_ Z rlan+2—|(n+])_rn+lal("+l);
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using (29), (30) this simplifies to

k(n)
s(n)

k(n)
s(n)’

rotm-— i r,{a,,+,_,(n)—

a:(")}'—’nﬂ

Using (26), (27) this in turn simplifies to (33).

The theorem allows recursive calculation of the credibility forecast of N, in
case of a known risk structure. To obtain an emprrical credibility forecast, we
have to estimate the unknown parameters, which here are: m, ro, r\, #s,....

The estimation problem exhibits the second important property of the model
considered in this section. If we assume that the a priori sequence {A,} is weakly
stationary, then we obtain from (5), that the observable sequence { N,} 1s a weakly
stationary one, too. We then have the possibility to apply results from the
well-developed theory of the statistical analysis of weakly stationary time series,
seee.g., HANNAN (1960, Chapters 11-1V) or Doos (1953, Chapter X). Forexample
a spectral analysis of the sequence { N,} is possible. Some results in this direction
can be found in GRANDELL (1976, Chapter 7.2). We will here, however, confine
to the above mentioned estimation problem. Up to now we have only considered
the claim number sequence of a single risk, observed for n years. We now assume
that we observe a collective of K independent risks, each having the same
probability law of its claim number sequence.

Let

(34) N, = number of claims of risk i in year j
i=1,...,K;j=1,...,n

From standard results of time series analysis, e.g., HANNAN (1960, pp. 30-33),
we obtain the following natural estimators of the above mentioned parameters.

l n

5 o= — N,

(35) = WZHI A
. l K n-k R .
(36) = Rk =1 ZI Zl (N~ m) (N, —m), fork=1
-1 y—
(37 Var (N) =—— 3 % (N, —#)?
arti) = Kn—1 ,§| ng =)
A natural estimate for r, then is
l K n

(38) 7 Y T (N, —m)?— s

0=
Kn—1| =17 =1

As pointed out by the referee the expected value of (37) is given by

R _
var(N,)—1=—— ¥ r(n—j),

J=1

which implies a slight bias.
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The theorem shows, how the coefficients of the credibility forecasts can be
calculated recursively in the case of an arbitrary stationary a prior: sequence. It
is, however, not possible to develop a recursive formula for the credibility forecast
itself for the general case. It would be interesting to examine special classes of
stationary a prior: sequences which give rise to recursive formulae for the credibil-
ity forecast ttself. For a more general type of evolutionary models KREMER (1982)
has considered ARMA (p, q) processes as a special class of stationary a priori
sequences. In the model of this paper the a priori sequences have to be positive-
valued to be admuissible. Therefore the ARMA (p, q) processes are not admissible
in general. However Lewis and a number of co-authors (see LAWRENCE and
Lewis (1980) for the most recent results) have developed models for positive-
valued stationary time series {X,},. Which, being in general rather distinct from
the ARMA-models, possess the same autocorrelation structure as the ARMA-
processes. These processes are called EARMA (p, q)-processes, the E stemming
from the additional feature of all these processes: they have an exponential
marginal distribution!

The results of KREMER (1982) cannot be translated into the present context
for several reasons, one being that the form of the linear regressions of the
EARMA-processes have not yet been established. Another drawback of the
EARMA-processes is that the statistical analysis of these processes is not yet well
developed in general, contrary to the ARMA-processes. In the following, we
consider some examples.

ExampLE |. EAR (1)-process as a priori sequence. A stationary version of the
first order autoregressive model with exponential marginals with “finite past”
can be obtained as follows (cf. GaAvEr and Lewis (1980, p. 732):

(39)

A,=pA,_+1,E, =2
{ pln " (0<p<1)

Ay=pE,+ 1 E|,

where {I,},,~, is a sequence of i..d. Bernoulli-variables with P(], =0)=p and
{E,}.~o is an independent sequence of i.i.d. exponentially distributed variables
with parameter A. The resulting sequence is a first order Markov process, the A,
are exponentially distributed with parameter A and can alternatively be obtained
in the usual first-order autoregressive form A, =pA,_, +¢, with a suitable {¢,}.
For the second order structure we obtain

(40) {m=E(A,,)=1/)\, ro=Var(A,)=1/A%

re=Cov (A, Ansi) = p*/A%=p*r, k=1

From (40) we see that the r, fulfill the property (10) of SunpT (1981, p. 7), which
in our context reads:

(41) Fevi—, =p-ho, foralli=y, forally=1.

Clearly p,=p for all i and from Sundt’s result (11) we obtain the following
recursive formula for the credibility forecast.
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As (notation as in SUNDT (1981)) ¢, = E{Var (N,|A,)} = E(A,) = 1/ A, we define

\ 1
= n=2;
As(n—1) n

(42) ¥n

T1H1/A
@3) x=2p2+(l—p2)(1+§>
and obtain
(44) 'Yn+l=(X-7np2)_l
(45) {f:lv((Nla ccey Nn)zp[(l _Yn)Nn+ ')‘n >r‘:——l(Nla ccey Nn—l)]+(l _p)/\
fo=1/A.

This 1s the desired recursive formula for the credibility forecast.
It is interesting to note that the regressions of this a priort sequence are all
linear, precisely

(46) E(An-f-lIAI,' . :An)=E(An+l|An)=pAn+(l _P)/A

However, we have not been able to show that the regressions of the a posteriort
process {N,} are linear too, i.e., the credibility forecast in the best forecast of
N,. based on N,..., N,.

We now come to the estimation of the unknown parameters A and p and
consider again a collective of K independent risks each having the same law of
its claim number sequence. Let N, be defined as in (34); noticing that E(N,) = 1/A
and r,=Cov (N, N,,,)=p/A* we obtain from (35) and (36) the following (con-
sistent) natural estimators of A and p:

. [
(47) A=1/K—_Z N,

K n-
(48) p=r0r——— L L (N,=A7) (N, =47,
A drawback of the model is, that all correlations p, = Corr (A, A,.x) are positive.
Indeed, one can show that there does not exist an autoregressive sequence
A,=pA,_te, possesssing exponentially distributed marginals and p <0!
However, Gaver and LeEwis (1980, p 741) present models of similar autocorrela-
tion structure and negative correlation, which still possess the property of having
an exponential marginal distribution. GAver and Lewis (1980, pp. 736-737)
consider also an autoregressive process of first order with a gamma marginal
distribution and a similar autocorrelation structure, the GAR (1)-process.
ExampLE2. EMA (1)-process as a priori sequence. A first-order moving average
model with exponential marginal distribution, was considered by LAWRANCE
and Lewis (1977) and can be obtained as follows (forward formulation)

(49) A, =Be,+1.e,., (0=8=<1),
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where the {I,},-, are i.i.d. Bernoulli variables with P(I,=1)=1—8 and {¢,},~,
1s an independent sequence of i.i.d. exponentially distributed (parameter A)
random variables. The process is not Markovian and the second order structure
is given by
m=E(A,)=1/A, ro=Var(A,)=1/A%
(50) rI=C0V(An:An+l):B(l—B)r0
n= 0 fork=2
To obtain a recursive formula for the credibility forecast we can use Theorem 2

in SunDT (1981, p. 6).
We obtain the following recursive relation for the estimation error s(n):

s(n)=l(l+l)—w, nz2

A Al Ais(n—1)
Gy 1 1y _B*(1-8)°
=3 (143) -5
and the following recursive formula for the credibility forecast
_BU-B) . BU-B) 1
.F:(Nl,' RO ) Nn)"'Azs(n_l) Nn AZS(H— l)ﬁ—l(Nla vt Nn-l)+A,
(52) | (1-8) B(I ) n=2
Ny =~ BB BUZB)

TA (AN 1+A

A natural estimator of the unknown parameter 8 (A is estimated as under (47))
is given by

(53) BA=%+% \/1-422(—)_—l Zl "Z:(N ANy, =47,

A drawback of the model is that the first-order autocorrelation p, = B(1—8) 1s
always nonnegative (one can show in addition, that 1t is always bounded from
above by 1/4).

The regressions of the a priort process are given by

T P ]

and are therefore not linear.

ExampLE 3. EARMA (1,1) process as a priori sequence. A first order mixed
autoregressive-moving average process with an exponential marginal distribution
was considered by Jacoss and Lewis (1977) and can be obtained as follows
(“backward formulation™).
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An=ﬂ£n+UnAn—l (Osﬂsl)
(n=1)
(55) Anszn—l+VnEn (Ospsl) »
Ao= &g

where {U,} and {V,} are independent sequences of independent Bernoulli vari-
ables with P(U,=0)=8, P(V,=0)=p and {e,} is an independent sequence of
i.i.d. exponentially distributed (parameter A) random variables. The resulting
process {A,} is stationary and in general non Markovian. The second order
structure of the process is given by

m=E(A,)=1/A, roVar (A,)=1/A2
(56) ry=Cov (A, Apsy) = ro(1=B)B +p(1-28)]
k=1

nn=p r.

Again we can apply Theorem 2 of SUNDT (1981) to obtain a recursive formula
for the credibility forecast. The result is as follows:

_[P("o+ m)_rl]z

s(n) = (ro+m)+p*(ro+m)—2pr, , n=2
(57) . s(n—1)
s(l)=(r0+m)-—r0:_lm
( (. _plrtm)—r,
f:(Nl’an)—(p S("_l) )Nn
(58) +&;(J:§)l)'—"ﬁ_.(1v,,...,Nn_.)+m(1—p), n=2
N r
L ﬁ(N')=m(l—r0+m)+ro+mN"

4. SOME SPECIAL MODELS

We first treat two models which can be considered as generalizations of the
Pélya-process in discrete time. The Pélya-process is a mixed Poisson process
with the gamma distribution as mixing distribution.

Model A. A natural generalization, which was already considered by BATEs
and NEYMAN (1952), is to assume
(59) A =a A,
where A follows a gamma distribution with parameters b and p. The a priori

moments are given by

6)  E)=al  vara)=aiB  cova,a)-agd
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SNYDER (1975, p. 288) considers the continuous time analogue, which he terms
“inhomogeneous Pdlya process’.

Model A seems to be the only known double stochastic Poisson sequence for
which the multivariate counting distribution can be given explicitly. Bates and
Neyman showed that

(61) P(N,=n,,. .,N.=n)= (1+b)*l’n!<n+p—l) [k] Ll: a,/b j|,.l,

n —1n'll+a/b

where a=Y" , a,and n=3%"_ n,

Comparing (61) with Jounson and Kotz (1969, p. 292, (32)) shows, that the
multivariate counting distribution of the ‘‘discrete inhomogeneous Pélya process”™
is just a multivanate negative binomial distribution (N =p, P,=a,/b in their
notation).

JounsoN and Kotz (1969, p. 295) show also, that in case of a multivariate
negative binomial distribution the regressions are always linear. Especially we
obtain

62 E(N..,N, .. p "+'+_a"+'z

(62) (NoiNis - Na) = b+ b+a N,
=——E(N,)+ "'EN
b+a ! +a :

This implies that in case of the “discrete inhomogeneous Pdlya process” the
optimum forecast function (with respect to the mean square error) is identical
to the best linear forecast function (the credibility forecast).

If we want to calculate the credibility forecast with the method of chapter 1
(equations (9) and (10)), we can apply a result of JEweLL (1976, pp. 16-17),
because Cov (N, N,) can be factored into a,-((p/b%)a,).

It is interesting to note that already BUHLMANN (1969, pp. 164-165) considered
a similar model. He considered a sequence of conditionally Poisson distributed
claim variables {X|,} with the property

(63) E(X,|0)=a,- 9,

where a,=n+c¢, ¢ is a constant independent of n and 6 follows a gamma
distribution.

In addition to Buhlmann’s results we show 1n the following how the structural
parameters (especially ¢) can be estimated.

Assume that we have given a sample of size m of observations of (N, ..., Ny).
Let
n, = ith observation of N, t=1,...,myy=1, . |k
Let
k m m
"«=2 nu, ﬁ_;:Z nua "=Z n, %k(k—*—l)
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Then the log-likelihood-function of the observations is given by

(64) log L=—(n+pm)log<l+

K +
+ ¥ n,log (j—c)
1=! P

The likelihood equations then are given by

+3 T log(p—1+))

1=l y=1

r+ kc) mon

dlog L ( r+kc) mon 1
65 =-m] 1+ + =0
(65) ap 8 b ,;,glp—l+_]
L —k(n+ ko
(66) alog _ (n pm)+z Ao

ac btr+kec ,Z)+c

(67) 6l0gL=(n-2i-pm)(r+kc)_£=O'
ab b*+b(r+kc) b

If p, é b denote the maximum likelihood estimators of p, ¢, b, then from (67)
we obtain

m

(68) b=—(r+ké)p

n

Substituting (68) in (66), we obtain that ¢ is the solution of
k

(69) Ak
SS1j+ e (r+ké)

Substituting (69) in (65), we obtain that p is the solution of

)
mp/)

Model B Another way to obtain a generalization of the Pélya process is to
replace the gamma mixing distribution by a multivariate analogue, a multivariate
gamma distribution for (A,..., A,).

A natural way to obtain a multivariate gamma distribution, more precisely a
multivanate y>-distribution is the following, cf. also JonnsoN and Kotz (1972,
chapter 40.3) or KrisHNAIaH and Rao (1961). The x?-distribution with n degrees
of freedom is a special gamma distribution and is the distribution of ¥ _, X2,
where the X, are independent and identically N (0, 1)-distributed (normal distri-
bution with mean 0 and variance 1). A natural multivariate analogue is obtained
by starting with m independent and identically multivariate normal distributed
random vectors Y, =(Y,,,..., Y,), 1=1,..., m. Precisely Y, follows a N(0, X)
distribution, where £ =(Z,) is the variance covariance matrix of (Y;,,..., Y,,)
and we assume that 2, = 1.

m n

|
70 — =mlo (l+
( ) |§|}§|p_1+_] g
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The a priori vector

(71) (A.,...,A")=(§l Y3, ..., il Y?,)

then follows a distribution, which can be considered as a multivariate y*-distribu-
tion. Especially each A, is y*-distributed with n degrees of freedom. The Laplace
functional L3(s,,...,s,)= E[e *"]is given by

(72) LA(s, ..., 8.)=|T+2s,.3|"""%,

where s, is a diagonal matrix with diagonal elements s,,..., s, From (7) it
follows that the probability generating functional of N,,..., N, is given by

(73) SN, ..., ) =[T+2(1-1,)3|

where I —t, is a diagonal matrix with diagonal elements (1—-1¢,,...,1-1,).
A simple special case is obtained when we assume a first-order correlation for
the Y, i.e., X is of the form

1 r 0 ............ 0
r 1 r.
0. r 1 r.'._
Tl
.‘. '.‘.“ 0
re

0 0 r

We then obtain the following second order recursive relations for ¢, (¢,, ..., 1,) =
[1+2(1—1,)%:
@ns2(lts - 5 tar2) = (3=20,42) Pasi(fy - oy Lysr)
(74) =4(tyiz = D)(tnsr = DP@a(t1,. .., 1) forn=0
() =(03-21), @olto) = 1.

The probability generating functional in this special case then is given by
SNy, .. )=, ..., 1)
We obtain that

3 @u(t) _ . L((m/2)+k)

—((m/2)+k)
(75) ETH T(m/2) @i(t) .
From (8) we obtain
k K
(76) P(N, = k) =~ 2ul0) 2 T((m/2)+k)

Kl ot |0 KB T(m/2)

This result is identical (for 1 = 1) with a result of ALBRECHT (1984), who calulated
P(N(t) = n) for a mixed Poisson process N(t) with a x*-mixing distribution.
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In addition we obtain after some calculation that
k +ky
2D,(14, 1) k, F((m/2)+k ) ( ) —((m/2)+k,)\ (k)
17 —— % — 1 t,t
(1) S = ()= S § (00) foutn, )
X{[(4—4r?)t,+4r’ — 6]}l

where (k) denotes the kth derivative with respect to 1,.
We obtain after some calculation

l l&k'+k2¢2(11 tz) (—l)k
= N, = P\ R L R [ SV A
(78)  PNi=ki, Ny =lk2) kitky!  arhare |, Lo k'k!T(m/2)

% [k, T((m/2)+k, + K)F(k, + 1)
x 3 (k)(_l) Tk —Fot k+1)

X (9= 4r2)TUm/DTk TR (g2 Gy mky(g g 2 kK

Even in the simple first-order case we have not been able to develop an expression
for E(N,,+1|N,, ..., N,), the “best” estimate of N,,, given N,..., N,.
As the second-order structure of the sequence N, is given by

E(N)=m,  Var(N,)=3m,
(79) r =C0V(Nn NH—I) =2mr2
rk=C0V(Nn N|+k)=0’ k22

we can apply Theorem 2 of SunpT (1981) to obtain a recursive formula for the
credibility forecast. The result is as follows:

3 4m?*rt -
o) s(n)y=3m Sno1y n=
(1)=3 —im‘4
s =5m 3 r
2 2
- f:(N.,...,Nn>=s(n"’_'l)(Nn—f:-.(Nl,...,Nn_.))+m, n=2

SHN)=m(1-3)+3r°N

Model C (a priori sequence with independent increments). If we assume that
the a priori sequence {A;=0, A, A,, ...} possesses independent increments, this
means—cf. Doos (1953, p. 96)—that forall n=3 and i, <1, < - - <1, the random
variables A,—A,,...,A, —A, _, are mutually independent. An additional
assumption 1s that E(A,) = m; let V,=Var (A,), then we obtain for : <j

Cov (A, A,)=Cov (A, ~Ag A, —A,+A,)
=Var (A)+Cov (A, — Ao, A, —A)
= Var (A,),
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i.e., in general
(82) Cov (A, A))=Var (Anne,))-

A credibility model with the above moment structure for the a priori variables
was already considered by GERBER and JONEs (1975, pp. 98-99), they show that
the credibility forecast fX(N,,..., N,) of N,., is of the “updating type”

(83) ﬁ(va R ] Nn)= (] _Zn)j*-—l(Nl’ s Nn—l)+ZnNn'
The weights can be calculated recursively, we have
\%
Z, =t
m+YV,
Z,, Vn_vn—l+mzn—l

B Vn - Vn—l +mZn—l+m.

Additional models for the a prior: sequence are considered in GRANDELL {1972)
(e.g., {A,}is in the form of a linear regression model, pp. 106-108) and GRANDELL
(1976) (e.g. {A,} 1s a stationary alternating Markov chain, pp 153-157).
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