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K E Y W O R D S  

Compound distributions, aggregate claim distributions. 

Much of the risk theory literature deals with the total claims distribution F(x)= 
oO k* ~k=oPkS (X), where Pk = the probability of k claims and $(x) is the distribution 

function of severity. Both Pk and $(x) are umvariate probability distributions. 
Thus, F(x) can be interpreted as a model of claims from one class of policies 
or as an aggregate model where Pk and S(x) represent mixed probability distribu- 
tions from a heterogeneous portfolio of policies. An alternative approach to 
modelling total claims in the latter case would be to recognize explicitly that 
total claims are the result of the interaction of multivariate processes. In the 
most general case, total claims arise from a multivariate accident process where 
each accident triggers multivariate claims frequency and severity processes. 

The purpose of this article is to present a multwariate model of total claims 
and to develop the cumulant generatmg function of this distribution. Such a 
model is superior to the traditional model in two respects: (1) It permits explicit 
recognition of shifts in the overall portfolio composition. Applications of the 
traditional model, in contrast, rely on the assumption that the portfolio composi- 
tion is relatively constant over time. (2) It facilitates the evaluation of the effects 
of reinsurance on the total claims distribution when the reinsurance arrangements 
are not the same m different segments of the portfolio. 

T H E  T O T A L  C L A I M S  D I S T R I B U T I O N  

As indicated, the total claims distribution involves three multivariate processes: 
the accident process, claims frequency processes, and claims severity processes. 
Each type of accident can be assigned unique multivariate claims frequency and 
severity processes. For example, automobile accidents can give rise to bodily 
injury liability, property damage liability, and physical damage claims; workers'  
compensation accidents can give rise to wage loss and medical claims. 

Dependencies can arise at various stages of the process. For example, bodily 
injury and property damage liability claims severity from a given accident may 
be dependent.  The model presented in this article recognizes dependencies of 
three types: dependencies among different types of accident frequencies, among 
different types of claims frequencies for a given accident of a particular type, 
and among claims severities for a given accident of a particular type. The authors 
believe that these are the types of dependencies most likely to arise in practice. 
Dependencies may exist among different types of accidents due to weather 
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condit ions,  business cycles, or  o ther  factors.  Fur ther ,  accidents  with more  (or 
m o r e  severe)  claims of one  type also may  be likely to have m o r e  (or more  severe)  
claims of o ther  types and vice versa.  Assuming  independence  a m o n g  the accident  
f requency,  claims f requency,  and claims severi ty  dis tr ibut ions is ana logous  to 
the usual assumpt ion  of independence  be tween  f requency  and severity.  D e p e n -  
dencies  may  exist a m o n g  severi t ies f rom different types  of accidents  but  this is 
likely to be a t t r ibutable  to a c o m m o n  inflat ionary effect, which can be handled 
m o r e  sat isfactori ly through the use of forecast ing models .  

The Acc iden t  Process 

Let  i = 1, 2 . . . . .  A index the types o f  accidents, and let N, be the r a n d o m  total 
n u m b e r  of acctdents o f  type i in a given period.  The  N, may be statistically 
dependen t ,  with joint  density: 

(1) P r { N l = n l ; N 2 = n 2 ;  . . . .  N A = n A } = q ( n l ,  n2 . . . . .  hA), n, = 0 ,  1, 2 . . . . .  

The Claim Frequency Process 

For  a single accident  of type i, claims of B, different  claim types can arise. Let  
K ,  be  the r a n d o m  variable,  n u m b e r  of claims of c la im- type  ] f rom a single 
accident  of type i. The  K ,  may  be d e p e n d e n t  for  a given accident  of type i, with 
joint  density: 

(2) Pr {K, i = k i ; K,2 = k2; . . . .  K,B. = ks,} = p, (k i, k2 . . . . .  kB.), 

(k~ = 0 ,  1, 2 . . . .  ; i  = 1, 2 . . . . .  A) .  

The  total  number  o f  claims of all types  f rom a single accident  of type t is 
K, =K,~ + K , 2 +  • • • +K,B,. T h e  numbers  of claims f rom successive accidents  of 
the same  type or f rom accidents  of different types are assumed to be independent .  

The Claim Severity Process 

Each  claim of c la im- type  ] in an accident  of acc ident - type  i is assumed to have 
a r a n d o m  severi ty  X,  it, where  l indexes the individual claim, I = 1, 2 . . . . .  K, ,  in 
a different  accident  and claim type. Thus,  the total severi ty  in claim ca tegory  ] 
in a single accident  of type i is the r a n d o m  sum: 

0, K,, = 0 
(3) X,, = X , , i + X , , 2 +  " ' "  + X ,  jK,j, K,j # 0  

where  X,~t, X o t>0; i = 1, 2 . . . . .  A ; and ] = 1, 2 . . . . .  B,. Then ,  the total severity 
of a single accident of type i over  all claim categor ies  is: 

(4) X,  = X , 1 + X , 2 +  . . .  +X,n,. 

T h e  r a n d o m  var iable  X,  is clearly condi t ional  on the ou t come  of the r a n d o m  
vector  of claim frequencies ,  K, = (K,1, K,2 . . . . .  K,B,), associated with a single 
accident  of  type i. The  individual claim severi t ies  f rom a given accident  of type 
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t, x ,  jt(] = 1, 2 . . . . .  B, ;  l = 1, 2 . . . . .  K , ) ,  can be t reated as mutual ly  statistically 
dependent .  The  joint  severity distribution function can be written as: 

(5) S , ( x , , 1  . . . . .  x , l~ , , ;  x,2a . . . . .  x , 2 ~ : , 2 ; . . .  ; x , s , l  . . . . .  X,~,K,B, Ik,). 

The  marginal distributions of (5) can be written as: 

(6) S,,~(x,,llk,) =S,,.(x,,,lk,), all l. 

This permits  the distributions to vary depend ing  upon  the claims f requency  
vector k,, e.g., more  dangerous  distributions may character ize accidents with 
larger numbers  of claims. The  notat ion S,~.(x,ltlk,) reflects the assumption that  
the marginals are identical (but not necessarily independent)  for different claims 
of the same type arising out  of an accident with a given claim vector  k,. 

One  can also define the condit ional  distr ibution of the sum of claims f rom an 
accident of type i (equation (4)): 

(7) S,(x, lk,) = Pr {X, ~< x, lK, = k,}. 

This distribution is a convolut ion of simpler distributions only in the special case 
where the X,~ are statistically mutual ly  independent  for all (], 1) with i fixed. It 
~s assumed that the X, are independent  between different accident types. 
Independence  is also assumed a m o n g  claim severities for different accidents of 
the same type. 

Distribution o f  Accidents  A m o n g  Claim Categories 

Given the foregoing,  the next step is to obtain the distribution of the total 
severity of all accidents of accident- type i. First, note that  the vector  of ou tcomes  
of K, can be thought  of as a selection of one of a countable  number  of patterns : 
k , ( 0 ) = ( 0 , 0  . . . . .  0); k , ( 1 ) = ( 1 , 0  . . . . .  0); k , ( 2 ) = ( 0 , 1  . . . . .  0 ) ; . . . ;  k , (B , )=  
(0 ,0  . . . . .  1); k , ( B , + l ) = ( 1 , 1  . . . . .  0); . . . .  etc. Indexing this set by z r = 0 ,  
1, 2 . . . . .  II, where I-I may  be infinite, we observe that (2) provides the probabil i ty 
distribution of these patterns:  

(8) p,(k,(zr)) = P r { g ,  = k,(rr)} = p,(zr). 

These  are the probabilit ies of pat terns  of claim numbers  for a single accident.  
If the pat terns  genera ted  by each of the n, accidents of this type are mutual ly  
independent  and independent  of all pat terns  of o ther  accident types, the distribu- 
tion of pat terns  over  all accidents of the ith type follows a mult inomial  law. 

Let N, = (N, (Tr); rr = 0, 1 . . . . .  I1) be the r andom vector  describing the distribu- 
tion of the N, accidents of type i over  the various claim category pat terns  where  
N, (Tr) is the number  of accidents with claim pat tern k, (zr). Then  

(9) Pr {Nj = n, IN, = n,} = p,(n,(O), n,(1) . . . . .  n,(H)ln,) 

=(n,(O)n,(l~'. 'r ,0,,~,,o) . .  n , ( l r i ) )  t p ' t  )J 

x [pi(1)] "'(1) . • • [p,(ri)]  ",(n) 
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where 

FI n 

p,(~r)~-0; ~ p , (1 r )= l  and ~ n,(lr)=n,. 
r r ~ 0  ~-=0 

Note that the p,(zr) may come from any appropriate probability distribution. It 
is the allocation of accidents among claim category patterns and not the proba- 
bilities of patterns which is multinomial. 

We can now find the distribution of Y,, the total value of claims in accident 
class i, conditional on the realized number of accidents, N, = n,. Note that the 
single-accident conditional severity distribution function, (7), can be rewritten 
as S,(x,17r), 7r = 0, 1 . . . .  FI. It follows that: 

(10) Pr{Y, ~<y, ln,}=H,(y, ln,)= 2 p,(n,(0), n,(1) . . . . .  n,(FI)ln,) 
nl 

×[S,(y,[O)]",(°~'.[S,(y, ll)]"dt~'. . . . • [S,(y,]I-I)] ~,(n~" 

where 2~,, indicates summation over all possible realizations of N, such that 
11 X==o n,(Tr) = n,. 

The Total Claims Distribution 

The unconditional grand total value of claims over all accident classes can be 
written as: 

(11) Y = Y i +  I"2+ " "  + Ya. 

The distribution function of Y is easy to specify because the severities of different 
accident classes are assumed to be independent. From (1) and (10), 

(12) Pr [Y ~ < y ] = F ( y ) = Z  Z ' ' "  Z q(n,,  n2 . . . . .  hA) 
i l l  n 2  r lA 

x[H~(y[n~)] * [Hz(ylnz)]* " ' "  * [HA(y[nA)]. 

The Cumulant Generating Function 

The formula for F ( y )  is mathematically intractable for most probability distribu- 
tions encountered in practice. However,  the cumulant generating function of 
F ( y )  can be written quite compactly, facilitating the derivation of cumulants for 
use in the Normal-Power or Gamma approximations. The cumulant generating 
function is preferable to the moment  generating function since moments and 
cumulants can be obtained much more simply using the former function. The 
function is analogous to that developed by Brown (1977) for the univariate 
accident frequency-claims frequency-claims severity case. 

To obtain the cumulant generating function, we first derive the moment 
generating function. Let 

(13) M v ( t ) = I e ' Y d F ( y )  and Y, ( t ln , )=Ie 'V 'dH,(y ,  ln,). 
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From (12), one obtains: 

(14) 

But if 

(15) 

A 
M y ( t )  = Z Z " " " Z q ( n l ,  n2 . . . . .  hA) I-I Y , ( t ln , ) .  

n l  1"12 r lA I = 1  

• ,(tl~r) = f e '~' dS,(x ,  lrr) 

we find from (9), (10), and the expansion of a multinomial: 

(16) Y, ( t ln , )  = Z p , ( n , ( O )  . . . . .  n , (zr) ln , )[~,( t lO)]  "'(°) 
Ill 

x[~,( t l l ) ]  "'")" • • [~,(tlH)] '''lnl 

=[p,(O)q~,(tIO) + p,(1)q~,(t[1) + " " + p,(lrl)~I',(tkl-I) ]"'. 

Using (16), the moment generating function (14) can be written: 

A r I1 qnl  

( 1 7 )  M y ( t ) =  E E ' ' "  E q(n l ,  n2 . . . . .  I~A) = I L ~ =  d I-I/EoP'(~)*'(tl~)/ " 
/.11 ~112 t lA  I ~  = 

This is the moment generating function of the multivariate accident frequency 
H distribution q (n 1, n2 . . . . .  hA) with auxiliary parameters log [ ~ , - o  p,(Tr)~,(tl~r)], 

i = 1 . . . . .  A. Thus, (17) can be written as: 

(18) 
I I  I I  

The definition of the cumulant generating function is C g ( t ) =  l o g M g ( t ) .  Using 
this definition and (18), one can write 

{ [ '~=1o Pt(lr)qtx(t ] ['~=o p a ( ~ r ) * A ( t  ]} (19) C v ( t )  = CN,.N2..tUA log I~r) . . . . .  log lTr) . 

=Z.=op,(~r)~,( t l~ ') ,  i = 1 , 2  . . . . .  A, is the moment Next, notice that ~,(t)  n 
generating function of the mixed severity distribution: 

I I  

(20) S,(x,)= E p,(~')S,(x, lTr). 
7 r ~ 0  

Hence, (19) can be rewritten as: 

(21) C v ( t )  = CN,.N2. .N,, {Cx , ( t )  . . . . .  Cx, ,  (t)} 

where Cx.  (t) = the cumulant generating function of S, (x,). 
An interesting special case occurs when the claim severities within each 

accident type are mutually independent. Recalling (3) and (6), one obtains: 

I] 

(22) qt ,( t)= 2 P,(zr)[q~,~.(tl~r)] k' " ' " [~,B,(tlTr)] k"' 
. = 0  

where qt,j .(t)=the moment generating function of S,.(x,t). Equation (22) is 
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recognizable as the moment  generating function of a multivariate claims 
frequency process with auxiliary parameters  log ~,r( t ) ,  j = 1, 2 . . . . .  B,. Using 
(22), equation (21) becomes: 

(23) Cy( t )=CN, .  .~A{CK . . . .  r ,o , [Cx, ,  (t) . . . . .  Cx,o, (t)] . . . . .  

CK . . . .  "A.~[CxA~ (0 . . . . .  C,,A.~ (t)]} 

where Cx,, (t) = the cumulant generating function of S..(x.~), and CK . . . .  K,., [" ] = 
the cumulant generating function of the multivariate claims frequency distribu- 
tion applicable to accident type i. 

Examples of Cumulants 

The first and second cumulants of F ( y )  are straightforward generalizations of 
the usual formulas for the first two cumulants of sums of random variables. The 
third cumulant,  while also a generalization, is more interesting and is shown 
below: 

A 
(24) K 3 y  ~ 3 = [K3N, KIX, +KIN, KaX, +3K2N, KIX, K2X,]+3 ~ [K1N, 1NitK2x, KIX,] 

I = l  I # g  

+3Y.E[KZN, aU, K]X,K~X,]+6e Y~ K1Ni I N~ I Nh K1X~K I XgK1X h 

where i, g = 1 . . . . .  A ; and e = 1 for A/> 3, 0 otherwise. The double summation 
~ , ~ g  means the summation over  both subscripts, omitting terms where the 
subscripts are equal. The summation ~,~g~h means the summation over all 
combinations i # g # h, where i, g, h = 1, 2 . . . . .  A. 

The K'S are cumulants. Numerical subscripts refer to the cumulant number,  
while letter subscripts refer to random variables. Symbols with more than one 
of each type of subscript are cross-cumulants. For example,  KiNiiNi is the first 
cross-cumulant (covariance) of the accident frequency random variables N1 
and N2. 

Cumulants  of the mixed severity distributions S,(x,), i = 1, 2 . . . . .  A,  can be 
obtained directly using (2), (3), (4), (7), and (20). The formulas for the first three 
cumulants are as follows: 

(25) K~x, = E p,(~r)~,(X,l~r) 
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where 

/.z,(X,[Tr)= I x, dS,(x, lzr) and a,~,(x, lrr)= J" x• dS,(x,l~'). 

The formulas for the moments  of S,(x,[zr) are straightforward but cumbersome.  
The moments  of individual claim severities are permitted to vary according to 
the claim pattern, rr, allowing for the possibility of larger claim severity means, 
variances, etc. for accidents involving large numbers of claims. 

If the individual claim severity moments  are assumed to be equal within a 
claim type (regardless of 7r), the cumulant formulas are simplified. The second 
cumulant, for example,  is: 

(28) K2x, = Z [K,K,,r2X,, 2 2 + K 2K, K 1 X, I "[- (K 2 K .  "1- K 1K 0 - -  K 1K,, )K  1Xull X,, R ] 
I 

dr~ E [K IKti1K,hK IX., K IXla -[-( K1KlilK, N Jr If lK,iK iKih)K iXi, 'glh ] 

where /, h = 1, 2 . . . . .  B,; K,,K,, = the cumulants of the marginals of (2), here 
m = 1, 2; K tK,1 r.~ = first cross-cumulant of (2),/' # h ; Kmx., = cumulants of S, (x,~), 
assumed identical for all ! within claim type /, m = 1, 2, where S,,(x,,~) is (6) 
without the condition; K lx,,,~x,. = first cross-cumulant of claim severities of the 
same type, l # g, assumed identical for all l, g; and K ix., ix, h = first cross-cumulant 
of claim severities of different types,/ '  # h. 

In practical applications, it generally will be necessary to combine the higher 
order claim patterns to permit the estimation of severity distributions. For 
example,  with two claim types, analysis might be confined to the following 
patterns: k',(0) = (0, 0); k~(1) = {(K,,, 0); K,, = 1, 2 . . . .  }; k~(2) = {(0, K,2), K,2 = 
1, 2 . . . .  }; and k; (3) = {(K,,, K,2); K,1, K,2 !> 1}. The probabilities of each revised 
pattern,  ki(rr),  7r = 1, 2, 3, can be obtained by summing the appropriate  proba-  
bilities from (8). The severity distributions S,(x, ll) and S,(x,12) are univanate  
distributions estimated on a set of observations on X,~ and X,2, respectively, 
from accidents with the designated claim patterns rr = 1 and ~r = 2, respectively. 
(Recall (3).) Thus, m estimating the severity distributions, no distinction is made 
among accidents which have different numbers of claims, K, .  Rather,  the sum 
of claim severities of a particular type from a given accident is considered a 
single observation from the appropriate  severity distribution. Cumulants of 
S,(x,13) are obtained from a bivariate severity distribution estimated on a set of 
observations on (X,1, X,2), where K, 1, K,2 t> 1. S,(x,]O) is a degenerate  distribution. 

Conclusion 

This article has presented a multivariate model of the total claims distribution. 
The model could be used in conjunction with the Normal-Power  or G a m m a  
approximations to model the total claims of an insurance company by estimating 
cumulants for each segment of the portfolio and combining the cumulants 
according to the appropriate  formulas. This approach should be superior to the 
traditional F ( x )  model for some applications because it focuses directly on 
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individual segments of the portfolio and clarifies the interactions among the 
segments. Empirical research is needed on the types of distributions that are 
appropriate for modeling the claims process in the multivariate context and 
about the nature and magnitude of the dependencies among the variables 
comprising the process. 
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