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A B S T R A C T  

The paper gives some asymptotic results for the compound distribution of 
aggregate claims when the claim number distribution is negative binomial. The 
case when the claim numbers are geometrically distributed, is treated separately. 

1. I N T R O D U C T I O N  

1A. Let ,~,  £2 . . . .  be independent identically distributed random variables (the 
independent severities) on (0, co) with cumulative distribution F. Let r7 be a 
random variable (the claim number), independent of the ~,'s with distribution 
on the non-negative integers defined by 

(1) 

Let 

P" =Pr(n =n)=(a +n-1)  (a > O , O < p < l ) .  

= ~ .~, (a > O) 

(,~ = O) 

(the total aggregate claim amount). Then the cumulative distribution of ~ is 

(2) O(s )=  ~. p.F"'(s). 
n~0  

The idea of the present paper is to develop asymptotic expressions when s~'oo 
for 

(i) the tail 

H(s)= 1 - G ( s ) ;  

(ii) the stop-loss premium 
oo 

K(s) = ~(max (~-s, 0)) = f~ H(x) dx; 
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(iii) the densi ty  

or  the point  probabi l i ty  

d 
g(s) = Ys G(s) 

gs = Pr (g = s). 

lB .  We are going to use some  nota t ion  and results f rom Feller  (1971): 
If A and B are functions,  by the nota t ion  A(s)--B(s) as s tends to, say, a, 

we shall mean  that  the rat io A(s)/B(s) tends to 1 as s tends to a. 
We  shall call the severi ty  distr ibution F ar i thmet ic  if it is concen t ra ted  on the 

set  {A, 2A, 3A, . . . .  } for some  A, and we shall call the largest  such A the span of 
the distr ibution.  When  we t reat  ar i thmet ic  distr ibutions,  we shall for  convenience  
assume that  the span is equal  to one;  general  span- length  is ob ta ined  by rescaling. 

We shall say that  a function A is u l t imately  m o n o t o n e  if there exists a y such 
that  A (x) is m o n o t o n e  for  all x > y. 

It is a s sumed  that  there  exists a K satisfying 

1 
(3) P-= Io.~> e 'x  dF(x), 

and that  

(4) u =PI0.~o> xe~XdF(x) 

is finite. 

2. G E O M E T R I C A L L Y  D I S T R I B U T E D  C L A I M  N U M B E R  

2A. In the presen t  section we are going to assume that  p ,  satisfies (1) with a = 1, 
that  is, 

p ,  = p " ( 1  - p ) .  

Then  the distr ibution G satisfies the identi ty 

(5) G ( s ) = l - p + p  f G(s-x)dF(x),  ( s > 0 )  
Jc 0.s] 

as is seen by rewri t ing (2) as 

G ( s ) =  ~ p"(1-p)F"'(s) 
r l ~ 0  

It* 
= l - p + p  2., p"(1-p)(F *F)(x) 

r i c O  

= 1-p +p(G*F)(s). 
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We see that (5) has the form of a renewal equation with defective distribution 
pF. This means that we can apply results from renewal theory. In subsections 
2B-C we do this for the non-arithmetic case, m subsection 2D for the arithmetic 
case. 

2B. Assume that F is non-arithmetic. Then by formulae (6.7) and (6.16) of 
Chapter XI in Feller (1971) we get 

H ( s ) - - - 1 - P e - ~ ,  ( s T Y ) .  
K V  

From this we can also easily obtain an asymptotic expression for the stop-loss 
premium K (s). 

T H E O R E M  1. The stop-loss premium K (s ) satisfies 

K ( s )  1 - P  -,s 2 e , (s1'oo). 
K V 

PROOF. By using L'H6pital 's  rule we get 

lim K ( s )  = lim - H ( s )  1 - p  
s,r~ e -Ks st~o - K  e - ' s  x 2 u  

which proves the theorem. Q.E.D. 

2C. If F has a density f, then G has an atom 

(6) G(0) =p0 

at zero, and for s > 0 a density 

(7) g(s)= Z "" p,.f (s). 
n = l  

THEOREM 2. The density g(s)  satisfies 

1 - - p  -Ks 
g ( s ) -  e , ( s ~ ) .  

/1 

PROOF. We use L'H6pital 's  rule: 

1 ) _1 g(s) l i m H ( S ) = l i m  - g ( s  = lim _~,. 
Ku s i s  e -Ks sr~--K e -~s K s ~  e 

From this follows the theorem. Q.E.D. 

2D. In this subsection we shall assume that the distribution F is arithmetic 
with unit span, and we introduce 

fk = Pr (£, = k), (k = 1, 2 . . . .  ). 
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Then  

fxl 
F(x)  = ~ f,, (x >10). 

THEOREM 3. 

(8) 

(9) 

When s goes to infinity through the integers, we have 

(1 -p)e '~ 
(l) K(s) ~ u(e" - 1) 2 e-"S 

1 - p  
(ii) H ( s ) ~ - -  e -~" 

t , ( e ' -  1) 

- - P  --t¢$ 
~ e (iii) g~ ue 

PROOF. For  the whole  p roof  s will always deno te  a non-nega t ive  integer.  
(i) In the presen t  case (5) becomes  

G ( s ) = l - p + p  ~ G(s-i) f , .  
t e l  

As G(s - i )  = 0 for i > s ,  we may  extend the sum to infinity, 

G ( s ) =  1 - p + p  ~ G(s-i)f , .  
t e l  

In t roduc t ion  of  H (s ) = 1 - G (s ) gives 

H(s)=p ~ H(s- i ) f , .  

We get 

and thus 

By using 

we obtain  

x - s  x = s  t = l  

K ( s ) = p  ~ K ( s - i ) [ , .  

K ( s - i ) = ~ ( § ) + t - s ,  ( i = s + l , s + 2  . . . .  ) 

K(s)=p ~ (~(~)+i-s)f ,+ ~ K(s-i)pf, .  
t ~ 5 + [  I - - I  
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Multiplying this equat ion by e ~s and introducing 

f~ = pf, e ~' 

and 

give 

(10) 

K*(s) = K ( s )  e "* 

K*(s)=pe ~" ~ ( ~ ( g ) + i - s ) f , +  ~ K*(s-i)f ,*.  
I ~ s + ]  t = l  

Considered as point  probabili t ies * * f , ,  f 2 , .  • • defines a p roper  probabil i ty distri- 
but ion because of (3). Hence  (10) is a p roper  renewal equat ion,  and the renewal  
theorem (Karlin and Taylor ,  1975, p. 81) gwes 

l i m K * ( s )  1 ~ .~ = -  pe (~(g) + i - ] ) f , .  
s~co  V I = 0  t = l + l  

In the following deve lopment  we use that  

~(~) = ~ ( r ~ ) ~ ( ; , ) =  p 
1 - p  

~(£1). 

We have 

v h m K * ( s ) =  ~ pe ~' ~ ( ~ ( § ) + i + 1 - ] ) / , + 1  
s ' t co  I = 0  l = l  

=p ~ f,+~ ~ ( ~ ( e ) + i + l - i ) e "  
t = O  1 = 0  

co ~ ~ 0 + 1 )  

~o f, [ e e ~ _ - l ~ ( g ) + ~ o  ~ ] e  •' 
= P , =  + 1  - -  1 = k = t  

I~ ' (g )  [1  1 \ +  ~ k 
=Ple _l ) ,Z.ot:+'   o,Xo e''] 

[ ~'(2) e "~k+" ] 
,=o k=0 e " - - I  

- P ['~'(£)+ ~ f,+l ~ (e~'k+l)--l)] 
e ~ -- 1 ,7o k ~0 

r- co _ ~ ( 1 + 2 )  K 

_ [ . +~o[,  (e ~z7._~l e ) ) ]  P ,~'(x) +l (i + 1 
e" - 1  

_ p [~,(£)+e e" (pl_.) ] (1-p) e ~ =  
e" - 1 - 1 - 1 - ~ (£)  (e" - 1) 2 " 

From this follows (i). 
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( i i )  As 

we get 

which proves (ii). 
(iil) As 

SUNDT 

H(s) = K(s)  - K ( s  + 1), 

lim H ( s )  e "' = l i m  K ( s )  e ~ - e  -K lim K(s + 1)  e "~'+1~ 
s t ~  sTco stoo 

= (1  - e  - ~ )  l i m  K ( s )  e ~', 
stoO 

gs = H ( s ) - H ( s  + 1), 

the proof of (iii) goes as the proof of ( i i ) .  

This completes the proof of Theorem 3. Q.E.D. 

3. NEGATIVE BINOMIALLY DISTRIBUTED CLAIM NUMBER 

3A. We shall now drop the restriction a = 1 in (1). Then we have the following 
theorems: 

THEOREM 4. I f  

R(s) =e~'H(s)  

is ultimately monotone, then 

(11) H(s) - -  s '~-1 e -~, 

P R O O F .  L e t  

(s too). 

O (t) = Io.=) e -,x dF(x ), (t !> --K ) 

(12) ¢r( t )=Io~}e- 'SdO(s )=(1  l - p ,  -pO( t ) )  ~ '  ( t > - K )  

w(t)=Io.~)e-"R(s)ds--l--°~(t--K)t--K ' ( O < t < K ) .  

We want to show that 

R (s) - K F(a-----) s (s 1' o0) 

By Theorem 4 on p. 446 in Feller (1971) this is equivalent to 

, , ,o,. 
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Let 

We have to show that 

(13) 

We have 

( vt ) ~ ( t ) .  
¢ ( t ) = K \ l _ p ]  

lim tp(t) = 1. 
t,Lo 

l i m ~ ( t ) = l i m  1 - o - ( t - K ) (  vt "~ 
,~o ,~o t---K \ l - p ]  K 

= hm °'(t - K) (1 v-~tp)~ ,~0 

= h m (  vt )~ 
,,Lo 1 - p d ) ( t - K )  " 

As, by L'H6pital 's  rule, 

/,'t t,' v 
lim = h m  1, 
,,to 1 - p d ) ( t - K )  ,~o -poD'( t -x)  -pc~'(-K) 

(13) holds, and hence the theorem is proved. Q.E.D. 

T H E O R E M  5. f f  (11) holds, then 

(14) K ( s ) ~ K ~ a )  s e , (s ~' oo). 

PROOF. L'H6pital 's  rule gives 

K(s)  - H ( s )  
lim - ~ - - . : . z z = l i m  ~-1 + (a  1)s~-2e ,too s e ,Too -Ks e - "  - -,s 

rs H(s)  
=l im 

sto~ K s - a  + 1 Ks ~-x e-~'  

' = l i m  ~ - 1  - ~  = - 7 7 "  
s,~o Ks e 

which proves the theorem. Q.E.D. 
3B. If F has a density f, then G has an atom P0 at zero, and for s > 0 a density 

g(s) given by (7). Then we have the following theorem. 

T H E O R E M  6. I f  (11) holds, the density g(s ) satisfies 

g(s) ~ s ~-1 e -~s, (s T oo). 
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PROOF. L ' H 6 p i t a l ' s  rule  gives 

1 = h m  . - 1  - 
K F ( a )  ,'too s e ~ 

- g ( s )  
= l i m  _Ks~_l -~, -Ks ,Too e + (a - 1)s ~-2 e 

KS g(s) g(s) 
= l i m  ~-1 _ ~ , - l i m  ~-1 . . . .  

s , ~  Ks - a  + 1 Ks e ,too Ks e 

and this p roves  the  t h e o r e m .  Q . E . D .  

3C. The  as sumpt ion  tha t  R(s)  is u l t ima te ly  m o n o t o n e ,  ~s awkward ,  as it s eems  
very difficult to show that  it is satisfied. As,  when the condi t ion  holds,  

with 

R ( s ) - R * ( s ) ,  (s I 'm)  

oc--I 
R*(s )=KF(a  ) s , 

which is m o n o t o n e l y  increas ing  to infinity for  a > 1, cons tan t  for a = 1, and  
m o n o t o n e l y  dec reas ing  to zero  for a < 1, the  condi t ion  must  mean  that  R(s)  is 

u l t ima te ly  m o n o t o n e l y  increasing for  a > 1 and u l t imate ly  m o n o t o n e l y  decreasing 
for a < 1 ; for  a = 1 we canno t  say whe the r  the u l t imate  m o n o t o n y  is increas ing 
or  decreas ing ,  but  in that  case it does  not  ma t t e r  as we then have the t h e o r e m s  
of Sec t ion  2. 

In the  a r i t hme t i c  case the  a s sumpt ion  of u l t imate  m o n o t o n y  of R(s)  does  not  
hold  as R(s)  then increases  con t inuous ly  when s Is a non - in t ege r  and  dec reases  
in j u m p s  at integers .  But  in this case T h e o r e m s  4 and 5 cannot hold as for  a = 1 
(9) and  (8) con t rad ic t  (11) and (14). 

If F has a dens i ty  f, the  fo l lowing l e m m a  gives a condi t ion  equ iva len t  to 
u l t ima te  m o n o t o n y  of R(s)  when ~ e 1. 

LEMMA 1. Assume that F has a denstty f and that a ¢ 1. Then R(s)  ts 
ultimately monotone if and only t[ there exists an s~ such that ]:or all s > so 

g(s) 
- - < K ,  (a > 1) 
H(s)  

g(s) 
H(s) > K, (a < 1). 

PROOF. For  s > 0  

dR 
- - = e ~ S ( K H ( s ) - g ( s ) ) ,  
ds 

and hence  

dR o g(s) 
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But because of the ultimate monotony of R(s) there must exist an s~ such that 
for all s >s~, dR/ds <>0 as a ~ 1. This proves the lemma. Q.E.D. 

The author believes that the assumption of ultimate monotony of R(s) in 
Theorem 4 may be replaced by the assumption that the distribution F is 
non-arithmetic, but has not been able to prove this result. An indication that 
the result holds, is that it holds in the special case a = 1 as shown in subsection 
2B. Another indication is given by the following example. 

EXAMPLE. Let the severity distribution F be defined by the density 

f (x ) =/3 e-B ~, 
Then the Laplace transform of F is 

(x >0, /3  >0).  

13 (15) 4, (t;/3) =/3 +----~, 

and from (12) follows that the Laplace transform of G is 

o'(t) = (1 - p  + pq~ (/; fl(1 -p)))~. 

By expanding we get 

~r(t)= ~ (7)(l-p)"-'p'*(t;[3(1-p))'. 
I = 0  

As ~ ( t ; f l ( 1 - p ) ) '  Is the Laplace transform of the distribution F(s; i , /3(1-p))  
defined by 

b~ Io' F(s;a ,b)=F~ r"-le-brdr, (s,a,b>O) 

we get 

H ( s ) =  ~ (7)(1-p)~-'p'(1-F(s;i,/3(1-p)). 
i = 0  

Assume that a is an integer. Then 

H ( s ) =  ~ (7)(1-p)~-'p'(1-F(s;i,/3(1-p)). 
I = 0  

As by L'H6pital 's rule 

lim 1-F(s; i '/3(1-P))=t~(1-p)]~-I ' 

we get 

(16) H(s) 1 (/3(1 -p)p)°s "-1 e -tm-p~s 
13(1 - p ) F ( a )  

( i < a )  

(i = a )  

(s t oo). 
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F r o m  (3) and  (15) we get  

tha t  is, 

(17) 

and  inser t ing  this in (4) gives 

1 /3 

p f l - ~ '  

K = / 3 ( l - p ) ,  

1 
(18) ~, = 

~p 

By inser t ing  (17) and (18) in (16) we arr ive  at (11), which then holds also in 
the  case when ot is an in teger  and  F is the  exponen t i a l  d i s t r ibu t ion .  
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