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1. INTRODUCTION 

We shall define a mutual insurance firm as a firm whose stockholders are the 
bearers of the insurance contracts issued by the firm. The firm's insurance is 
then viewed as a collective process of say N persons seeking to protect themselves 
against claims that may occur to any one of them. For example,  large employers  
protecting their employees by pooling risks and deducting for protectton given 
amounts from salaries may be a case in point. In this latter case, the employer  
may match withdrawals from employees salaries and provide in the process a 
fringe benefit and increase employees loyalty to the firm. Alternatively, agricul- 
tural collectives have in some cases established mutual insurance firms whose 
purposes are to protect  them, at a cost, from the uncertainty implicit in their 
production processes and the fluctuations of agricultural markets.  Since these 
firms do not work for profit, contingent payments,  or fund re imbursement  in 
case of excess cash holdings are typical control policies which help cover extraor-  
dinary claims and at the same time are assumed the best investment pohcies. 
To further protect themselves against extraordinary claims, mutual insurers can 
turn to reinsurance firms, "selling" for example the excess claims of, say, a given 
amount  R (e.g., see TAP1ERO and ZUCKERMAN (1982)). The purpose of this 
paper  is to consider such a mutual insurance firm facing a jump stochastic claims 
process, as is often assumed in the insurance literature (e.g., FELLER (1971), 
BORCH (1974)). For example,  Poisson and Compound  Poisson processes are 
typical jump processes treated in this paper,  although other processes could be 
considered as well (see SRINIVASAN (1973) and SRINIVASAN and MEHATA 
(1976), BENSOUSSAN and TAP1ERO (1982)). First we define the mutual insurer 
problem as a jump process stochastic control problem which we solve analytically 
under the assumption of a gamma density claim sizes distribution. A solution is 
obtained by applying arguments from stochastic dynamic programming and by 
solving the resultant functional equation by application of Laplace transforms 
(e.g., COLOMBO and LAVOINE (1972), MILLER (1956), TAPIERO, Chapter  V). 
Subsequently, the effects of reinsurance are introduced and preliminary results 
obtained. As in TAPIERO and ZUCKERMAN (1982), we assume that the mutual 
insurance firm is a direct underwriter and that the reinsurer is a leader in a 
Stackleberg game (STACKLEBERG (1952), SIMMAN and CRUZ (1973), LUCE and 
RAIVFA (1957)). Although, in this latter case, analytical results are harder to 
obtain, numerical techniques can be applied to obtain practical results. Finally, 
it should be pointed out that this study, although applied to stationary parameters  
models to obtain analytical results, is equally valid for non-stat ionary parameters .  
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In this vein,  insurance p rob l ems  under  unstable  env i ronmen t s  and t ime varying 
processes  can be invest igated,  leading to a more  realistic apprec ia t ion  of insurance 
firm's difficulties in the face of a dynamic  env i ronment .  

2. TH E I N S U R A N C E  PROCESS 

Consider  a mutual  insurance firm with N contracts  at t ime t. Given  N, the 
probabi l i ty  of  a claim occurr ing in a small t ime interval dr, equals  ONdt, where  
0 is a known p a r a m e t e r  express ing the p ropens i ty  of accidents '  occurrences  for 
each contract .  Claim sizes are assumed  to be r andomly  dis t r ibuted with mean  
m, so that  the mean  claim in dt equals  ONto dt. Next ,  let the firm use a loading 
factor  rr such that  its average ,  determinis t ic  cash income equals  (1 +zr)ONm dt. 
At t imes r,, t = 1, 2 . . . .  claims occur  each with size ~,, i = 1, 2, ~:, ~ 0, where  as 
poin ted  out  earl ier  m = E ( ~ , )  and with known distr ibution function F ( . ) .  If x 
deno tes  the cash accumula t ion  process  over  t ime,  then 

(1) dx = (1 + 7r)ONm dt 

x('c,)=x(r~)-~,, i = 1 , 2  . . . .  

x(O)=xo. 

T o  charac ter ize  the s tochast ic  process  {x (t), t >I 0} formal ly ,  we define first the 
probabi l i ty  of j umps  and j u m p  occurrences .  T o  do so deno te  a family of measures  
on R "  by M(x, t, dz) and assume that  

(2) [ M(x,t,  dz)<~C, M(x,t,  dz)>~O 
JR n 

M(x, t, {0}) = 0. 

Set 

(3) 

and 

(4) 

M(x, t) = fa M(x, t, dz) 
n 

M(x, t, dz) 
Ml(x, t, dz) 

M(x, t) 

Hence  M~(x, t, dz) is a family of probabi l i ty  measures  on R "  -{0}  and M(x, t, dz) 
character izes  comple te ly  the j u m p  process  (7, ~',), i = 1, 2 . . . .  as follows. 

P r o b [ , , ÷ ~ > ~ s [ ~ - , ] = e x p [ -  I',,A M(x(u), u)du] (5) 

and 

(6) Prob [~,eA[-c,, x (1-~)] = IA M~(x(rT' -r,, dz) 
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where A is any set of R".  It is convenient to rewrite equation (1) as follows; 

[ f 

where tz(t, A) is a function denoting the number  of jumps of the process x(t)  
in the time interval (0, t] and tz(dv, dz)  is a measure on R + × R "  defined as 
follows; (A = (t, t + At)), 

(8) U (A, A)  = p.(t +At, A ) - / x  (t, A) 

and A is a Borel subset on R ~. The measure ~(A, A)  is called the jump measure 
of the process {x (t), t >/0}. Next, assume that the firm incurs fixed administration 
costs proportional  to the number  of contracts c N d t  and that the firm can request 
from insurance contract holders contingent payments  to meet  extraordinary 
claims, in this case u > 0 and u is a controlled quantity. Alternatively, the firm 
can reimburse contract holders by distributing dividends, or plainly give back 
moneys (or reduce the premium payments  equivalently) whenever cash levels 
reach the high levels. In this case u < 0 and the firm cash-state equation (7) is 
reduced to 

Io foI  (9) x ( t ) = x ( O ) +  [(l + w ) O N m - c N  + u ] d t  + zlx(dv, dz)  

Evidently, u may be of a feedback form u(x),  or be defined by an impulsive 
control structure, reflecting the fixed costs whenever extra-cash transactions 
(contingent payments  or refunding) are incurred (e.g., see BENSOUSSAN and 
LIONS (1980), BENSOUSSAN and TAPIERO (1982)). 

To demonstra te  the type of probability processes considered here, assume as 
a special case that 

M(x ,  t, dx) -- 6(z - 1)q(t) 

where 8(. ) is a Dirac-Del ta  function and q(t) a known function. Then,  from (3) 

and from (4) 

Hence from (5) 

also 

M(x ,  t) = fR" 8(z - 1)q(t) = q(t) 

M l ( x ,  t, dz)  = M(x ,  t, dz)  = 8(z - 1). 
M ( x ,  t) 

} Prob [~',.1 >~slr,] = exp { - ,As q(v ) dv 

tx (do, dz ) = ~ (dr)8 (z - 1) 
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where ~ (t) is a point process whose jump equals one or such that 

Prob (/z (dr)  = 1) = q dt + O(dt) 

Prob (/x (dr)  = O) = 1 - q dt  + O(dt) 

Prob (tz (dr) I> 2) = O(dt). 

Hence,  tx(t) is a random variable dmtributed according to a Poisson law whose 
parameters  is 

t" t 

A(t) = J0 q ( v )  dv. 

Of course, other point probability processes can be considered in this manner  
Given the probability process (9), the firm's policies consist in selecting m some 
optimal manner  the loading factor rr and the contingent payments  (or dividend) 
u of the firm. Next we define the firm's objective function which will subsequently 
be optimized. To obtain analytical (or numerical) results, it will be necessary to 
use some special assumptions regarding the firm objective function, which need 
not always reflect reality. Specifically, we assume linear costs consisting of cash 
carrying expenses hx, per unit time, a cost g(Tr) associated to higher levels of 
loading factors, or g(Tr)> 0, ag/OTr > 0. Throughout  our optimization, 7r will be 
assumed constant reflecting the firm's needs for constant income (from pre- 
miums). An additional cost associated to payments  u is given by w]u], meaning 
that the firm seeks to avoid as much as possible extra contingent payments  or 
refunding. Finally, a bankruptcy cost K is incurred whenever the firm cash level 
reaches negative or zero states. At this time which we denote by T, the process 
terminates. In other words, the firm minimizes costs over a planning time [0, ~'), 
where 

(10) r = Inf {t > 0 ; x  ~<0} 

and for a given discount rate r, the firm objective is to" 

/I } (11) M i n i m i z e / = E  [hx + g ( ~ r ) + w l u l ] e - " d t + K e  -'¢ . 
"/'r, I t  ) 

Minimization of (11) subject to (9), (10) and a constraint on the size of possible 
extra payments  (or refunding), 

(12) lul<u 

defines a stochastic control problem which we solve by dynamic programming. 
Throughout  our solution we shall assume that the mmal  state x (0)= Xo is given 
and that all parameters  are constants, unless stated otherwise. These are 
simplifications made to obtain tractable results, although non-stationarity of 
parameters  does not necessarily change the validity of our equations. 
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3. THE OPTIMAL CONTROLS LINEAR COSTS 

Next we consider problem (11) without reinsurance and apply stochastic 
dynamic programming arguments to obtain for equation (11), the following 
integro-differential equation 

(13) - r J ( x ) + q  Io [J(x -~: ) -J (x ) f f (~ ' )d~ ' - (a  +u) +[hx +g(Tr)+wlul]=O 

where a = (1 +rr)ONm - c N .  Mmimizatton of (13) with respect to u, and (12), or 

l "  1 (14) rain - u  ~-+ wlul 
u 

leads to the following Bang-off-Bang control; 

I• 
U i fdJ /dx  < - w  

(15) u = i f -w~<dJ /dx~<w 

+ U  if w <dJ/dx .  

This is found by noting that for u > 0 ,  we require for minimization that if 
dJ/dx  < w, then u = 0 and if dJ/dx > w then u = U. By the same token, if u < 0, 
then when dY/dx < - w .  u = - U  minimizes (14) and when dJ/dx > - w ,  u = 0 is 
the minimum of (14). The Bang-off-Bang control given by (15) and Figure 1 
below is of course practical as it allows a two modes policy of doing or not doing 
anything. The actual action chosen is a function of the marginal costs of J(x) ,  
dJ/dx, such that when the cost is too high we can reduce costs by increasing the 
income (u = U) and when the original cost is too low we reduce the cost by 
reducing our cash holdings. Whenever  - w  < dJ/dx < w, we do nothing. Inserting 
(15) into (13) we obtain an integro-differential equation which is given as follows 
(where subscripts are for convenience dropped).  

~ U  . . . .  II 
u = - U  

dJ/dx > w 

FIGURE 1 Bang-off-Bang control 

dJ/dx < -w 

o o  

- r J  +q fo [J(x - ~ ) - J ( x ) f f ( ~ )  d~+hx  +g(Tr)+  
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(16) 

" - ( a + U ) ~ x + W U = O  i fdJ /dx>w 

dJ dJ 
- a ~ x = 0  i f - w  < ~ x < W  

- ( a - U ) ~ x + W U  =O IfdJ/dx < - w .  

To resolve equation (16), we can proceed by an application of Laplace 
transforms LT (MmLER (1956)). Say that " ~ "  denotes a LT operator  where 

oo 

= Jn e-P*J(x) dx =.~'{J(x)}. L(p) 

Also 

~ d J  
(17) {~x} = p L ( p ) - J ( O ) = p L ( p ) - K  

~{J  (x - ~) = e -e°L(p ). 

Inserting into (16) where u = (U, 0, - U ) ,  we have a LT of J(x) given by 

(or + u )K +[g(~-) + wlul]/p + h/p 2 
(18) L(p) = 

(r + q) + (a + u )p - q E  (e-eP) 

where u is, as pointed out earlier, a function taking on any one of three constant 
values U, zero and - U ,  and E ( . )  is an expectation operator.  By the limit 
theorems for Laplace transforms, 

(19) lim J(x)  = lim pL(p)=K 
x ~ O  p~oO 

and also 

lim J(x) = lim pL(p) 
X~oO p R O  

we can obtain the boundary values for J. A solution for (18) can be expressed 
however if only we can give an explicit expression to E ( e x p - ~ p ) .  For example, 
say that ~ is a gamma probability distribution gwen by 

~'y- -1  e-(e/a) 
P ( x ) =  ; V > 0 ,  / 3>0 ,  ¢ ~ 0  

/3"~ (~/) 
(20) 

then 
E(e-"~) = (1 +/3p) -~ 

which we insert into (18) to obtain 

(1 + flp)"[p2(a +u)K +p(g(~r) + w]u[)+h] 
(21) L ( p ) =  (1 +flp)~[p2(r +q)+pa(a +u)]-qp 2 

for y, an integer, the order of the denominator is y + 3 while that of the numerator 
equals 3, +2.  Thus, if we write L(p) = Qi(p) /Q2(p) ,  and solve for the 3, +3  roots 



O P T I M A L  CONTROL 19 

Of Q2(p) = 0, pl, p2 . . . . .  Pv+l, p3`+2 = Pv+3 = 0, then (18) can be written as follows: 

3,+1 
(22) L ( p ) =  ~ A, / (p -p , )+Av+2/P+A3`+3/P  2 

I=1 

and the inverse transform of L(p) is the sum of exponentials, or 

~-~1 

(23) 3.(x)= ~ A, eP'X+A3`+2+Av+3x 
L=I 

also 

d J  3`+1 
(24) - - =  ~ p,A,e°'X+A3`+3. 

dx ,- l 

Thus, a complete solution for J is found since from (16), 

(25) J ( x ) = k ( x ,  U) ifk'(x,  U ) > w  

= k(w, 0) i f k ' ( x ,O)<w 

= k ( x , - U )  i f k ' ( x , - U ) < - w  

where 

3`÷1 

k(x, u) = ~ A,(u)  e p'(")* +Av+2(u)+Av+3(u)x 

3`+1 
, p l (u )x  k ( x , u ) =  ~ A, (u )e  p,(u)+Av+3(u ). 

Thus, If we begin a x = Xo at the initial state, we compute first in which mode 
(u = 0, U, - U )  we are, according to (24) and then apply (25) to compute J(x).  
Such computations are repeated for 3" and dJ/dx as a function of x and as soon 
as dJ/dx indicates a switching of mode, so is our computation of Y altered. 

In the exponential claims case, y = 1 and equation (21) is given by; 

h +p (flh +g (Tr)+ w lu I)+P 2(K (a + u )+fl (g (Tr)+ w lu I))+P 3fl K (a +u ) 
(26) L 0  = 2p2[r+p(o~+u+fl(r+q))+p2(a+u) ] 

The denominator in (26) has clearly a twice repeated root P3 = P 4  = 0 and two 
other roots given by 

(27) p l .2=-½[a+u+f l ( r+q) ]±½{[ t~+u+f l ( r+q) ]2 -4 (a+u)r }  1/2. 

This means that J(x) is of the form; 

(28) J(x) = A ,  e p'x +A2  e "2x +A3 +A4x. 

As a result, we can compute each of the parameters in (28) and provide a 
complete solution to the linear cost stochastic mutual insurance problem. 
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4. M U T U A L  I N S U R A N C E  W I T H  R E I N S U R A N C E  

The mutual insurance process defined earlier can be extended further, and 
without difficulty, to include problems of reinsurance (see also TAPIERO and 
ZUCKERMAN (1982), DAYANANDA (1970), VAJDA (1955), BORCH (1974)). 
Specifically, let f(E) be the claims size distribution and let R be a level above 
which the direct underwriter passes on the excess expense E - R  ( E > R )  to a 
reinsurer. As a result, the direct underwriter limits his actual claim expense to 
levels of at most R. To do so, the underwriter foregoes part  of his income by 
paying a constant premium y, (as we shall see, function of R the cut-of[ level) 
to the reinsurer. As a result, the direct underwriter 's  objective cost is given by 
(29) rather than (13); 

R oO t, 

(29) -rJ(x)+q Jo [J(x -E)-J(x)]F(E) dE+q JR [J(x -R) -J(x)] f (E)dE 

-(a  - y  + u) -~-+[hx +g(rr)+ wlul ]  = 0 
dx 

and the objective cost J (x) ,  Laplace transform is (30) instead of (18); 

[a - y + u ]K + [g (rr) + w [u I]/P + h/P 2 
(30) L(p)  = 

(r + q) + (a - y + u)p - q [Io R e -~"(E) dE + e-n~(1 - -F(R)) ]  

where F(R) is the cumulative distribution of f(E) from ~ = 0 to E = R. Say that 
f(E) = ~ exp ( -#E) ,  then 

io i e-e°f(E) d E + e - R " ( 1 - F ( R ) ) - [ 1 - e  J+e -Rp 1+ 
Iz +p 

which when introduced into (30) provides a Laplace transform for J (x )  still to 
be solved, either by approximation or by analytic inversion. Now assume for 
simplicity that the reinsurer seeks to maximize his expected cash holdings. We 
assume that r = discount rate and z = cash on hand, where 

(31) dz = ydt 

z(z , )=z(rT)-p,  p ~ 0  and p = ~ - R  

and the objective is; 

Io 1 (32) Max d0(z) = E{ e-"zdt+Oe- '~  

where O is the reinsurer bankruptcy cost. Without difficulty, It can be shown 
that & is given by 

(33) - r~ ( z )+q  [~(z +R -E)-~(z) f f (E)  dE-y  -~- - z  = 0 

• (0)-  O 
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which can be solved as pointed out earher. The direct (mutual) underwriter and 
the reinsurer proceed then to solve the following game; 

(34) Min J(xlrr, u, R, y) 
~,tl .R 

Maximize qb(z Jy). 
Y 

Clearly, (34) defines a non-zero sum game. In this case, it is necessary to point 
out both the rules of the game, the informational assumptions available to each 
player and of course the market structure. For example,  a leader-led market 
structure points out to a Stackelberg strategy (e.g., TAPIERO and ZUCKERMAN 
(1982), STACKELBERG (1952), SIMMAN and CRUZ (1973)). Specifically, say that 
the reinsurer is a "leader" and dominates  the game by imposing a solution which 
is favorable to itself. Then,  for every y, the direct mutual underwriter minimizes 
the cost J with respect to rr, u and R. This leads to solutions rr*= ~r*(y), 
u * = u * ( y )  and R * = R ( y ) .  Insert the latter expression of R(y )  into (33) and 
then maximize ~ for y, or y*. Then, the optimal direct mutual underwriter 
policies are given by R** = R ( y * ) ,  u * * =  u*(y*) and ~**  = 7r*(y*). Inversely, 
if the direct mutual underwriter is the leader then we first determme y(R)  which 
is introduced in the objective J to yield optimal 7r = rr(y(R)), u = u (y (R) )  and 
R = R(y(R) ) .  
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