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PRACTICAL CREDIBILITY THEORY WITH EMPHASIS ON 
OPTIMAL PARAMETER ESTIMATION 

F.  D E  VYLDER* 

We develop Hachemeister's regression model 111 credlbihty theory (without 
proofs) and indicate how the involved structural parameters can be estimated 
from the observable variables (with proofs for the simple results and those 
not yet published). 

Large famlhes of unbiased estinaators are available. From the practical 
viewpoint this is rather a handicap because it creates the problem to decide 
what estimators actually to use. In order to fix optimal estimators, we adopt 
the small-sample critermn of minimum-variance But in the research for 
general solutmns three kinds of difficulties arise. 

(i) The calculations become too lengthy. 
(fi) The optimal estimators depend on some of the parameters to be esti- 

mated (Then we call them pseudo-estimators). 
(ill) The optimal estimators depend on new structural parameters defined 

in terms of fourth-order moments 

Only a compromise allows to cope with this reahty. Sltuatmn (ill) creates 
new estimation problems. They can only be avoided at the cost of the Intro- 
duction of special assumptions or approxiinatlons. Then problem (i) is more 
or less automatically solved. By an obvious method of successive approxima- 
tions pseudo-estmlators can serve as true estimators. Thus (li) is no real problem. 

1. GENERAL NOTATIONS AND DEFINITIONS 

1.1 .  M a t r i c e s  

The same main symbol is used to denote a matrix c and its elements c{. Here 
c{ is the element at the intersectmn of row i and column j. The row i is denoted 
by c, and the column j by d. When the number of rows is m and the number 
of columns n, we say that the matrix has dimensions n (m)- 

These conventions are most convement for automatical calculation with 
matrices For Instance, if 

0) a = b c d 

then 
r 8 a~ = bled ,  a j = bed  j ,  a~ = b~cd ], a = E b r c r d ,  a~ = Z, b~crd s . . . .  

• r ,m  

* The  a u t h o r  is t h a n k f u l  to  t he  referee who  improved  th i s  paper .  
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Hence  the following general rules in case of a ma t r ix  relation such as  (1),  
with any  n u m b e r  of factors  in the last  m e m b e r .  

(i) The same lower index can be placed at  the ma t r ix  in the first member  
and at  the first ma t r ix  m the last member .  

(il) The same upper  index can be placed at the ma t r i x  m the first m e m b e r  
and  the the last ma t r ix  m the last member .  

(iil) In  the last  member ,  an upper  index can be placed at any  ma t r ix  
and  the same lower index at  the following matr ix ,  p rovided  t ha t  index 
be s u m m e d  out. 

Of course, according to the same rules applied in the opposi te  direction, 
indmes can also be dropped.  

We recall t ha t  the t race of a square  ma t r ix  c ~s the sum of its diagonal  
e lements :  t r  c = X c~. When  a product ,  say abed, of any  number  of any  matr ices  
is a square mat r ix ,  then  any  cyclical pe rmuta t ion ,  say cdab, is also a square  
ma t r ix  (of posmbly different dnnenslons) and  tr(abcd)= tr(cdab). 

1.2. Random matrices 

The expec ta t ion  EA of a ma t r ix  A with r andom elements  A{ is the ma t r ix  
wiith e lements  .E'A~. The opera tors  tr  and E commute  

To the (~) r andom column X is associated the (~) covar iance ma t r ix  Coy X 
with  e lements  

(Cov X){ = Cov(X,,  Xj)  = E ( X , X ~ ) -  E(X,)E(Xj)  

Using the accent  for t ransposi t ion,  the last m e m b e r  can be displayed as 
E ( X , X  '~) - E(XdE(X'J).  Therefore 

Cov X = E ( X X ' )  - E(X)E(X') ,  (n). 

When X is (]), then  Coy X is in fact  Var X. 
I f / i s  (;',) and  X (,*,), then  tX is (,~) and  Cov(/X) = t(Cov X ) (  
Similarly,  for the condit ional  covanance  mat r ix :  

Cov(X/O) = E(XX'/@) - E(X/®)E(X'/®), (',~) 

The following relation is easy.  

Cov X = E Cov(X/O) + Coy E(X/®), (nn)" 

We define the scalar variance of any  r and om ma t r ix  A by  

ScaVar  A = ...., V a r A }  = Z E(A{A '~ ) -  X E(A )E(A'}) 

= X, E(A,A'*) - 2 E(A,)E(A 'z) = t r  E (AA' )  - tr(EA.EA').  
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Thus,  when A is the (~) column X, then ScaVar  X = tr  Cov X 
To say t h a t  the (]~) r andom  vector  X IS N(m,  v) means  tha t  X is no rma l ly  

d i s t r ibu ted  with E X = m, Coy X = v. This lmphes  t ha t  m is (t) and  tha t  v 
is (~). Siimlarly,  " t he  condit ional  vector  X,  given 0 ,  is N(m(@), v(O) )" means  

tha t  this vec tor  is normal ly  d is t r ibuted  ~qth E(X/®) = m(®), Coy(X/®) = v(®). 

t. 3. Miscellaneous 

In  case of mult iple  indmes, the ma t r ix  rules are appl ied to the last  uldices 
only For  instance,  Jf the scalars x~p are defined for var iable  j ,  p, q, then, for 
each fixed y, x; is the ma t r ix  with e lements  x]v. xsp is the p- th  row of t h a t  
ma t r ix  and xy is its q-th colmnn. These nota t ions  are unambiguous  ff the 
reader  keeps m mind the n u m b e r  and  posit ions of the subscr ipts  on the init ially 
considered scalars Thus,  in case of the just  considered xj~, x;, x~v, xy it mus t  
be r emembered  t ha t  the scalars xy~ have  two subscr ipts  and  one superscr ipt .  

For  any  f imte  sequence x, of square  matrices,  we define 

p rov ided  x{ 1 emsts,  for the last  relation The sequence ~, is the pre-normed 
sequence ~'l In  s u m m a t m n s ,  all indices, matnc~al  or not,  mus t  be comple te ly  
sunanaed out,  unless s ta ted  otherwise 

I f  A is a r andom matr ix ,  we denote by  A ° the centered matrix A ° = A - 
E A No confusions can arise between ° and a ma t r ix  index, because ° shall 
never  be used as a ma t r i x  index. 

2. HACHEMEISTER'S REGRESSION MODEL. (HACHEMEISTER, 

2.1. Def,~zition of the model 

We consider the a r r ay  of observable random variables 

X n  X~., . . .  Xkl  
X12 X22 . . Xx2 

X~t X2t . . .  Xkt  

1975) 

The class j or r~sk y is the (it) column X j m tha t  array.  
The index s m X i ,  is in te rpre ted  as a t ime index. To X j  is associated the 

slructure vamable 01 (possibly mult l-dmaenslonal) .  
The possible values for i, j are a lways  ,t,, j = 1, 2 . . . .  k. I t  is a s sumed  tha t  

all quant i t ies  fur ther  displayed ac tua l ly  exist  and  are finite. 
The  following assumpt ions  are made  

(1) Independence of completed classes: the couples (Xt,  01), (X2, 02) . . . . .  
(Xk, ®e) are independent .  
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(ii) Equidislributzon of structure variables: the random variables Oz, 02 . . . . .  
Ok are identically distributed. 

(iii) Regression assumptzon: E(Xj /Oj )  = v~(Oj), (~), where 
y is a given (~) matr ix  of full rank g < t, 
~(. ) is a (~) vector  of unknown functions ~ ( .  ). 

(iv) Covariance assumption: Cov(Xj/®l) = a2(Oj)v~, (~), where 
~2 ( . )  is an unknown scalar function, 
v~ is a given positive definite (~) matrix 

2 . 2 .  Interpretations and problem 

The meaning of the observable random variables X~s and of the m a r r i e s  y, vj 
is exemphfied in Hachemets ter  (1975) 

At a first stage, it is lmagmed that  the distr ibution of Xj  depends on a 
parameter  0j. Because it is unknown, this parameter  is interpreted as a 
real_izatmn of some hidden random varlable Oj. 

The ac tuary  is mteres ted  in E(Xj /Oj )  or equivalently,  because of the re- 
gression assumption,  m ~o(0~), (p = l, 2, , g) Usually however, ~p(. ) is 
unknown and Oj cannot  be observed. Therefore, the ac tuary  replaces his 
problem by  a simpler one He approximates  ~v(Oj) by  a linear expressmn. 

Btp = a o + E a,s X~s 
is 

of the  observable variables Xjs. The unknown coefficients a o, ats (depending 
on j, p) are fixed in such a way  tha t  

E(~v(OS) - Blp) 2 

becomes minimum. The so obta ined (~) vector  B~ is the credibility estzmator 
for ~(03). 

2. 3. Solul,Lon of the problem (SEE HACttEMEISTER 1975 OR DE VVLDEI~ t976 ) 

The credibil i ty est imator  Bj  for ~(0~) equals 

Bj = (~-zj) b + zj ~j, (~), (2) 

where 

(3) 

(4) 

and where 

(5) 

~j = a ( a + s ~ j ) - *  (~), wj = (y'v;*y)-* (~), 

bj= ( y ' v ~ y ) - l y ' v 7 l X j ,  (~) 

a = Cov~ (Oj ) (g ) ,  b = E ~ ( 0 , ) ( ~ ) ,  s= = E~2(0 , ) .  

With NORBERG (1979), we call a, b, s 2 structural parameters of the model.  
Briefly we shall call a, b, s 2 the covariance matrix, the mean vector, the variance 
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respectwely.  The mat r ix  zj is the credibility matrix for class j. When g = 1, 
all these quant i t ies  are scalars. 

3. THE GENERAL PROBLEM OF STRUCTURAL PARAMETER ESTIMATION 

3.1. Small-sample properties of the est,mators 

Unbmsedness and minimum-var iance  shall be considered as most  wanted  
p r o p e m e s  of the est imators  for the s t ructural  parameters .  These are small- 
sample propert ies  

Asymptot ica l  propert ies  of some est imators  can al~o be proved.  For  instance 
see NORBERG (1979, 1980 ). 

Such propert ies  become only interest ing in case of large samples of observed 
random variables. How large ~ This cer ta inly depends on the complexi ty  
of the involved model. In case of Hachemeis ter ' s  model, no precise answer 
to the quest ion can be expected soon 

3 2 Families of unbiased est*mators 

Ill DE VYLDER (1978), we proposed families of unbiased est imators  for the 
s t ructural  parameters .  Here we shall propose tlle same families for b and s ~ 
but  a different one for a. 

3.3. Minimum-variance est,mators 

The minimum-varmnce estimator m a family of estm~ators d (b, ~2) for a (b, s °~) 

is tha t  one making ScaVar d (ScaVar b, Vat £2) minimum. When  looking for 
such minimum-var iance  estimators,  one may  have the sad surprise tha t  the 
estinlators contain some of the s t ructural  pa ramete r s  to be est imated.  However ,  
tha t  s i tuat ion ~s far f rom hopeless as we shall see in 3.4. 

3.4 Pseudo-statist,cs and pseudo-estimators 

We call pseudo-statzstic any  known funct ion of tile observable random variables 
and of the s t ructural  parameters  Similarly, pseudo-estimators m a y  depend 
on the parameters  to be est imated.  Such pseudo-est imators  m a y  nevertheless 
work as t rue  est imators  For  instance, consider the pseudo-est imators  

(6) d = f (Xt~ . . . .  X~,, a, b), b = g ( X ~  . . . . .  X~t, a, b) 

for a, b. Suppose tha t  the last members  in (6) are not  too sensitive to small 
variat ions of a, b. Then ra ther  a rb t t ra ry  initial est imates a(o), b(o) for a, b 
can be used in (6), furnishing first approximat ions  a(1), b(1). Tile la t ter  can 
be used again in (6), furnishing second approximat ions  a(2), b(2) and so on. 
When practical  convergence of the sequences a(n), b(n) is observed,  the practi-  
cal limits can be considered as final est imates for a, b 

Of course it amounts  to the same to solve the system of equat ions 
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(7) a = f ( X l l  . . . . .  Xkt,  a, b), b = g(Xl l  . . . . .  X~t, a, b) 

in the unknown quanti t ies  a, b. 
Pseudo-estmaators are used since several years by  Dr. F. Blchse[ m un- 

pubhshed practical  work 

4" ESTIMATION OF THE MEAN VECTOR b 

4.1. Fixed-class est,mator 

From the regression assumption results.  E Xj  = yb. Then E bj = b by (4). 

This means tha t  bj is an unbiased estmlator  for b. In fact bj is the classical 
least squares estmaator, in class 7, for b 

4 2. F a m d y  of unbiased pseudo-estimators 

I t  follows tha t  

(~) b = X x.j b j  (lg), (xj (~), x Z = l) 

is an unbiased es tmlator  of b. Since ~,e do not exclude that  the x 3 contain 
some s t ructural  parameters ,  relat ion (8) defines in fact  a family of pseudo- 
estinaators for b 

4.3. 3/lzmmum'variance pseudo-esl~malor 

In DE VVLDER (1978), It is proved that  the minimum-var iance pseudo- 
es t imator  in the family (8) is obta ined when x~ is the credibili ty mat r ix  zj 
pre-normed,  i.e. xj = zj. This minimum-var iance  est imator  is denoted by 

(9) ~ = X zj bj 

I t  is no tewor thy  tha t  TAYLOR (1977) and, in a part icular  case, BUIILMANN 
and STRAUB (1970) obtained this optimal est imator  automat ica l ly  af ter  the 
in t roduct ion  of s tatable constraints  

5. ESTIMATION OF THE VARIANCE S 2 

5.~. F,xed-class est, mator 

The classical es t imator  for s ~, m class j, is 
1 

(lo) = ( x j -  ybj)' vi (xj- ybj). 

I t  is unbiased See DE VYLDER (~978) 

5.2. Family  of unbmsed estzmalors 

I t  follows tha t  

defines a family of unbiased est imators  for s 2 We shall not  consider the case 
where the scalars x~ depend on the s t ructural  parameters .  
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5 3 M~n~mum-variance estimator under normal assumptions 

5 3 I Normal assumptmn 

We look for the mmlmmn-var lance est imator for s 2 in the family defined by 
(11) Unless new structural  parameters are introduced, this problem is seen 
to have no solution under the general assumptmns made hitherto.  But  it has 
a very simple one under the assumption tha t  we introduce here 

Normal assumption 

The conditional vector Xj, for Oj fixed, is normally distributed. Then it 
results from the general assumptions tha t  this vector is N(yf3(®j), a2(®j)v~). 

The following simple lemma is needed in section 6. 

Lemma. 

Under the normal assumption, the conditional vector bj, for Oj fixed, is 

Demonstration 

By (4), bJ = uj Xj, with the obvmus defimtion of uj (~). 
Then 

C o y  ( ; , / o j )  = ~,, ( C o v ( X j / o j ) )  u; = ~ ( o j )  ~,j ~j ~ 
= ~ ( O j ) w j .  

Note also tha t  the relaUon E(~j/®j) = ~3(®j) results from the regression 
assumption and (4). 

Now the lemma results from the fact tha t  a hnearly t ransformed normal 
vector remains normal. 

5.3.2 Calculation of Var }~. 

Theorem 

Under the normal assumption, 

(J2) Vat }2 = (~ x~) (s (4) (1 + 

where }2 is defined by (1 l) and where 

(,3) 

2 

s ~ = (s2)L s (~ = E ~ ' ( O j ) .  

Demonstration 

By the independence of the classes and the unblasedness of sj,*2 

(14) Var ~2 = ~ x~ Var sj = s 1 
^4 = ~ x~(E  s j  - s 4) 
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B y  (4) a n d  (lO), 

where  

T h e n  

F. DE VYLDER 

(t-g)s~ = X )  rj  X 1, 

= - - '  (1).  rj v ~  - v j ~ y ( y ' v j l y )  , y ' v ~  , 

r jy  = o, r j v j  = l ° - v ] l y ( y  ' v ] t y ) - l y  ', ( r ive)  2 = r j v j ,  

t r ( r j  v~) = t - t r ( y '  v~ly (y"  v ~ y )  -~) = t - t r  1 °° = t - g, 

whe re  1 ° a n d  ~°~ are r e s p e c t w e l y  the  ([) a n d  (~) uni t  ma t r i ce s  a n d  where  we 
used  the  cycl ical  p r o p e r t y  of the  t race .  

Then ,  for  Oj f ixed,  we h a v e  b y  (A4) of the  A p p e n d i x .  

( t - g ) 2  E(*s~/®j) = E ( X ;  rj X j  X}  r j X f l ® j )  = 

a*(0j)  (tr2(rjvj) + z t r ( r j  v~)2) = a4(Oj) ((t - g) 2 + 2(t - g)). 

A p p l y i n g  E a n d  us ing  (14), re la t ion  0 2 )  follows. 

5.3.3. M i m m u m - v a r i a n c e - e s t m a a t o r  

T h e o r e m  

U n d e r  the  n o r m a l  a s s u m p t i o n ,  the  m i n i m u m - v a r i a n c e  es txmato r  xn the  f a m i l y  

(11) is 

05) ~ = ;~ Z % "~ 

Demons tra t ion  

2 unde r  the  c o n s t r a i n t  x~ = 1 is Resu l t s  f rom 0 2 )  because  the  m i n i m u m  of Z xj 
o b t a i n e d  f o r x ~  = x2 = . = xk = 1/k. 

6 E S T I M A T I O N  OF THE COVARIANCE MATRIX 

6 I. Fzxed-class  estzm, ator 

T h e o r e m  

0 6 )  aj = ( b j - b ) ( b j - b ) '  - s ~ w j ,  (~) 

is a n  u n b i a s e d  p s e u d o - e s t i m a t o r  for  the  cova r i ance  m a t r : x  a. 

D e m o n s t r a t w n  

The  d e m o n s t r a t m n  of the  l e m m a  in 5.3-t shows t h a t  

(17) Cov(bdoj) = ~ (o j )wj ,  .E(~dOj) = ~(oj) 

(The n o r m a l  a s s u m p t i o n  is no t  used  a t  t h a t  s tage) .  Then ,  because  E ~j = b. 

E ( ( b j - b )  ( h a - b ) ' )  = C o v  ~ = Cov E(bl /®j)  + E Cov(b~/@j) 
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(18) ---- Coy  ~(0y) + E ~'2(OJ)W;,' = a"I-S2Wj 

The theorem is clear from this 

6.2. Fami ly  of unbmsed pseudo-estzrnators 

From the theorem results tha t  

(19) d = G x l d l ,  (x I (o°),x x = t) 

defines a family of unbmsed pseudo-estimators for the covariance matr ix  a. 
The matr ix  a is symmetrical,  whereas d furnished by (19) is not. Therefore 

NORBERG (1979) replaces d by 

(20) + ¢) 
(and also b, s °- by estimators for these structural  parameters) 

We shall_ not perform the symmetnza t lon  at this stage. Of course, m practmal 
work, any est imate for a must  finally be symmetr ized 

6. 3. Min ,mum-varmnce  pseudo-estimator under normal and other assumptions 

6.3.~. Notation 
We define 

Note tha t  

= E(~°(Oj)~°'(Oj)). 

The notat ion s ~4) already introduced in (13) is also used further 
a (2) and s ('~) are fourth-order structural  paralneters 

6.3 2. Independence assumption 

We shall use the assumption of independence of e2(®j) and ~(®j). Briefly, 
we call it the independence assumption. 

6.3. 3. Calculation of ScaVar d. 

L e m m a  

Under the normal assumption (5.3.1.)' 

(2~) ~ *o,,, ^o bj b/Oj)  = E(bj xjx~bj "°'^° 

.2(Oj)tr(x}xjwj)tr(wj) + 2cr'(Oj)tr(x}xjwfloj) 

+ 4 a2(@j)tr(x}xjwj~°(OJ)~°'(O~)) 

+ * ~-(®j)tr (x;x; ~°(®j)~°' (®~))tr(ws) 

+ G2(®j)tr(x}xjwj)tr(f3°(®j)~°'(®j)) 

+ tr(x~x~[3°(Oj)~3°'(®j) ~°(®j)13° ' (®j)) 
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Demonstrat ion 

B y  the lemma in 5.3.1, the condit ional vector  ~), for fixed 0 j  is N(~°(@j), 
a2(Oj)wj). Then  (21) follows from (A4) m the Appendix with 

a = xjxj, b = l , m  = f3°(Oj),v = at(@j)w 3. 

Theorem 

Under  the normal  (5.3.1) and independence (6.3.2) assumptions, for d defined 
by  (tg)" 

(22) ScaVar ~ = Xs<41tr(x~xjwj)tr(wj) + 2Xs(4~tr(x~xjwjw~) 

+ 4 Es2 tr(x~xjwja) + E s2tr(xjx~a)tr(wj) 

+ Z s ~ tr(xjxjw~) tr a + Ztr(x~xj(a)2) 

- X tr(x;xj(a + s2wj) (a + s2wj) ). 

Demonstra t ,on  

Let  T(~) denote  the pseudo-statist ic 

(23) T = X xjbjbi" = X x j ( ~ j - b )  ( b j - b ) ' ,  (~) 

Then 

(24) d = T - s 2 Z x jwj .  

Because the last term is non-random,  

ScaVar d = ScaVar T = tr  E ( T T ' )  - t r ( E T . E T ' ) .  

Using the independence of classes, 

(25) = ~z ~(x~b~b}'b~b~'x~) + y, E(x,bTb;')E(3~&}'xj). 

Similarly, 

(26) E T  ET"  = Z E(xjb;~;')E(Bj~;'x~) + Z E{x,b]b;')E(~;bj'x)) 
s ~ J  

Thus, m the difference E ( T T ' )  - E T . E T ' ,  tile sum in , - # l  cancels. 
By  the cyclical p roper ty  of the trace and the general relat ion E( ) = 

E E ( / @ j ) ,  the trace of the first sum in the last member  of (25) equals 

z E 

The positive terms 112 (22) result f rom this expression and from the lemma. 
The negat ive sum in (22) comes from the first sum m (26) after  an application 
of (iS) 
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6.3. 4. M i n i m u m - v a r i a n c e  pseudo-es t ima to r .  

L e m m a  

For , ]  = 1, 2 . . . . .  k and  n = 1, 2 . . . . .  r, let xj be var iab le  (t~) matr ices ,  let cnl be 
f ixed (~) ma t r i ces  and  let s,~ be f ixed scalars. T h e n  the  e x t r e m u m  of 

(27) 

under  the  cons t r a in t  x x = I 

(28) 

where  

(29) 

Demonslratwn 

s,,j tr(xlx~cnj), 
n]  

, ~s o b t a i n e d  for 

xj = .g J, 

y j  = ~ s , , ( c . j  + c5 )  )-~.  
n 

A p p l y i n g  L a g r a n g e ' s  m e t hod ,  we consider  g2 mul t ip l iers  - X~ co r r e spond ing  
to  the  cons t r a in t s  x, c = 1. E x p a n d i n g  (27), we have  to pu t  equal  to  zero the  
pa r tml  der iva t ives  m the  var iables  of 

L Z ~ Y ~ - X q q  SnjXj~Xy ~ Cnj v ~,pXyp 
. l o r R y  Jpq 

D e r i v a t i o n  m x~p gives the  e q u a t m n  
v q a ~ = SnlXjpC~jy + ~ SnlXjpCny q ~ ,  

m f  nOt 

or, in m a m x  fo rm 

(30) E s ~ x ; c ~ j  + ~ snjx jc~j  = x, x j ( Z  s,.(c,.  + c~j) ) = x, x j  = x yj ,  
n n n 

where  yj is def ined by  (29). S u m m i n g  over  j, we ob ta in  l = X 39. F r o m  this  
r e l a t m n  resul ts  X. Subs t i t u t i on  m (3o) gives (28). 

Theorem 

U n d e r  the no rma l  (5.3.1) a nd  independence  (6.3.2) a s sumpt ions ,  the  m m i m u m -  
va r i ance  pseudo-es tmaa to r  m the  f a m d y  (t9) is 

(3~) 
where  

(32) 

F o r  g > 

d = Z ~j d j, 

xj = a~E~(s (4 ) -  s4) (z~)2_ ~(3a2- ~(~)) + (~ + s~wj)~l-'. 
l, t h a t  result  is based  on the  a p p r o x i m a t i o n s  (33). 

Demonstration 

B y  the  l emma,  the  m i n i m u m  of (22) is o b t a i n e d  for  the  ma t r i ces  xj, where  

x~~ = 2sC4)wjtrwj + 4S(4)WjWj + 4s2wja + 4s2awi 

+ 2s2a t r  wy + 2s2wflr a + 2 a (2) -- 2(a + s2wy) (a+ sZwj). 
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Us ing  the  a p p r o x i m a t i o n s  (if g > 1) 

l wj t r  wj + 2 wjw~ ~ 3 wywj  

(33) a t r w  s + 2 a w j  ~ 3 a w j  
l w ~ t r a  + 2 w ~ a  ~ 3 w j a  

one  o b t a i n s  

x j  1 ~ 6(s (4) - s 4) (wj) '2 - 2(3 a2 - a C2)) + 4(a + s~wj) °~. 

F r o m  this  resu l t s  (32), excep t  for  a c o n s t a n t  (not d e p e n d i n g  on y) p re - fac to r .  
B u t  such  a p r e - f ac to r  cancels  in the  f o r m a t i o n  of ~j.  

Comments  

1. I n  a n y  p r a c t m a l  case,  the  q u a l i t y  of the  a p p r o x i m a t i o n s  (33) can  be t e s t e d  
on barns of the  n u m e r i c a l  da t a ,  a t  leas t  wi th  a r ep l aced  b y  i ts  e s m n a t e .  

2. L e t  qj (~) be de f ined  b y  

(34) ~(sC'l)-sa) ( w J ) 2 - ½ ( 3 a ~ - a ( a } ) + ( a + s 2 w ; )  ~ = (a+s2wy)2qJ  • 

T h e n ,  if q j =  q, i n d e p e n d e n t  of j ,  we are  r id  of the  f o u r t h - o r d e r  s t r u c t u r a l  

p a r a m e t e r s  s (a) and  a (2). I ndeed ,  the  reverse  of the  las t  m e m b e r  of (34) equals ,  
in t h a t  case,  q-  ~ (a + s2wj) - 2 a n d  tile c o n s t a n t  p r e - f a c t o r  q -  ~ cancels  m the  pre-  
n o r m i n g  of these  ma t r i ces .  T h e n  we o b t a i n  the  fol lowing unb i a sed  pseudo-  
e s t i m a t o r  for  a .  

(35) & = X ~/~) dj, 
where  

(3 6) z} ~) = a2(a + s : w ) ) -  z. 

T h e  i r r e l e v a n t  c o n s t a n t  p r e - f a c t o r  a 2 is i n t r o d u c e d  again ,  because  so z} -°} = 
(z~) 2 f o r  g = 1. 

3. Les  us now e x a r n m e  some  cases where  qj = q, cons t an t .  

(i) Of course  qj = q m the  t r iv ia l  case wj = w, cons t an t .  
(ii) L e t  ~3(®j) = b be  d e g e n e r a t e d  T h e n  a = (a) 2 = o a n d  m (34) each  

r e m a i n i n g  t e r m  can be s impl i f ied  b y  the  f ac to r  (wj) ~ T h e n  q j = q ,  

cons t an t .  
(mii) L e t  a {2~ = 3 a°-. Fo r  g =  1, th is  m e a n s  t h a t  tile r a n d o m  va r i ab l e  ~(®j) 

has  a coeff ic ient  of excess  equa l  to zero. T h a t  is the  case if it is n o r m a l l y  
d i s t r t bu t ed .  F u r t h e r m o r e ,  a s sume  the  d e g e n e r a c y  e 2 ( ® j ) =  s 2 T h e n  

s ~4) = s 4 a n d q J  = 1. 
4- W e  s u m m a r i z e  the  a r g u m e n t s  col lec ted  in f a v o u r  of the  p s e u d o - e s t i m a t o r  

(35) 
- I t  is unb ia sed ,  because  ~2} = 1. 
- I t  does no t  d e p e n d  on f o u r t h - o r d e r  s t r u c t u r a l  p a r a m e t e r s .  
- I t  is o p t i m a l  in d e g e n e r a t e d  s i tua t ions .  I t  will r e m a i n  a p p r o x i m a t e l y  

o p t i m a l  in cases close to  such  s i tua t ions .  I t  m u s t  be  n o t e d  t h a t  it is 
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precxsely in case of the degeneracy described in (ii) tha t  the est imat ion 
of a ~s most dehcate. 
For g = I, the weights z} "°) are simply the squared credibility weights 

6. 4. Practical est, mal~ou of lhe covarmnce matmx 

6.4.1. Problem. 

The pseudo-estimator ~ (35) and more generally, tile pseudo-estimators (19) , 
have a great inconvenience. Although they  are unbiased when b receives its 
true value m (16), they  no longer have tha t  interesting qual i ty  when b is 

replaced, say by its optamal pseudo-estimator b (9) But  tha t  is precisely 
what  should be done in practmel The bias appears because b does not  figure 
hnear ly  m the last member of (t6) For s 2, there is no problem. Its replacement 
by ;z (15) causes no bias. For the s tructural  parameters  a, s 2 appearing in 
z~ 2> (36) the si tuation is different. Even when they  are replaced by wrong 
est imates,  & (35) is unbiased because ~,~2) = 1. 

Thus, we have only to correct the s~tuat~on for b. We shall s tar t  now from 
the pseudo-statistic 

(37) ~" = x x j ( b j - ~ )  ( ~ j - ~ ) '  (~), (~j (~), x~ = 1) 
J 

A look at (23) shows tha t  ~r is T wherein b has been replaced by its opt imal  

pseudo-estimator b. 

In case of .7", the research for optimal weights xj is based on so l eng thy  
combinatorial  calculations tha t  it loses its interest. 

In tha t  respect, we shall simply transpose to the case of T, tile results oh- 
t amed  in sectmn 6 3-4 m the case of T. At least for g = l, lengthy arguments  
show tha t  this is a good approximation.  

6.4.2. A less "pseudo"  family of unbtased pseudo-estimators for a. 

Theorem 

The relation 

(3s)  aa = ~" - s2 X x j w j  + z~  1 a, (xj (~), x~ = 1), 
t 

defines a family of unbiased pseudo-estimators for a. 

Demonstrat2 on 

We have 

4 1 k 
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because it follows from ~,~ = 1 tha t  the replacement  of ~z by ~ is allowed. Then 

t t j k  ~ tL 

Because Xx = 1, tile x, can be summed out in the sum in uk. 
When  we apply E,  the dubble sums must  be replaced by single sums and 

the indmes must  be egalized, say replaced by  j. Tins follows from the fact tha t  
the ~ have zero expecta t ion  and are independent .  By (I8) we then obtain 

E ~ = Z xj(a + s~wj) + Z ~j(a + s~wj)~j - X xf i j (a  + s~wj) - Zx~(a + s~wj)~} 
t 

The first te rm in the last member  equals a + s 2 E x,w, 
F rom these consideratmn it is clear tha t  

= T - s 2 E xfeJj - X z j ( a +  s2wj)zj 

(39) + £ xjzj(a + s2wj) + X xj(a + s2wj)zS, 

is an unbiased pseudo-est imator  for a. F rom tile relatmns 

we obtain 

(showing in par tmular  tha t  z~ ~ a is symmetrical)  and similar relatmns allowing 
to simplify the last member  of (39)- Finally (38) is obtained. 

6.4.3. Pract ical  estmlat ion of a. 

Because a is symmetr ic ,  we adopt  for it the pseudo-est imator  (38) symmetr ized  
in the obvious way. As ma tnca l  wmghts xj in (38) we suggest to take the pre- 
normed z} 2) defined by  (36), i.e. the same weights ~(j2) as ,11 (35)- 

7. S U M M A R Y  OF ALl.  STEPS TO BE E X E C U T E D  FOR THE CALCULATION OF THE 

C R E D I B I L I T Y  ESTIMATORS 

Steps depending on y must  be executed for j = 1 
O) Given.  X j  (*t), vJ (~), 3' (~) 

1) Calculate w I = (y'v~ty) -* (~) 

2) Calculate ~1 = wly 'vTX J (~) 
1 

3) Calculate the scalar s a - 
k (t - g) 

4) Fix initial a = diag(c, c, 

, 2 , . . . , k .  

z ( x  j -  y~j)'~ i ~ ( x j -  y~j) 

. . ,  c) (~), (c large) 
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5) Ca lcu la te  zj = a(a + s2wj) -~ (°o), zz (~), zj (~), 

= a (a + g ) ,  x j  = 

6) Calculate b = Z zj b.4 (~) 
7) Ca lcu la te  S = ~ xj([~j-b) (b j -b ) '  - s 2 ~Z x jwj  + z ~ a  (~) 

8) Calcu la te  N e w a  = ½ ( S + S ' )  (g) 

9) R e t u r n  to  s t ep  5) w i th  a r ep l aced  b y  N e w  a, as m a n y  t tmes  as n e c e s s a r y ,  
un t i l  a is s tabi l ized .  

lo) Ca lcu la te  B j  = ( 1 - z j ) b  + z ~ .  

A P P E N D I X  

Expectation of products of quadratic forms in normal variables 

Theorem 

L e t  a, b, v be  s y m m e t r i c a l  (~) ma t r i ces ,  v pos i t ive  defini te .  I f  the  (~t) v e c t o r  X 

is N(o, v), t h e n  

(A1) E ( X ' a X )  = tr(av) ,  

(A2) E ( X ' a X  X 'bX)  = tr(av)tr(bv) + 2 tr(avbv) 

If X is N(m,  v), t h e n  

(A3) E ( X ' a X )  = tr(av) + tr(amm'), 

(A4) E ( X ' a X  X 'bX)  = tr(av)tr(bv) + 2 tr(avbv) + 4 tr(avbmm') 
+ tr(amm')tr(bv) + tr(bmm')tr(av) + tr(amm'bmrn'). 

Demonstrat,on 

(AI) E( X ' aX)  = X E(X,a~Xi)  = X a~E(XiX~) = E a~vjJ ~ = tr(av) 

(A2) L e t  the  (~) v e c t o r  Y be  N(o ,  I). T h e n  each  c o m p o n e n t  is n o r m a l  w i t h  
zero m e a n  a n d  un i t  va r i ance .  T h e r e f o r e  

B Y ,  = o ,  E Y ~  = I, E Y ~  = o ,  E Y ~  = 3. 

Moreover ,  Y~, Y2 . . . .  Y t  are  i n d e p e n d e n t .  F r o m  these  fac t s  fol lows t i le 
c o m b i n a t o r i a l  f o r m u l a  

(A5) ECYiY jYkYz )  = 8~8~ + 8~kd~j + 8udjk 

where  8,j is K r o n e c k e r ' s  symbo l .  
I nde ed ,  if m, n, p,  q are  4- d i f fe ren t  radices,  the  poss ib le  p a t t e r n s  for  i, j ,  k, l 

are 

i 

J 
k 
l 

m m n n n m m m m . . .  m 

m n ~ ~ n T/, ~n n n . . . p 

n n n m n n m p q I I I 
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and for each pattern,  the verification of (As) is immediate. Then 

~Jkl djkl 

X a~b~(3~j~z + ~3~a + ~u~jk) = X aib ~ + E a~b z + Z a~b 1 
~Jll ttt~ i |  tJ 

Z a i Z b~ + Ig a~b I + Z a~b~ = tr. a .  tr  b + tr(ab) +tr(ab). 

This proves (A2) for v =  1. 
Now we prove (A2) for X supposed to be N(o, v). I t  is classical tha t  for some 

(~) mat r ix  s, we have X = s Y  with Y N(o, ~) 
Then 

v = Cov X = s(Cov Y)s" = ss' 

and 

E ( X ' a X X ' b X )  = E ( Y ' s ' a s Y Y ' s ' b s Y )  

= tr(s'as)tr(s'bs) + 2 tr(s'ass'bs) 

= tr(ass')tr(bss') + 2 tr(ass'bss') 

= tr(av)tr(bv) + 2 tr(avbv), 

by the cyclical property  of the trace. 

(A3) We decompose X = Y + m, where Y = X -m is N(o, v) 

Then 

(A6) X ' a X  = Y ' a Y  + 2 Y ' a m  + re'am 

and (A3) follows from (AI) and the relations 

E ( Y ' a m )  = o, re'am = tr(m'am) = tr(amm'). 

(A4) For (A4) we use (A6) and the similar decomposition 

(A7) X ' b X  = Y ' b Y  + 2 re 'bY + m'bm 

The expectation of the product of (A6) and (A7) is best displayed in a table. 
Making use of (A1), (A2) we obtain the table 

Y ' b Y  2 re 'bY m'bm 

Y ' a Y  

2 Y ' a m  

tr(av)tr(bv) 
+ 2  tr(avbv) o t r (av)m'bm 

o 4 tr(amm,bv) o 

m'amtr(bv) o m ' a m ~ (  bm 

After slight t ransformations (use cyclical property  of trace, and also tha t  
a matr ix  and its transposed matr ix  have the same trace), formula (A4) results 
from this table. However, some supplementary explanations m a y  be useful. 
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First,  the  mat r ix  amm'b is not  necessarily symmetr ical .  The corresponding 
t e rm 4 tr(amm'bv) is the right one because (A1) is valid even if a is not  sym- 
metrical  (see demonstrat ion) .  We have also to explain the zero's in the table. 
For  instance, let us just i fy the relat ion 

E ( Y ' a Y m ' b Y )  = o. 

For  some (~) mat r ix  s, Y can be expressed as Y = sZ where the (tt) vector  Z 
is N(o, 1). Then the components  Z, of Z are independent  and have zero ex- 
pectat ion.  Tile development  of Y ' a Y m ' b Y  is an expression ~ c,j~ Z , Z jZk .  
Among the radices i, ], k, at least one must  appear  an odd number  of times. 
Therefore  E(Z~ZjZk) = o. 
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