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ON O R D E R I N G  AND D A N G E R  OF CLAIM 
F R E Q U E N C Y  D I S T R I B U T I O N S  

M. J GOOVAERTS* 

The notmn of ordering and dangel of claml size chs t r l bu t i ons  is extended to  el,urn 
frequency (hstnbuttons 

I .  I N T R O D U C T I O N  

Let  us conmder the Swiss p remium calculat ion principle. For  a n y  given rlsk 
the p r e m i u m  ~v(X, v, z) is defined as the root of tile equahon  m p .  

E ( v ( S -  zp))  = v( ( l  - z)p) 

where v denotes  a twine dxfferentiable functmn wtth  v'(t) > o, v"(t) >1 o, for 
- oo < t  < + oo. Let  re(X, ~, v, z) denote  the stop-loss p remium for re tent ion 

limit ~, then it is the root of the equat ion m p.  

v ( ( l - z ) p )  = v ( - z p )  Fs(~)  + ~ v ( i - ~ - z p )  dFs(g) 
cx 

We will recall here a dehn i tmn  of a part tal  order ing a m o n g  risks in t roduced 
in Bt ihlmann,  Gagliardi,  Gerber  and  S t raub  (1977). 

Def,  m t ion  1 

Let G, H be any  d i s t n b u t m n s  on the real line, then we say  t ha t  G < H if 

~) Y .da(x) < oo 
o 

~i) i (x-t)dG(x).< ~ ( x - t ) d H ( x )  - c o < t <  + co 

We also recall the following de f imtmn of dangerous  dis t r ibut ions.  

Definigzon 2 

A dis t r ibut ion H is called more dangerous  t han  a dis t r ibut ion g if the first 
m o m e n t s  say ~a  and  V-H exist and  g-a ~< V-H and if there is a cons tan t  ~ such 
tha t  

G(x) ~. H(x)  x < 

G(x) > H(x) x >i 

* K U. Leuvcn, Dekenstraat 2, B-3ooo I.cuven lhc note ,uuI especially tile proof of 
lcmma 3 has benefitted irom a remark by I)r G Taylor It has also benefitted from 
a discussion with Prof. H Buhhnamt and Pro[ H Gerber 
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[rl BUIILMANN ET AL (1977) the ordering of risks as well as the notion of 
dangerousness  has 1)een int roduced for clama size dis t r ibut ions.  The  ainl of 

the present  cont r ibut ion  consists in generahzing these notions for claim 
frequency dzstmbulwns As has been suggested by  Prof. H. Buh lmann  the  same 
definit ions can be adap t ed  for clalln f requency dis t r ibut ions  

2 SOME DISCRETE INEQUALITIES 

We will formula te  two l emmas  on discrete inequali t ies involving convex  
functions More general versions of these inequaht ies  can be found in KARLIN 

&lid STUDDEN (1966)  

[.ereTria I 

Let ? be a convex function, let {a~, u = o, , n} be a set of real numbera.  

T]lOll 

(l) 

if and  only i f 

(2) 

Z ?(o)a<> >/ o for ~ convex  ? 

Z ( u - k ) + a ~ t > o  h = o . . . . .  n 
u - o  

and 

(3) 

Pro.of 

r~ 

~ a u =  0 
t l - o  

See KARLIN and SrUDDEN (1966) 

f ~ l l t l l l a  2 

Let  {a° u = o . . . . .  n} be a set of real numbers ,  such t ha t  
n 

u - o  tl - o  

(4) o k = o . . . . .  x 

o - o  

k 

E a o ~ > o  k = × + l ,  . . . , n  
o - o  

(5) 

then 

(c>) 
n 

Z ( ~ , - r ) + a o ~ o  r = o, I . . . . .  n 
t a - o  

Proof." See [(ARI.IN arld STUDDEN (1966). 
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Next  we will formulate  and prove the following" 

L e m m a  3 

y(n) = ~ ( v ( x -  o~- zp) - v( - zp)) dF*n(x) 
c~ 

with v'  > o, v" >/ o, denotes  a convex sequence. 

Proof" We will aim our a t t en t ion  first to the proof of the convex i ty  of the 
special sequence. 

yo(,,) = ~ ( ( x -  ~ -  zp) - ( -  zp)) dF*n(x). 
ct 

We thus have to prove tha t  

(7) yo (n+ 2) - 2yo(n+ l) + yo(n) i> o 

which is of course equivalent  with 

y o ( n +  l) ~< ½ yo(n) + ½ y o ( n +  2). 

F i rs t ly  we limit ourselves to the special case n = o. We then have to show 

~t o~ ot  

This incqual i ty  is a special case of the more general result obta ined  in 

BOHLMANN ~X AI. (1977) 

E((X, - ~)+) < E ( ( Z  X ,  - o~)+) 
i ~ - I  I - I  

where Xt and X2 are di~trlbuted according to F with F(o) = o. 

Next  we prove tha t  the inequah ty  (7) implies the following: 

y o ( n + 3 )  - 2yo (n+2)  + y o ( n +  l) >t o 

For  the present  choice of v(x) = x one obtains 

yo(n) = J: ( l - F * n ( x ) ) d x  

Consequently : 

y o ( n + 2 )  = f ( l -F*O '+Z) (x ) )dx  
ct  

(s) = [ (~-F(x))d~ + ( [ F ( x )  - F*(~+~)(~))d~. 
et ct 
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Write E(o~) for tile first term on the r h.s., then'  

yo(n+2) = E(c~)+ .~ { F ( x ) -  f F*('~+~)(x-y)dF(y)}dx 
~x 0 

= E(o~) + f f (1-F*O'+'(x-y))dF(y)dx.  
~x o 

Reversal of the order of integration gives: 

(9) y0(n+2) = E ( ~ ) +  { f  f +  ~ ~}(1-F*(n+~l(x-y))dxdF(y).  
0 Ct eL y 

But because (7) holds one still has the following inequality 

J~(l-F*O2+2)(x-y))dx,< ½ [ ( t - F*(~ +2)(x- y) )dx + ½ [ ( I - F*n(x - y) )dx. 

Inserting the r.h.s, into the r.h.s, of (9) gives: 

yo(n+2)'~. E(o¢)+ ½{} f + .~ 5}(l-F*(n+a)(x-y))dxdF(y) 
o Ct ¢t It 

+ ½{~ ~ + jr f } (1 -F* '~ ( .~ -y ) )dxdF(y )  
o ¢1 cl 1¢ 

= ½ Y o ( n + 3 )  + ½ Y o ( n + 2 ) .  

Hence, our lemma has been shown to hold in case y(n) = yo(n). Next we 
will show that the convexity of y,(n) implies this of y(n). By means of two 
successive partial integrations one is faced with the following equality: 

[ v(-zp))dF*-(x)= v'(-zt,) I 
~x e~ 

(lO) + f v"(t-o~-zp) ~ (l-F*n(x))dx. 
Ct 

But 

Hence inserting the second member of the inequality in (io) gives 

y(n) - 2 y ( n -  1) + y ( n - 2 )  >t o q.e.d. 

3' CONCLUSIONS 

We are now in the position to introduce the notion of dangerousness and 
ordering of claim frequencies in analogy to the corresponding definitions for 
claim size distributions. 
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Defimt,o~ 3 

Let G, H be two claml frequency distributions, theu G < H if 

i) i xdG(x) < 
o 

II) i (X--t)dG(x) < i (X.--[)dI~(x) 0 < ~ < CO 
t 

Def, mt ,o~ 4 

A claim frequency distribution H is called inor¢ dangerou~ than a claxn~ 
frequency distribution G if the expected clama numbers  ixo and [Zll exist and if 
there 3s a constant  [3 such that  

G(x) .< H(x) x < 

G(x) >1 H(x) x >>. f~ 

Theorem 1 

If a claim frequency dlstdlmtlola H ~s more dangerous than a claim frequen%, 

distribution G then G < H. 

Proof" Immedia te ly  from lemma 2 

Theorem 2 

Let Fs,  (x) = Z p~ F*n(x) 
N - O  

F~, (x) = Z p;,/~*,,(~1 
,t - o 

[.1 [a ] 
G(x) = Z p , , ,H(x )  = E p;, 

n - o  n - o  

If G < H then Fs,  < F s .  

Proof." immediate ly  from lemma I and lemma 3. 
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