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THE CORE OF A REINSURANCE MARKET*

BerNarp Baton and Jran LLEMAIRE

Université Libre de Biuxclles

In a series of celebrated papers, I Borch characterized the sct of the Parcto-
optimal risk exchange treaties in a remnsurance market However, the PPareto-
optimality and the individual rationality conditions, considered by Borch, do not
preclude the possibility that a coalition of companies might be better off by
seceding from the whole group In tlus paper, we introduce tlhis collective ra-
tionality condition and characterize the core of this game without transferable
utilities in the 1mportant special case of exponential utilitics The mathematical
conditions we obtam can be interpreted 1n terms of insurance premiums, calculated
by means of the zero-utihity premmum calculation principle We then show that the
core 1s always non-voud and conclude by an example

1. UTILITY FUNCTIONS IN INSURANCE

Utihty functions were 1introduced into the actuarial world by Borcur (1961)
This notion was since then used mainly in two specific insurance models.

1, The principle of zero-utility

Introduced by Bunrmann (1970), this premium calculation principle requires
cquality of the company’s utility before and after signature of an insurance
policy. Denoting by R, the free reserves, P, the premium (to be calculated),
Fj(x;) the distribution function of the total claim amount &;, and u,(%;) the
utility of the amount x; obtained with certainty, for a given company Cj, the
principle demands that

wy(Ry) = [ ws (Ry + Pj — %) d Fy(x,).

Many authors, among which GERBER (1974a, 1974b) and LEEPIN (1975)
have shown that the exponential utility functions

1
wle) = o (1= %), (g0

characterized by a constant risk aversion
-1ty (%)

7j(x) = @

= Cj,

* T1lus paper was greatly improved aftler successive presentations at the Eidgenossische
Techmsche Hochischule i Zurnich, the Umversity of Califorma at Berkeley and the
Oberwolfach Mecting on Risk Theory
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possess very desirable propertics. In that case the premium can be explicitly
computed, onc obtains

1
Pj = ;; LOg [l’[j ((‘;),

where My(ey) is the moment-gencrating function of Sy calculated at pownt ¢y
Py will be referred to mn the sequel as the exponential utility premium.

2. A Model of risk exchange

Introduced by BorcH (1960a, 196ob, 1962), this model considers a pool of
n insurance companics (Ci, .., Cy), willing to improve their sccureness by
means of an exchange of risks treaty. Let [Ry, I(xy)] be the initial situation
of Cj, evaluated by its expected utility

Usiy) = UyRy, Fy(e)] = | 1 (Ry — x3) d Fy(y)

The members of the pool will try to increase their utilities by concluding a
treaty

Fo=[nle, oo xn), o yale, o x4,
where 44(v1, ..., x4) = ¥5(¥) is the sum C; has to pay if the claims for the
different companies respectively amount to x1, .. , xy

Since all the claims must be indemnified, the treaty has to satisfy the
admissibility condition

Condition 1: Admissibriity

(1) L y®) = Z x5 =z
=1 f=1
the total amount of the claims. After the signature of 7, the utility of C;
becomes
Us(5) =QI w [R) — y5(%)] d I n(2),
where 0 1s the positive orthant of £ and I y(£) the n-dimensional distribution
function of the claims £ = (%1, ..., x,).

Condutron 2. Pareto-optimality

A treaty 7s efficient or Parcto-optimal if there 1s no § such that Uy(7) =
Uy(§) for all 5, with at least one strict incquality. Du MoucHeL (1968) has
characterized the Pareto-optimal trecaties by means of the following thecorem.
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T heorem |

Providing all utility functions are such that «;(x) > 0 and «; (x) < o, a treaty
¥ is Pareto-optimal if and only 1if there exists # non-negative constants 21 = 1,
ke, .., kyn, such that, with probability 1,

(2) ey u; Ry — y(®)] = &y 1wy [Ry — v,(%)] 7 =1,...,n

Let X = {k, ..., kn} Using very mild technical conditions, it 1s not difficult
to show [Du MoucneL (1968), LEMAIRE (1973)] that onc and only one Pareto-
optimal treaty always exists for given I However, there usually exists an
mnfinity of K that satisfy (1) and {2), even when one takes into consideration
the fact that no company will enter the pool if its utility is decreased-

Condition 3° [ndwidual rationality
Forally =1, ..., 1 Us(3) = Uslxy).

The non-uniquencss of the solution is casily explained by the fact that no
sharing rule appears in the definition of Parcto-optimality. Cooperation
increases global welfare, and nothing is said about the way the companies will
divide the benefits of their mutual agreement. The different adnussible values
of K correspond to all the possible ways of sharing the profits; each company
has interest to obtain a &y as high as possible, in order to pay as less as possible.
The interests of the members of the pool are thus partially complementary
(as a whole, the group will prefcr a Pareto-optimal treaty), and partially con-
flicting (each company will have to bargain over its constant &;) Tlus is
characteristic of a game-theorctic situation; indeed, it has been shown by
LEMAIRE (1973) that the risk cxchange market is in fact a game without
transferable utilities

In the case of exponential utilities, the solution of (z), with the constraint
(1), is a famihar quota-share treaty

lfey

Z 1/,

f=1

7=

yi(8) = g5z + ys(0), with

n

1 k
)/;(O) = R] - Gy Z (R; + C_ Log Ft>
2 v

i=1
Each company will pay a share g5 of each claim, inversely proportional to its
-isk aversion In order to compensate for the fact that the least risk-averse
:ompanies will pay greater amounts, side-payments or monctary compensa-
ions y;(0) betwcen the players occur A consequence of the admissibility
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condition is that X y;(0) = o. Note that the quotas are determined by the
1=1

risk aversion parameters only, so that the bargaining process will only involve

the monctary compensations: another feature of exponential utilities is that

the players will ncgotiate on amounts of money, not on abstract constants £%j,

2. CHARACTERIZATION OF TIIE CORE OF THE MARKET

Parcto-optimality has often been called group rationality. considered as
a group, the members of the pool can do no better than to agree on a Pareto-
optimal treaty. However, this condition does not preclude the fact that some
of the players might be better off by seceding and forming a sub-coalition.
We are going to reduce the set of the Pareto-optimal treatics by computing
the core of the game, 1.c. by requiting that no sub-coalition has an incentive
to quit the pool.

From now on we shall consider only Parcto-optimal treatics. Let N be the
sct of all the companies, S ¢ NV any sub-coalition, v(S) the set of the Pareto-
optimal treaties for S, i e. thesct of all the agrecements that S, playing separately
from N\S, can achicve. ' is said to dominate § with respect to coalition S if

() Uy = Ui for all ; € S (with at least onc strict inequality)

(i} S can enforce 7' : §' € v(S).

= ~

7' is said to dominate ¥ if there is a coalition S such that %" dominates ¥
with respect to S The core is the set of all the non- ~dominated treaties. In
other words, instead of requiring, in addition of (1) and (2), the condition
of individual rationality, we shall introduce the much stronger

Condition 4. Collective rationality

No coalition has interest in quitting the pool.

Obviously, this condition implies both conditions 2 and 3 (which are col-
lective rationality applied, respectively, to all the one-player coalitions, and
to the grand coalition N).

Assume that coalition S ¢ N has decided to form. Let P§ be the exponential
utility premium C, would require to take over a share

&y

95,8 = 53

Ak
kES

1
ot the porttolio of all the companies Cy € S, with ay = o
1
In particular, P§” (or more simply P?}) is the premium ¢; would demand
without any reinsurance.
Let us suppose finally that all the claim amounts ; are independent.
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Lemma |

Pj =~ Z Log M(gs.s ¢5)

kES
LN Log M ( : )
= Og I ~ .
Cj é_; JES aj

Proof: we know that

S
Pi

= > Log M{) (g,

3
7 kes

where M} (x) is the moment-generating function of the distribution of the
quota ¢y,s of £¢. The fact that

MiMNx) = E [6*9s5] = My (95,5%)

completes the proof.

Lemma 2.

Let{Sy, ..., S/} be a partition of S ¢ N. Then
Z(Pf-—PjN)-f- DI (P}S'-—PjN)BO
jes i=1 JEs5,
Proof. T (PS-PM+ T Z (P - P))
ies 1-1 jes
— T 1 1
= Z [aj 2, Log M, (ﬂ) — oy Z Log A, (Z ak):l
1€ (€5 tes few ren
1 1
+ Z Z [a; Z Log M; (—Z_Tl;) — oy Z Log M; (_ZMTI:)]
I=1 je5, Trh k€S, EN kEN
1 d ) 1
= Z (Z ak) Log M, (Z Clk) + z Z (z onk) Log M, (Z ak)
(€S kes kes -1 ey Cre§ LES,
1
_ z ax+ Z > a,] Log M (———Z ak>
-t e, rEN

2 ;
L3S

ml\/l

o)t (5°) + 5 3 (3 o) e (£

tes b= yes; ke kE S|

L v
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r

—y Z (z a,,> Log M; (ﬁ) (since $=U s us;

i=1
{EN REN res il

in the sequel we shall note So = §)

SSatagan(l) + 3 2 > artos (2) -7 3 vt )
]

a =1 s=0 $€S,

tes {EN
(where a = Z ag, a1 = Z a, b = Z k)
tes res, rEN

= Z [a Log M; (l) — b Log M; (l) + Z Z a; Log M, (—1—>
1€8 a b P-1 e=s des, a;

— (-1 2, bLog My (%) - 2, prog s}

{€S CEE

> [a Log M, (i) — b Log My (%)] + Z Z > [a, Log M, (i)

ies i=1 s=0 {€S5, ay

snl
1
— b Log M; 3|

GERBER (1974a) has shown that % Log M(c) is an increasing function of c.

It can be deduced that ¢ Log M (l) is a decreasing function of ¢. Since a < b
c

and g; < b, all the terms between square brackets are non-negative and the

lemma is proved.

Corollary 1:
Forall ScN
T P+ 3 PS> = Py
jES jes iEN
Proof:

Apply lemma 2 to the coalition S = N and the partition {S, S}. This intuitively
obvious corollary enhances the merits of cooperation. It can be extended to
all partitions of N.
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Lenmna 3:
Let {S1, ..., S¢} be a partition of N Then

:
S % PS> & PP
=1 fES; JEN

which amounts to

I (P =-PMzo

-1 jes;

Proof:

In all respects stmilar to lemma 2.

Lemma 4:

It Ay, ..., 4;, By, .. , By arc rcal numbers such that

Ai+ ...+ A< B + ...+ By,
there exists real numbers o, ., or stich that «g 4+ ... + o = 0 and

411L + oo < Bl

Ar + ar < B,

Proof:
The property is true for » = 2. In fact, since 4, + Az < By + B, we have
Ar + As — By < Be, and there exists an £ > o such that

Ar + 42 = B1 + e < Ba.
Letaws = B1 — A1 — e, Then .
Ar+ o= A1+ B1— A1~ e= DBy — e< B;
Ao + a2z = Az — o1 = Az — By + 4 + & < Ba.

Supposc the iemma verified for a given », and let us demonstrate the property
for v+ 1. We have

Air+ ... + Api < By + ... + By,
or A1+ + Ara + (A + Ard) < Bi + . + Broy + (B + Bra).

There exists, by induction, 1, . , B such that 1 + ... + B = o and
Al + PL< By

Ara + Bra < Broy
(Ar + App1) + Br < By + By,
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The last incquality can be written
(Ar + Br) + Ar+l < Br + Br+1

There exists a y such that
Ar + Br + Y < B
Aepr — v < By
It is then sufficient to put
ar =01, ..o, 0r00 = Bray, @ =B+, X4 = — .

Tlheorem 2.

= (y1, ..., ¥a) belongs to the core of the pool if and only if
S I ysl0) = o
f=1

yilx1, .., %) = ¢y z + yj(0), with
| = wor< = @f-2p,
i€s i€Ss

¥ ScN
(S # 4).

Proof:
(a) Necessity

Suppose % belongs to the core. It is then Pareto-optimal, and

yilx1, ..., xn) = q5 2 + y4{0), with X y4(0) = o.

=1

If the last condition is not verified, therc exists a non-void S ¢ N such that

T yf0)> T (P} - P).

€S €S
Using lemma 1,

3 o> 2[4 3 st (x5 - & 2 e (7))

i€S jes LC1 tes € i P
k=1

Lemma 4 makes sure that there exists (z;(0)ses such that

S (o) = o
[Z Log M ( ) Z Log M; (; : >] + 25(0) < y4(0).
ies ks Ok

ket
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Consider the sub-treaty z = (z;)4es, defined by

%j

Sllahes] = (55;) Z w sl ()

Xk| res
kES

Forall 7€ S, we have

[+3

f
- R;- L z,-2/(0)
Uj(}) = —J [l - ¢ C;[ ! Lé‘? % xes ]J cl]'—s(.f)

0§
1
1 S oy Lz::s T
— _ !:1 — ¢~ 6By pe; 240 f £ AES d]?s(x):l
cy o
i 1
- — — p—C, Ry ocy24(0) /
p 1 [ARg] [ s ﬂ[k = oy )
ies

wlere Og is the positive orthant of E|S], and I 5(%) the |S|- dimensional distribu-
tion function of [(x,.)res]-

In the same way, wec obtain

n

1 1
Uj(_V) == C—j [1 - e‘cth el v,(0) I—I 11{]5 ( . )} .

k=1 Z ot

Then Uy(z) > U,(#) 1f and only 1f

n

1 1
PR | | My ( 5 ) < ¢SO l l M g ( " ) ,
Xy

res €5 k=1 z of

taking logarithms

— 1 - 1
: [Z Log M ( S a[) - Z Log My ( " >] + z(0) < y5(0),
Cf rES ©s k=1 Z o4

which is precisely rclation (3) So Uj(z) > Uy(#), for all y € S, in contradic-
tion with the fact that § belongs to the core.

(b) Sufficiency

Consider y such that yy(x1, ..., x3) = ¢; 2 + y;(0), with

oy < S (PS-PY), forallScN (S # ¢)
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If v docs not belong to the core, there exists a coalition S ¢ N and a treaty
[(2y)es] such that

Us(z) =2 Uy(9), ¥ JES,

with a least one strict incquality Since we can assume 2 to be Parcto-optimal,

%
yl(Tkes] = 5 2 ‘i Xy + 4(0) €S
res
with £ z(0) =0
j€s
| 1
. 3 — — _ .- R cz(0)| |1/.
Since Uj(z) & [l ¢ 1 evics - 1[/\, (x Ott>:|
e
1 - !
1 UA7) = — [1 — g6 Iy gy u, 0 M ( >] ¥ j€S.
and Uy(5) ¢ ’ i D ’ i o ]

We have, taking logarithms,

1 : 1
< y4(0) +—ZLong - ¥ 7€ 5.
o Cf xer s
t€s o

1 1
z5(0) + — Z Log Mk( 5

¢ Yes

Summing over all y € §, and using I z4(0) = o, we obtain

ies
< 1 I < 1
23’1(0)> Z [—ZLong( ) - —ZLong<n )]
j€s ves LT es PIRH €y o1 S
€S [4
or
L y{0)> T [P} - PN
IES 1ES
contradicting the hypothesis.
Corollary
# = (#1, .. , va) belongs to the core of the pool if and only if
yi(x1, ..., Xn) = g5 2 + y4(0), J=1,...,n
with I y0) < Z (P;S - PjN) M ScN
jes €S

if we define P} = o.
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Proof.
Applying condition X yj(o) < X (P;S - PjN) for S = N, we obtain

JES JES

T yf0) = T ylo)< T (PY - PY)=o.
=1

&N fEN

Since. £ (Pj — P)=o0and I y,0) + Z y0) =0, we have

1€0 Jeo 1eN
successively

X y0) =0

L y0)<o= I (Pj — Pf)

jeo j€a

In other words, condition Z yy(0) = o may be rcplaced by

1=

X oy0< 5 () - P
EN

! iEN

by yj(o) < X (P} - PjN).
[1={%] j€O
So, not only conditions 2 and 3, but also condition 1 derives from collective
rationality.

Inlerpretation:

In addition to the fact that it characterizes the core, theorem 2 may be in-
teresting in the sense that it links two apparently very different concepts,
a collective notion (the core of a game without transferable utilities), and an
individual notion (a premium calculation principle)

Applied to a one-player coalition, the core condition becomes
y;0) < P} — P} 7=1,. .,n

The second member 1s the difference between the exponential utility pre-
miums before and after reinsurance. Everything happens as if each company
evaluates its portfolio by the exponential utility premium: the certainty
equivalent of any portfolio is this premium. A positive second member means
that C; finds profitable to participate to the pool It will however only enter
the market if its "fee”” or side-payment does not exceed the profit.

Applied to the two-player coalition {1, 2}, the core condition becomes
y1(0) + ¥.(0) < [P — PN] + [P — PY]
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o
P{# s the premium C, would ask to assume a share — of 1ts own und

%y + oy

Cz's portivlios. The term between the first squarce brackets represents the
positive or negative profit Ci would make by not scceding from the pool with
C2. The condition requires that, globally, coalition {1, 2} has no interest to
play alone, in the sense that the sum of the side payments required from its

members is small enough not to incite them to quit the pool The difference
(P — PY) 4+ PP = PY] — y,(0) = .(0)

is the benefit coalition {1, 2} enjoys from participating to the pool. If this
term were negative, {1, 2} would have interest to separate and create a 2-
company pool Note that nothing 1s said about the way those 2 companies wiil
share this benefit: the core only mtroduces global conditions.

Note.

The conditions of theorem 2 not only provide upper limits for the side-pay-
ments, but also lower limits. Indeed, since

L y00) = = X 4(0) ¥ S,
1ES €T
we have
(3) - S (Pj-PM)< Zyloy< T (P -P))
jes jes ses

3. EXISTENCE OF THE CORE

The mamn disadvantage of the core is that there exists large classes of games
for which it is ecmpty. Fortunately, theorem 3 shows that the core of the risk
exchange market always exists

Theoremn 3:

The core of the market is non-void.

Proof.

The core can be characterized by conditions (3}, or, 1n an equivalent way, by

S S (P5-PM< I yfo)< £ (PF - PY) forallScN

JES JES ies
(4) such that Cp, ¢ S
( yi(O) + . .+ ya(0) =0
Note that conditions (4) only restrict the wvalues of yi(0), . , vya_1(0).

This is obvious because, if €, € Sy,

L yi0) = = X yy0)and C, ¢ So,

1€5q 1€Sy
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. o N 5 - § '
So - S (P§=PM)< X ylo)< B (PP - PF)
JES, JESy jE€S,
and - S (P =Py T ylo)< 5 (P - PY).
JESy 1ESy 1€ Sy
It only remams to prove that there cnists (- 1) constants yi(0), .

yn-1(0) verifying conditions (4) (then we shall obtain y,(0) using y,(0) =

— % wyy{0)). This system has a solution if, for all $ ¢ N such that C, ¢ §
1=t

and for all partitions {S1, ..., S;) of §,
- = (P -PMy< ¥ (PF-PY
JES JES

S (Pf-PM)z - T 3 (P} - P}

sJes ) -y es

- T (Pf-PM< = = (P§-PM).

Jes -1 jes,

This is a consequence of corollary 1 and lemmas 2 and 3

4. EXAMPLE
Let us consider the following example, introduced by LEMAIRE (1979). Suppose
that the pool consists of 3 companies, whose risk aversion cocfficients aie
respectively ¢1 = .3, ¢z = .6, ¢s = .1. All thc companies have the same
distribution of claim amounts, namely a -distribution

a-~1

S e ¢y x>0
d Fy{x :
I _ ) Tla) P
dx
( 0 clsewhere N
. . a

with parameters ¢ = 1.152 and = = .g6 The mean is equal to m = - =2

. 2 a . « . .
the variance ¢° = 3 o= L2s Using the moment-generating function of this

distribution

t\-a
M) =<1 - -) .

T

we obtain the following conditions for the core
388 < yi(0) € ..610
818 € y¥2(0) € 1469
1.22 € %(0) + y2(0) € 1.448.
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The core is shown in Figure 1 Note that the core (hachured area) is sub-
stantially smaller than the sct of the Pareto-optimal treatics (dotted arca).

Y4l0)

mubivdial ity ©,

1L
%,2)x
/’{’JZ,/ /\\ Towollicting ratiomihity {e, ¢y}

{3 3} witqeuones 2113309

]
.
> {pfeacnel [Enprapul

Y,(0)

Note:

For n > 3, the core is more difficult to reprcsent, since it forms a convex
compact polyhedron in the z-1-dimensional Euclidian space with axis y:(0),
.o+, ¥a-1(0). It is characterized by a set of 27-1—1 double inequalities.
This number of constraints increases tremendously with 7.
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