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THE CORE OF" A REINSURANCE MARKET* 

BERNARD BATON a n d  JEAN I.EMAII{E 

Untvermt6 Lfl)re de B~uxcllcs 

In a serms of celebrated papers,  K Botch  charac ter ized  the set  of the  Pare to -  
Olmmal risk exchange treat ies  m a re insurance marke t  However ,  the  Pare to-  
o p t m m h t y  and the m d lwdua l  r a t t onah ty  con(htlons,  considered by Botch,  do not  
preclude the possibi l i ty t h a t  a coah tmn  of compames  migh t  be be t te r  off by  
seceding from the whole group in  this  paper,  we in t roduce  this collective ra- 
t t onah ty  con(htmn and character ize  the core of tins gatrle w i thou t  t ransferable  
ut tht lcs  ill the m~portant  specml case of exponent ia l  utflltms The ma thema t i ca l  
condi t ions  we obta in  can be in te rpre ted  m terms of insurance premnults ,  ca lcula ted 
by illeans of the zero-ut i l i ty  p r e m m m  calculat ion pr inciple  We t]lcll show t h a t  the 
cove ~s always non-voM and conclude by an example  

1. UTILITY FUNCTIONS IN I N S U R A N C E  

Utlhty functmns were introduced into the actuarial world by BORCII  (196l) 
Th2s notion was since then used mainly ~n two specffm insurance models. 

1. The pr,l~c~ple of zero-ulilily 
Introduced by BOIIL~.IANN (1970), this premmm calculation principle requires 
equality of the company's utility before and after mgnature of an insurance 
policy. Denoting by Rj the free reserves, P3 the premium (to be calculated), 
Fj(xj) the distribution function of the total claim amount ~j, and l~j(xj) the 
utxhty of the amount xj obtained with certainty, for a given company Cj, the 
principle demands that 

. j ( R j )  = uj (Rj + Pj  - xj) d 
o 

Many authors, among whmh GERBER (1974a, 1974b ) and LEEPIN (1975) 
have shown that the exponential utility functions 

1 

characterized by a constant risk aversion 

r j ( x ) '  - - 

* ] Ins paper  was great ly  improved  after  successive p resen ta t ions  a t  the EKlgenosmsche 
Techmsche  Hochschule  m Zurich, the Umvers t ty  of Cahforma  a t  Berkeley and the 
Oberwolfach Meeting on Risk Theory  
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possess very desirable 1)roperties. In that  case the premium can be explicitly 
computed ,  one obtains 

1 

PI = - Log it'/1 (@, 
C 1 

where Mt(cl) is the moment-generat ing functlon of 51 calculated at l)omt c 1. 
PI will be referred to m the sequel as the exponential  ut i l i ty premium. 

2. A Model of risk exchange 

In t roduced by BORCH (t96oa, 196ob, 1962 ), this model considers a pool of 
u insurance companies (C~ . . . .  C,,), willing to mqgrove their secureness by 
means of an exchange of risks treaty.  Let [R s, F/(xj)] be the initial s i tuatmn 
of C 1, evaluated by its expected uti l i ty 

u j % )  = uj[l~j, Fj(xj)l = [ ~,, (r~1 - xj) d Fl(xl) 
o 

The members of the pool will try to Jncrease their utihties by concluding a 
t rea ty  

= b , , ( x ,  . . . . .  x , , ) ,  . , y ~ ( x ,  . . . . .  x ~ ) l ,  

where 3,j(x~ . . . . .  xn) = 3,1(2) is the sum C/ has to pay if the claims for the 
different companies respectively amount  to xt . . . .  x,, 

Since all the claims must  be indemnified, the t rea ty  has to satisfy the 
admissibili ty conditmn 

Coltdzl~on I: Adnusszbzhty 

(1) £ ys(X)= £ xs = z ,  
t - t  t - t  

the total amount  of the claims. After the signature of ..9, the ut i l i ty of Cj 
becomes 

u j ( 2 )  = I ,,1 JR,  - y j ( x ) ]  d F ~ ( ~ ) ,  
ON 

where 0N Is the positive or thant  of E ~ and F~v(Y,) the n-dimensional distribution 
function of the claims .g = (xt . . . . .  x . ) .  

Coudzlt, ou 2. 1)arelo-optimalzty 

A t rea ty  2 is efficient or Pareto-optunal  if there is 11o 2'  such that  Uj(P') >/ 
Uj(29 ) for all ], with at least one strict inequality.  Do MOUCHEL (1968) has 
characterized the Pareto-optnnal  treaties by means of the following theorem. 
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Theorem 1 

Prowding  all ut i l i ty  functions are such tha t  u~(x) > o and u'f(x) ~< o, a t r ea ty  
'9 is Pare to-opt imal  if and only ~f there exists n non-negat ive constants  k t  = 1, 
k2 . . . .  k~, such that ,  with probabi l i ty  l, 

(2) /~: .~ E~j - y:(.~)~ = /q ~', EI~ - y~(:e)~ : = ~ ..... ,, 

Let  K = {lea . . . . .  k,~} Using very  mild technical conditions, it as not difficult 
to show [Du MOUCiXEL (1968), LE~AIRE (1973) ] tha t  one and only one Pare to-  
opt imal  t r ea ty  ahvays exists for given K However ,  there usually exists an 
mf imty  of K tha t  satisfy (t) and (2), even when one takes into considerat ion 
the fact tha t  no company  will enter  the pool if its ut i l i ty is decreased" 

Condition 3" [ndwidual rat~onalzty 

For  all.7 = l . . . . .  n U:(p) >1 Ut(xl). 

The non-uniqueness of the solution is easily explained by the fact tha t  no 
sharing rule appears  in the definition of Pare to-opt imal i ty .  Cooperation 
increases global welfare, and nothing is said about  the way the compames  will 
divide the benefits of thmr mutual  agreement .  The different  admissible values 
of K correspond to all the possfl)le ways of sharing the profits;  each company  
has interest  to obtain a lej as high as possible, in order to pay  as less as possible. 
The interests of the members  of the pool are thus par t ia l ly  conaplementary 
(as a whole, the group will prefer a Pare to-opt imal  t reaty) ,  and part ial ly con- 
fhcting (each company  will have to bargain over its constant  k:) This is 
:haracter is t ic  of a game-theore t ic  s l tua tmn;  indeed, it has been shown by 
LEMAIRE (1973) . tha t  the risk exchange marke t  is m fact a game without  
t ransferable utilities 

qJ  - -  

yj(2) = qj z + yj(o), with 

In the case of exponent ia l  utilities, the solution of (2), with the constraint  
(1), is a famihar  quota-share  t r ea ty  

1/cj 
t t  

Z I/L, t 

3,1(o) = Rj - q: R, + - Log 
, - ,  c~ kl/ 

Each company  will pay a share qj of each claim, inversely proport ional  to its 
-lsk aversion In order to compensa te  for the fact that  the least risk-averse 
:ompames will pay greater  amounts ,  s ide-payments  or mone ta ry  compensa-  
ions yj(o) between the players occur A consequence of the admissibil i ty 
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rt 

condition is that Z yj(o) = o. Note that the quotas are determined by the 
J - t  

risk aversion parameters only, so that the bargaining process will only involve 
the monetary compensatmns: another feature of exponential utlhtles is that 
the players will negotiate on amounts of inoney, not on abstract constants [e 1. 

2. CHARACTERIZATION OF TIIE CORE OF TIIE MARKET 

Pareto-optimality has often been called group ratmnahty, considered as 
a group, the members of the pool can do no better than to agree on a Pareto- 
optimal treaty. However, this condition does not preclude the fact that some 

of the players might be better off by seceding and forming a sub-coalition. 
We are going to reduce the set of the Pareto-optiinal treaties by computing 
the core of the game, l.e, by requilmg that no sub-coahtion has an incentive 
to quit the pool. 

From now on we shall consider only Pareto-optimal treaties. Let N be the 
set of all the companies, S c N any sub-coahtion, v(S) tile set of the Pareto- 
optimal treaties for S, i e. tile set of all the agreements that ,S, playing separately 
from NIS,  can aclueve..9' is said to dominate .9 with respect to coalition S if 

(l) Ul(.y' ) I> U'j{y) for all j • S (with at least one strict inequality) 

(ii) S can enforce ..9' : .9' • v(S). 

37' is said to dominate ~ if there is a coalition S such that .9' dominates .9 
with respect to S The core is the set of all the non-dominated treaties. In 
other words, instead of requiring, in addition of (1) and (2), the condition 
of individual rationahty, we shall introduce the much stronger 

Cond~g~on 4: Collective ratTonal~ty 

No coalition has interest in quitting the pool. 

Obviously, this conditmn implies both conditions 2 and 3 (which are col- 
lective rationality applied, respectively, to all the one-player coahtions, and 
to the grand coalition N). 

Assume that coalition .5 c N has decided to form. Let P f  be the exponential 
utility premium Cj would require to take over a share 

ct 1 
q j , a -  X ~ 

1 
ot the porttoho of all the companies C~ ~ S, with ~f - 

C/'  

In particular, p~l} (or more sinaply P~) is tim premium cj would demand 
without any reinsurance. 

Let us suppose finally that all the claim amounts ~j are independent. 
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L e l ; t l n a  1 

Proof: we know that 

~ Log .Me(ql,s cJ 
P I  = c1 , ~ s  

= - Log M~ 
CJ ~ s  ~ s  

1 Z Log M~ "1 (cJ, P~ -- c; 

where M~]l)(x) is the moment-generating functmn of the distribution of the 
quota qj,s of ~,~. The fact that 

M~m (x) = E [e ~ q'.* ~'3 = m k  (q~,s x) 

completes the proof. 

Lemma 2. 

Let {$1 . . . . .  St} be a partition of S ¢ N. Then 
r 

x (P~ - P ~ )  + x z_ (P~, - P p  >~ o. 
t ~ 8  l - i  . t E 8  I 

t 

Proof. Z (ps _ pff) + E X_ (P~' - pjv) 
t ~ S  I - t  ~ l e S |  

[ z  z = £ c~ 1 Log M~ -c~j Log Mi 

2 z [  z (~-~) z (~)] + ~1 Log Mt -o~j Log il,/l ~ -  

= 7 ~ o~k Log M~ + ~ Log/1¢~ 
i ~ S  k~..~ k E S  " I ~ !  kE51  k E S  I 

- z Is,,+ 2 z-,] Lo, M, (~) 
I E N  k E Y  t - t  i E $ 1  k E N  
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Lclllll~a 3: 

L e t  {S~ . . . . .  Sr} be  a p a r t i t i o n  of  N T h e n  

r 

E Z p S , >  Z 

w h i c h  a m o u n t s  to  

p l y  
I ' 

I - z }~8! 

Proof:  

In  a l l  r e s p e c t s  s i m i l a r  to  l e m m a  2. 

L e m m a  4: 

If  A t  . . . .  , Ar, Bt  . . . .  Br a r e  rea l  n u m b e r s  s u c h  t h a t  

At  + . . .  + Ar  < B1 + . . .  + Br, 

t h e r e  e x i s t s  r ea l  n u m b e r s  e l ,  . , c~r s u c h  t h a t  tit + . . .  + ~-r = o a n d  

A t  + c~1 < B t  

A r  + oe.r < B r  

Proof:  

T i l e  p r o p e r t y  is t r u e  fo r  r = 2. I n  fac t ,  s i n c e  A t  + Aa < B t  + B2, we h a v e  

/I~ + A2 - B t  < B ~ ,  a n d  t h e r e  e x i s t s  an  , >  o s u c h  t h a t  

A1 + ,42 -- B1 + ~ < B 2 .  

L e t  c~ = Bt  - A i  - e. T h c n  

A t  + 0~l = A t  + B i  - A t  - e = BI  - , < B i  

A2 + ~x= = A 2  - czt -- /12 - B t  + A1 + ¢ < / 3 = .  

S u p p o s e  t h e  l e m m a  v e r i f i e d  for  a g i v e n  r, a n d  le t  us  d e m o n s t r a t e  t i le  p r o p e r t y  

fo r  r + 1. W e  h a v e  

At  + . . .  + Ar+l < B t  + . . .  + Br+t, 

or  A~ + + A r - a  + (Ar + A r + 0  < B~ + . + B r - t  + (Br + Br+t). 

T h e r e  ex i s t s ,  by  r e d u c t i o n ,  {3t, , [3r s u c h  t h a t  ~t + . . .  + [3r = o a n d  

A l  + [h < B t  

Ar-1  + ~r- t  < B r - t  

(Ar  + A t + 0  + i 3 r < B r  + B r + t .  
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The last inequal i ty  can be wri t ten  

(A~ + [3~) + A~+i < Br + B~+~ 

There  exists a. y such that  

I t  is then sufficient to pu t  

Ar + [3r + y < B r  

Ar+t  - y < Br+t. 

Otl.= ~1 . . . . .  Otr-I = f3r-1, Otr = ~ ' + y ,  ~r+l = -- T' 

Theorem 2 ." 

= (y,  . . . . .  y . )  belongs to the core of the pool if and only if 

t z yj(o) = o 
y l ( x t  . . . .  x,,) = ql z + y j (o) ,  with 1-, 

t z yj(o)< z (P~-P#), 
168 t68 

~ S c N  

(s # ¢) .  

P r o o f :  

(a) Necessity 

Suppose .9 belongs to the core. I t  is then Pare to-opt imal ,  and 

y j ( x l  . . . . .  xn)  = qj z + yflo), with E yl(o) = o. 
J-t 

If the last condit ion is not  verified, there exists a non-void S c N such that  

x ydo)> z ( P 7 -  PT). 
t 6 s  t68 

Using lemma 1, 

1 z z[ z ( ) yl(o)  > Log M, 
1 6 8  I E S  dES k 6 8  

1 2 (:-:)] , . ,  

k-t 

L e m m a  4 makes sure tha t  there exists (zl(o)16s such tha t  

X zdo) = o 
t68 

1 C o g M ,  ( ~ l---'-----k) 2 Log  1~//t (3) c~ -.~8 - -  , - ,  + zj(o) < y j ( o ) .  
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Consider the sub- t rea ty  ~ = (z j ) j¢s ,  defined by 

For all j ~ S, we have 

,![ 1 = - -  1 - -  C x s 

Uj(~) c2 d Fs(e) 

1 

= - t - e-CJnJ co, z'(°l e~¢s d F s ( 2  
c] 

os 

'I 
cl 

1 - -  e -c,  RI c clz~(°) iV[ k 

where 0s is thc positive or thant  of EIS[, and F s ( g )  the ]S]- dimensional distribu- 
tmn functmn of [(xe)kes]. 

In the same way, we obtain 

Then Uj(z )  > Uj(.~) If and only Jf 

( ' )  
l e g  I E S  

k - t  

I - - I  

< l 
k - |  

taking logarithms 

Log life - Log Me 
C E ~  1 : -  I 

I - I  

+ zj(o) < yj(o), 

which is precisely relation (3) So Uj(z )  > U j ( ~ ) ,  for all J a S, in contradic- 
tion with the fact that  9 belongs to the core. 

(b) Sufficiency 

Consider 3~ suclt that yj (x~ . . . . .  xn)  = qj z + yj(o), with 

n 

X y : ( o )  = o 
I - t  

E yj(o) ~< E (P7 - /_,~v), for a l l S  c N  (S # ~) 
JE8 I~S  
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If  P does  not  be long  to the  core,  there  ex is t s  a coa l i tmn  S c N and  a treat:,, 

[(z~)j~s] such  t h a t  

U~(~) >/ U~(.~), ~ .~ ~ S, 

w i t h a l e a s t  o n e n t r i c t  i n e q u a l i t y  Since we can a s s u m e 2 t o  be Pa re to -o l ) t ima l ,  

~J X x k + zj(o) j z S 

wi th  E z j ( o ) =  o 
J 6~  

Since Uj(~) = ~ I - e -e, n, e°j~j(°) ~c, M e  

tEL, 

a n d  Uj(.p) cj t - e-cJ nj eCjV,<o~ I1¢~ 

k - !  

| - 1  

y j ~ S .  

W e  have ,  t ak ing  l oga r i t hms ,  

Log  M ,  ~< yj(o) + ~ , , Log  M ,  zj(o) + 7j 

f - i  

S u m m i n g  over  all j ~ S, a n d  using ~ Zj(O) = o, we o b t a i n  
I E S  

yj(o) 
I E S  

> Log  il,/', - - Log  M k  
~6S k 6 ~  t . j  k - t 

t - I  

o r  

x yj(o)> x 
J~S  i ~ S  

c o n t r a d i c t i n g  the  hypo thes i s .  

C o r o l l a r y  

9 = (91 . . . .  yn) be longs  to the core of the  pool if and  on ly  if 

y j ( x s  . . . .  , x , , )  = qj z + y j ( o ) ,  j = 1 . . . . .  iz 

wi th  Z yff(o) < X (P~ - pjV) -,~ S ¢ N  
16s  t 6 s  

if we def ine  P~ = o. 



CORE OF A R E I N S U R A N C E  MARKET 67 

Proof. 
Applying condltmn 

Since Z 
lEO 

successively 

X yj(o) ~< X (P~ - pjv) f o r S  = iV, we obtain 
I E 8  I E 8  

z y/o)= x n(o).< z (PT-PT)=°. 
J~N $ - I IEN 

(P] - PT) = o and Z y,(o) + Z y:(o) = o, 
1 6 o  t 6 N  

n 

y j ( o )  = o 
I - I  

X yj(o) > / o  

yj(o).<o= z (P) '  - p:) 
J 6 o  16o 

we have 

In other words, condition Z yj(o) = o may be replaced by 
t - t  

z yj(o).< z (P;~-P~) 
fEN l@tv 

z yj(o).< z (P?-P~). 
tEO t 6 0  

So, not only conditions 2 and 3, but also condmon 1 derives from collective 
rationality. 

Interpretation: 
In addition to the fact that it characterizes the core, theorem 2 may be in- 
teresting in the sense that it hnks two apparently very different concepts, 
a collective notion (the core of a game without transferable utilities}, and an 
individual notion (a premium calculation principle) 

Applied to a one-player coalition, the core condition becomes 

y:(o) .< p~ - P7 : = ~ .... " 

The second member is the difference between tile exponential utility pre- 
miums before and after reinsurance. Everything happens as if each company 
evaluates its portfolio by the exponential utility premium: the certainty 
equivalent of any portfolio is this premium. A positive second member means 
that Cj finds profitable to participate to the pool It will however only enter 
the market if its "fee" or side-payment does not exceed the profit. 

Applied to the two-player coalition (1, 2}, the core condition becomes 

y l (o )  + y~(o) ~. Ep? ,~ - P / " j  + [Pl'.~ - P ~  
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~X t 
pit,a) is the premiuna C~ would ask to assume a share - ~  of its own and 

Ca's portfolios. The term between the first square brackets represents the 
positive or negative proht  Ct would make by not seceding from the pool with 
Co.. The conditmn requires that ,  globally, coahtion {i, 2} has no interest to 
play alone, m the sense that  the sum of the side payments  reqmred flom its 
nmml)ers is small enough not to incite them to quit the pool The difference 

[ep,=)_ ~,~v] + [e~,,=)_ e~v] _ y,(o) - y~(o) 

is the benefit coalitmn {1, 2} enjoys from participating to tim pool. If this 
term were negatwe, {l, 2) would have interost to separate and ~.reate a 2- 
company pool Note that  nothing is satd about  the ~vay those 2 coral)ames will 
share this benefit:  the core only mtro(hlces global conditions. 

Noge. 

The conditions of theorem 2 not only l)rovide upper lilmts for the side-pay- 
ments,  but also lower limits. Indeed, since 

Z y j ( o ) = -  Y., y j ( o )  ~ 3 ,  

we have 

(3) - x_ (Pf- P#).< zy:(o)< x (Pf-P#) 
j Es  sE.~ jE.s 

3 '  E X I S T E N C E  OF T I l E  CORE 

The mare disadvantage of the core is that  there exists large classes of games 
for which it is empty.  For tunate ly ,  theorem 3 shows tha t  tile core of the risk 
exchange market  ahvays exists 

TJmorem 3." 

The core of the market  is non-void. 

Proof. 

Tile core can be characterized by conditions (3), or, 111 an equivalent way, by 

t x_(PT-P#)-~ z y/(o)~ x (P#-P#) for ariSeN 
IE$ /Es I~S; 

(4) such that  C .  ~ S 

I yt(o) + . . + y n ( o )  = o 

Note tha t  conditions (4) only restrict the values of y~(o), . y._~(o). 

This is obvmus because, if Cn ~ So, 

X yj(o) = - X y.;,(o) and C,, ¢ S,,. 
fESo fESo 
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So - r., ( P f 0 -  P/)~< x ,b(o)~< r., ( P f 0 -  r)J v) 
/~: % t~so IESo 

and - ,~_ ( l ,~ ~o - P ; " ) ~ .  r, y j ( o )  ~. ,~ ( [ , 7  o - P ~ ) .  
J~O IE'~O tE~O 

I t  only remains  to prove  tha t  there exlst~ ( ~ - ~ )  cons tan t s  y~(o), . , 
y=_t(o) ver i fying condl tmns (4) (tllen we shall obta in  y,do) u~ing yn (o ) -~  

- £ y~(o)). Tlus sys tem has a solution if, for all S c N s u c h  tha t  C= ¢ S 
J - I  

and for all par t i t ions  (S, . . . . .  St) of S, 

- ,c_ (e  7 - p /v ) .<  ~ ( U  - P;~) 

,c (P~ - p ~ ) ~  - ,~ ,c_ ( l~  ~, - P / )  

(v),:- z ( P i  - 
1E8 I-  I /E~t 

This is a consequence of corol lary I and i emmas  2 anti 3 

4- EXAMPLE 

Let  us consider the following example ,  in t roduced by  L~StAU{E (t979). Suppose 
tha t  the pool consists of 3 companies ,  whose risk aversion coefflcmnts ale  
respect ively  ct = .3, co. = .6, ca = .I. All the companies  have the same 
dis t r ibut ion of claim amounts ,  nam e l y  a P-dis t r ibut ion 

t Tr z 6--~,~ Xt~-I  X > O 

dFj(X)dx = I F(a) j = 1 , 2 , 3 ,  

( o elsewhere 

a 
with pa ramete r s  a = 1.152 and  .r = .96 The mean is equal to m - - 1.2, 

tile var iance cra - 

d is t r ibut ion 

a 
a - 1.25 Using tile m om en t -gene ra t i ng  function of this 

T 

=(, _!)° 
we obta in  the following condit ions for the core 

388 ~< y~(o) ~< ..61o 
8t8~< y2(o) < 1 469 

1.22 ~< y~(o) + yo.(o)~< 1.448. 
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The core is shown in Figure 1 Note that  the core (hachured area) is sub- 
stantially smaller than the set of the Pareto-optimal treaties (dotted area). 

,(o) 

f 

2 

9mh~udllnl J',lJr,~u;lnl', c. 

~ulL~LtL~t r . t tm ,  dlt~, {% C3} 

~'//te ' 
% "% 

2 tot~ " 

.g 
[, 

Y,(o) 

N o le  : 

For n > 3, tile core is more difficult to represent, since it forms a convex 
compact  polyhedron in the n- l -dimensional  Euclidian space with axis yl(o), 
. . . .  yn-l(o) .  It is characterized by a set of 2 n - l -  I double inequalities. 

This number of constraints increases tremendously with n. 
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