# THE CORE OF A REINSURANCE MARKET* 

Bernard Baton and Jean Leemalre<br>Université Libre de Biuxclles


#### Abstract

In a series of celebrated papers, K Borch characterized the set of the Paretooptimal risk exchange treaties in a remsurance market However, the Paretooptimality and the individual rationality conditions, considered by Borch, do not preclude the possibulity that a coalition of compames might be better off by seceding from the whole group In this paper, we introduce thus collective raLonality conchtion and characterize the core of this game without transferable utilitics in the mportant special case of exponential utilitics The mathematical conditions we obtam can be interpreted in terms of msurance premiuns, calculated by means of the zero-utality premum calculation principle We then show that the core is always non-void and conclude by an example


## 1. UTILITY FUNCTIONS IN INSURANCE

Utility functions were introduced into the actuarial world by Borcir (1961) This notion was since then used manly in two specific insurance models.

## 1. The pruncıple of zero-utility

Introduced by Buhlmann (1970), this premium calculation principle requires equality of the company's utility before and after signature of an msurance policy. Denoting by $R$, the free rescrves, $P$, the premium (to be calculated), $F_{j}\left(x_{j}\right)$ the distribution function of the total claim amount $\xi_{j}$, and $u_{j}\left(x_{j}\right)$ the utility of the amount $x$, obtained with certainty, for a given company $C_{j}$, the principle clemands that

$$
u_{j}\left(R_{j}\right)=\int_{0}^{\infty} u_{j}\left(R_{j}+P_{j}-x_{j}\right) d F_{j}\left(x_{j}\right) .
$$

Many authors, among which Gerber (1974a, 1974b) and Leerin (1975) have shown that the exponential utility functions

$$
u_{j}\left(x_{j}\right)=\frac{1}{c_{j}}\left(1-e^{-c_{j} x_{j}}\right), \quad\left(c_{j} \geqslant 0\right)
$$

characterized by a constant risk aversion

$$
r_{j}(x)=\frac{-u_{j}^{\prime \prime}(x)}{u u_{j}^{\prime}(x)}=c_{f},
$$

* 1 lis paper was greatly mproved after successive presentations at the Erelgenossische Techusche Hochschule in Zurnch, the Unversity of Califorma at Berkeley and the Oberwolfach Mecting on Risk Theory
possess very desirable propertics. In that case the premium can be explicitly computed, one obtains

$$
P_{j}=\frac{1}{c_{j}} \log M_{j}\left(c_{j}\right) .
$$

where $M_{j}\left(c_{j}\right)$ is the moment-gencrating function of $S_{j}$ calculated at pount $c_{j}$. $P_{f}$ will be referred to in the sequel as the exponential utility premium.

## 2. A Model of risk exchange

Introduced by Borch ( $1960 \mathrm{a}, 1960 \mathrm{~b}$, 1962), this model considers a pool of $n$ insurance companies ( $C_{1}, \ldots, C_{n}$ ), willing to mprove their secureness by means of an exchange of risks treaty. Let $\left[R_{j}, \Gamma_{j}\left(x_{j}\right)\right]$ be the initial situation of $C_{f}$, evaluated by its expectecl utility

$$
U_{j}\left(x_{j}\right)=U_{j}\left[R_{j}, F_{j}\left(x_{j}\right)\right]=\int_{0}^{\infty} u_{j}\left(R_{j}-x_{j}\right) d F_{j}\left(x_{j}\right)
$$

The members of the pool will try to increase their utilities by concluding a treaty

$$
\bar{y}=\left[y_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots y_{n}\left(x_{1}, \ldots, x_{n}\right)\right],
$$

where $y_{j}\left(v_{1}, \ldots, x_{n}\right)=y_{j}(\bar{x})$ is the sum $C_{j}$ has to pay if the claims for the different companies respectively amount to $x_{1}, \ldots, x_{n}$

Since all the claims must be indemnified, the treaty has to satisfy the admissibulity condition

Condtuton 1: Admussibuluty

$$
\begin{equation*}
\sum_{i-1}^{n} y_{j}(\bar{x})=\sum_{i=1}^{n} x_{j}=z_{1} \tag{1}
\end{equation*}
$$

the total amount of the clams. After the signature of $\bar{y}$, the utility of $C_{3}$ becomes

$$
U_{j}(\bar{y})=\int_{\Theta_{N}} u_{j}\left[R_{j}-y_{j}(\vec{z})\right] d F_{N}(\vec{x}),
$$

where $0_{N}$ is the positive orthant of $E^{n}$ and $F_{N}(\vec{x})$ the $n$-dimensional distribution function of the claims $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$.

## Condtuton 2. P'areto-optimaltty

A treaty $\bar{y}$ is efficient or Pareto-optimal if there is no $y^{\prime}$ such that $U_{j}\left(\bar{y}^{\prime}\right) \geqslant$ $U_{j}(y)$ for all $\jmath$, with at least one strict inequality. Du Mouchel (1968) has characterized the Pareto-optımal traties by means of the following theorem.

## 7heorcm

Providing all utility functions are such that $u_{j}^{\prime}(x)>0$ and $u_{j}^{\prime \prime}(x) \leqslant 0$, a treaty $\bar{v}$ is Pareto-optimal if and only if there exists $n$ non-negative constants $k_{1}=1$, $k_{2}, \ldots, k_{n}$, such that, with probabulity 1 ,

$$
\begin{equation*}
k_{j} u_{j}^{\prime}\left[R_{j}-y_{j}(\bar{x})\right]=k_{1} u u_{1}^{\prime}\left[R_{1}-y_{1}(\bar{x})\right] \quad \jmath=1, \ldots, n \tag{2}
\end{equation*}
$$

Let $K=\left\{k_{1}, \ldots, k_{n}\right\}$ Using very mild technical conditions, it is not difficult to show [Du Mouchel (1968), Lemaire (1973)] that one and oniy one Paretooptimal treaty always exists for given $K$ However, there usually exists an infinity of $K$ that satisfy (1) and (2), even when one takes into consideration the fact that no company will enter the pool if its utility is clecreased.

Condition 3 - Individual rationality
For all $\jmath=1, \ldots, n \quad U_{j}(\bar{y}) \geqslant U_{j}\left(x_{j}\right)$.
The non-uniquencss of the solution is casily explained by the fact that no sharing rule appears in the clefinition of Parcto-optimality. Cooperation increases global welfare, and nothing is said about the way the companies will divide the benefits of their mutual agrcement. The different admissibie values of $K$ correspond to all the possible ways of sharing the profits; each company has interest to obtain a $k_{f}$ as high as possible, in order to pay as less as possible. The interests of the members of the pool are thus partially complementary (as a whole, the group will prefer a Pareto-optimal treaty), and partially conflicting (each company will have to bargain over its constant $k_{j}$ ) This is characteristic of a game-theoretic situation; indced, it has been shown by Lemare (1973), that the risk exchange market is in fact a game without transferable utilitics

In the case of exponential uthlities, the solution of (2), with the constrant (1), is a familiar quota-share treaty

$$
y_{j}(\bar{x})=q_{j} z+y_{j}(\mathrm{o}), \quad \text { with }\left\{\begin{array}{l}
q_{j}=\frac{1 / c_{j}}{\sum_{i-1}^{n} 1 / c_{i}} \\
y_{j}(\mathrm{o})=R_{j}-q_{j} \sum_{i=1}^{n}\left(R_{i}+\frac{1}{c_{2}} \log \frac{k_{i}}{k_{j}}\right)
\end{array}\right.
$$

Each company wall pay a share $q_{j}$ of each claim, inversely proportional to its -isk aversion In order to compensate for the fact that the least risk-averse :ompanies will pay greater amounts, side-payments or monctary compensaions $y_{j}(0)$ between the players occur A consequence of the admissibility
condition is that $\sum_{j=1}^{n} y_{j}(0)=0$. Note that the quotas are determined by the risk aversion parameters only, so that the bargaining process will only involve the monctary compensations: another feature of exponential uthitzes is that the players will negotiate on amounts of moncy, not on abstract constants $k_{\mathrm{j}}$.

## 2. CHARACTERIZATION OF TIIE COIE OF TIE MARIET

Parcto-optimality has often been called group rationalnty. considered as a group, the members of the pool can do no better than to agree on a Paretooptimal treaty. However, this condition docs not preclude the fact that some of the players might be better off by seceding and forming a sub-coalition. We are going to reduce the set of the Pareto-optimal treatics by computing the core of the game, i.c. by requining that no sub-coalition has an incentive to quit the pool.

From now on we shall consider only Parcto-optimal treatics. Let $N$ be the set of all the companies, $S \subset N$ any sub-coalition, $v(S)$ the set of the Paretooptimal treaties for $S, i e$. the sct of all the agreements that $S$, playing separately from $N \backslash S$, can acheve. $\bar{y}^{\prime}$ is said to dominate $\bar{y}$ with respect to coalition $S$ if
(1) $U_{j}\left(\bar{y}^{\prime}\right) \geqslant U_{j}(\bar{y}) \quad$ for all $J \in S$ (with at least onc strict inequality)
(ii) $S$ can enforce $\bar{y}^{\prime}: \bar{y}^{\prime} \in v(S)$.
$\bar{y}^{\prime}$ is sald to dominate $\bar{y}$ if there is a coalition $S$ such that $\bar{y}^{\prime}$ dominates $\bar{y}$ with respect to $S$ The core is the set of all the non-dominated treaties. In other words, instead of requiring, in addition of (1) and (2), the condition of individual rationahty, we shall introduce the much stronger

## Condutzon 4: Collective ratronaluty

No coalition has interest in quitting the pool.
Obviously, this condition implics both conditions 2 and 3 (which are collective rationality applied, respectively, to all the one-player coalitions, and to the grand coalition $N$ ).

Assume that coalition $S \subset N$ has decided to form. Let $P_{j}^{S}$ be the exponential utility premium $C_{3}$ would require to take over a share

$$
q_{j, S}=\frac{\alpha_{j}}{\sum_{k \in S} \alpha_{k}}
$$

of the porttolıo of all the companies $C_{k} \in S$, with $\alpha_{j}=\frac{1}{c_{j}}$.
In particular, $P_{j}^{(j)}$ (or more simply $P_{j}^{\prime}$ ) is the premium $c_{j}$ would demand without any reinsurance.

Let us suppose finally that all the claim amounts $\xi_{j}$ are independent.

Lemma 1

$$
\begin{aligned}
P_{j}^{S} & =\frac{1}{c_{j}} \sum_{k \in S} \log M_{k}\left(q_{j, S} c_{j}\right) \\
& =\frac{1}{c_{j}} \sum_{k \in S} \log M_{k}\left(\frac{1}{\sum_{j \in s} \alpha_{j}}\right) .
\end{aligned}
$$

Proof: we know that

$$
P_{j}^{S}=\frac{1}{c_{j}} \sum_{k \in s} \log M_{k}^{(*)}\left(c_{j}\right)
$$

where $M_{k}^{*(j)}(x)$ is the moment-generating function of the distribution of the quota $q_{j, S}$ of $\xi_{k}$. The fact that

$$
M_{h}^{*(j)}(x)=E\left[e^{x} q_{i, s} \xi_{1}\right]=M_{k}\left(q_{j, s} x\right)
$$

completes the proof.

## Lemma 2.

Let $\left\{S_{1}, \ldots, S_{r}\right\}$ be a partition of $S \subset N$. Then

$$
\sum_{i \in s}\left(P_{j}^{S}-P_{j}^{N}\right)+\sum_{i=1}^{N} \sum_{j \in \bar{s}_{l}}\left(P_{j}^{\bar{S}_{1}}-P_{j}^{N}\right) \geqslant 0
$$

Proof. $\quad \sum_{i \in S}\left(P_{j}^{S}-P_{j}^{N}\right)+\sum_{i=1}^{r} \sum_{i \in \bar{s}_{l}}\left(P_{j}^{\bar{S}_{i}}-P_{j}^{N}\right)$

$$
\begin{aligned}
& =\sum_{i \in S}\left[\alpha_{j} \sum_{i \in S} \log M_{i}\left(\frac{1}{\sum_{k \in S} \alpha_{k}}\right)-\alpha_{j} \sum_{i \in N} \log M_{i}\left(\frac{1}{\sum_{k \in N} \alpha_{k}}\right)\right] \\
& +\sum_{i=1}^{n} \sum_{i \in \bar{s}_{i}}\left[\alpha_{j} \sum_{i \in \bar{s}_{i}} \log M_{i}\left(\frac{1}{\sum_{k \in \bar{s}_{l}} \alpha_{k}}\right)-\alpha_{j} \sum_{i \in N} \log M_{i}\left(\sum_{k \in N}-\frac{1}{\alpha_{k}}\right)\right]
\end{aligned}
$$

$$
=\sum_{i \in s}\left(\sum_{k \in s} \alpha_{k}\right) \log M_{i}\left(\frac{1}{\sum_{k \in s} \alpha_{k}}\right)+\sum_{i=1}^{r} \sum_{i \in \bar{s}_{1}}\left(\sum_{k \in \bar{s}_{1}} \alpha_{k}\right) \log M_{i}\left(\frac{1}{\sum_{k \in \bar{s}_{1}} \alpha_{k}}\right)
$$

$$
-\sum_{i \in N}\left[\sum_{k \in S} \alpha_{k}+\sum_{i=1}^{\prime} \sum_{i \in \bar{s}_{j}} \alpha_{j}\right] \log M_{i}\left(\frac{1}{\sum_{k \in N} \alpha_{k}}\right)
$$

$$
=\sum_{i \in s}\left(\sum_{k \in S} \alpha_{k}\right) \log M_{i}\left(\frac{1}{\sum_{k \in S} \alpha_{k}}\right)+\sum_{i=1}^{\dot{1}} \sum_{i \in \bar{s}_{t}}\left(\sum_{k \in \bar{s}_{i}} \alpha_{k}\right) \log M_{i}\left(\frac{1}{\sum_{k \in \bar{s}_{t}} \alpha_{k}}\right)
$$

$$
\begin{aligned}
& -r \sum_{i \in N}\left(\sum_{k \in N} \alpha_{k}\right) \log M_{i}\left(\frac{1}{\Sigma} \alpha_{k \in S} \alpha_{k}\right) \quad\left(\text { since } \bar{S}_{l}=\bigcup_{\substack{i=1 \\
j \neq l}}^{*} S_{j} \cup S ;\right. \\
& \text { in the sequel we shall note } S_{0}=\bar{S} \text { ) } \\
& =\sum_{i \in S} a \log M_{i}\left(\frac{1}{a}\right)+\sum_{i=1}^{r} \sum_{i=0}^{r} \sum_{i \in S_{i}} a_{l} \log M_{i}\left(\frac{1}{a_{l}}\right)-r \sum_{i \in N} b \log M_{i}\left(\frac{1}{b}\right) \\
& \text { (where } a=\sum_{k \in S} \alpha_{k}, a_{l}=\sum_{k \in \bar{B}_{l}} \alpha_{k}, b=\sum_{k \in N} \alpha_{k} \text { ) } \\
& =\sum_{i \in S}\left[a \log M_{i}\left(\frac{1}{a}\right)-b \log M_{i}\left(\frac{1}{b}\right)+\sum_{i=1}^{r} \sum_{i=1}^{\infty} \sum_{i \in S_{d}} a_{l} \log M_{i}\left(\frac{1}{a_{l}}\right)\right. \\
& -(r-1) \sum_{i \in S} b \log M_{i}\left(\frac{1}{b}\right)-r \sum_{i \in \bar{S}} b \log M_{i}\left(\frac{1}{b}\right) \\
& =\sum_{i \in S}\left[a \log M_{i}\left(\frac{1}{a}\right)-b \log M_{i}\left(\frac{1}{b}\right)\right]+\sum_{i=1}^{\infty} \sum_{\substack{i=0 \\
i=i}}^{\infty} \sum_{i \in s_{0}}\left[a_{l} \log M_{i}\left(\frac{1}{a_{l}}\right)\right. \\
& \left.-\mathrm{b} \log M_{i}\left(\frac{1}{b}\right)\right] .
\end{aligned}
$$

Gerber (1974a) has shown that $\frac{1}{c} \log M(c)$ is an increasing function of $c$. It can be deduced that $c \log M\left(\frac{1}{c}\right)$ is a decreasing function of $c$. Since $a \leqslant b$ and $a_{l} \leqslant b$, all the terms between square brackets are non-negative and the lemma is proved.

Corollary 1:
For all $S \subset N$

$$
\sum_{j \in S} P_{j}^{S}+\sum_{j \in \bar{S}} p_{j}^{\bar{S}} \geqslant \sum_{j \in N} P_{j}^{N}
$$

## Proof:

Apply lemma 2 to the coalition $S=N$ and the partition $\{S, S\}$. This intuitively obvious corollary enhances the merits of cooperation. It can be extended to all partitions of $N$.

Lcmma 3:
Let $\left\{S_{1}, \ldots, S_{r}\right\}$ be a partation of $N$ Then

$$
\sum_{1-1}^{\sim} \sum_{j \in s_{1}} P_{j}^{S_{1}} \geqslant \sum_{j \in N} P_{j}^{N}
$$

which amounts to

$$
\sum_{i=1}^{\Gamma} \sum_{i \in S_{l}}\left(P_{j}^{S_{i}}-P_{j}^{N}\right) \geqslant 0
$$

Proof:
In all respects similar to lemma 2.

## Lemma 4:

If $A_{1}, \ldots, A_{r}, B_{1}, \ldots, B_{T}$ are real numbers such that

$$
A_{1}+\ldots+A_{r}<B_{1}+\ldots+B_{r}
$$

there exists real numbers $\alpha_{1}, \quad, \alpha_{r}$ such that $\alpha_{1}+\ldots+\alpha_{r}=0$ and

$$
\begin{gathered}
A_{1}+\alpha_{1}<B_{1} \\
A_{r}+\alpha_{r}<B_{r}
\end{gathered}
$$

Proof:
The property is true for $r=2$. In fact, since $A_{1}+A_{2}<B_{1}+B_{2}$, we have $A_{1}+A_{2}-B_{1}<B_{2}$, and there exists an $\varepsilon>0$ such that

$$
A_{1}+A_{2}-B_{1}+\varepsilon<B_{2}
$$

Let $\alpha_{1}=B_{1}-A_{1}-\varepsilon$. Then

$$
\begin{aligned}
& A_{1}+\alpha_{1}=A_{1}+B_{1}-A_{1}-\varepsilon=B_{1}-\varepsilon<B_{1} \\
& A_{2}+\alpha_{2}=A_{2}-\alpha_{1}=A_{2}-B_{2}+A_{1}+\varepsilon<B_{2}
\end{aligned}
$$

Suppose the lemma verified for a given $r$, and let us clemonstrate the property for $r+1$. We have

$$
A_{1}+\ldots+A_{r+1}<B_{1}+\ldots+B_{r+1}
$$

$$
\text { or } A_{1}+\quad+A_{r-1}+\left(A_{r}+A_{r+1}\right)<B_{1}+\ldots \quad+B_{r-1}+\left(B_{r}+B_{r+1}\right)
$$

There exists, by induction, $\beta_{1}, \ldots, \beta_{r}$ such that $\beta_{1}+\ldots+\beta_{r}=0$ and

$$
\begin{aligned}
& A_{1}+\beta_{1}<B_{1} \\
& \quad: \\
& A_{r-1}+\beta_{r-1}<B_{r-1} \\
& \left(A_{r}+A_{r+1}\right)+\beta_{r}<B_{r}+B_{r+1}
\end{aligned}
$$

The last incquality can be written

$$
\left(A_{r}+\beta_{r}\right)+A_{r+1}<B_{r}+B_{r+1}
$$

There exists a $Y$ such that

$$
\begin{aligned}
& A_{r}+\beta_{r}+\gamma<B_{r} \\
& A_{r+1}-\gamma<B_{r+1} .
\end{aligned}
$$

It is then sufficient to put

$$
\alpha_{1}=\beta_{1}, \ldots, \alpha_{r-1}=\beta_{r-1}, \alpha_{r}=\beta+\gamma, \alpha_{r+1}=-\gamma .
$$

Theorem 2:
$\bar{y}=\left(y_{1}, \ldots, y_{n}\right)$ belongs to the core of the pool if and only if

$$
y_{j}\left(x_{1}, \ldots, x_{n}\right)=q_{j} z+y_{j}(0), \text { with }\left\{\begin{aligned}
& \sum_{i=1}^{n} y_{j}(0)=0 \\
& \sum_{i \in s} y_{j}(0) \leqslant \sum_{j \in S}\left(P_{j}^{S}-P_{j}^{N}\right), \\
& \forall S \subset N \\
&(S \neq \phi) .
\end{aligned}\right.
$$

Proof:
(a) Necessity

Suppose $\bar{y}$ belongs to the core. It is then Pareto-optimal, and

$$
y_{j}\left(x_{1}, \ldots, x_{n}\right)=q_{j} z+y_{j}(0), \quad \text { with } \sum_{t=1}^{n} y_{j}(0)=0 .
$$

If the last condition is not verified, there exists a non-void $S \subset N$ such that

$$
\sum_{j \in S} y_{j}(0)>\sum_{t \in s}\left(P_{j}^{S}-P_{j}^{N}\right) .
$$

Using lemma 1 ,

$$
\sum_{i \in s} y_{j}(0)>\sum_{j \in s}\left[\frac{1}{c_{j}} \sum_{i \in s} \log M_{i}\left(\frac{1}{\sum_{k \in s} \alpha_{k}}\right)-\frac{1}{c_{j}} \sum_{i=1}^{n} \log M_{i}\left(\frac{1}{\sum_{k=1}^{n} \alpha_{k}}\right)\right]
$$

Lemma 4 makes sure that there exists $\left(z_{j}(0)_{j \in S}\right.$ such that

$$
\sum_{t \in s} z_{j}(0)=0
$$

(3) $\frac{1}{c_{j}}\left[\sum_{i \in s} \log M_{i}\left(\frac{1}{\sum_{k \in s} \alpha_{k}}\right)-\sum_{i=1}^{n} \log M_{i}\left(\frac{1}{\sum_{k=1}^{n} \alpha_{k}}\right)\right]+z_{j}(0)<y_{j}(0)$.

Consider the sub-treaty $\bar{z}=\left(z_{j}\right)_{j \in S}$, defined by

$$
z_{f}\left[\left(x_{k}\right)_{k \in S}\right]=\left(\frac{\alpha_{j}}{\sum_{k \in S} \alpha_{k}}\right) \sum_{k \in S} x_{k}+z_{j}(0) \quad(\jmath \in S)
$$

For all $\jmath \in S$, we have

$$
\begin{aligned}
& U_{j}(\bar{z})=\frac{1}{c_{j}} \int_{0_{S}}\left[1-e^{-c,\left[R_{j}-\frac{\alpha_{j}}{\sum_{i \in S}} \alpha_{k} \sum_{k \in S} x_{k}-z_{i}(0)\right.}\right] d F_{S} S(\bar{x}) \\
& =\frac{1}{c_{j}}\left[1-e^{-c, R_{i}} e^{c_{,} z_{j}(0)} \int_{0_{S}} e_{e^{\frac{1}{\Sigma} \alpha_{S}} \alpha_{k}^{\sum} x_{k}}^{x_{k}} d F_{S(X)}\right] \\
& =\frac{1}{c_{j}}\left[1-e^{-c_{1} R_{1}} e^{c_{1} z_{j}(0)} \prod_{i \in S} M_{k}\left(\frac{1}{\sum_{i \in S} \alpha_{i}}\right)\right]
\end{aligned}
$$

where $0_{s}$ is the positive orthant of $\left.E\right|^{S} \mid$, and $F{ }_{S}(\bar{x})$ the $|S|$-dimensional distribution function of $\left[\left(x_{k}\right)_{k \in S}\right]$.

In the same way, we obtain

$$
U_{j}(\bar{r})=\frac{1}{c_{j}}\left[1-e^{-c_{1} R_{1}} e^{c_{1} y_{j}(0)} \prod_{k=1}^{n} M_{k}\left(\frac{1}{\sum_{i-1}^{n} \alpha_{i}}\right)\right] .
$$

Then $U_{f}(z)>U_{f}(\bar{y})$ if and only if

$$
e^{c, z,(0)} \prod_{\lambda \in s} M_{k}\left(\frac{1}{\sum_{i \in s} \alpha_{i}}\right)<e^{c, y_{1},(0)} \prod_{k-1}^{n} M_{k}\left(\frac{1}{\sum_{i-1}^{n} \alpha_{i}}\right),
$$

taking logarithms
$\frac{1}{c_{j}}\left[\sum_{k \in S} \log M_{k}\left(\frac{1}{\sum_{i \in S} \alpha_{l}}\right)-\sum_{k=1}^{n} \log M_{k}\left(\frac{1}{\sum_{i=1}^{n} \alpha_{i}}\right)\right]+z_{j}(0)<y_{j}(0)$,
which is preciscly relation (3) So $U_{j}(z)>U_{j}(\bar{y})$, for all $\jmath \in S$, in contradiction with the fact that $\bar{y}$ belongs to the core.
(b) Sufficiency

Consider $\bar{y}$ such that $y_{j}\left(x_{1}, \ldots, x_{n}\right)=q_{j} z+y_{j}(0)$, with

$$
\begin{aligned}
& \sum_{i=1}^{n} y_{j}(0)=0 \\
& \sum_{l \in s}^{\sum} y_{j}(0) \leqslant \sum_{j \in S}\left(P_{j}^{S}-P_{j}^{N}\right), \quad \text { for all } S \subset N(S \neq \phi)
\end{aligned}
$$

If $\bar{y}$ docs not belong to the core, there exists a coalition $S \subset N$ and a treaty $\left[\left(z_{j}\right)_{j \in S}\right]$ such that

$$
U_{j}(\bar{z}) \geqslant U_{j}(\bar{v}), \quad \forall \jmath \in S
$$

with a least one strict inequality Snce we can assume $\bar{z}$ to be Pareto-optimal,

$$
z_{\jmath}\left[\left(x_{k}\right)_{k \in S}\right]=\frac{\alpha_{j}}{\sum_{u \in S} \alpha_{k}} \sum_{k \in S} x_{k}+z_{f}(0) \quad \jmath \in S
$$

with $\sum_{j \in S} z_{j}(0)=0$
Since $U_{j}(\bar{z})=\frac{1}{c_{j}}\left[1-e^{-c, R_{j}} e^{c_{i} z,(0)} \prod_{i \in S} M_{k}\left(\frac{1}{\sum \alpha_{i} \alpha_{i}}\right)\right]$
and $U_{2}(\bar{y})=\frac{1}{c_{j}}\left[1-c^{-c_{j} R_{I}} e^{c_{j} y,(0)} \prod_{k-1}^{n} M_{k}\left(\frac{1}{\sum_{i-1}^{n} \alpha_{i}}\right)\right] \quad \forall \jmath \in S$.
We have, taking logarithms,
$z_{j}(0)+\frac{1}{c_{j}} \sum_{i \in s} \log M_{k}\left(\frac{1}{\sum_{i \in S} \alpha_{i}}\right) \leqslant y_{j}(0)+\frac{1}{c_{j}} \sum_{k=1}^{n} \log M_{k}\left(-\frac{1}{\sum_{i=1}^{n} \alpha_{i}}\right) \quad \forall \jmath \in S$.
Summing over all $\jmath \in S$, and using $\sum_{i \in s} z_{j}(0)=0$, we obtain
$\sum_{i \in S} y_{j}(0)>\sum_{i \in S}\left[\frac{1}{c_{j}} \sum_{k \in S} \log M_{k}\left(\frac{1}{\sum_{i \in S} \alpha_{2}}\right)-\frac{1}{c_{j}} \sum_{k=1}^{n} \log M_{k}\left(\frac{1}{\sum_{i=1}^{n} \alpha_{i}}\right)\right]$
or

$$
\sum_{i \in s} y_{j}(0)>\sum_{, \in s}\left[P_{j}^{S}-P_{j}^{N}\right] .
$$

contradicting the hypothesis.

## Corollary

$\bar{y}=\left(\bar{v}_{1}, \ldots, y_{n}\right)$ belongs to the core of the pool if and only if

$$
y_{j}\left(x_{1}, \ldots, x_{n}\right)=q_{j} z+y_{j}(0), \quad j=1, \ldots, n
$$

with $\sum_{r \in s} y_{j}(0) \leqslant \sum_{r \in S}\left(P_{j}^{S}-P_{j}^{N}\right) \quad \forall S \subset N$
if we define $P_{j}^{a}=0$.

Proof.
Applying condition $\sum_{j \in s} y_{j}(0) \leqslant \sum_{j \in s}\left(P_{j}^{S}-P_{j}^{N}\right)$ for $S=N$, we obtain

$$
\sum_{i \in N} y_{j}(0)=\sum_{j-1}^{n} y_{j}(0) \leqslant \sum_{i \in N}\left(P_{j}^{N}-P_{j}^{N}\right)=0
$$

Since $\sum_{j \in 0}\left(P_{j}^{0}-P_{j}^{N}\right)=0$ and $\sum_{l \in 0} y_{j}(0)+\sum_{j \in N} y_{j}(0)=0$, we have successively

$$
\begin{aligned}
& \sum_{i=1}^{n} y_{j}(0)=0 \\
& \sum_{j \in N} y_{j}(0) \geqslant 0 \\
& \sum_{j \in \theta} y_{j}(0) \leqslant 0=\sum_{j \in \theta}\left(P_{j}^{u}-P_{j}^{N}\right)
\end{aligned}
$$

In other words, condition $\sum_{t=1}^{n} y_{j}(0)=0$ may be replaced by

$$
\begin{aligned}
& \sum_{l \in N} y_{j}(0) \leqslant \sum_{j \in N}\left(P_{j}^{N}-P_{j}^{N}\right) \\
& \sum_{i \in \mathfrak{0}} y_{j}(0) \leqslant \sum_{j \in \mathfrak{o}}\left(P_{j}^{0}-P_{j}^{N}\right) .
\end{aligned}
$$

So, not only conditions 2 and 3, but also condition 1 derives from collective rationality.

## Interpretation:

In addition to the fact that it characterizes the core, theorem 2 may be interesting in the sense that it links two apparently very different concepts, a collective notion (the core of a game without transferable utilities), and an individual notion (a premium calculation principle)

Applied to a one-player coalition, the core condition becomes

$$
y_{j}(0) \leqslant P_{j}^{j}-P_{j}^{N} \quad \jmath=1, \ldots, n
$$

The second member is the difference between the exponential utility premiums before and after reinsurance. Everything happens as if each company evaluates its portfolo by the exponential utility premium: the certainty equivalent of any portfolio is this premium. A positive second member means that $C_{j}$ finds profitable to participate to the pool It will however only enter the market if its "fee" or sidc-payment does not exceed the profit.

Applied to the two-player coalition $\{1,2\}$, the core condtion becomes

$$
y_{1}(0)+y_{2}(0) \leqslant\left[P_{1}^{\{1,2\}}-P_{1}^{N}\right]+\left[P_{2}^{\{1,2\}}-P_{2}^{N}\right]
$$

$P_{1}^{\{1,2\}}$ is the premium $C_{1}$ would ask to assume a sliare $\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}}$ of its own and $C_{2}$ 's portfolios. The ten betweon the first square brackets represents the positive or negative profit $C_{1}$ would make by not seceding from the pool with $C_{2}$. The condition requires that, globally, coalition $\{1,2\}$ has no interest to play alone, in the sense that the sum of the side payments requred from its mombers is small enough not to incite them to quit the pool The difference

$$
\left[P_{i}^{\{1,2\}}-P_{i}^{N}\right]+\left[P_{2}^{(1,2)}-P_{i}^{N}\right]-y_{1}(0)-y_{2}(0)
$$

is the benefit coalition $\{1,2\}$ enjoys from participating to the pool. If this term were negative, $\{1,2\}$ would have interest to separate and create a 2 company pool Note that nothing is said about the way those 2 companics will share this benefit: the core only introduces global conditions.

Note.
The conditions of theorem 2 not only provide upper limits for the side-payments, but also lower limits. Indeed, since

$$
\sum_{, \in S} y_{j}(0)=-\sum_{e^{-}} y_{j}(0) \quad \forall S
$$

we have

$$
\begin{equation*}
-\sum_{j \in \bar{S}}\left(P_{j}^{\bar{S}}-P_{j}^{N}\right) \leqslant \sum_{j \in s} y_{j}(0) \leqslant \sum_{j \in S}\left(P_{j}^{S}-P_{j}^{N}\right) \tag{3}
\end{equation*}
$$

## 3. EXISTENCE OF THE CORE

The man disadvantage of the core is that there exists large classes of games for which it is empty. Fortunately, theorem 3 shows that the core of the risk exchange market always exists

## Theorem 3:

The core of the market is non-void.

## Proof.

The corc can be characterized by conditions (3), or, in an equivalent way, by
(4)

$$
\begin{cases}\sum_{j \in \bar{S}}\left(P_{j}^{\bar{S}}-P_{j}^{N}\right) \leqslant \sum_{\mathcal{E},} y_{j}(0) \leqslant \sum_{j \in S}\left(P_{j}^{S}-P_{j}^{N}\right) & \text { for all } S \subset N \\ y_{1}(0)+\ldots+y_{n}(0)=0 & \text { such that } C_{n} \notin S\end{cases}
$$

Note that conditions (4) only restrict the values of $y_{1}(0)$, , $y_{n-1}(0)$.
This is obvious because, if $C_{n} \in S_{0}$,

$$
\sum_{1 \in s_{0}} y_{j}(0)=-\sum_{i \in \bar{s}_{0}} y_{j}(0) \text { and } C_{n} \notin S_{0}
$$

So

$$
\text { and } \quad-\sum_{k \in \bar{F}_{0}}\left(P_{j}^{\bar{S}_{0}}-P_{j}^{N}\right) \leqslant \sum_{, \in \mathcal{O}_{0}} y_{j}(0) \leqslant \sum_{\in \in \xi_{0}}\left(D_{j}^{S_{j}}-P_{j}^{N}\right) \text {. }
$$

It only remams to prove that there cuists $(n-1)$ constants $y_{1}(0)$, . , $y_{n-1}(0)$ verifying conditions (4) (then we shall oltann $y_{n}(0)$ using $y_{n}(0)=$ - $\left.\sum_{i=1}^{-1} y_{j}(0)\right)$. This system has a solution if, for all $S \subset N$ such that $C_{n} \notin S$ and for all partitions $\left(S_{1}, \ldots, S_{r}\right)$ of $S$.

$$
\begin{aligned}
- & \sum_{\ell \in \bar{S}}\left(P_{j}^{\bar{S}}-P_{j}^{N}\right) \leqslant \sum_{l \in S}^{\sum}\left(P_{j}^{S}-P_{j}^{N}\right) \\
& \sum_{l \in S}\left(P_{j}^{S}-P_{j}^{N}\right) \geqslant-\sum_{i=1}^{\dot{L}} \sum_{l \in \bar{S}_{l}}\left(P_{j}^{\bar{S}}-P_{j}^{N}\right) \\
- & \sum_{j \in \bar{S}}\left(P_{j}^{\bar{S}}-P_{j}^{N}\right) \leqslant \sum_{i=1} \sum_{j \in S_{t}}\left(P_{j}^{S_{t}}-P_{j}^{N}\right) .
\end{aligned}
$$

This is a consequence of corollary 1 and lemmas 2 and 3

## 4. example

Let us consider the following example, introduced by Lemaire (1979). Suppose that the pool consists of 3 companies, whose risk aversion cocfficients are respectively $c_{1}=.3, c_{2}=.6, c_{3}=.1$. All the companies have the same distribution of claim amounts, namely a $\Gamma$-distribution

$$
\frac{d F_{f}(x)}{d x}=\left\{\begin{array}{ll}
\frac{\tau^{a}}{\Gamma(a)} e^{-\tau \tau} x^{a-1} & x>0 \\
0 & \text { clsewhere }
\end{array} \quad \jmath=1,2,3\right.
$$

with parameters $a=1.152$ and $\tau=.96$ The mean is equal to $m=\frac{a}{\tau}=1.2$, the variance $\sigma^{2}=\frac{a}{\tau^{2}}=1.25$ Using the moment-gencrating function of this distribution

$$
M(t)=\left(1-\frac{t}{\tau}\right)^{-a} .
$$

we obtain the following conditions for the core

$$
\begin{aligned}
& 388 \leqslant y_{1}(0) \leqslant . .610 \\
& 818 \leqslant y_{2}(0) \leqslant 1469 \\
& 1.22 \leqslant y_{1}(0)+y_{2}(0) \leqslant 1.448 .
\end{aligned}
$$

The core is shown in Figure 1 Note that the core (hachured area) is substantially smaller than the set of the Pareto-optimal treatics (dotted area).


Note:
For $n>3$, the core is more difficult to represent, since it forms a convex compact polyhedron in the $n$-1-dimensional Euclidian space with axis $y_{1}(0)$, $\ldots, y_{n-1}(0)$. It is characterized by a set of $2^{n-1}-1$ double inequalities. This number of constraints increases tremendously with $n$.

## REFERENCLS

Borch, N゙ (1960a) leciprocal remsurance tieaties seen as a two-person cooperative ganc Skathdinavisk Ahtuarietudshylft 43, 29-58

 245-255
Borch, $\mathbb{K}$ (1962) Equhbrium ma temantance market Econometraca 30, 424-444 Buflmann, H (1970) Mathenatical methods m rish theory Spinger-Veilag, Berlin Du Mouchel, $W$ (1968) The pareto-optmality of an n-company remsurance treaty. Skanduntansh Aktuanetidskiff 51. 165-170
Gierisir, H (1974a) On additive premum calculation pimeiples Astin Budletin 7.215-222 Gerbier, H (1974b) On iterative premium calculation pimeiples Mittenhongen der Vereinggung Schweizevischer Versichernangsmathematiker 74, 163-172
Liefin, P (1975) Úber die Wahl von Nutzenfunktionen fur dic Bestimmung von Versicherungspramen Mitlemingen der Veremagung Schouzenascher Versicheringgmathematiker 75, 27-45
Jomanrie, J (1973) Optimalite d'un contrat d'échange de rispues entre assureurs Cahaces du C ERO 15, 139-156
Lfmaire, J. (1979) A non-symmetical value for games without transferable ithaties, application to remsurance Astin Bulletin 10, 105-214

