
A s t i n  Bu l l e t in  i ~ 0980)  l t9 - t35  

T H E  E F F E C T  OF R E I N S U R A N C E  
ON T H E  D E G R E E  OF R I S K  

ASSOCIATED W I T H  AN I N S U R E R ' S  P O R T F O L I O  

M. ANDREADAKIS and H. R. WATERS 

H e r i o t - W a t t  U n i v e r s i t y ,  E d i n b u r g h  

1. INTRODUCTION 

There  are m a n y  reasons why  an insurer m a y  choose to reinsure a par t  of his 
portfolio (see, for example,  CARTER (1979, p. 5 ff.)) and m a n y  ways in which 
he can assess the effectiveness of the reinsurance ar rangements  he makes. In 
this paper  we assume the insurer wishes to reinsure a par t  of his portfolio in 
order  to reduce its "r iskiness".  We take  as given a portfolio consisting of n 
independent  risks together  with the to ta l  premium charged to insure these 
risks and we invest igate  the effect on the degree of risk associated with the 
portfolio (see §3 for a definition) of vary ing  the excess of loss or propor t ional  
reinsurance limits for each risk. 

2. ASSUMPTIONS AND NOTATION 

We are given an insurance portfolio consisting of n independent  risks. A risk 
may  consist of a single policy or a group of policies: the essential points being 
tha t  a reinsurance limit, ei ther excess of loss or proport ional ,  is the same for 
all claims arising from a par t icular  risk, a l though reinsurance limits m ay  va ry  
from one risk to another .  We assume the claims arising from each risk have 
a compound  Poisson distr ibution.  To be more precise, we assume the number  
of claims arising from the i-th risk is a Poisson process with mean p~ claims 
each year  and the size of each claim has distr ibution funct ion F,. As usual, 
the  size of a claim is independent  o f ' t h e  t ime at which it occurs and of all 
o ther  claims. We also assume tha t  F l ( o ) =  o for each i, so tha t  we consider 
only posit ive claims amounts .  We take  as given the to ta l  annual  premium, P,  
charged by  the insurer in respect of these risks. We make  no assumption about  
the way in which P is calculated but  we do assume tha t  

(i) P > p, [ xdF,(x). 

We now turn  our a t t en t ion  to the reinsurance of the portfolio and to avoid 
any  possibility of confusion we s ta te  precisely what  we mean by  excess of loss 
and proport ional  reinsurance.  Suppose a single claim for an amoun t  X arises 
f rom the i-th risk. If the insurer has arranged excess of loss reinsurance for 
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the portfolio with reinsurance limits specified by (M1, M2 . . . . .  M,~) then the 
insurer pays 

(2) X if X ~< M, or M,  if X > M, 

and the reinsurer pays the excess amount ,  if any. If the insurer has arranged 
proportional reinsurance with reinsurance limits specified by (al, a2 . . . . .  an) 
then the insurer pays a ,X  and the reinsurer pays (t - a t ) X .  The symbols M,  
and a, will always denote an excess of loss and a proportional reinsurance 
limit respectively for the i-th risk; the symbol 0, will be used to denote a 
reinsurance limit without  specifying the type of reinsurance. 

The premium charged by the reinsurer in respect of the i-lh risk is P~(O,) 
where Ot is either M, or ai. We denote by Fi( .  ,Ot) and Gt(. ,0~) the distribution 
function and moment  generating function respectively of the net amount  
paid by  the insurer in respect of a single claim arising from the i-th risk given 
a reinsurance limit Ol. For  example 

M |  

(3) G,(t,Ml) = I etx dF,(x) + exp {IM,). (l - F , ( M O )  
0 

Strictly speaking the notation Pl(0,), F,( .  ,0,) and G,(. ,0,) is not well defined 
since, for example, P,(1) has two different meanings depending on whether 
we are discussing excess of loss or proportional reinsurance. This sort of 
confusion should not arise in the rest of this paper. 

3. DISCUSSION 

The variables of our model are the n reinsurance limits (01, 02 . . . . .  0~), where 
this vector is either (M1, M 2 . . . . .  Mn) or (a 1, a 2 . . . . .  an); note tha t  we do 
not consider a mixture  of excess of loss and proportional reinsurance. We are 
going to investigate the effect on the "riskiness" of the insurer 's portfolio of 
varying (01, 02 . . . . .  On) and to do this we need a measure of the portfolio's 
degree of risk as a function of (01, 02 . . . . .  On). Our candidate  for this role is 
what  we term tile insurer 's "ne t  insolvency constant" .  The insurer's net 
insolvency constant,  R ~ R(01, 02 . . . . .  On), is defined to be tile unique positive 
root  of 

n n 

(4) Z p , + R . { P -  Z Pt(01)}- Z p tG, (R ,O, )=o  

if this exists, or zero otherwise. I t  can be seen tha t  R(01, 02 . . . . .  On) is just  
the insurer 's insolvency constant  (or ad jus tment  coefficient) as defined, for 
example, in BEARD, PENTIKAINEN and PESONEN (1977, p. 144 ) or GERBER 
(197 9, p. 1 18), taking into account the net claims paid and net income received 
by the insurer. 
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The  condit ions necessary and sufficient for the existence of the  posi t ive root  
of (4) are first ly 

n n ¢ 0  

(5) . P -  Z P~(O d> X p~ 5 xdF~(x,O d 

i.e. the  insurer 's  to ta l  net income should exceed his to ta l  net  expected claims, 
and secondly tha t  the momen t  generat ing functions G,(., 0,) should not behave 
bad ly  (in part icular ,  should not j ump  to + co at an inconvenient  point). We can 
assume wi thout  any  pract ical  loss of general i ty  tha t  these momen t  generat ing 
funct ions are sufficiently well behaved.  

The mot iva t ion  for considering the  net insolvency constant  as a risk measure 
is provided  by  Lundberg ' s  inequal i ty  which tells us tha t  if the reinsurance 
limits are set at  (01, 02 . . . . .  On) then the probabi l i ty  tha t  the  insurer 's  accu- 
mula ted  surplus on this portfolio will ever fall below -U is bounded  above 
by exp{-u.R(01, 02 . . . . .  0n)} for any  U > o. A more obvious measure of the risk 
level of the portfolio would be the variance of the total  net annual  claims. 
See, for example,  BOHLMANN (1970, ch. 5) and BENKTANDER (1974). Our 
opinion is tha t  the net insolvency constant  has two advantages  as a risk 
measure when compared  to the variance. The first is tha t  it will generally take  
into account  more moments  of the net claims dis tr ibut ion than  just  the mean 
and variance.  This can be seen by  considering equat ion (12.20') of BEARD, 

PENTIKfidNEN and PESONEN (1977) and will be i l lustrated nnmericaUy in the 
next  section. The second is tha t  the net insolvency constant  depends not  only 
on the net claims distr ibution but  also on the net premium income. For  example,  
it  is easy to show tha t  for a f ixed net  claims dis tr ibut ion the net insolvency 
constant  is an increasing funct ion of the net premium income. Note that ,  using 
Lundberg ' s  inequal i ty ,  the higher the insurer 's  net insolvency constant  the 
less risky we consider his portfolio to be. 

The s tar t ing point  for this research was a paper  by  one of the present  
authors,  WATERS (1979), in which he considered the effect on the insurer 's  net  
insolvency constant  of varying the excess of loss reinsurance limits for the 
portfolio. He showed that ,  under  certain conditions, R(M v M 2 . . . . .  21¢n) 
is a uni-modal  function of (M~, M2 . . . .  , Mn) and, in part icular,  t ha t  it has a 
unique and easily determinable  max imum value. In the next  section we con- 
sider excess of loss reinsurance. We state  Waters '  basic result  for the sake 
of completeness and we follow this by  giving an extension of this result in 
which we show how one of the more restr ict ive assumptions can be weakened 
wi thout  seriously weakening the conclusion of the result. We give some exam- 
ples to i l lustrate our  theoretical  results and an example  to indicate tha t  when 
the technical assumptions necessary to prove the theoret ical  results are 
dropped the results still hold. In § 5 we carry  out a similar s tudy  of propor t ional  
reinsurance.  The numerical  results in §§ 4 and 5 have all assumed n = t, i.e. 
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we have  considered just  one risk, a l though the  theoret ical  results  hold for any  
n 1> 1. By  assuming n = 1 these examples have disguised an interest ing feature  
of the  theoret ical  results. This feature  is discussed in § 6. In  § 7 we use an 
example  to s tudy  in detail  the  effect on the insurer of a quota  share reinsurance 
arrangement .  As usual, we measure this effect by  means of the insurer 's  net  
insolvency constant .  The model used in § 7 ~s somewhat  closer to real i ty than  
the ra ther  idealized models of §§ 4, 5 and 6 since, for example,  it takes account  
of the insurer 's  expenses and commission paid by  the  reinsurer  to the insurer. 
In this sense, § 7 can be regarded as an example of a "prac t ica l  appl ica t ion"  
of the ideas of the previous sections. The insolvency constant  is ve ry  closely 
l inked to the notion of an exponent ia l  ut i l i ty  funct ion (see GERBER (1979), 
p. 120) and it is t empt ing  to th ink tha t  a set of reinsurance limits which is 
opt imal  in tha t  it maximizes the insurer 's  net  insolvency constant  might  be 

related to the set of limits obta ined  by  maximizing the insurer 's  expected 
ut i l i ty  with respect to an exponential  ut i l i ty  function. This point  is considered 
in the final section where it is shown tha t  the two solutions are not the same 
but  are similar in form. 

4" EXCESS OF LOSS REINSURANCE 

Throughou t  this section we restrict  our a t t en t ion  to excess of loss reinsurance 
for our  portfolio. We are in teres ted  in the behaviour  of R ( M  1, M 2 . . . . .  Mn)  
as a funct ion of ( M  1, M 2 . . . . .  Mn)  and our basic theoret ical  result  is as follows: 

Resul/  1 

We make  the following addit ional  assumptions:  

(a) dF, /dx  exists and is cont inuous everywhere  
a 0  

(b) P , ( M , ) =  (1 + cq). f ( x - M , ) d F ~ ( x )  for some cq > o. 
M t 

(c) P (o) > P. 
t - t  

Then (i) there exists a unique set of points (~//1, ~//2 . . . .  , .g/~) such tha t  

(6) R ( ~ ,  M2 . . . . .  ~ )  = ~ ; "  log (t + m,) . . . . .  M i x  log (t + 0~) 

(if) for any  set of points (M1, M 2 . . . . .  Mn)  we have 

(7) R(M1, Me . . . . .  Mn) ~< R(~I~, 2~I 2 . . . . .  ~fn) 

(iii) if we impose the ext ra  conditions tha t  for i = 1, 2 . . . . .  n we have 
Fl(x)  < t for any  x < co then (if) can be improved  to 

(8) R(M1,  M~ . . . . .  Mn)  < R(2~'I 1, 1~/I2 . . . . .  ~ln)  
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for any  set of points (M1, M 2 . . . . .  Mn)  # (1~fl, lVI2 . . . . .  ~ln)  and R ( M  v M s, 

. . . .  Mn )  is a uni-modal function. 

P r o o f  

A proof of this result can be found in WATERS (1979). 

Comments  on Resul t  1 

Assumption (b) above requires the reinsurer to use the expected value principle 
to calculate his premiums (with the possibility of a different loading factor 
for each risk). This, together with assumption (a) are technicalities tha t  do not 
seem to be necessary to ensure tha t  R ( M  1, M s . . . . .  Mn)  is a uni-modal 
function. The crucial assumption is (c) which requires tha t  if the reinsurer 
takes over the whole of each risk, his total  premium shall exceed the total  
premium originally charged by the insurer. This does not appear to be a 
restrictive assumption and is clearly necessary in this paper since without  
it we would have R(o, o . . . . .  o) = + ooso tha t  by reinsuring the whole portfolio 
the insurer has zero probabil i ty of ruin, a result tha t  is obvious f rom general 
considerations. The max imum value of the insurer 's net insolvency constant  
and hence the values of/~/~ for i = 1, 2 . . . . .  n, can easily be found as can be 
seen from WATERS (1979, Lemma 4). 

We would like to be able to show tha t  the main conclusion of the above 
result, tha t  R ( M  D M s . . . . .  Mn)  is a uni-modal function, still holds wi thout  
having to make any restrictive assumptions, in particular (a) and (b) above. 
A first step in this direction is the following result in which we replace assump- 
tion (a) above by a much weaker assumption. 

Resul t  2 

The assumptions are as for Resul t  1 except tha t  we replace (a) by 

(a') for each i, i = 1, 2 . . . . .  n, we assume there exists a sequence of con- 
t inuous probabil i ty densi ty functions which converge pointwise to dF,/dx.  

Then conclusions (i) and (ii) of Resul t  1 still hold. 

Proof." 

The proof is by  an essentially s traightforward limiting argument  but  the 
details are rather  messy and so the proof is omitted.  The interested reader is 
referred to ANDREADA~IS (1980). 

E x a m p l e s  

Figure 1 illustrates the ideas of this section. We consider the case n = 1, 
i.e. we consider a portfolio consisting of a single risk, and we have plot ted 
R ( M )  against M under three different assumptions. Note tha t  we have given 
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the M-axis  an exponent ia l  scale so tha t  all the interest ing features of the 
graphs can be seen clearly. Each  graph in Figure 1 uses one of the following 
two distr ibution functions to describe the size of a single claim. The first is a 
two pa ramete r  exponent ia l  dis tr ibut ion specified by 

(9) dF/dx= o.2  exp{-o.2 (x-5) } for x >/ 5, = o  for x < 5 

and the second is a t runca ted  Pare to  dis tr ibut ion specified by  

(lo) dF]dx= 3x-4/(6.7 - 3 -  93.3 -8 ) for 6. 7 x ~< 93.3 

= o  f o r x  < 6 .7  and x > 93.3. 

Each  of these two distr ibutions has mean lO and variance 25. The reason foL 
choosing these distr ibutions to i l lustrate our  results is tha t  we can think of 
them as being "well behaved"  and "bad ly  behaved"  respectively. See ZBERLINER 
(1977). In fact  the Pare to  behaves so badly  we have to t runca te  it to ensure 
its momen t  generat ing function exists. For  all three examples i l lustrated in 
Figure  I the insurer 's  total  annual  premium is 

(1l) P = ( l .  15).to. p 

where,  as will become clear, the Poisson paramete r  ~b need not be specified. 
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For  graph 1 we have used the two pa ramete r  exponent ia l  claims dis tr ibut ion 
and have assumed the reinsurance premium is calculated using the expected  
value principle with a 30°/o loading, i.e. 

# 

(12) P(M)  = ( 1 . 3 ) .  p. ~ (x-M) dE(x) 
M 

I t  can be seen tha t  graph 1 has the uni modal shape we expect.  The  max imum 
value of R(M) is 0.0252 and this occurs at 2~,I= 1o.41. (Note tha t  lf// .R(3g)= 
log (1.3) as expected).  This compares  with the value R(M= oo)=o.o213 if 
there  is no reinsurance.  

For  graph 2 we have used the t runca ted  Pare to  claims distr ibution and the 
same formula as before for the  calculation of the reinsurance premium,  i.e. 
(12). The first point  to note  about  this graph is its s imilari ty in shape to the 
first one despite the different  characteris t ics  of the claims distributions.  For  
this graph R(M) achieves a max imum value of o .o264 at the point  M = 9.95 
( = o. o264- x. log (1.3)).  I t  is interest ing to note tha t  in this case the value of 
R(M = oo) is 0 .02o 7 compared  to o .o2I  3 for the previous graph and the values 
of the coefficients of skewness for the two claims distr ibutions involved are 
5 .Ol and 2 .oo respectively.  This is an i l lustration of the point  made about  the 

insolvency constant  in § 3. 
For  graph 3 we do not assume the expected value principle for the calculation 

of the reinsurance premium. We use the two paramete r  exponential  distr ibution 
and assume the reinsurance premium is calculated by the exponent ia l  principle 
with pa ramete r  o.'o383. See GERBER (1979, p. 68). i.e. 

03) P I f  exp{A(x-M)}dF(x)+F(M)-1] where A =o .o383  P(M) = -~ 

The pa ramete r  A has been chosen so tha t  P(M = o) = ( I . 3 ) . l o . p a s i n  (12). 
Again, we call see tha t  the graph has the same general shape as the previous 
two examples a l though its peak has been moved  upwards  and leftwards for 
reasons tha t  are not hard  to explain. The max im u m  value of R(M) is o .o296 
and  this occurs at  M =  7.17.  

More examples can be found in ANDREADAKIS (1980). 

5' PROPORTIONAL I~EINSURANCE 

We now turn  our a t ten t ion  to propor t ional  reinsurance and car ry  out  a s tudy  
similar to tha t  of the previous section. In this case the basic theoret ical  result  
is as follows: 
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R e s u l t  3 

We make the following assumptions in addition to those we have a l ready  
made about  P, F~ and G, in sections 2 and 3' 

(a) P t(a4) =p~{ ~ exp[A, (1-ai)x3dFl(x)  - -  1} / A ,  
o 

for s o m e A f  > o i 1, 2 , . . . ,  n 

(b) Z P,(o) > P. 
I - 1  

Then (i) there is a unique set of points (dl, d 2 . . . . .  dn) 

such tha t  

(1-&) (1-d~) 
(t4) R(dx,  d e . . . . .  d n ) = A ,  d, . . . . .  A n  d - -~ - -  

(ii) 

and such tha t  o ~< d, ~< 1 for i = 1, 2 . . . . .  n 

for any  set of points (a 1, a 2 . . . .  , an) ¢ (dl, d 2, • • • , dn) 

we have 

R(a~, as . . . . .  a,)  < R(G, G . . . . .  G )  

(iii) R is a uni-modal function of (al, a 2 . . . . .  an).  

P r o o f  

The proof is essentially simple: one subst i tutes the assumed form of P , ( a  d 

into equation (4), differentiates (4) with respect to a 1, i =  1, 2 . . . . .  n, puts 
these partial  derivatives equal to zero and solves the resulting set of equations 
for a4. There are, however, three complications to be overcome. The first 
is to show tha t  R ( a l ,  a 2 . . . .  , an) is a sufficiently smooth funct ion-- th is  requires 
an application of the Implicit  Funct ion Theorem. The second is to show 
tha t  there is a unique set of points (dl, d 2 . . . . .  dn) which satisfy (14). The 
th i rd  is to show tha t  the point (dr, d 2 . . . . .  dn) is a global maximum and not 
just  a local maxinmm for the function R. The proofs of these points are some- 
what  messy and are omitted.  The interested reader is referred to ANDREADAKIS 

(198o). 

C o m m e n t s  on resul t  3 

Assumption (a) above requires the reinsurance premium for the i 4 h  risk to be 
calculated using the exponential  principle with parameter  A,. This is the 
counterpar t  of assumption (b) in the s ta tement  of R e s u l t  1. From numerical 
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examples it seems tha t  this condition is not necessary to ensure tha t  R is a 
uni-modal function. One such example is given below. The crucial assumption 
is (b) which is the same as, and plays the same role as, assumption (c) in Result 1. 
The essence of the result is that ,  provided the insurer cannot reinsure the whole 
portfolio and still make a profit, his net insolvency constant  is a uni-modal  
function of the proportional reinsurance limits. In particular, if the reinsurance 
premiums are calculated according to the exponential  principle, the max imum 
value of the net insolvency constant  can easily be found. See ANDREADAKIS 
(1980, Lemma 3.2.3). Hence the values d, can easily be found. 

Examples 

As in the previous section we illustrate our ideas by considering the case n = 1 
and plott ing R(a) against a under three different assumptions. These three 
graphs are shown in Figure 2. In each case the claims distr ibution is either 
the two parameter  exponential  specified by (9) or the t runca ted  Pareto specified 
by (lo). The insurer 's total  premium is, as before, given by (1 l). 

For graph 1 we have used the two parameter  exponential  claims distr ibution 
and  we have assumed the reinsurance principle is calculated using the exponen- 
tial principle with parameter  0.0383, so tha t  P(a = o) = (1.3). lO.p. As predicted 
by Result 2 this graph has a uni-modal shape. The max imum value of R(a) is 
o. 0480 which occurs at  d = o. 444. (Note tha t  o. 444 = o. o383/[o. 0383 + o. 0480 ] 
to a reasonable degree of accuracy). The value of R(a = 1) is, as is known from 
the previous section, o. 0213. 

For  graph 2 in Figure 2 we have used the t runca ted  Pareto claims distribu- 
tion and assumed the reinsurance premium is calculated using the exponential  
principle with parameter  o.o36o so that ,  again, P(a = o) = ( 1.3).lo.p. This 
graph is very similar in shape to graph 1. (See the comments  oll graphs 1 and  2 
in Figure 1.) The maximum value of R(a) is o. 0487 which occurs at  d = o. 425 
( = o. o36o/[o. 0360 + o. 0487]). 

For  graph 3 ill Figure 2 we have used the two paralneter  exponential  claims 
distribution but  we have assumed this t ime tha t  the reinsurance premium is 
calculated by the expected value principle with a 30% loading. This results in 
a very different, but  still uni-modal, shape for R(a). The maximum value of 
R(a) is o.o214 which occurs at d = o . 9 4 7 .  

Although it would be rash to draw too many  general conclusions from the 
few, somewhat  artificial, examples we have presented so far, it does seem clear 
from both Figures 1 and 2 tha t  for fixed mean and variance of the claims 
amount  distr ibution the shape of the graph of R depends more on the loadings 
included in the insurer 's and reinsurer 's premiums than on the particular form 
of the claims amount  distribution. For  fur ther  examples see ANDREADAKIS 
(198o). 
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6.  TWO OR MORE RISKS 

The theoret ical  results  we have  discussed so far are appl icable  for any  value 

of n, i.e. for any  finite n u m b e r  of risks, bu t  our numerical  results have  all 
a s sumed  n = I. There  is an in teres t ing point  concerning our theoret ical  results  
t ha t  has not  been b rought  out  by  our  examples  and  it is this point  we shall 
discuss in this  section. 

To i l lust ra te  our point  we re turn  to the a s sumpt ions  of Result 2, i.e. we 
consider excess of loss re insurance and  we assume the re insurance p remiums  
are calcula ted using the expected  value principle. We also assume,  for the  sake 
of clar i ty,  t h a t  n = 2 bu t  the following r emarks  app ly  for any  n > 1. Le t  [11 
and  II e denote  the insurer ' s  to ta l  annual  p r e m i u m s  for the two risks so tha t  
P =  II 1+ 1I 3. We s ta r t  by  considering each risk separa te ly .  For  the i-th risk 
the  insurer ' s  net  insolvency cons tant ,  R(Mt), is the unique posi t ive root of 

(16) He(R) ~ p i+ R.[l-I~-Pl(Mt)]--p,Gi(R,  M t ) = 0  i= 1, 2. 

if this  exists or zero otherwise. We know f rom Result 2 t ha t  R(M,) achieves 
its m a x i m u m  value at  a po in t /$ / ,  where .i/', = R(l~lt) -1. log (1 + ~,). 
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We now consider the two risks together.  The insurer 's net insolvency con- 
stant ,  R(M D Me), is now the unique positive root of 

(17) HI(R ) + He(R ) = o 

if this exists or zero otherwise. Again using Result 2 we can say tha t  R(M D M2) 

achieves its max imum value at  a point (/0"~, ~/e) ,,,here /~,/~ = R(/~I~, 2~/'e). log 

(1 + ~,) for i = t, 2. The problern is tha t  R(l~l~, 2~I2) may  not be equal to R(~I1), 
say, since the former depends on the value of 1-I 2 whereas the lat ter  does not. 

Hence it is possible t h a t  d~/1 ¢ Y~r 1 and/or 3II2 # 2f'/'2 (It can be seen from 
Result 3 tha t  a similar problem arises in proportional reinsurance). In other 
words, if we have more than  one risk and if we regard as optimal a set of 
retention limits tha t  maximizes the insurer 's net insolvency constant ,  then 
what  is optimal when each risk is considered individually may  not be optimal 
when the risks are considered together.  Numerical examples to il lustrate this 
point can be found in ANDREADAKIS (1980). 

The rest of this section is devoted to proving some simple results tha t  shed 
some light on the above remarks. For  the sake of clari ty we consider just  
two risks but,  as before, the following results have obvious extentions to any  
n > 1. We do not specify the type  of reinsurance we are considering and we 
make no assumptions about  the way the reinsurance premiums are calculated. 
For  i = I, 2, R(0~) is, as before, the insurer 's net insolvency constant  ,,Then the 
i-lh risk is considered on its own. i.e. R{0,) is the unique positive root of 

08) Ks(R) ~ fit + R. [H~-  P~(Od] --Jh.G~(R, Oi) = o 

if this exists or zero otherwise. R(O 1, 0~) is, as before, the insurer 's net insolvency 
constant  when both risks are considered together. Then we have the following 
result. 

Result 4 

For fixed 01 and 02 we have 

(19) min{R(01), R(02)} ~< R(01, 02) ~ max{R(0t), R(02)} 

Proof 

The proof is very simple. We can assume tha t  o < R(0t) ~< R(0e}. By  consider- 
ing K,(o), K((o), K( ' (R)  and Lira K,(R) it  can be seen tha t  

(20) K,(R) > o if o < R < R(0,), Kt(R) < o if R > R(00' i = 1,2,. 

R(01, 02) is the unique positive root of Ki(R)+ K2(R ) = o. 
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From (20) we have that  

(2,) K,(R(01) ) + K2(R(O,) ) = K2(R(01) i> o 

since, by assumption, R(02) /> R(01). Similarly 

(22) Kx(R(02) ) + K2(R(02) ) = K~(R(02) ) ~< o 

(19) then follows immediately. 

The relevance of Result 4 to the remarks earlier in this section can be seen 
in the following corollary. 

Result  5 

If R(0~) achieves its maximum value at 0, =0,, i = 1, 2, and if R(01, 02) achieves 

its maximum value at (01, 02) = (01, 02) then 

(23) min{R(0,), R(@} ~< R(0,, 0o) ~< max{R(01), R(62) } 

Proof  

From Result  4 and the definition of (01, 02)we have 

(24) min{R(0x), R(02) } ~< R(0~, 0o) ~< R(0~ 02) 

This proves the first part  of (23). Similarly 

(25) R(0x, 02) < max{R(0x), R(0~)} ~< max{R(0x), R(0~)} 

7" A MORE PRACTICAL EXAMPLE 

The examples we have used to illustrate our ideas in §§ 4 and 5 have been 
somewhat artificial. What we are going to do in this section is to use the same 
ideas in, what we hope is, a more practical setting. We are going to s tudy an 
example involving quota share reinsurance. This example has its origins in 
CARTER (1979, p. 105). 

Our example has the following specifications: 

(a) We consider a single risk. 
(b) The total annual claims from this risk has a compound Poisson 

distribution with loo claims expected each year and with each claim 
having a gamma distribution 

(26) dF/dx  = x 4"s. exp{-x.5.1o-4}./[F(5 "5). (2. to°) s'5] for x i> o. 

which has mean 1 x,ooo and standard deviation 4,690. 
(c) The insurer's gross annual premium is P = 2. lO 6 of which a proportion 

e = o . 3 5  is required to cover the insurer's expenses irrespective of 
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whether  he arranges reinsurance or of the re tent ion limit for reinsur- 
ance. 

(d) The insurer arranges quota  share reinsurance for this risk; he retains 
a proport ion a of each claim and the reinsurer  pays a propor t ion (1-@ 

(e) The reinsurance premium is P.(1-a) = 2.1o6.(1-a) of which a propor-  
t ion c = o. 33 is passed back to the insurer as a commission payment .  

Hence the insurer 's  net income, af ter  paying expenses and the  reinsurance 
premium is .P[c-e + a(1-c)]. We want to invest igate the effect on the risk level 
of the insurer 's  portfolio of vary iug  the retained propor t ion a and we do this, 
as usual, by  calculating the insurer 's  net insolvency cons tant  as a funct ion of a, 
i.e. looking at the unique positive root, R = R(a), of 

(27) p + R.P[c-e + a(1-c)] ---p ~ exp{R.a.x}dF(x) = o 

where p, P,  c, e and F are as specified above. Note tha t  by  taking c < e we 
have  p reven ted  the insurer f rom being able to reinsure the whole of the lisk 
and making a profit.  This is analogous to assumptions (c) and (b) in Results 
I and 3 respectively.  The first point  to emerge f rom a s tudy  of R(a) as a funct ion 
of a is tha t  for a ~< o- 1666 the insurer 's  net income is less than his net expected 
claims so tha t  R(a)= o. The  next  point  is tha t  for o. 1666 ~< a ~< 1, R(a) is 
a quite sharply peaked uni-modal  curve similar to graphs 1 and 2 in Figure 2. 
The numerical  points of interest  are tha t  the m ax im u m  value of R(a) is 

4" 66. lo -s and this occurs at a = o. 32. If there  is no reinsurance the insurer 's  
net  insolvency constant ,  R(a = 1), is 2.46.  to  -5. 

One conclusion tha t  could be drawn f rom the above example  is t ha t  rein- 
surance is worthwhile for the insurer  since whatever  his initial reserves, U, the  
upper  bound for his probabi l i ty  of exhaust ing these reserves can be reduced 
from exp{-2.46.1o -5. U} to as low as exp{-4.66.1o -5. U}. I t  is of obvious ill- 
terest  to ask the quest ion "Given p, P,  e and F, for what  range of values of c 
is reinsurance worthwhile  for the insurer ?" In other  words " H o w  high must  
the commission rate  be for reinsurance to be wor thwhi le?"  The remainder  
of this section will be devoted  to t ry ing  to provide an answer to this question.  

Our model is as outl ined earlier in this section and the symbols p, P, c, e, F 
and a have the same general meaning (although not necessarily the same 
numerical  values) as before. We make two basic assumptions:  the first is t ha t  
c < e (see the earlier remarks)  and second is tha t  

(28) P(l-e) > p SxdF(x) 
0 

which corresponds to assumption (1). The  insurer 's  net insolvency cons tant  
is defined as the unique positive root  of (27) if this exists or zero otherwise. 
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I t  is easy to see there  exists some L e (o, 1) such tha t  R(a) is zero if and on ly  
if a e [o, L]. (L is the value of a for which the insurer 's net premium equals  
his net  expected claims, which is o. 1666 in the numerical  example.) We can 
now prove the following result. 

Result 6 

A necessary and sufficient condit ion fox there  to be a point  a' ~< [o, 1] such 
tha t  R(a') > R(a = 1) is tha t  

(29) C > l-p[ JY x. exp{R(a=  1).x}dF(x)]/P 
o 

and if this condition holds then R(a) is a uni-modal function with a unique 
ma x im um at d e (L, 1). If  this condi t ion does not hold then R(a) is a monotonic  
non-decreasing function on [L, 1]. 

Proof 

The  first step in the proof is to show tha t  R(a) is a cont inuous funct ion of a 
[L, i] and differentiable on (L, t) a sufficient number  of times. This is a 

s t andard  applicat ion of the Implicit  Funct ion Theorem and the details are 

omit ted.  If  we different iate  (27) with respect to a then  it can be seen tha t  8R/Sa 
= o if and only if e i ther  R = o, which is of li t t le interest  to us, or 

m 

(30) c = l-p[ J" x. exp{R(a) . a.  x}dF (x)]/P 
o 

This is an implicit equat ion for a and it is not ye t  clear how m an y  roots 
there  are, if any, in the interval  [L, l]. However ,  if we different iate  (27) twice 
with respect  to a, then assume 8R/Sa = o and use (30) we can show that  8R/Sa = 
o implies 82R/Sa ~ < o. Hence,  any  turning point  of R(a) for a ~ [L, 1] must  be 
a maximum.  Since we know tha t  R(a) > o for a ~ (L, 1] this shows that  R(a) 
is ei ther monotonical ly  non-decreasing in [L, 1] or is uni-modal with a unique 

m a x i m u m  in (L, 1). Which of these two shapes R(a) has depends on the sign 
of the limit as a --~ 1-o of 8RISe; this will be positive or zero for the former  and 
negat ive for the latter .  Using (27) it can be shown tha t  this limit is 

(3,) R'.[# f exp{R(a = :).  P(:-c)]/ 
G 

/ [p S [l - e x p { R ( a  = l ) . x } - x .  R(a = 1) . exp{R(a = l).x}]dF(x)] 
0 

and since the denomina tor  is always negative, (29) follows. 
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Commenl on Resull 6 

If  we re turn  to the numerical  example  discussed earlier in this section and  we 
eva lua te  the right hand  side of (29) it will be found to be o. 235. The conclusion 
of Resull 6 is t h a t  re insurance of this risk on the  t e rms  assumed earlier is only  
worthwhile  to the insurer ,  in the sense tha t  it can be used to reduce the  level 
of risk, if the commiss ion ra te  is grea ter  than  2 ~,x°/ a~/o ,  as it was in our example .  

8. MAXIMIZING EXPECTED UTILITY 

Throughou t  this pape r  our a im has  been to s tudy  the effect on the insurer  

of va ry ing  the levels of re insurance on his portfol io and  we have  measured  
this effect by  means  of his net insolvency constant .  To t ake  a na r rower  view, 
we have  shown tha t  under  cer ta in  c i rcumstances  the net insolvency cons tan t  
i s  a uni-modal  funct ion with a unique m a x i m u m  and we can regard a n y  set 
of reinsurance l imits which maximizes  this function as opt imal .  Inso lvency  

cons tan ts  are closely connected  with ut i l i ty  theory  with respect  to an exponen-  

tial u t i l i ty  funct ion (see GERBER (I979))  and  in this  section we wan t  to con- 
sider briefly what  connection,  if any,  exists be tween a set of re insurance  l imits 
tha t  is op t imal  in the sense just  discussed and  a set of re insurance  l imits  t ha t  
is op t imal  in the sense tha t  it maximizes  the insurer ' s  expec ted  ut i l i ty  of 
weal th  with respect  to an exponent ia l  u t i l i ty  function.  We s ta r t  by doing 

this in the  case of excess of loss reinsurance.  

Resull 7 

The assumpt ions  and  nota t ion  are as in Result 2 and in addit ion,  to avoid  un- 
necessary complicat ions,  we assume F,(x) < I for x < co, i = 1, 2 . . . .  n. 

Then the insurer ' s  expected  ut i l i ty of weal th  a t  the end of the  year  is max imized  
with respect  to the exponent ia l  ut i l i ty  function.  

(32) u(x) = I1 - e x p {  -0.x}]/0 where 0 > o 

if the  excess of loss re insurance l imits are given by  

(33) M,  =0  -1. log(t  +0~l) i = 1, 2 . . . . .  n 

Pyoof  : 

The proof  of this result  is s t ra ight forward .  The q u a n t i t y  to be max imized  is 

(34) E(M1, Me . . . .  Mn) = f 0-1"[ 1 - e x p {  -0.(~W + P - X (1 +oil)p, f xdFl(x) 
0 t - I M ~  

n 

+ X (l +o~,) . p , .  M , .  (1-Fl(M,)) - - y ) } ]  dB(y,  M 1, M 2 . . . . .  Mn) 
t - I  
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where W is the insurer’s initial wealth and B(., M,, M,, . . ., Mn) is the distri- 
bution function of the insurer’s total net annual claims given the reinsurance 
limits (n/r,, M,, . . . , ill,). Using standard properties of compound Poisson 
distributions we can show that 

(35) 

E(M,, M,, . . . , M,J =0-l -0-l. exp{ -0[W + P - i +t( 1 +ar) Jm(x-M~)dF~(x)J}. 
‘-1 nri 

.exp{ i [pi 7 exp{O.y}aFt(y) + Pz.exp{B.Mt}.( l-Fi(Mt)) - 2 pf} 
I-1 0 d-1 

The result follows by differentiating (35) with respect to Mt. 
The corresponding result for proportional reinsurance is: 

Result 8 

The assumptions and notation are the same as for Result 3. Then the insurer’s 
expected utility of wealth at the end of the year is maximized with respect to 
the exponential utility function (32) if the proportional reinsurance limits 
are given by 

(36) at = Ai/@ + Ai) i= 1, 2, . . ., n 

Proof 

The proof is similar to that of the previous result. 

Comments on Results 7 and 8 

The interesting point about the above two results is the similarity between 
(33) and (6) on the one hand and between (36) and (14) on the other. In each 
case we have a given parameter 0 replacing the maximum value of the net 
insolvency constant. However, this important difference does show why 
our earlier results are not equivalent to maximizing the insurer’s expected 
utility of wealth. It is also interesting to note that Result 8 can be seen as a 
consequence of a result of GERBEIC (1974, p. 221). 
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