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HOW TO DEFINE A BONUS-MALUS SYSTEM WITH AN
EXPONENTIAL UTILITY FUNCTION *

JEAN LEMAIRE

We compute a merit-rating sysiem for automobile third party liability insurance
by two differcnt ways, both with the help of an exponential utility function

(1) We apply the principle of zcro utility to exponential utilities

(1) Wec break the symmetry between the overcharges and the undercharges by
weighting them differently through the introduction of a utility function, in order
to penalize the overcharges.

The results arc applied to the portfolio of a Belgian company and compared to
the premium system provided by the expected value principle

Deux méthodes dhiférentes, basées sur l'emplor de fonctions d'utilité exponen-
ticlles nous permettent de définir un systéme bonus-malus en assurance automobile-

(1) lc principe de 'utilité nulle;

(i) la pénahsation des injustices de la compagnie, obtenue en pondérant les
erreurs de prime au moyen d’une fonction d’utihité de maniére 4 briser la symétric
cntre les primes trop élevées et les primes trop basses

Les résultats théoriques sont appliqués au portefcuille d’unc compagnmie bhelge
et comparés aux primes fourmes par le principe de Pespérance mathématique.

. THE EXPECTED VALUE PRINCIPLE

In automobile third party liability rate-making, the policy-holders are usually
differentiated by two kinds of discriminating variables: a sct of a priori factors
(like power and use of the car, age and sex of the driver, territory, ...) and an
a posteriori classification scheme or merit-rating system.

Tet us consider a given risk class, with all the a priori factors fixed and
suppose that the introduction of more variables is cither practically impossible
or would not improve the homogeneity of the risk class. The problem is then to
define an “optimal’”’ bonus-malus svstem, where the meaning of the word
“optimal” is to be specified.

A first possibility 1s to charge each policy an amount proportional to its
expected number of claims: this is the expected value principle, developed by
BUHLMANN (1964) and BIcHSEL (1964) among others. For our numerical
examples, we shall classically assume that the number of claims of each policy
is Poisson distributed

RS
Py = = (>,
with a I"-structure function
,Tag—ﬁ)\a» 1
/ = ———d .
at(x) M) A (a, 1> 0)

* An earlier version of this paper was presented at the 14th ASTIN Colloquium,
Taormina, October 1978.
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a a
The T-distribution has a mean s = —, a variance 2= — and a moment-
T’ 72

[\ -a
generating function M(f) = (1 - —) (t<T).

It is well-known that in this casc—sec for instance DERRON (1962)—the
distribution of the number of claims in the portfolio is a ncgatlive binomial

= () G )

Applied to the following observed distribution—sce LEMAIRE (1977)—this
model provides a fairly good {it, accepted by the y2-test of goodness of fit

TABLE 1

Absolute frequencies

Number
of claims Observed Adjusted
o 96,978 96,895.5
1 9,240 0,222.5
2 704 7L1.9
3 43 50.7
4 9 36
More than 4 (o} o
Total 106,974 106,974
Mean = .1011, Variance = 1074, a = 16049, T = 158778,
Supposc the risk class has been obscrved for ¢ years, and let 2, ({ = 1, ..., &)

be the number of claims declared during year /. Those %;’s are realizations of
random variables K, assumed to be independent and cquidistributed. To
cach set of observations (&, ..., &), we must associate a premium Py =
Pt+l(/\51, ey /C,;).

If P(%1, ..., k¢ |2} denotes the probability that a policy-holder with given
parameter % will produce a sequence (&, ..., k), the a posteriori distribution
of A is

Py, ..., ke | NAU)

AU | Ry, oo k) =

[ Pk NaUG)

0

The expected value principle defincs the premium Pk, . .., k) by
Py = Kh+o) [2dUG | ke, ..o, k),

where K is a constant and « the safety loading.
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[t is easier to definc a bonus-malus system by the relativitics

[AGUM by, o k)

100 - -
AU ()

i.e. the premium the policy-holder has to pay if its initial premium (¢ = 0) is 100.
The negative binomial model has the interesting property that the a posteriori
distribution of the claim frequency A also admits a I™-distribution
—al a1 g1ty

F(;{l)—_— Cl)\,

UM by, oo k) =

with parameters a’ = a+4 and ' = v4{, where & = ¥ & is the total

o
number of claims.

The relativities are in this casc
a+ bk

1~

100 . .-,
T+ a

Applied to our example, they provide the following merit-rating system.

TABLE 2
k

¢ o 1 2 3 4 5 6
(&) 100
1 94.07 152.69 211.30 2069.92
2 88.81 144.15 199.48 254.82 310.16 365.51
3 84.10 136.51 188.92 241.32 293.73 346.14 398.55
4 79-87 129.64 179-41 229.18 278 95 328.73 378.50

In the following section we shall use two different approaches to determine
a bonus-malus system: the principle of zero utility and the penalization of
overcharges. They have one thing in common: the use of utility functions.
As GERBER (1974a, 1974b) has shown that exponential utility functions, of
the form

(1 — e-°2) {¢> 0)

S| -

u(x) =

possess very desirable properties for the insurers, we shall only use this partic-
ular form in the sequel.
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2. THE PRINCIPLE OF ZERO UTILITY
This is Gerber’s work, and all we have to do is to apply formula (19) in GERBER
(1974a) to a degenerate distribution (since a merit-rating system is based
solely on the number of claims and not on their amount). We obtain

: Atk il
lH_l(/?]. ...,/Cg) = N - / LOg I —

t+T |

[c < Log (=+1)]

This credibility premium is a non-decreasing continuous f{unction of c.
A choice a ¢ = .4 yields a reasonable initial premium P = .1262; since the pure
premium is .10t 1, it corresponds to a safety loading of about 25%,.

The table of relativities differ deceptively little from the preceding one,

TABLE 3
k
! o 1 2 3 4 5 6
o 100
] 093.99 152 55 211 11 269.67
2 86.60 143 90 199.14 254.38 309.62 364.86
3 83.90 136.17 188.45 240.72 203 00 345.28 397.55
4

79 62 129 23 178.85 228.50 278.07 327.68 377.30

The differences are small, cven for very unreasonable values of ¢. The fol-
lowing table was computed with ¢= 1.65, a value that trebles the initial pre-
mium.

TABLE 4
k

{ [} 1 2 3 4 5 6
o 100
I 93.13 151.17 209.20 207 23
2 87.16 141.46 295.77 250.08 304.38
3 81.90 132.94 183.97 235.01 286.04 337.07 388.11
4 77 25 125 39 173.52 221.66 269.79 31792 366.06

One notices that in both cases all the premiums are below the corresponding
figures of table 2. This naturally implies a higher initial premium P;.
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3. PENALIZATION OF OVERCHARGES

In this section we develop an idea of FERREIRA (1977).

If we represent the a posteriori distributions of the claim frequencies [like
in fig. 1 for =3, k=0 (group 1) and £ =3, k=2 (group 2)], we observe that
thosc distributions substantially overlap. All the policy-holders of the second
group must pay a premium 2.24 times higher than the members of group 1,
and yet, many of them have an actual claim frequency (see shaded area in
fig. 1) that placc them below the average of group 1. Those people are thus
strongly overcharged: they pay more than twice their fair premium. The
problem is that, since no distinction amoung group 2 is available, we do not
know which of the group 2 policies are those with the lowest claim frequencies.
The problem increases with the value of & since the injustices duc to over-
charges grow in amount and do not become so scarce in guantity since the
variance of AdU{(x | k1, ..., k) grows (lincarly in the negative binomial case)
with the number of accidents, for given ¢.

du()]

Fig. 1

The rates obtained by the expected value principle possess interesting
propertics, (sce BUHLMANN (1964)), they minimize the sum of the squared
‘errors’ (overcharges and undercharges) taken over all the policies of a given
group, they cnsure financial stability in the sense that the premiums will
compensate for the expected losses for every value of £ However, it might
seem uniair, from the policy-holder’s point of view, that they treat overcharges
and undercharges symmetrically: ‘paying too much’ and 'not paying cnough’
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are valued the same way; onc mght arguc that the error which consists of
asking too much to a policy-holder is more severe than the opposite one. Somc
sensc of equity commands us to distinguish them; one should weight differently
both kinds of errors, penalizing the overcharges.

Since all the members of group 2 must pay the same amount, this practically
means that this premium must be reduced. Consequently the premium for
the first group must be raised i order to restore the financial balance. How-
ever, as the highest risk classes arc nearly always the least populated, the
increasce of the premium of group 1 will usually be quite small.

The fact that the population of the sub-groups decreases with £ can be
illustrated by the results of a simulation performed on the portfolio deseribed
in section 1. CorLIER, l.EMAIRE and MunokoLo (1979) obtained the following
populations.

TABLE §
I3

{ o 1 2 3 4 5 6
o 10,000
1 4,059 877 58 [ o 5} o
2 8,297 1472 197 31 2 1 0
3 7,584 1947 381 73 12 2 1

8 4

4 6,091 2238 600 130 20

Conscquently it is only necessary to raise the premium of group 1 by 1 B.F.
in order to diminish the contributions of group 2 by 20 B.F.

One way to treat the problem asymmetrically is to index onc's preferences
over all overcharging and undercharging possibilities by a utility function,
and to maximize the weighted expected utility, naturally with the condition
that the system will be financially stablc.

For a given value of ¢, let us denote by
— m+ 1 the number of groups (m is the maximum valuc of &),

- Ny the population of those groups,

"

- [\’v = >—1‘ Ar’\'v
A "
_ /)}\. = Pr*_\(/\‘«l, ...,/ft)r

- dUR k) = AU
~ %= [ AdUQ).

[}

ki, ..., k), and
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Using exponential utility functions, with arguments equal te the differcuce
between the premium p g and the real value X, we shall maximize

1 m @ 1 _
7 == Nig i ~[t — e ¢0-2)dUN | £
DRI 14U | B

subject to the condition

1 < -
— Nipr = A
v Z 7 ,

or minimize the Tagrangian function

©
m

1< ; N )
L]J — E _]\—7 ’Z‘: Ny J e-C(-1p) dU(ll/(") - o (F\—] Z kaﬁ/\——)\).

A=0

2 S
1 — =0 = N = &,
(1) 5, =0 2 KD
o Ly f Do dUN | F) = = Np  k
— =0 - — 3 etDig—Ch k) = — = 0, ..., M.
Vg NTF NF
If we denote by M y(x) = [ e#» dU(x | &) the momentgenerating function of

the a postcriort distribution of A, equations (2) simplify to

/2]

y e e

e Mp(—c) = « k=o0

or

1 1
(3) pr = Zlogo — —log My(—c) k ..

Il
o

1
Iet B = z T.og «. B can be obtained by multiplying (3) by Ny, summing

up over all the values of % and dividing by N. We get

m

1~ 1< 11 <
N—Zf\/,d);;:]T]kIZoNkﬁ—Kf;zlvkLOgﬂ/[k(—C)

koo k0

”

and, by (1)

_ 1
B =%+ z Ny Log My(— o).
Ar 0



BONUS-MALUS SYSTEM 281

Finally

m

- L 1
f)lc = P5+1(k1, . ..,/\‘1,) = A + (—:‘ [— S N l,()g !"[[(—C) — ]‘Og 1‘{[;(—6)].

N <
1)

The value of ¢ can be chosen in order to reflect one’s preferences over the
asymmetry of the errors. If we set ¢ = 11.5, it means that 1t is necessary
to undercharge two policies by .03 cach in order to compensate for a single
overcharge of .04 A choice of ¢ = 17.5 summarizes a sensc of fairness that
requires two undercharges of .04 to balance one overcharge of .o4.

Using the D-structure function and the populations of table 5, we obtain
the following relativitics for ¢ = 11.5

TABLE O
k
[ [} 1 2 3 4 5 6
o 100
I 95.48 140 17 184.02 220.55
2 91.58 134 28 177.02 219.74 202 45 305 17
3 87.73 128 68 169.63 210 48 251.43 202 38 333 23
4 84 26 123.52 162 79 202.05 241.32 280.58 319.84
and for ¢ = 17.5.
TABLE 7
k
t o 1 2 3 4 5 )
o 100
1 95.93 136.14 176.36 2106 56
2 92.39 130.97 169.54 208 13 246.69 285 28
3 88 g1 125 98 163 06 200.14 237.21 274.29 31136
4 85 60 121.39 157 o8 192.77 228 46 264 15 209.86

4. CONCLUSION

Comparing the different tables, we notice that the merit-rating systems defined
by tables 2 to 4 require very high surcharges for the bad risks. Although per-
fectly justified, it seems very difficult to enforce them practically, for
political and commercial rcasons. In fact, no system in operation in the world
present such severe maluses. A consequence is that in many countries the
bonus-malus systems are out of balance [inancially, in the sense that the
maluses are too small to compensate for the bonuscs.
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On the other hand, the systems constructed by the technique developed in
3 are less severe (and the higher the aversion to injustice ¢, the smaller the
ratio between the extreme premiums). Lf 1t 1s impossible for practical reasons
to charge the necessary malusces, one could think of applying this techmique,
simcee it produces smaller maluses and vet preserves financial stability.

Unaversité Libre de Bruxelles
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