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P R O B A B I L I T Y  OF RUIN U N D E R  I N F L A T I O N A R Y  CONDITIONS 
OR U N D E R  E X P E R I E N C E  R A T I N G  

G. C. TAVLOR * 

The effect  of inflation of p remium lllCOUae &nd claims size d is t r ibut ion ,  but  nol  

of free reserves,  on the  probabi l i ty  of ruin of an insurer  is s tudied.  
An in teres t ing  s imilar i ty  be tween  this  problem and the  ruin problem in an ex- 

per ience-ra ted  scheme ts exhibi ted  This s imilar i ty  allows the  deduct ion  of parallel  
results  for the  two problems in later  sect ions 

I t  ~s shown t h a t  the  p robab i l i ty  of ruin is a lways increased when the  (constant)  
inflat ion rate  ~s increased. 

The d is t r ibu t ion  of aggregate  c lmms under  inf la t ionary  condi t ions  is descr ibed 
and used to calculate an upper  bound on the  ruin probabi l i ty .  Some numermal  ex- 
amples  show t h a t  this  bound is not  a lways sharp  enough to be pract ica l ly  useful. I t  
is also ~hown, however,  t h a t  this  bound can be used to cons t ruc t  an approx ima t ion  
of the  effect  of inf lat ion on rnin 1)robab~hty. 

I t  is sh.own t h a t  if inflation occurs a t  a cons t an t  rate,  then  ruz~t is  cer tatn ,  ~r- 

respect ive  of the  smallness of t h a t  rate  and of the  largeness of initial f lee reserves 
and the  safe ty  margin in the  p r emmm.  The cor responding  result  for experience-  
ra ted  schemes is t h a t  a pract ical  and " in tu i t ive ly  reasonable"  exper ience-ra t ing  
scheme leads eventua l ly  to cer tain ruin. 

Finally,  a s imple modif icat ion of the  techniques  of the  paper  is made  in order  to 
br ing  i n v e s t m e n t  income into account .  

1. INTNODUCTION 

The probabi l i ty  of ruin of a risk business has been studied under  various 
conditions in the past, e.g. LUNDBERG (1909), CRA~a~.R (t930, 1955), and 
others. Most of these studies have assumed tha t  the risk process is ei ther a 
s ta t ionary  one or can be made s ta t ionary  by means of a simple t ransformat ion.  

Such models of the risk process do not include the case in which the phe- 
nomenon of inflation is causing the volume of p remium income and of claims 
but  not free reserves to va ry  in time. In current  times, when rates of inflation 
in many  countries have been, are and appear  likely to remain for some time 
at high levels, it seems advisable to examine the impact  of this feature on the 
solvency of the risk business in so far as this la t ter  is described by  the prob- 
abil i ty of ruin. 

In carrying out  this examinat ion,  it is noted tha t  the operat ion of certain 
types of experience rat ing schemes is closely parallel to tha t  of inflation on a 
"conven t iona l"  risk business, so that  the methods  foreshadowed in the pre- 
ceding paragraph are also applicable to experience rated processes. 

* Thc au tho r  grateful ly  acknowledges  the  use of facilities of the  Swiss Re insurance  
Company,  Zurmh, Switzer land in the  p repa ra t ion  of th is  paper .  
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2. DESCRIPTION OF THE RiSK PROCESS 

We consider a risk process in wllich premiums received in the t ime-interval  
[o, t] total  C(I) (the process begins at t = o). Let  X(I) denote the aggregation of 
claims occ2~rring in the lime-interval [o, l:. 

Suppose tha t  {X(t), t > o} is a one-dimensional Markov process. Let  Z(t) 
denote  the free reserves at time t and write x for Z(o). Then 

O) e ( t )  = x + C( t )  - X ( t )  

is also a one-dimensional  Markov process. 

Since X(t) is the aggregation of claims up to t ime t, it is possible to write 
N(,) 

x(1) = r ,  

where S~ is the random variable denoting the size of #~e i4h daim and N(t) is 
the random variable denot ing the number of claims occurring in the time-interval 
[o, II. 

Sometimes in the following sections, no fur ther  assumptions about  the risk 
process will be made. At o ther  t imes it will be necessary to place some restric- 
tions on the random variables N(t) and S,. 

g.  ADDITION OF INFLATION TO THE RISK PROCESS 

We now wish to superimpose an inflation process on the risk model described 
in Section 2. We suppose this process to be a determinist ic  one in tha t  we as- 
sume the existence of a non-stochast ic  inflation factor  f(t) ( >  o) at  t ime t. 

P remium volume at t ime t and also claims paid at t ime t are inflated by  the 
factor  f(t)  (assume f (o)  = 1). Let  C*, X* and Z* represent  the functions C, 
X and Z respect ively after  modification by  the factor  f.  Then 

(2) C*(t) = f f(s) dC(s); 
0 

X*(t) = f f(s) dX(s) 
o 

z~(,) 
(3) = Z f(l~) S,, 

t 1 " !  

where It is the epoch of the i- th claim; 

(41 Z*(t) = x + C*(t) - X*(b). 

Note  tha t  in (4) inflation is assumed to have no effect on free reserves. This 
is not  unrealistic in the light of the experience of the last few years. In any  
case, this restriction is relaxed in Section 12. 
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4. THE RELATION BETWEEN INFLATION AND EXPERIENCE RATING 

Consider a risk business subject to the same risk process as (1) except that 
each element of premium paid is modified by a refund or surcharge according 
to the difference between past premiums and past claims. Suppose that the 
precise form of this experience rating is such that the element of premium 
payable at time t is: 

(5) d C(t) = {c - k [C(t) - X(t ) ;}  dr. 

c being the base rate of premium payable, i.e. the prcmiuln rate when the 
experience follows its expected pattern exactly; and h being the experience 
rating factor at time t (normally, o < k < 1). 

It is easy to deduce from (5) that 

e N(O 
(6) C(t) ---- ~ [1 -- e -/~t] + X S t  [ I  - e-k(t-tO], 

whence 

i ~(,) Z(t)  = x + e - k t  c e ~s ds - e - k t  ~ S t  e ~t', 
0 ~ . , 1  

o r  

(7) ~(t)  = e~'~ Z(t) = xe+'~ + ce~'+" ~ts - X & d < .  
0 i , . 1  

FronI (2), (3) and  (4) it  can be seen that  Z(t) represents  a "convent ional"  

risk process subject to inflation at a contimtous rate of k per unit time except that 
the init,al free reserve also inflates at this rate instead of remaining constant as 
assumed in Section 3. 

In each of the following sections, this relation between a risk process in 
inflationary conditions and an experience-rated risk process permits the deduc- 
tion of parallel results, although the emphasis is on the former in the section 
headings. 

5" PROBABILITY OF RUIN IS NONDECREASING WITH INCREASING INFLATION 

This result is proved by showing that any realization of {Z*(t), t > o} leading 
to ruin also leads to ruin if the rate of inflation is increased. 

Consider two Z*-processes called Z~ and Z~ with associated inflation factors 
of f t  and f~ respectively. Suppose a particular realization of Z~ leads to ruin. 
Then for some t, we have 

(8) 2 ~ ( t )  < o , Z ~ ( s ) ~ o r o r o < s  < t. 

No,,,, from (2), (3) and (4), 

Z ~ ( t )  - Z i (t) = i [f2(s) - fl(s)]dZ(s). 
o 
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Integra t ion  by parts  yields: 
~ - o  

(9) z ; ( o -  I zD) 
0 

where g(s) = f2 ( s ) / f l ( s ) - l ,  and it has been assumed that  this function is 
measurable.  If g(s) is a monotone  nondecreasing function (recall tha t  g(o) = o), 
then g(s) > o for s > o and dg(s) > o for s > o, and by  (8) and (9) 

0 o )  G(*) - zi(t) o .  

We may  summarize  the above in tim following: 

Result 
If two Z*-processes, Z~. and Z~, are subject  to measurable inflation factors of 

f~(t) and f2(l ) such that  the difference f2(l)/f~(l ) is nondecreasing with increasing 
l, then the probabi l i ty  of ruin On finite or infinite time) is not less for the 

2X-process than for the Z~-process. 

Red,arks 

I. I t  is of course assumed that  the initial reserves are the same in the Z~- and 
2~-processes. 

2. The result is entirely independent  of the propert ies  of the process Z. I t  
includes, for example,  cases where the claim number  process is not Poisson, 
where sizes of different  claims are not independent ,  etc. 

3. The requirement  tha t  f2(t)/fl(l) be monotone  nondecreasing is easily seen to 
be equivalent  to the requirelnent  tha t  the Z~-inflation rate should always be 
not less than the Z~-inflation rate in those cases where f t  anclf2 are smooth 
and the term "inflat ion ra te"  therefore meaningful.  

The  si tuat ion for the exper ience-ra ted process Z is not  so simple, However ,  
in the case of zero initial reserves (i.e. x = o), we see from a comparison of 

equat ions  (4) and (7) tha t  the Z-process is exact ly  the same as a Z*-process 
with f ( t )  = exp (kl). I t  follows, therefore,  that ,  in this case, increasing k, the 
degree of experience rating,  will i~cmase the ruin probabil i ty,  

We shall see further ,  in Section 11, tha t  under  experience rating the ul t imate  
(t = coo) probabi l i ty  of ruin is always 1. 

Tha t  these results are not intui t ive to some ex ten t  is clear from a paper  by  
SZAL (Z969), in which he refers to the criticism tha t  his s imulated ruin prob- 
abilities (according to "conven t iona l"  risk processes) were too high. The sug- 
gestion is tha t  in practice an insurer can use some kind of expermnce rat ing 
and, by basing premiums on past results, will be able to reduce the ruin 
probabil i ty .  

The reasoning leading to this conclusion is probably  somewhat  along the 
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following lines. There are two im portan t classes of free reserve t ra jectory : tha t  
consisting of trajectories characterized by persistently light claims experience, 
and that  characterized by persistently heavy claims experience. [n tile first 
case ruin does not occur whether experience-rated or not" in the second, 
premium rates are forced tip by the poor experience, thus reducing the pro- 
portion of ruins. 

The fallacy in such all a rgumer l t  is tha t  it ignores the possibility of a light 
claims experience followed 1) 5, a slightly heavier than usual experience. In this 
case the initial light exl)erience forces premiums down so that  the fund built up 
in this period is not part icularly large, despite the absence of claims. 

6. THE DISTR[BUTION OF AGGREGATE CLAIMS UNDER I N F L A T I O N A R Y  

CONDITIONS 

In this section we investigate the distribution of X*(I) under the more specific 
assumption that  it is a compound Poisson variate, the claim number  process 
having a Poisson parameter  7, and the individual claim size distribution 
having d.f. B{.)  at time zero. The method of obtaining the momelat generating 
function (m.g.f.) of X*(t) is essentially that  of ANDREWS and BRUNNSTROM 
(1976) , though requiring some generalization since they take ./3(.) to be the 
d.f. of a single-point distribution. 

Consider the time-interval (j l /m, ( j  + 1) l/m) where m is a very large positive 
integer and j is an integer between O and ( m -  I). Because the length of this 
interval, l/m, is small, the Poisson claim number  process within it approxilnates 
a binomial process with parameters I and )4/m. Therefore, the m.g.f, of ag- 
gregate claim anaount in this small interval i s :  

( i~)  M; ( . . )  = ~ - ~ + .,- B('~d(Jq,,*)) + o (,,~-~) 

xt 
= ~ + -  I~ ( , . f ( j t / , ,~ )  - ~] + o (.,,~-~). 

where i3(u,) is the m.g.f, associated with ./3(.) If the additional assumption of 
independence of sizes of different claims is made, then the cumulant  generating 
function of X*(t)  becomes" 

(~2) K * ( , . ,  t) = Z l o g  t + - -  r~( , . f ( j t / .~))-  ,] + o (.,-~) 

. . . .  ~(u f ( j t /m)  ) - , 
= X Z + 0 ( n , - ~ ) .  

j. o m/t 

Let t ing m --> co, we see that  the c.g.f, becomes" 

. ,  ] (13) [( (?t, t) = 7,l 7 ~(uf (s ) )  d s -  1 . 
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From this it follows tha t  the j - th  cumulant  of X*(I) is 

0 

where ej is the j - th  order moment  (about the origin) of tile d.f. B( . )  and the 
second factor  on the right is the average value of [f(s)]~ over ss[o, t]. 

Obviously, the m.g.f, of X*(t) is: 

(15) M*(u, t )  = exp lXt [~ ! , ( u f ( s ) ) d s - 1 ] l  

In the too.it impor tan t  special case, f(s) = e ~8, (13) and 04)  can be put  in a 
sometimes more convenient  form. Equat ion  (14) becomes: 

(16) ×;(t) = X~y (e m -  1 ) / j k ,  

w h e n c e  

(17) I<*¢.,t) = (x/k) o J! ] 

u ~ s  

u 

2 c~ 1 u J ]  

7. AN U P P E R  B O U N D  ON T I l E  P R O B A B I L I T Y  OF R U I N  U N D E R  I N F L A T I O N A R Y  

C O N D I T I O N S  

An upper  bound  on the ruin probabi l i ty  can be found using the method  of 
GERBER (1973). Define Y*(t) = Z * ( I ) - Z * ( o ) .  Gerber  shows that ,  if d~*(x, t) 
is the probabi l i ty  of ruin before t ime t (in the model of Section 6), then 

(18) +*(X, t) < rain e -m  max  E[exp  { -  r Y*(s)}], 
r O ~ 8 ~ t  

where for the sake of simplici ty we are now assuming tha t  tilne has been so 
scaled that  expected  number  of claims for unit  time, i.e. X, is equal to unity.  

In our case this reduces to: 

(19) +*(x, ~) < rain e -rx max  exp [ - r C * ( s )  + K*(r, s)]. 
r o ~ s G t  

Let  us examine the square-bracketed  tel ' I l l  ill (19), By (14) , it is 
s * 

(20) s - r . - f (u)  du + X rJo~jl I . - [f(u)3.~ du ,  
S S 

j l 
0 0 

where c is premium income per unit  time. 
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Since all claims are > o, the c~j's are all > o. Thus for large r, the higher  
powers of r dominate  and expression (20) is positive and increasing. I t  also has 
a zero at r = o. Differentiat ion (with s constant)  shows tha t  it has one turning 
point.  Thus expression (20) is o at r = o, becomes negat ive as r increases, and 
for s constant  has a single real positive zero re(s). 

For  r > u (s) it is positive and increasing. In view of this, we can deduce 
from (18) tha t :  

(21) +*(x , l )  . ~ m i n e - r x m a x { 1 ,  e x p L - r C * ( l )  + K * ( r , t ) ] } ,  

since, for given r > o, the nmximum in (19) is 1 if r < n(t), and is - r C*(t) + 
I (*(r ,  t) if r > re(t). Note  tha t ,  in (2~) we consider only r > o. This is because the 
max imum in (19) is always at  least i (whether r is positive or negative),  so 
tha t  considerat ion of r < o tells us no more than  tha t  +*(x, t)~< exp ( - r x )  
which is > 1 and can be improved  upon by  choosing r = o  in (19). We can 
simplify (21) a little fur ther  by  not ing tha t  the exponential  term there is < 1 
when o < r < 7z(l), and so 

(22) +*(x, t) -~ rain e x p [ - r x  - r C*(t) + I<*(r, t)]. 
r~=(t) 

where we recall t ha t  r = re(t) is the unique real and positive solution of: 

(23) - r C*(l) + K * ( r ,  l) = o. 

The similari ty between this result  and Gerber 's  (19), both  derived from 
(18) by  very  similar reasoning, is to be noted.  The two formulas are easily seen 
to be identical  if f (t) = 1 for all t. 

R e m a r k  

GERBER (1973, p. 210) commented  for the case f ( t )  = 1 tha t  inequal i ty  
(22) is ra ther  sharp if t is not too small. [ t  would follow then in our case of more 
general f ( t )  tha t  we could take the right side of inequal i ty  (22) as reasonable 
provided ! is not too small and tile rate of inflation under lying f ( t )  is not  too 
large. 

In the case of an exper ience-ra ted scheme, the whole analysis goes through as 
before except  tha t  Y * ( t )  is replaced by:  

fl(t) = ~Z*(l) + X(e kl:- l). 

Making this replacement  and following through the previous working, we 
soon find tha t :  

(24) +(x, t) < rain exp [ -  rxe ke - rC(t) + I£(r, t)] 
r ~ ( t )  
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where C, K denote  C*, K* with constant  inflation rate k, and r = 5(t) is the 
unique real and positive solution of the equat ion 

(25) - ~ x ( ~ ' - ~ ) -  , , @ )  + ~ ( ~ .  t) = o. 

~. AN A P P R O X I M A T I O N  

i t  would be useful to have on hand a simple approximat ion  to the ratio 
,~;(x, l ) / , ~ ( x ,  l) where qb~ is the ruin prol)abili ty associated with inflation 
factor  re. Table , in Section I0 shows that  inequali ty (.22) is not ahvays as 
sharp as we would like, but  tha t  the ratio +~(x, l)/O~(x, t) is usually ap- 

p rox imated  reasonably 1) 3, the ratio of the upper  bounds given I)y (22). At 
least this tends to be so in the " in teres t ing"  cases where l)rol)al)ility of ruin is 
not  too high. 

This is demons t ra ted  in Table 2 of Section l o. 

9. I N F L A T I O N  A N D  E X P E R I E N C E  R A T I N G  C O M B I N E D  

There  is no difficulty in combining an inflation factor of f(l)  and an experience 
rat ing factor  of k. I t  is easily checked tha t  reserves at t ime t are" 

jj x(,) 
x + e - e l  c f ( s )  eXsds  - c -x t  Z, 5'¢f(h) e ~t,, 

which leads us to consider the stochastic process, 

2 . ( t )  = ~ + ~*(t)  - 2 * ( t ) ,  

where C*(t) and ,Y*(l) are the premium income and claims outgo respect ively 
up to t ime t under  the influence of an inflation factor  of exp ( k t ) f ( t ) .  

10.  N U S I E R I C A L  E X A M P L E S  

Consider the case in which the time-axis has been scaled in such a way that ,  
in the absence of any  inflation, the claun intensi ty  is 1 per unit tmle. Suppose 
tha t  money  values have also been so scaled tha t  (again in the absence of 
inflation) the distr ibution of indwidual  claim size is 7.~/6, i .e.m.g.f,  is (1 - r/3) -3. 
We shall assume constant  rates of inflation, i.e. f ( t )  = e kt, and consider the 
values k = o ,  .o5 and .l 5. Suppose that  the basic premium income is 1.2 per 
unit  time, thus allowing a safety margin of 2o ~o. Then, by (22) and (23), 

[ eL'-' ] 
(26) +*(x , t )  -- rain exp - r x - z  ~ r - -  - -  + K * ( r , t )  , 

r ~ n ( t )  " -  k 

where r = r~(t) is the real positive solution of 

C kt - -  1 

(27) - 1.2 r - - ) T -  + I < * ( r , t ) =  o. 
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In cases where the minimum in (26) is assumed for r>rc(t),  the relevant 
value of r is tha t  satisfying the equation: 

. . . . .  e ~ ' - ,  , [~(rckl)-- ,  ~ ( r ) - - , ]  = 0 
- - x - -  1.2 k + k  r 

i .e. 

(2s) 

Also 

( l - : ~ r e k t )  - a  - ( 1 - ~ r )  -a = r [ k x + l . 2 ( e  k t - l ) ] .  

re k l  

1 ~ ( 1 - ~ v ) - a - l d v  
K*(r, t )= ~. v 

i#  

r 

r #  c 

_if J~ [(~ - ~ ) - '  + (t - ~ ) - ~  + (~ - ~v)-~] dv 

r 

1 r e  It 

= ~ E - l o g 0 - > )  + ( , - ~ ) - '  + ~ ( 1 - : > ) - 2 ] l v _ ,  

We take initial reserves equal to 5 and, for each value of k, calculate for 
various t the upper bound (22) on +*(5, l) and the ratio of this bound to the 
corresponding bound on ~(5, l). The results are given in Tables 1 and 2 where 
the values of +*(x, t) obtained from a comt)uter simulation are also given. The 
sample size for each simulated probabil i ty was 24oo. 

Similar calculations are made for the case of a negative exponential  claim 
size distril)utmn. Equation (28) is replaced by: 

( l - r e g t )  - I  - (1 _/ , ) -1  = r f k x +  1.2 (e ,~t- 1)]. 

i.e. 

where 

Also, 

r = ~(1 + e  - k t )  [1 - -  ~ 1  - -  4 (1 --  I / A )  e -let ( 1 - - F 6  - k t ) - 2 ]  

,4 = 1 .2  + k x  ( e e t  - 1)-1 

1 L - - r  

z{ (r, t) k 

Tables 3 and 4 then sumnlarize these calculations. Once again the results of 
a computer  simulation (saml)le size again 2400 ) are given. 

Several facts emerge from Tables 1 to 4- 
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T A B L E  1: U P P E R  B O U N D  ( 2 2 )  ON t~*(5 , l )  IN C A S E  O F  A X~/6 CLAIM SIZE  
D I S T R I B U T I O N  a 

t k = o k = .0 5 k = .15 

1 .o21 (.0033) .023 (.0038) .o31 (.0046) 
2 .o57 (.oo96) .071 ( o 1 4 )  .1o 5 (.024) 
3 .094 (.023) . 1 2 2  (.o31) .194 (.048) 
4 .126 (.032) .169 (.055) .283 (.o91) 
5 .154 (.o54) .212 (.074) .364 (. 15 o) 

1o .235 (.098) .360 (.172) .631 b (.365) 
25 .273 (.165) .563 b (.383) .944 b (.787) 
cO .273 I b I b 

a F i g u r e s  ila p a r e n t h e s e s  a r e  s i n l u l a t e d  r u i n  p r o b a b i l i t i e s .  
b V a l u e s  b a s e d  Oll r = ~(t) .  

T A B L E  2 :  E S T I M A T E  OF R A T I O  ~ * ( 5 ,  t ) / + ( 5 ,  t )  B Y  

T H E  R A T I O  O F  T H E  C O R R E S P O N D I N G  U P P E R  B O U N D S  
(22) IN CASE OF A X~/6 CLAIM SIZE DISTRIBUTION ~ 

t k ---- .05 k = . 15 

1 1.1o (1.15) 1.48 (1.39) 
2 1.25 (1.46) 1.84 (2.50) 
3 1.30 (1.35) 2.06 (2.09) 
4 1.34 (1.75) 2-25 (2.87) 
5 1.38 (1.38) 2.36 (2.79) 

lO 1.53 (1.76) 2 .69 (3.72) 
25 2.o6 (2.33) 3.46 (4.78) 

F i g u r e s  in  p a r e n t h e s e s  a r e  t a k e n  f r o m  com-  
p u t e r  s i m u l a t i o n .  

T A B L E  3 :  U P P E R  B O U N D  (22) ON + * ( 5 ,  t)  I N  C A S E  O F  A NEGATIVE 

E X P O N E N T I A L  CLAIM SIZE  D I S T R I B U T I O N  a 

t k = o k = .05 k = .15 

1 . I O 8  (.009) . 1 1 7  ( .OI  1) . 1 3 6  ( . O 1 7 )  

2 .182 (.035) .205 (.o41) .258 (.053) 
5 .311 (.096) .379 (.121) .529 (.200) 

1o .397 (.158) .52o (.233) .883 (.436) 

F i g u r e s  in  p a r e n t h e s e s  a re  s i m u l a t e d  r u i n  p robabx l i t i e s .  

T A B L E  4 :  E S T I M A T E  O F  R A T I O  + * ( 5 ,  t ) / + ( 5 ,  l)  
B Y  THE R A T I O  O F  THE C O R R E S P O N D I N G  UPPER 

BOUNDS (22) IN CASE OF A NEGATIVE EXPONEN- 

TIAL CLAIM SIZE DISTRIBUTION & 

t k = .05 k = .15 

1 1.o8 (1.22) 1.26 (I.89) 
2 1 . 1 3  ( 1 . 1 7 )  1 . 4 2  ( 1 . 5 1 )  
5 1.22 (1.26) 1.70 (2.o8) 

10  1 . 3 1  (1.47) 2.22 (2.76) 

a F i g u r e s  i n  p a r e n t h e s e s  a re  t a k e n  "from c o m -  
p u t e r  s i m u l a t i o n .  
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First ly,  in Tables 1 and 3 we see tha t  the upper  bound (22), even in the case 

of no inflation, is not  as sharp as one might  expect  af ter  a perusal of the cal- 
culations of GEm~ER (1973, p. 210). The bound does, however,  improve with 
increasing t, whether  inflation is present  or not. 

Secondly,  for a given pair of inflation rates the ratio of upper  bounds (22), 
as exemplif ied in Tables 2 and 4, can serve as a rough approximat ion  to the 
ratio of the corresponding ruin probabilities, provided tha t  these probabili t ies 
are not too large. Even  though the s imulated results of Tables 1 to 4 are based 
upon 24oo trials, the s imulated low probabili t ies are still subject  to random 
disturbance.  However ,  for k = .o5 in Table  2, the average relative error in the 
approximat ion  to +*(5, t)/+(5, t) is 11%. The corresponding figure for k =  .15 
is 15°/o . If for k =  .t 5, this error is calculated only on the basis of those t for 
which s imulated probabi l i ty  is less than  .2 (this corresponds to considering 
the values t = 1, 2, 3, 4, 5 for k = .o5), then the average relat ive error is again 
only  IO%. 

In Table  4, the average relative error in the ratio for t = 1, 2 is 8 % for k = .o5. 
I t  is larger for k = . I  5 bu t  mainly  as a result  of random error  at t = 1 in the 
simulation. 

Thirdly,  as +*(5, t) increases with increasing t, the approximat ion  to +*(5, t)/ 
+(5, t) dealt  with in Tables 2 and 4 becomes poorer. 

In summary,  it is fair  to say tha t  this approximat ion  seems reasonable for 
+*(5, t) < about  .2, but  thereaf ter  is ra ther  dubious. However ,  the range 
+*(5, t) < .2 is cer ta inly  the most  interest ing from a pract ical  viewpoint.  

1 1. E X P O N E N T I A L  INFLATION MAKES ULTIMATE RUIN CERTAIN 

The values of 1 given by  (22) in the case t = co are ra ther  conspicuous in 
Table 1, and raise the quest ion of whether  u l t imate  ruin ahvays occurs with 
probabi l i ty  1 when inflation is present.  

We consider here the case where there  exists a constant  K > o such tha t  

(29) i f (s )  ds ~< K f( t)  for all t. 
0 

For  example,  if there is a cons tant  ra te  of inflation, i.e. the inflation factor  
is exponential ,  then (29) is satisfied. We also assume tha t  the uninf la ted pre- 
mium income is always received at  a ra te  of c per unit  time, and tha t  individual  
claims in excess of cK occur with nonzero probabil i ty.  

Under  these conditions the ra ther  discomfort ing answer to our question is 
tha t  no ma t t e r  how large the initial reserves, no ma t t e r  how large the safe ty  
margin in premiums,  no m a t t e r  how small the rate  of inflation (subject to 
(29)), the ul t imate  probabi l i ty  of ruin is always 1. 

This is easily proved.  Suppose tha t  our assertion is un t rue ;  then +*(x, t) 
approaches  a limit ( <  1) as t--~ co. 
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Then 

Now let G(x, t, 30 denote  the probabi l i ty  tha t  an insurer with initial reserve 
x will survive to time t and have reserves between o and a~ at tha t  time. 

If  Bt( . )  denotes the d.f. of individual claim size at t ime t, then:  

(3 l) X S [ t - B t ( y ) ] d u G ( x , l , y ) /  J" d v g ( x , t , y ) - + o a s t - - + c o  
o o 

But  reserves at t ime t are at most" 

(32) x + c i f ( s )  ds < x + cK f ( t )  
o 

By (31 ) and (32) • 

X F [1 - B d x  + c K f ( t ) ) ]  duG(x, t, y) / j7 duG(x, I, 3') 
0 0 

_< x f [1 -&(y)~ g,,a(x t. ),) / .~ d,C(~, ~, v) 
o o 

- - > O  a s  ¢ - - >  cO 

i . e .  

(33) 

But,  of course 

so tha t  (33) becomes" 

I - B t ( x + c K f ( t ) ) - + o  as t--+ 

B,(~) = e (~  / f (O) ,  

i.e. 
1 - B ( c K + x / f ( O ) - + o  as 

- B ( c K )  = o. 

l ---+ CO0. 

Since this contradicts  our assumption that  larger clailns than cK (unin- 
flated) can, occur, our hypothesis  of +*(x, t) < 1 is false. 

By  an identical line of reasoning, we find that  if individual claims in excess 
of x + cK can occur in an experience rated scheme, then the probabi l i ty  of 
u l t imate  ruin is I. This result was conjectured (though wi thout  any condit ion 
oll the distr ibution of individual claim sizes) by Sidney Benjamin.  

As was remarked in Section 5, this result  is not entirely mtmt ive .  However ,  
it does become reasonable when one notes tha t  (by formula (7)), the contri-  
but ion to reserves at  t ime ! of all safety margins paid up to then is 

( 1 + ",~) - ~ "~c e - kt  / e ~  ds 
o 

= ( . ~ c l k ) ( ~ - ~ - ~ ) 1  ( ~ + - ~ )  
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where -~ is the proport ion of risk premium taken as a safety margin. \Ve see 
tha t  accumula ted  safety margins converge to a finite limit with increasing 
t, i.e. the average safety margin per unit t ime tends to zero. In these cir- 

cumstances,  it is not  surprising tha t  ,$(x, co) = 1. 

This suggests tha t  the experience rat ing formula  (5) should be replaced by  
one which does not refund most  safety margin. Perhaps,  we could take 

[ c(t) 
(34) dC(t) = l c - h  t- i :~n X(t)] I dr. 

i,e. only the risk premium C(/.) / (z + -q) is allowed for in the experience rating. 
Thus (34) can be rewritten as 

= + - -  - k  - X ( t )  dr, (35) dC(t) l + "r/ 1 + "0 l + "~ . 

and we can see tha t  a constant  rate of safety margin c-0/(l +-~) is main ta ined  
in addit ion to the experience rated risk premiuln.  

However ,  there m a y  be some sales difficulties with rat ing formula (34), 
since the proport ion of tim premnium absorbed by  the safety margin increases 
as the claims experience improves.  One can well imagine the insured objecting 
to an increase in the relat ive safety margin being occasioned by  a favourable 
experience. 

12.  A L L O W A N C E  FOR E A R N I N G S  ON ASSETS 

Of course, all of the preceding analysis has been made on the assumption tha t  
the free reserves of the insurer earn no interest.  We now relax this assumption 
and suppose that  interest  is earned at a rate such tha t  a unit invested at t ime 
zero accumulates  to amount  A(t) at t ime t. Then the free reserves at t ime t 
under  the operat ion of both interest  and inflation are: 

t l 

xA(t) + f (f(s) A(t) / A(s)) dC(s) - f (f(s) .4(t) / A(s)) dX(s) 
o 0 

Discounting these free reserves back to t ime zero, we obtain 

+ I (f% / A(s))dC(s) I' x - dx( ) 
o o 

so tha t  a process subject  to an inflation fac to r f ( t )  and an interest  accumulat ion  
factor  A(t) is equivalent  to a process with just  an inflation factor of f(t)/A(t).  
What  matters ,  therefore, is whether  rate of inflation is greater  or less than the 
rate of interest.  For  example,  if the difference between the force of inflation 
and the force of interest  is constant  and positive (be it ever so small), then the 
result of Section 11, viz. unit  probabi l i ty  of ruin, still holds. 

I r  
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