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Chapter 1

Introduction

Capital allocation is used widely within the insurance industry for purposes of pricing
and performance measurement. The practice, however, inspires controversy on several
levels. Some question its necessity (Phillips, Cummins, and Allen, 1998; Sherris, 2006).
Others argue that it leads to economically suboptimal decisions (Venter, 2002; Gründl and
Schmeiser, 2007). Many thought leaders in the actuarial community have picked up on this
disparity providing various vantage points why the allocation problem may be misguided or
what the debate may be missing (Mango, 2005; Kreps, 2005; Venter, 2010; D’Arcy, 2011).

In this report, we start in Chapter 2 by reviewing the various approaches to capital
allocation and identifying the circumstances under which pricing based on capital allocation
is economically optimal. To preview, in relatively simple settings, where the objective is to
maximize firm value in a single period, capital allocation can be consistent with marginal
cost pricing. This results trivially if the problem is cast as expected profit maximization
subject to a risk measure constraint (in which case gradient allocation methods applied
to the constraining risk measure are appropriate for pricing purposes). It also results in
more complex specifications of the single period model, although the correct risk measure
is similarly complex (Bauer and Zanjani, 2013a).

In Chapter 3 of the the report, we perform numerical analysis using simulated data
provided by a catastrophe reinsurer to get a sense of the differences between the meth-
ods and to assess their stability. Here, we confirm findings elsewhere in the literature
that tail measures, despite their current popularity with regulators and practitioners, are
rather unstable, especially when using thresholds consistent with current capitalization of
reinsurance companies.

In Chapter 4, we consider the theoretical impact of extending the canonical model of
a profit maximizing insurer beyond a single period and in particular consider the effect of
having opportunities to raise external financing in future periods. Then, outside of special
cases, capital allocation as currently conceived (i.e., the allocation of the accounting surplus
of the firm to business line) cannot be done in a way to produce prices consistent with
marginal cost. Once the company has resources other than its current capital to absorb its
risks, allocating current capital no longer produces prices that cover the marginal cost of
risk. Thus, as we introduce real world complications into our model of the firm, traditional
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CHAPTER 1. INTRODUCTION 4

capital allocation fails as a pricing technique.
Conventional capital allocation may fail in theory, but does it fail in practice? In

Chapter 5, we compare the capital allocations and RAROC generated by those traditional
techniques to the economically correct values based on the model in Chapter 4. We find that
traditional techniques can be resurrected if 1) an appropriate definition of capital is used
(and the appropriate definition in our model is a much broader conception of all financial
resources—including ones that have not yet been tapped) and 2) a broader conception of
the cost of underwriting business—including, for example, penalties for the impact of risk
on the continuation value of the firm, as well as an allocation for future costs of external
financing—is used when evaluating the profitability of a contract, and 3) an appropriate
risk measure—connected to the fundamentals of the underlying business—is used.

The main message of this paper lies in the analyses of Chapters 4 and 5. As we consider
more realistic models of firm value, accurate pricing requires us to think carefully about
defining capital and accounting for the impact of risk on the firm. Standard allocation
techniques are not necessarily inconsistent with this guidance, but they can only be correctly
implemented if the user has an understanding of the economic context in which the firm
is operating. This essentially echoes Venter’s criticism (Venter, 2010) of allocation as an
attempt “to do risk pricing while avoiding the rigors of the pricing project.” While allocation
can be deployed thoughtfully, we see no alternative to careful consideration of the firm’s
objectives, constraints, and institutional context in setting prices.

Chapter 6 concludes and identifies some avenues for future research.



Chapter 2

A Review on Capital Allocation
Theory and Practice

This chapter reviews the theory and practice for the allocation of capital to business units
or lines. We commence by briefly describing why, or rather when, this problem is of interest
(Section 2.1), and by defining what exactly we mean by a “capital allocation” (Section 2.2).
Next, we review approaches of how to allocate capital, first from a conceptual perspective
in Section 2.3 and then from a practical perspective in Section 2.4. We discuss an array
of different allocation methods that were proposed in the literature—which will the be
analyzed in the context of example applications in Chapter 3.

2.1 Why Allocate Capital?

We must first establish why we allocate capital. The simple answer from the practitioner
side is that allocation is a necessity for pricing and performance measurement. When
setting benchmarks for lines of business within a multi-line firm, one must ensure that the
benchmarks put in place are consistent with the firm’s financial targets, specifically the
target return on equity.

This seems logical at first glance, yet some of the academic literature has been skep-
tical. Phillips, Cummins and Allen (1998) noted that a “financial” approach to pricing
insurance in a multi-line firm rendered capital allocation unnecessary, a point reiterated
by Sherris (2006). The “financial” approach relies on applying the usual arbitrage-free
pricing techniques in a complete market setting without frictional costs. In such a setting,
one simply pulls out a market consistent valuation measure to calculate the fair value of
insurance liabilities. Capital affects this calculation in the sense that the amount of capital
influences the extent to which insurance claims are actually paid in certain states of the
world, but, so long as the actuary is correctly evaluating the extent of claimant recoveries
in various states of the world (including those where the insurer is defaulting), there is no
need to apportion the capital across the various lines of insurance.

Once frictional costs of capital are introduced, the situation changes. Frictions open
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CHAPTER 2. A REVIEW ON CAPITAL ALLOCATION 6

up a gap between the expected profits produced by “financial” insurance prices and the
targetted level of profits for the firm. In such a case, the “gap” becomes a cost that
must be distributed back to business lines, like overhead or any other common cost whose
distribution to business lines is not immediately obvious.

As a practical example, consider catastrophe reinsurers. Natural catastrophe risk is
often argued to be “zero beta” in the sense of being essentially uncorrelated with broader
financial markets. If we accept this assessment, basic financial theory such as the CAPM
would then imply that a market rate of return on capital exposed to such risk would be the
risk-free rate. Yet, target ROEs at these firms are surely well in excess of the risk-free rate.
The catastrophe reinsurer thus has the problem of allocating responsibility for hitting the
target ROE back to its various business lines without any guidance from the standard no
arbitrage pricing models.

Viewed in this light, “capital allocation” is really shorthand for “capital cost alloca-
tion.” Capital itself, absent the segmentation of business lines into separate subsidiaries,
is available for all lines to consume. A portion allocated to a specific line is not in any
way segregated for that line’s exclusive use. Hence, the real consequence of allocation lies
in the assignment of responsibility for capital cost: A line allocated more capital will have
higher target prices.

An important point, to which we shall return later, is the economic meaning of the
allocation. Merton and Perold (1993) debunked the notion that allocations could be
used to guide business decisions involving inframarginal or supramarginal changes to a risk
portfolio (e.g., entering or exiting a business line). The more common argument is that
allocation is a marginal concept—offering accurate guidance on small, infinitesimal changes
to a portfolio. As we will see, many methods do indeed have a marginal interpretation,
but the link to marginal cost is not always a strong one.

2.2 Capital Allocation Defined

We first start with notation and by defining capital allocation.1 Consider a one period
model with N business lines with loss realizations L(i), 1 ≤ i ≤ N, modeled as square-
integrable random-variables in an underlying probability space (Ω,F ,P). At the beginning
of the period, the insurer decides on a quantity of exposure in each business line and
receives a corresponding premium p(i), 1 ≤ i ≤ N , in return. The exposure is an indemnity
parameter q(i) ∈ Φ(i), where Φ(i) are compact choice sets, so that the actual exposure to
loss i ∈ {1, 2, . . . , N} is

I(i) = I(i)(L(i), q(i)).

We assume that an increase in exposure shifts the distribution of the claim random variable
so that the resulting distribution has first order stochastic dominance over the former:

P
(
I(i)(L(i), q̂(i)) ≥ z

)
≥ P

(
I(i)(L(i), q(i)) ≥ z

)
∀z ≥ 0, q̂i ≥ qi.

1This subsection and the next borrows notation and approach from Bauer and Zanjani (2013b).
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For simplicity, we typically consider q(i) representing an insurance company’s quota share
of a customer i’s loss:

I(i) = L(i) × q(i).

Other specifications could be considered, but the specification above implies that the claim
distribution is homogeneous with respect to the choice variable q(i). This simplifies capital
allocation, although it should be noted that insurance claim distributions are not always
homogeneous (Mildenhall (2004)), and the “adding up” property associated with a number
of methods depends on homogeneity.

We denote company assets as a and capital as k, where to fix ideas we adopt a common
specification of the difference between the fair value of assets and the present value of
claims. We denote by I the aggregate claims for the company, with the sum of the
random claims over the sources adding up to the total claim:

N∑
i=1

I(i) = I.

However, actual payments made only amount to min{I, a} because of the possibility of
default. We can also decompose actual payments, where the typical assumption in the
literature is of equal priority in bankruptcy, so that the payment to loss i is:

min
{
I(i),

a

I
I(i)
}
⇒

N∑
i=1

min
{
I(i),

a

I
I(i)
}

= min{I, a}.

Allocation is simply a division of the company’s capital or assets across the N sources
of risk, with k(i) representing the capital per unit of exposure assigned to the i-th source
(and a(i) representing a similar quantity for assets). Of course, a full allocation requires
that the individual amounts assigned to each of the lines “add up” to the total amount for
the company:

N∑
i=1

q(i) k(i) = k and
N∑
i=1

q(i) a(i) = a.

It is worth noting that the question of what to allocate is not necessarily straightforward.
Are we to allocate the book value of equity? The market value of equity? Assets? In
general, the answer to this question is going to be guided by the nature of costs faced by
the firm. Even then, the costs may be difficult to define, as the decomposition of capital
costs offered by Mango (2005) (see below) suggests.

2.3 Conceptual Approaches to Allocating Capital

Assuming we have answered the question of what to allocate, the remaing question is how
to do it. Unfortunately, the answer is not straightforward: There is a bewildering variety
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of peddlers in the capital allocation market. Mathematicians bearing axioms urge us to
adhere to their methods—failure to do so will result in some immutable law of nature
being violated. Economists assure us that only their methods are “optimal.” Game
theorists insist that only their solution concepts can be trusted. Practitioners wave off all
of the foregoing as the raving of ivory tower lunatics, all the while assuring us that only
their methods are adapted to the “real world” problems faced by insurance companies.
Everyone has a “pet method,” perhaps one that has some intuitive appeal, or one that is
perfectly adapted to some particular set of circumstances.

Given such variety, it is not surprising that allocation methods defy easy categorization.
Many do end up in essentially the same place—the so-called Euler or Gradient Principle—
a convergence noted by Urban, Dittrich, Klüppelber, and Stölting (2003) and Albrecht
(2004). But others do not. In the following, we attempt to give an overview on the primary
approaches. We keep the focus on concepts, and delay examples and implementation to
the next section.

2.3.1 The Euler Method and Some Different Ways to Get There

Consider setting capitalization based on a differentiable risk measure ρ(I) = k and further
imagine allocating capital to line i based on:

k(i) =
∂ρ(I)

∂q(i)
(2.1)

This allocation is commonly referred to as gradient or Euler allocation, the latter being
a reference to Euler’s homogeneous function theorem. This theorem states that for every
positive homogeneous function of degree one (q(1), . . . , q(N)) 7→ ρ(q(1), . . . , q(N))—which is
equivalent to requiring that the risk measure ρ(I) = ρ(

∑
i q

(i) L(i)) be homogeneous—we

automatically obtain the “adding up” property: ρ(I) =
∑N

i=1 q
(i) ∂ρ(I)

∂q(i) . The basic Euler

approach can be found in Schmock and Straumann (1999) and Tasche (2004), among
others.

The Euler or gradient allocation can also be implemented without requiring that ρ(I) =
k by normalizing:

k(i)

k
=

∂ρ(I)

∂q(i)

ρ(I)
. (2.2)

One of the major advantages of the Euler allocation is that it is possible to directly calculate
(approximative) allocations given that one has an Economic Capital framework available
that allows to derive ρ(I) and k.2 More specifically, we can approximate the derivative

2This is not at all to say that this task is simple. In fact, the computational complexity associated with
evaluating economic capital presents a serious problem for financial institutions and frequently leads them
to adopt second-best calculation techniques (Bauer, Reuss, and Singer, 2012). However, the availability of
a suitable model for the different risk within a company’s portfolio and their interplay clearly is a necessity
for the derivation for any coherent allocation of capital.
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occurring in the allocation rule by simple finite differences (although more advanced ap-
proaches may be used), that is:

∂ρ(I)

∂q(i)
≈ ρ(I + ∆L(i))− ρ(I)

∆
, (2.3)

where ∆ > 0 is “small.”
A number of different paths lead to the Euler allocation.
Denault (2001) proposes a set of axioms that define a coherent capital allocation prin-

ciple when ρ(I) = k. His axioms required:

1. Adding up - The sum of allocations must be k.

2. No undercut - Any sub-portfolio would require more capital on a stand-alone basis.

3. Symmetry - If risk A and risk B yield the same contribution to capital when added
to any disjoint subportfolio, their allocations must coincide.

4. Riskless allocation - a deterministic risk receives zero allocation in excess of its mean
(see also Panjer (2002)).

Denault showed that the risk measure must necessarily be linear in order for a coherent
allocation to exist. This result essentially echoes the findings of Merton and Perold (1993),
but shows that allocation based on a linear risk measure constitutes an exception to their
indictment of using allocations to evaluate inframarginal or supramarginal changes to a
portfolio. Linear risk measures are obviously of limited application, but Denault (2001)
found more useful results when analyzing marginal changes in the portfolio. In particular,
he used five axioms to define a “fuzzy” coherent allocation principle that exists for any given
coherent, differentiable risk measure—and this allocation is given by the Euler principle
applied to the supplied risk measure.

Kalkbrener (2005) used a different set of axioms:

1. Linear aggregation - which combines axioms 1 and 4 of Denault

2. Diversification - which corresponds to axiom 2 of Denault

3. Continuity - Small changes to the portfolio should only have a small effect on the
capital allocated to a subportfolio.

He finds that the unique allocation under these axioms is given by the Gâteaux derivative
in the direction of the subportfolio, which again collapses to the Euler allocation:

k(i) = lim
ε→0

ρ(I + εL(i))− ρ(I)

ε
=
∂ρ(I)

∂q(i)
.
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Some have approached the capital allocation problem from the perspective of game
theory. Lemaire (1984) and Mango (1998) both noted the potential use of the Shapley
Value, which rests on a different set of axioms, in solving allocation problems in insurance.
The Shapley Value (Shapley, 1953) is a solution concept for cooperative games that assigns
each player a unique share of the cost. Denault (2001) formally applied this idea to the
capital allocation problem, in particular by relying on the theory of fuzzy cooperative games
introduced by Aubin (1981). The key idea here is that the cost functional c of a cooperative
game is defined via the risk measure ρ:

c(q(1), q(2), . . . , q(N)) = ρ(q(1), q(2), . . . , q(N))

The problem is then to allocate shares of this “cost” to the players, with the set of valid
solutions being defined as (see also Tsanakas and Barnett (2003)):

C =
{

(k(1), k(2), . . . , k(N))
∣∣c(q(1), q(2), . . . , q(N)) =

∑
k(i) q(i)

& c(u) ≥
∑

k(i) ui, u ∈ [0, q(1)]× . . .× [0, q(N)]
}

Thus, for allocations in this set, any (fractional) subportfolio will feature an increase in
aggregated per-unit costs, which connects to the usual solution concept in cooperative
games requiring any solution to be robust to defections by subgroups of the players. The
Aumann-Shapley solution is:

k(i) =
∂

∂ui

∫ 1

0

c(γ u) dγ

∣∣∣∣
uj=q(j) ∀j

If the risk measure is subadditive, positively homogeneous, and differentiable, the solu-
tion boils down to the Euler method when loss distributions are homogeneous.3

The Euler method is also recovered in a number of “economic” approaches to capital
allocation, where the risk measure is either embedded as a constraint in a profit maximiza-
tion problem (e.g., Meyers (2003) or Stoughton and Zechner (2007)) or embedded in the
preferences of policyholders (Zanjani, 2002). In either case, the marginal cost of risk ends
up being defined in part by the gradient of the risk measure. To illustrate, consider the
optimization problem adapted from Bauer and Zanjani (2013a):

max
k,q(1),q(2),...,q(N)

{ N∑
i=1

p(i)(q(i))− V (min{I, a})− C
}

︸ ︷︷ ︸
=Π

(2.4)

3Aumann-Shapley values can also be used to cope with the problem of inhomogeneous loss distributions.
In this case, Powers (2007) demonstrates that although the Euler principle will not apply, the Auman-
Shapley value can be used for the risk-allocation problem. Similarly, it may offer a solution if the underlying
risk measure does not satisfy the homogeneity condition. For instance, Tsanakas (2009) shows how to
allocate capital with convex risk measures, although the absence of homogeneity is shown to potentially
produce an incentive for infinite fragmentation of portfolios. The intuition for this rather undesirable
feature are risk aggregation penalties within inhomogeneous convex risk measures.
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subject to

ρ(q(1), q(2), . . . , q(N)) ≤ k,

From the optimality conditions associated with this problem, one can obtain:

∂Π

∂q(i)
=

(
−∂Π

∂k

)
× ∂ρ

∂q(i)
(2.5)

at the optimal exposures and capital level. Hence, for the optimal portfolio, the risk

adjusted marginal return
∂Π

∂q(i)

∂ρ

∂q(i)

for each exposure i is the same and equals the cost of a

marginal unit of capital −∂Π
∂k
. More to the point, the right hand side of 2.5 allocates

a portion of the marginal cost of capital to the i-th risk, an allocation that is obviously
equivalent to the Euler allocation. In this sense, the Euler allocation is indeed “economic,”
but it is important to stress that any economic content flows from the imposition of a risk
measure constraint.

2.3.2 Distance-Minimizing Allocations

Not all approaches lead to the Euler principle. Laeven and Goovaerts (2004), whose work
was later extended by Dhaene, Gooverts, and Kaas (2003) and Dhaene et al. (2012), derived
allocations based on minimizing a measure of the deviations of losses from allocated capital.
Specifically, Laeven and Goovaerts proposed solving:{

mink(1),(2),...,(N) ρ
(∑N

i=1

(
I(i)(L(i), q(i))− q(i) k(i)

)+
)

s.th.
∑N

i=1 q
(i) k(i) = k

to identify an allocation, whereas Dhaene et al. (2012) considered:{
mink(1),(2),...,(N)

∑N
i=1 q

(i)E
[
θ(i)D

(
I(i)(L(i),q(i))

q(i) − k(i)
)]

s.th.
∑N

i=1 q
(i) k(i) = k

where D is a (distance) measure and θ(i) are weighting random variables with E[θ(i)] = 1.
In the approach by Dhaene et al. (2012), certain choices for D and θ(i) can reproduce

various allocation methods. For instance, for D(x) = x2 and k =
∑

E[θ(i)I(i)], they arrive
at so-called weighted risk capital allocations k(i) = E[θ(i)L(i)] studied in detail by Furman
and Zitikis (2008b). Other choices lead to other allocation principles, including several that
can be derived from the application of the Euler principle.

2.3.3 Allocations by Co-Measures and the RMK Algorithm

The Ruhm-Mango-Kreps (RMK) algorithm (Ruhm and Mango, 2003; Kreps, 2005) is a
popular approach of capital allocation in practice, partly due to its ease of implementation.
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According to Kreps (2005), it commences by defining k =
∑

i q
(i) k(i) = E[I] + R as the

total capital to support the company’s aggregate loss I, where E[I] is the mean (reserve)
and R is the risk load. Then the capital allocations q(i) k(i) for risks i emanating from the
asset or the liability side are defined as:

q(i) k(i) = E[I(i)] +Ri

= E
[
I(i)
]

+ E
[(
I(i) − E[I(i)]

)
φ(I)

]
, (2.6)

where φ is the riskiness leverage, and “all” that one needs to do is to find the appropriate
form of φ. This allocation method adds up by definition, it scales with a currency change
if φ(λx) = φ(x) for a positive constant λ.

Different interpretations are possible, but key advantage ease of implementation since
it solely relies on taking “weighted averages” (Ruhm, 2013):

Algorithm 2.3.1. RMK Algorithm

• Simulate possible outcomes by component and total.

• Calculate expected values E[I(i)] by taking simple averages.

• Select a risk measure on total company outcomes and express the risk measure as
leverage factors.

• Calculate risk-adjusted expected values E[I(i) φ(I)] by taking “weighted averages”.

• Allocate capital in proportion to risk, by:4

q(i) k(i)

k
=

E[I(i) φ(I)] + E[I(i)](1− E[φ(I)])

E[I φ(I)] + E[I](1− E[φ(I)])
.

Of course, the RMK algorithm only presents the general framework. The crux lies in the
determination of the riskiness leverage φ. Various examples are presented in Kreps (2005),
some of which result in familiar allocation principles that can be alternatively derived by
the gradient principles.

More generally, Venter (2004) and Venter, Major, and Kreps (2006) introduce so-called
co-measures. Specifically, consider the risk measure5

ρ(I) = E

[∑
j

hj(I)φj(I)
∣∣Condition on I

]
,

where the h are linear functions. They then define the co-measure as

r(I i)) = E

[
J∑
j=1

hj(I
(i))φj(I)

∣∣Condition on I

]
,

4We adjust Ruhm’s formula here to be in line with the allocation above.
5The definition in Venter (2010) allows for different conditions for the different j.
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which obviously satisfy
∑n

i=1 r(I
(i)) = ρ(I) and thus serve as an allocation. Obviously, this

allocation can also be conveniently implemented with a similar algorithm as above.
As Venter (2010) points out, even for one risk measure there may be different co-

measures, i.e. the representation is not unique. Some of them yield representations that
are equivalent to the gradient allocation, but this is not necessarily the case.

2.3.4 Capital Allocation by Percentile Layer

Bodoff (2009) argues that allocations according to Value at Risk or according to tail risk
measures do not consider loss realizations at smaller percentiles, even though the firm’s
capital obviously supports these loss levels as well. Thus, in order to allocate, he advocates
considering all loss layers up to the considered confidence level. His approach considers
allocating capital to loss events, but since we are interested in allocating capital to lines we
follow the description from Venter (2010).

Assume the capital k is determined by some given risk measure (VaR in Bodoff (2009)).
Then the allocation for the layer of capital [z, z + dz] is:

E
[
Ii
I

∣∣I ≥ z

]
× dz.

Going over all layers of capital, we obtain the allocation:

q(i) ki =

∫ k

0

E
[
Ii
I

∣∣I ≥ z

]
dz,

where obviously:

N∑
i=1

q(i) ki =

∫ k

0

E
[
I

I

∣∣I ≥ z

]
dz =

∫ k

0

dz = k.

As Venter (2010) points out, even if k is set equal to a risk measure and allowed to change
with the volume of the writings, the resulting allocation does not collapse to the gradient
allocation in any known cases.

When implementing the approach based on a sample of size N , obviously it is necessary
to approximate the integral formulation above. When we base it on VaRα and use the
simple empirical quantile for its estimation, we can set:

q(i) ki =
αN∑
j=1

E
[
Ii
I

∣∣I ≥ I(j)

] [
I(j) − I(j−1)

]
,

where we set I(0) = 0. Since the conditional expectations within the sum have to be also
approximated by taking averages, the implementation in a spreadsheet may be cumbersome
(or even infeasible) for large samples.
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2.4 Capital Allocation in Practice

In this section, we review several specific examples of capital allocation. Most of the
examples are tied to a specific risk measure. In particular, the first four examples directly
result from an application of the Euler principle to Standard Deviation, Value-at-Risk,
Expected Shortfall, and an exponential risk measure.

An overview of all the considered allocation methods is presented in Figure 2.1

Figure 2.1: Overview of capital allocation methods

2.4.1 Covariance-type Allocations

The most basic risk measure of course are Standard-deviation and its square, Variance.
In particular, standard deviation is a homogeneous risk measure so that it possible to
immediately apply the Euler principle. However, it is common to more generally consider
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a risk measure of the following form, which directly derives from the so-called standard
deviation premium principle (Deprez and Gerber, 1985):

ρ(I) = E[I] + βStDev[I] = E[I] + β
√

Var[I].

Applying the Euler principle (that is, taking the derivative), we obtain:

k(i) = E[L(i)] + β
E[(L(i) − E[L(i)])× (I − E[I])]√

Var[I]
= E[L(i)] + β

Cov(L(i), I)√
Var[I]

,

which obviously “adds up”:

N∑
i=1

q(i) k(i) =
N∑
i=1

E[I(i)] + β
Cov(I(i), I)√

Var[I]
= ρ(I).

Of course, it is possible to immediately rely on this equation to determine allocations.
Alternatively, we can always rely on the approximation from Equation (2.3) or use the
RMK algorithm; specifically, here we can set:

φ(I) = β
I − E[I]

StDev(I)
. (2.7)

to yield the allocation above.

2.4.2 Value-at-Risk Allocation

The most common risk measure in financial application is Value-at-Risk at the confidence
level α ∈ (0, 1), defined as the α-quantile of the aggregate loss distribution (McNeil et al.,
2005):

VaRα(I) = inf{x ∈ R : P(I ≥ x) ≤ 1− α} = inf{x ∈ R : FI(x) ≥ α},

where FI is the cumulative distribution function of the aggregate loss I. Since VaR is
homogeneous, we can apply the Euler principle. We obtain (Gourieroux, Laurent and
Scailet, 2000):

k(i) = E
[
L(i)
∣∣I = VaRα(I)

]
.

Again, we could rely on the approximation from Equation (2.3) or use the RMK algorithm
with

φ(I) =
δ(I − VaRα(I))

fI(VaRα(I))
, (2.8)

where δ(·) is the Dirac Delta function to derive that allocation. However, as pointed out by
Kalkbrener (2005) approximating the directional derivative in (2.3) will be highly unstable,
and of course weighting one point by infinity as suggested by the dirac delta function is
not feasible. Instead, in our numerical approximations, we rely on a Bell-curve around the
required quantile.
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2.4.3 TVaR-Based Allocations

One of the most widespread allocation principles in practice are based on Expected Shortfall
or Tail-Value-at-Risk at the confidence level α:6

ESα(I) = TVaRα(I) = E
[
I
∣∣I ≥ VaRα(I)

]
=

1

1− α

∫ 1

α

VaRu(I) du.

Applying Euler, we obtain:

k(i) = E
[
L(i)
∣∣I ≥ VaRα(I)

]
,

which can again be estimated via approximation (2.3) or via the RMK algorithm with:

φ(I) =
1{I≥VaRα(I)}

1− α
. (2.9)

One criticism of these allocations is that they only consider extreme tail losses, so one
approach is to consider a weighted sum of these allocations at difference confidence levels.
This is similar in spirit to the allocation by percentile layer as suggested by Bodoff (2009)
(see Sec. 2.3.4).

There are various examples of allocations that derive from the ES. For instance, we may
consider a combination of ES and conditional Standard Deviation as a risk measure in the
spirit of Section 2.4.1 above:

ρ(I) = E[I|I ≥ VaRα(I)] + βStDev[I|VaRα(I)],

which is risk-adjusted TVaR (RTVaR) as introduced by Furman and Landsman (2006)
under a different name (Venter, 2010). An application of Euler yields:

q(i) k(i) = E [Ii|I ≥ VaRα(I)] + β
Cov (Ii, I|I ≥ VaRα(I))

StDev (I|I ≥ VaRα(I))
, (2.10)

and it can be implanted as a co-measure by choosing J = 2, h1(x) = h2(x) = x, φ1 ≡ 1,

φ2 = β I−E[I]
StDev(I|I≥VaRα(I))

with condition I ≥ VaRα(I).
Another alternative is to calculate the TVaR under a transformed distribution yielding

what is referred to as weighted TVaR (see Section 2.4.5).

2.4.4 Exponential Allocations

A less conventional risk measure that nonetheless satisfies the homogeneity property and
this allows for an application of the Euler principle is the so-called exponential risk measure:

ρ(I) = E
[
I exp

{
c I

E[I]

}]
.

6Aside from minor subtleties in the case of non-continuous distributions, the Expected Shortfall is
identical to the Tail-Value-at-Risk (TVaR) or Conditional Tail Expectation (CTE). We will treat them as
synonyms for the purpose of this report.
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As indicated by Venter, Major, and Kreps (2006), one may be tempted to define weighted
allocations as considered in Section 2.4.5 below via:

k(i) = E
[
L(i) exp

{
c I

E[I]

}]
,

which again can be immediately implemented via the RMK algorithm. However, an appli-
cation of Euler yields the slightly more intricate form:

k(i) =
∂ρ(I)

∂q(i)
= E

[
L(i) exp

{
c I

E[I]

}]
+c

E[L(j)]

E[I]
×E

[
I exp

{
c I

E[I]

}
×
(

L(i)

E[L(i)]
− I

E[I]

)]
.

(2.11)

Nonetheless, it can be implemented as a co-measure by choosing J = 2, h1(I) = I, φ1(I) =

e
cI
E[I] + c Ie

cI
E[I]

E[I]
, h2(I) = −E[I], and φ2(I) = c I2 e

cI
E[I]

E[I2]
.

2.4.5 Allocation based on Distortion Risk Measures

Distortion risk measures (Denneberg, 1990; Wang, 1996) are defined as

ρ(I) =

∫ ∞
0

g(F̄I(x)) dx,

where F̄I(x) = P(I > x) is the survival function and g : [0, 1] 7→ [0, 1] is an increasing
and concave distortion function with g(0) = 0 and g(1) = 1. Distortion risk measures are
coherent and, therefore, positive homogeneous so that we can derive allocations via the
Euler principle.

Distortion risk measures and allocations on their basis have been studied by Tsanakas
and Barnett (2003); Tsanakas (2004, 2008). In particular, by integration-by-parts we ob-
tain,

ρ(I) = E
[
I g′(F̄I (I))

]
,

which takes the form of a spectral risk measure (Acerbi, 2002). Tsanakas and Barnett
(2003) show that an application of the Euler principle then yields:

k(i) = = E
[
L(i) g′(F̄I (I))

]
,

which are indeed in the class of so-called weighted allocations (Furman and Zitikis, 2008b)
considered below.

Popular choices for g are the proportional hazards transform g(p) = pa or the Wang
transform g(p) = 1 − Φ (Φ−1(1− p)− λ) (Wang, 2000), where Φ denotes the cumulative
distribution function of the standard Normal disribution and λ is a parameter that is often
associated with a “risk premium.” In particular, the Wang transform falls in the class of
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complete and adapted risk measures as defined by Balbas, Garrido, and Mayoral (2009).
In case of the Wang transform, we obtain:

g′(p) = ϕ
(
Φ−1(1− p)− λ

)
× 1

ϕ (Φ−1(1− p))

=
ϕ (Φ−1(1− p)− λ)

ϕ (Φ−1(1− p)− λ)

= exp

{
Φ−1(1− p)λ− 1

2
λ2

}
.

For implementation in a Monte Carlo setting, we may approximate F̄I (I) by its empirical
counterpart.

2.4.6 Myers-Read Approach

Myers and Read (2001) argue that, given complete markets, default risk can be measured
by the default value, i.e. the premium the insurer would have to pay for guaranteeing its
losses in the case of a default. They then propose that “sensible” regulation will require
companies to maintain the same default value per dollar of liabilities and effectively choose
this latter ratio as their risk measure.

More precisely, following Mildenhall (2004), the default value can be written as:7

D(q(1), q(2), . . . , q(N))

= E
[
1{I≥a}(I − a)

]
= E

[
1{I≥E[I]+k(1) q(1)+...+k(N) q(N)}

(
I − [E[I] + k(1) q(1) + . . .+ k(N) q(1)]

)]
,

and the company’s default-to-liability ratio is:

c =
D

E[I]
=

E[1{I≥a}(I − a)]

E[I]
.

Myers and Read (2001) verify the “adding up” property for D—which again shows a
relationship to the Euler principle. They continue to demonstrate that in order for the
default value to remain the same as an exposure is expanded, it is necessary that:

c =

∂D
∂q(i)

E[L(i)]
,

which in turn yields:

cE[L(i)] = E
[(
L(i) −

(
E[L(i)] + k(i)

))
1{I≥a}

]
⇒ k(i) = E

[(
L(i) − E[L(i)]

) ∣∣I ≥ a
]
− c E[L(i)]

P(I ≥ a)
.

7In contrast to Myers and Read (2001), we ignore the asset side and possible adjustments in calculating
the “option value”.
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This is similar to the allocation found by Venter, Major, and Kreps (2006), although
they allocate assets rather than capital so E[L(i)] does not occur in the first term. As
indicated in their paper, it is possible to represent this allocation as a co-measure using
J = 2, h1(I) = I − E[I], φ1(I) = 1{I≥a}, h2(I) = I, and φ2(I) = − c

Pr[I≥a]
.

2.4.7 Transformed Distributions and Weighted Allocations

Weighted allocations are studied in (Furman and Zitikis, 2008b), and they arise from so-
called weighted distributions, which are a particular type of transformed distributions (Fur-
man and Zitikis, 2008a). They are defined via:

k(i) =
E
[
L(i)w(I)

]
E [w(I)]

where w : [0,∞) → [0,∞) is a non-decreasing weight function. They naturally “add up”
to the risk measure:

ρ(I) =
E [Iw(I)]

E [w(I)]

Thus, this class is again imlpementable by (and indeed closely related to) co-measures.
Examples include the allocations based on the Esscher transform

k(i) =
E
[
L(i)et I

]
E [et I ]

or allocattions based on the premium principle by Kamps (1998):

k(i) =
E
[
L(i)(1− e−t I)

]
E [(1− e−t I)]

.

As pointed out by Venter (2010), such transformed distributions can be applied to other
statistics than the mean. For instance, the ES (TVaR) under a transformed distribution is
called weighted TVaR (WTVaR). Since it is no longer linear in the loss, one can choose a
lower threshold thus addressing that the ES only depends on “extreme” scenarios.

2.4.8 D’Arcy (2011) Allocation

D’Arcy (2011) considers allocations by the RMK algorithm but identifies the flexibility
in choosing the riskiness leverage as its “greatest flaw.” To uniquely identify the “right”
function, he proposes to use capital market concepts, particulatly cost-of-capital to “reflect
the actual cost of recapitalizing the firm.”8 Specifically, he allows the riskiness leverage to

8This also serves as motivation for model developed in Section 4.1 although there we account for capital
costs explicitly in a multi-period setting.
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depend both on the size of the loss realization as well as on the type of shock leading to the
loss (idiosyncratic, industry-wide, or systemic). The riskiness leverage factor is the ratio
of the cost of capital divided by the normal cost of capital, where the “realized” cost of
capital, in addition to systemic factors, depends additively on the ratio of aggregate losses
to the firm’s actual capital:

φ(I) =
1{I≥C}(CoCmarket + I−a

a
)

CoCnormal

. (2.12)

It is important to note that D’Arcy (2011) only proposes the RMK algorithm for the
“consumptive” aspect of capital allocation, whereas he also includes a “non-consumptive”
allocation in the spirit of Mango (2005) (see Section 2.4.9).

2.4.9 Consumptive vs. Non-consumptive Capital

Mango (2005) argues that capital costs consist of two parts: On the one hand, an insurer’s
capital stock can be depleted if a loss realization exceeds the reserves for a certain segment
or line, or when reserves are increased. He refers to this as a consumptive use of capital
since in this case, funds are transferred from the (shared) capital account to the (segment-
specific) reserve account. The second, non-consumptive component arises from a “capacity
occupation cost” that compensates the firm for preclusion of other opportunities. It is
thought to originate from rating agency requirements in the sense that taking on a certain
liability depletes the underwriting capacity.

The importance of this distinction for our purposes is that it complicates practice in
cases where the two sources of costs require different approaches to allocation. For example,
D’Arcy (2011) follows Mango’s suggestion by first allocating consumptive capital via the
RMK algorithm, where the riskiness leverage or capital call cost factor φ is associated with
the cost of capital (see also Bear (2006) and D’Arcy (2011)). He then allocates capital
according to regulatory rules, and the final allocation ends up as an average of the two
allocations. Thus, the two different motivations for holding capital are reflected in a
hybridization of allocation methods.

2.4.10 Some Connections between the Allocations

There are several connections between the various allocation methods beyond what has
been pointed out so far in this section. We list them here:

• For elliptical distributions, the Euler allocation yields to the same relative amounts
of capital allocated to each line, irrespective of which (homogeneus) risk measure we
use (McNeil et al., 2005, Corollary 6.27).

• Asimit, Furman, Tang, and Vernic (2012) show that risk capital allocation based on
TVaR is asymptotically proportional to the corresponding Value-at-Risk (VaR) risk
measure as the confidence level goes to 1.
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2.5 Discussion

As laid out in Section 2.1, the practice of capital allocation serves a clear purpose: optimal
risk pricing and measuring the performance of different lines. Hence, many of the conceptual
approaches presented in Section 2.3—though possibly mathematical appealing—miss the
point. From the perspective of the insurer, capital should be allocated as to maximize
profits, and, as noted at the end of Section 2.3.1, the Euler method can claim to meet
this standard under some circumstances. This has already been acknowledged by (Venter,
Major, and Kreps, 2006), who point out that a marginal allocation appears to be the only
method that is in line with profit maximization.

Even the Euler method, however, suffers from dependence on the choice of risk measure—
a dependence shared by most capital allocation methods. The Euler method delivers the
correct marginal cost if and only if we have identified the appropriate risk measure. As
shown by Gründl and Schmeiser (2007), a risk measure constraint, even a seemingly sen-
sible one, will not help a firm improve profitability. This was also pointed out by Venter
(2010) he hints that “The allocation of risk measures used to quantify capital risks does not
necessarily capture the value of the risk for risk transfer purposes. [...] If risk attribution
is used to compare profits of insurer business units, the risk attributed to the business unit
should in some way reflect the value of the risk the unit is taking.”

In some cases, regulators may dictate the use of a particular risk measure, a situation
that would seem to fit the setup of Equation 2.4 neatly. Unfortunately, in reality, regulation
is only part of the story, as insurers typically hold far more capital than is required by
the regulator (Hanif et al., 2010). Any serious consideration of the constraints facing
insurers must take account of market influences, such as those dictated by rating agencies,
policyholders, and counterparties of various kinds, and complexity builds as more realism
is introduced. As illustrated by Bauer and Zanjani (2013a), even a relatively simple one
period model of an insurance company yields a fairly complex picture of risk, and, therefore,
a relatively complex risk measure is the appropriate one.

As we will illustrate in Chapters 4 and 5, the problem becomes even more acute when
multiple periods are introduced. In such cases, the carrying cost of capital on the balance
sheet is no longer a sufficient statistic for the cost of risk. Thus, pricing using traditional
capital allocation methods yields an inaccurate representation of the cost of risk. In
this more complex situation, we must broaden our notion of “capital” and take care in
estimating its cost when pricing risk.



Chapter 3

Stability of Allocation Methods

In this chapter, we analyze the allocation problems and methods discussed in the previous
chapters in the context of an example application. We gained access to (scaled) simulated
loss data for a global catastrophe reinsurance company. We believe this data offers a degree
of realism missing from previous contributions where proposed allocation methods are only
studied in the context of stylized examples or based on Normal distributions (which is
particularly limiting as discussed in Section 2.4.10).

We begin by describing in detail the data and approach to aggregation in Section 3.1.
In particular, for the majority of the analyses we limit the presentation to an aggregation
to four lines only in order to facilitate interpretation of the results. In Section 3.2, we
compare various conventional allocation methods introduced in Chapter 2, where we also
study their robustness by running sensitivity analyses. The subsequent Chapter 5 then
studies “optimal” allocations in the context of the model from Chapter 4 and discuss the
outcomes.

3.1 Description of the Data

We have 50,000 joint loss realizations for 24 distinct lines differing by peril and geographical
region. Figure 3.1 provides a histogram of the aggregate loss distribution, and Table 3.1 lists
the lines and provides some descriptive statistics about each line. The largest lines for our
reinsurer (by premiums and expected losses) are “US Hurricane”, “N American EQ West”
(North American Earthquake West), and “ExTropical Cyclone” (Extratropical Cyclone).
The expected aggregate loss is $187,819,998 with a standard deviation of $162,901,154, and
the aggregate premium income is $346,137,808.

We consider three different levels of aggregation: The first aggregation level that con-
siders all line separately with line numbers listed in Column “Agg1” of Table 3.1. The
second level has nine lines, where we aggregate business lines in the same peril category
by different geographical region. The line numbers are listed in Column “Agg2.” The third
level considers an aggregation to four lines, with line numbers listed in Column “Agg3.”
Here, where we lump together all lines by perils. In particular, we can think of Line 1 as

22
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Line Statistics Aggs
Premiums Expected Loss Standard Deviation Agg1 Agg2 Agg3

N American EQ East 6,824,790.67 4,175,221.76 26,321,685.65 1 1 1

N American EQ West 31,222,440.54 13,927,357.33 47,198,747.52 2 2 1

S American EQ 471,810.50 215,642.22 915,540.16 3 2 1

Australia EQ 1,861,157.54 1,712,765.11 13,637,692.79 4 3 1

Europe EQ 2,198,888.30 1,729,224.02 5,947,164.14 5 3 1

Israel EQ 642,476.65 270,557.81 3,234,795.57 6 3 1

NZ EQ 2,901,010.54 1,111,430.78 9,860,005.28 7 3 1

Turkey EQ 214,089.04 203,495.77 1,505,019.84 8 3 1

N Amer. Severe Storm 16,988,195.98 13,879,861.84 15,742,997.51 9 4 2

US Hurricane 186,124,742.31 94,652,100.36 131,791,737.41 10 4 2

US Winterstorm 2,144,034.55 1,967,700.56 2,611,669.54 11 4 2

Australia Storm 124,632.81 88,108.80 622,194.10 12 5 2

Europe Flood 536,507.77 598,660.08 2,092,739.85 13 5 2

ExTropical Cyclone 37,033,667.38 23,602,490.43 65,121,405.35 14 5 2

UK Flood 377,922.95 252,833.64 2,221,965.76 15 5 2

US Brushfire 12,526,132.95 8,772,497.86 24,016,196.20 16 6 3

Australian Terror 2,945,767.58 1,729,874.98 11,829,262.37 17 7 4

CBNR Only 1,995,606.55 891,617.77 2,453,327.70 18 7 4

Cert. Terrorism xCBNR 3,961,059.67 2,099,602.62 2,975,452.18 19 7 4

Domestic Macro TR 648,938.81 374,808.73 1,316,650.55 20 7 4

Europe Terror 4,512,221.99 2,431,694.65 8,859,402.41 21 7 4

Non Certified Terror 2,669,239.84 624,652.88 1,138,937.44 22 7 4

Casualty 5,745,278.75 2,622,161.64 1,651,774.25 23 8 4

N American Crop 21,467,194.16 9,885,636.27 18,869,901.33 24 9 3

Table 3.1: Descriptive Statistics
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Figure 3.1: Histograms for Aggregate Loss

“earthquake,” Line 2 as “storm and flood,” Line 3 as “fire & crop,” and Line 4 as “terror
& casualty.” In the text, in order to keep the results comprehensible, for many analyses
we limit the exposition to the four-line aggregation level. Figure 3.2 shows histograms for
each of these four lines.

We notice that the “earthquake” distribution is concentrated at low loss levels with
only relatively few realizations exceeding $50,000,000 (the 99% VaR only slightly exceeds
$300,000,000). However, the distribution depicts relatively fat tails with a maximum loss
realization of only slightly under one billion. The (aggregated) premium for this line is
$46,336,664 with an expected loss of $23,345,695.

“Storm & flood” is by far the largest line, both in terms of premiums ($243,329,704) and
expected losses ($135,041,756). The distribution is concentrated around loss realizations
between 25 and 500 million, though the maximum loss in our 50,000 realizations is almost
four times that size. The 99% VaR is approximately 700 million USD.

In comparison, the “fire & crop” and “terror & casualty” lines are small with an (aggre-
gated) premiums (expected loss) of about 34 (19) million and 22.5 (11) million, respectively.
The maximal realizations are around 500 million for “fire & crop” (99% VaR = 163,922,557)



CHAPTER 3. STABILITY OF ALLOCATION METHODS 25

and around 190 million for “terror & casualty” (99% VaR = 103,308,358).

(a) Line 1 (b) Line 2

(c) Line 3 (d) Line 4

Figure 3.2: Histograms for Aggregation Level 3 (Agg 3) Lines

3.2 Comparison of Conventional Allocation Methods

We consider most allocation techniques introduced in Section 2.3 and 2.4:

• Allocation by expected values.

• A covariance allocation (Section 2.4.1). Here we choose the parameter β = 2 due to
the similarities of the supporting risk measure to a quantile for a Normal distribution,
where 2 (or rather 1.96 for a two-sided confidence interval of 95%) is a common choice.

• TVaR (Expected Shortfall) allocations for confidence levels α = 75%, 90%, 95%, and
99% (Section 2.4.3).
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• VaR based allocations for confidence levels α = 95% and 99% (Section 2.4.2). Here
in addition to estimating the allocations based on splitting up the corresponding
empirical quantile in its loss components (labeled “simple”), we consider an estimation
that takes into account the surrounding realizations by imposing a bell curve centered
at the quantile with a standard deviation of three (labeled “bell”).

• Exponential allocations for parameters c = 0.1, 0.25, and 1 (Section 2.4.4).

• Allocations based on a distortion risk measure–particularly allocations based on the
Wang transform (Section 2.4.5). For the transform parameters, we use λ = 0.25,
λ = 0.5, λ = 0.75, where we follow Wang (2012) indicating that typical transform
parameters in the reinsurance domain range between 0.5 and 0.77, whereas 0.25 is a
typical assumption for long-termed Sharpe ratios in the financial market.

• Myers-Read allocations for different capital levels (Section 2.4.6). In particular, we
choose the capital equal to the 99.94% quantile, which roughly depends on capital
levels to support an AM Best AA+ rating; three times the premium which is roughly
consistent with NAIC aggregate levels; and the 99% VaR just for comparison pur-
poses.

• Weighted/transform-based allocations based on the Esscher and Kamps transfrom
(Section 2.4.7). Here we choose transform parameters such that an evaluation is
possible (non-explosive) but sufficiently different from the expected value allocation
(which results for t = 0). In particular, we use t = 1.E− 07/1.E− 09 for the Esscher
transform and t = 1.E − 08/1.E − 11 for the Kamps transfrom.

• The D’Arcy (2011) implementation of the RMK algorithm (Section 2.4.8), where we
rely two on the same (first) two capital levels as for the Myers-Read allocation.

• Allocations based on the percentile layer (Section 2.3.4), where we allocate the 90%,
95%, and 99% VaR.

• RTVaR allocations with α = 75%, 90%, and 95% and β = 2 as for the covariance
allocation.

• Allocation on the (simple) average of the four considered TVaRs.

3.2.1 Comparisons for the Unmodified Portfolio

Table 3.2 presents allocation results for the (unmodified) portfolio of the company. Here
for each risk measure, we list the capital levels for each line, their sum, as well as the risk
measure evaluated for the aggregate loss distributions. Obviously, the last two numbers
should coincide—which can serve as a simple check for the calculations.

Obviously these aggregate risk measures vary tremendously, and thus so do the by-line
allocations. For instance, it is trivial that the 99% quantile (VaR) is far greater than the
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Allocation Line 1 Line 2 Line 3 Line 4 Sum RiskMeas
ExpVal 23,345,695 135,041,756 18,658,134 10,774,413 187,819,998 187,819,998

12.43% 71.90% 9.93% 5.74% 100%
CovWBeta 62,292,648 398,599,625 38,938,608 13,791,425 513,622,306 513,622,306
β = 2 12.13% 77.61% 7.58% 2.69% 100%
CovWBeta/RMK 62,292,258 398,596,990 38,938,405 13,791,395 513,619,048 513,619,048

12.13% 77.61% 7.58% 2.69% 100%
TVaR75% 51,212,126 301,490,365 34,960,054 13,571,979 401,234,524 401,234,524

12.76% 75.14% 8.71% 3.38% 100%
TVaR90% 72,975,560 462,489,152 42,432,578 12,350,749 590,248,038 590,248,038

12.36% 78.36% 7.19% 2.09% 100%
TVaR95% 85,607,782 596,451,028 44,523,108 11,979,729 738,561,647 738,561,647

11.59% 80.76% 6.03% 1.62% 100%
TVaR99% 106,293,324 869,605,928 58,168,596 11,294,985 1,045,362,832 1,045,362,832

10.17% 83.19% 5.56% 1.08% 100%
VaR95% (simple) 9,776,274 330,811,906 173,984,700 14,118,944 528,691,824 528,691,824

1.85% 62.57% 32.91% 2.67% 100%
VaR95% (bell) 62,367,597 404,259,189 51,869,109 10,157,414 528,653,309 528,653,309

11.80% 76.47% 9.81% 1.92% 100%
VaR99% (simple) 7,170,815 816,870,497 39,256,266 4,060,778 867,358,356 867,358,356

0.83% 94.18% 4.53% 0.47% 100%
VaR99% (bell) 40,819,623 780,226,792 29,835,131 16,807,649 867,689,194 867,689,194

4.70% 89.92% 3.44% 1.94% 100%
Exponential Alloc. 27,850,426 166,607,986 20,890,454 10,989,763 226,338,629 226,338,629
c = 0.1 12.30% 73.61% 9.23% 4.86% 100%
Exponential Alloc. 37,216,272 245,941,709 23,451,637 8,755,958 315,365,576 315,365,576
c = 0.25 11.80% 77.99% 7.44% 2.78% 100%
Exponential Alloc. -3,671,904,055 23,720,252,516 -4,880,193,171 -3,252,109,822 11,916,045,468 11,916,045,468
c = 1 -30.81% 199.06% -40.95% -27.29% 100%
Wang 27,893,622 164,362,273 21,313,685 11,452,085 225,021,665 225,021,665
λ = 0.25 12.40% 73.04% 9.47% 5.09% 100%
Wang 33,402,026 201,407,441 24,294,793 12,004,713 271,108,972 271,108,972
λ = 0.5 12.32% 74.29% 8.96% 4.43% 100%
Wang 39,867,730 247,043,116 27,573,810 12,410,105 326,894,761 326,894,761
λ = 0.75 12.20% 75.57% 8.44% 3.80% 100%
MyersRead, a = 120,879,204 1,006,221,885 50,599,598 -7,876,720 1,169,823,967 1,169,823,967
1,357,643,965 10.33% 86.01% 4.33% -0.67% 100%
MyersRead, a = 64,285,407 756,847,100 37,746,242 -8,285,324 850,593,426 850,593,426
1,038,413,423 7.56% 88.98% 4.44% -0.97% 100%
MyersRead, a = 60,821,986 606,579,733 21,827,406 -9,690,768 679,538,358 679,538,358
867,358,356 8.95% 89.26% 3.21% -1.43% 100%
Esscher, t = 8,226,240 1,987,777,539 54,262,714 72,291,051 2,122,557,544 2,122,557,544
1.E-07 0.39% 93.65% 2.56% 3.41% 100%
Esscher, t= 27,359,301 163,201,071 20,690,228 11,031,052 222,281,653 222,281,653
1.E-09 12.31% 73.42% 9.31% 4.96% 100%
Kamps, t= 26,654,710 155,020,509 20,725,105 11,406,228 213,806,553 213,806,553
1.E-08 12.47% 72.51% 9.69% 5.33% 100%
Kamps, t= 40,195,291 249,028,113 27,434,525 12,082,021 328,739,950 328,739,950
1.E-11 12.23% 75.75% 8.35% 3.68% 100%
D’Arcy, a = 55,387,701 408,352,811 25,296,290 5,487,442 494,524,244 494,524,244
1,357,643,965 11.20% 82.57% 5.12% 1.11% 100%
D’Arcy, a = 104,209,232 875,467,350 62,492,051 11,388,390 1,053,557,023 1,053,557,023
1,038,413,423 9.89% 83.10% 5.93% 1.08% 100%
Bodoff, 47,772,088 273,086,001 36,572,490 18,591,385 376,021,964 376,021,964
VaR90% 12.70% 72.63% 9.73% 4.94% 100%
Bodoff, 66,892,452 393,236,293 46,970,415 21,592,664 528,691,824 528,691,824
VaR95% 12.65% 74.38% 8.88% 4.08% 100%
Bodoff, 104,581,664 670,427,703 66,183,982 26,165,006 867,358,356 867,358,356
VaR99% 12.06% 77.30% 7.63% 3.02% 100%
RTVaR 93,544,093 654,561,402 50,055,237 11,458,019 809,618,751 809,618,751
α = 75%, β = 2 11.55% 80.85% 6.18% 1.42% 100%
RTVaR 107,255,495 824,861,293 53,516,378 11,599,036 997,232,202 997,232,202
α = 90%, β = 2 10.76% 82.72% 5.37% 1.16% 100%
RTVaR 114,157,530 935,144,574 61,454,489 11,804,261 1,122,560,854 1,122,560,854
α = 95%, β = 2 10.17% 83.30% 5.47% 1.05% 100%
AvgTVaR 79,022,198 557,509,118 45,021,084 12,299,361 693,851,760 693,851,760

11.39% 80.35% 6.49% 1.77% 100%

Table 3.2: Allocations for Aggregation level 3; Basic Results
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95% quantile (VaR). Thus, in the second line for each method, Table 3.2 lists the allocations
as a percentage of the aggregate risk measure. These are the percentages on which we will
base our comparisons. This is not only because it facilitates comparisons, but also because
this is in line with practice where the actual capital of a company may not be given in terms
of a risk measure at all, or even if it is this may not be the measure used for allocation.

The first observation when comparing the allocations the realizations that many of them
look quite similar, which resonates with observations in other studies. For instance, in the
context of assumptions used for the CAS DFA modeling challenge (“Bohra-Weist DFAIC
distributions”), Vaughn (2007) points out that a variety of methods, including allocations
based on “covariance, Myers/Read, RMK with Variance, Mango Capital Consumption,
and XTVaR99 are all remarkably similar.” We find similar results in the context of an
example from life insurance (Bauer and Zanjani, 2013b). There are a few outliers, however,
most notably the Exponential Allocation with c = 1. The reason is that here there is an
extreme weight on the extreme tail—that in turn is driven by very extreme realizations of
line 2. Indeed there are various realizations in the aggregate tail where the line realizations
for lines 1, 4, and 5 are under the expected loss, which explains the resulting negative
allocations to these lines (cf. Equation (2.11)).

For comparing the remaining allocations, we note that each allocation in our four-
line context is characterized by three—not four—real numbers, since the fourth follows by
subtracting the sum of the others from 100%. Hence, we can compare allocations as points
in Euclidean space, and moreover we can evaluate the “distance” between two allocations
by identifying it with the distance between the two points in terms of its Euclidean norm.

Figure 3.3 plots all of our allocations except for the aforementioned exponential alloca-
tion with c = 1. From Panel 3.3(a), we see that there are a few other outliers in the sense
that the distance to other allocation methods is quite significant: Three value at risk al-
locations, namely the “simple” calculation (VaR1S, VaR2S) for both confidence levels and
the bell-curve based calculation for the higher confidence level (VaR2B); and the Esscher
allocation for the (high) parameter of 1E-7 (Essch1). The intuition for the latter is, again,
the exponential weight pushing all relevance to the extreme tail where line 2 dominates the
others. Hence, both the exponential allocation and the Esscher allocations are extremely
sensitive to the choice of the parameter (although this sensitivity does not appear to apply
to the Kamps allocation). For VaR, on the other hand, it is well-known that estimation
based on Monte Carlo simulation is erratic (Kalkbrener, 2005)—so it may be numerical
errors driving these outliers (at least for VaR1S).

Interestingly, aside from the “outlier” allocations mentioned above and two Myers-Read
allocations, the points all appear to lie on a parabola-shaped curve in three-dimenional
space that is suggestive of a systematic pattern. In order to zoom in on the remaining
allocations, Figure 3.3(b) re-plots the same points, but this time we exclude outlying al-
locations as well as the two outer Myers-Read allocations. Again, the allocations seem
related and we find that the expected value allocation (EV) plays an “extreme role.” This
may not come as a surprise since suitable allocation methods should penalize risk “more
than linearly.” (Venter, 2010).

A number of allocation methods are very close to the expected value allocation: The
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Kamps allocations, the Wang allocations, the Bodoff allocations, and the Covariance allo-
cation are all within 0.06 of the EV allocation. In contrast, all but one TVaR/RTVaR/
AvgTVaR allocations, the D’Arcy allocations, and the Myers-Read allocations all range
between 0.07 and 0.19—all roughly along the parabola-shaped curve, where the order ap-
pears to be driven by the parameters. The former methods are all driven by the entire
distribution, whereas the focus of the latter allocation methods is on the tails (though the
Myers-Read allocation does depend on the entire distribution).

Hence, the key observation is a dissonance between tail-based allocations and allocations
that are based on the entire distribution. But which one is more appropriate? Should we,
or should we not, focus on tails? (Venter, 2010) argues that from an economic stance, risk-
taking is not risk free—any modification to risk taking should carry some charge, so that
a focus on the tails is misguided. He supports using marginal (i.e., Euler-based) methods
that are based on the entire distribution such as the Wang transform, since they are most
“the most commensurate with pricing theory.” However, D’Arcy (2011) and Myers and
Read (2001) also present approaches with an economic motivations. Before we follow up
this question in the context of “optimal allocations” from the model presented in Chapter
4, we first examine the stability of these allocation methods, which is also an important
concern in practice.

3.2.2 Stability of the Methods

In this section, we study the stability of the allocation methods. In particular, we recalcu-
late the allocations from the previous subsection for two distorted portfolios:

• Sensitivity 1 : We eliminate 1,000 arbitrary sample realizations leaving us with 49,000
realizations.

• Sensitivity 2 : We replace the five worst case (aggregate) scenarios with the sixth
worst aggregate scenario (so that our sample now contains six identical scenarios).

Tables A.1 and A.2 in Appendix A shows the results.
The intuition behind the first stability test is clear: An allocation should be robust

to unsystematic changes in the sample. When adding, changing, or subtracting from the
sample in an unsystematic way, we would hope to see the allocation staying more or less
the same. And since we cannot add to or change the sample because we do not know the
data-generating process, we subtract.

The second test is motivated by ideas from Kou, Peng, and Heyde (2012), who discuss
robustness properties of risk measures and—based on the observation that coherent risk
measures are not always robust—define so-called natural risk statistics. It is important to
note that our angle is different in that we consider allocations and not risk measures, even
though the underlying issues are the same. Specifically, extreme tail scenarios are very hard
to assess—for instance, with 5,000 observations one can not distinguish between the Laplace
distribution and the T-distributions (Heyde and Kou, 2004). Therefore, modifications in
the extreme tail should not have a tremendous impact on the allocation.
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As indicated in the previous subsection, we can identify allocations for our four business
lines with points in three dimensional space, and we can identify the “difference” between
two allocations with the (Euclidean) distance between the corresponding points. For a
yardstick when assessing allocations, note that the difference between the 90% TVaR and
the 99% TVaR is 0.056, which is thus a sizable difference. The difference between the 95%
and the 99% TVaR is 0.026, which is still considerable.

Figure 3.4 plots the distance between the allocations for the original portfolio and the
modified portfolio for both sensitivity portfolios and all considered allocations methods.
Again, we find that VaR-based allocations and the Exp3 allocation stand out as extreme
outliers, though on different tests. More specifically, VaR allocations respond particularly
poorly to unsystematic changes in the portfolio, whereas the exponential allocation is par-
ticularly sensitive to changes in the tail. This contrasts with Kou, Peng, and Heyde (2012),
who argue that VaR has good robustness properties for risk measurement. We eliminate
(all) VaR-based and exponential allocations and plot the differences for the remaining
methods for both tests separately. Figure 3.5 displays the results.

Figure 3.5(a) shows the results for the (unsystematic) modification via eliminating
1,000 samples. We find that when ignoring VaR-based allocations, all methods are rel-
atively stable. The maximal difference now is about 0.0025 which is not too sizable for the
Myers-Read 2 allocation: the corresponding allocation vectors from Tables 3.2 and A.1 are
(7.56%;88.98%;4.44%;-0.97%) and (7.78%;88.85%;4.38%;-1.01%), respectively.

In contrast, when eliminating tail scenarios, the impact can be considerable. Figure
3.5(b) shows that in some cases it can amount to more than 0.04. The most sensitive meth-
ods are the Myers-Read allocations, the D’Arcy allocations, and the Esscher allocations—all
of which are “tail-focused.” However, we do not find the same for TVaR based allocations,
which again is contrary to the findings from Kou, Peng, and Heyde (2012) for risk measure-
ment. Also noteworthy is the stability of the Wang, the Kamps, and the Bodoff allocations,
so it appears that stability is less critical for non-tail-focused methods.
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(a) All Methods (w/o Exp3)

(b) Restricted Methods

Figure 3.3: Comparisons of Allocation Methods
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Figure 3.4: Stability of Allocations: Distance Between Allocations between Basic and
Modified Portfolios for Different Methods

(a) Sensitivity Test 1 (b) Sensitivity Test 2

Figure 3.5: Stability of Allocations: Distance Between Allocations between Basic and
Modified Portfolios for Different Methods



Chapter 4

Capital Allocation and Profit
Maximization: A Multi-Period Model

In this chapter, we reconsider the the connection between the marginal cost of risk and
the allocation of capital. As noted in Chapter 2, capital allocation can under some cir-
cumstances match up with the marginal cost of risk. However, demonstrations of this
connection have generally focused on restricted settings, such as a single period. Here,
we calculate the marginal cost of risk in the context of a multiperiod model of an insurer.
The key question here is whether the marginal cost of risk can be reconciled in theory with
capital allocation in a dynamic model of an insurance company.

We start off in Section 4.1 by laying out this model framework, then Section 4.2 derives
the marginal cost of risk for the insurance company. Section 4.3 provides a discussion of
the results, particularly their implications on capital allcations. Technical derivations and
alternative model versions are collected in Appendix B. The next chapter then discusses
implementation and calibration of the model for our example company.

4.1 Profit Maximization Problem in a Multi-Period

Model

Formally, as in Section 2.2, we consider an insurance company with N business lines with
corresponding loss realizations L

(i)
t , i = 1, 2, . . . , N each period t = 1, 2, . . . As before, these

losses could be associated with certain perils, certain portfolios of contracts, or individual
contracts/costumers. And again we consider the problem of allocating capital and/or costs
to these N losses.

The first key difference is that we now consider a multi-period setup so that losses are
indexed by line and period. We assume that for fixed i, L

(i)
1 , L

(i)
2 , . . . are non-negative,

independent, and identically distributed (square-integrable) (iid) random variables on the
complete probability space (Ω,F ,P). One may envision period-losses associated with a
certain peril such as earth quakes or hurricanes in a certain region. We make the iid
assumption for convenience of exposition and without much loss of generality. For instance,

33
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it is relatively straightforward to include a dynamic evolution due to (claims) inflation, e.g.
by multiplying the losses with an inflation rate as in:

L
(i)
t = (1 + rinf

i )t × L̃(i)
t ,

where
(
L̃

(i)
t

)
t≥1

are iid.

For now, we abstract from investments, so that all the uncertainty is captured by the
losses and we define the filtration F = (Ft)t≥0 that describes the information flow over time

via Ft = σ(L
(i)
s , i ∈ {1, 2, . . . , N}, s ≤ t). However, generalizations towards a model with

securities markets are possible (Bauer and Zanjani, 2013a).
Now at the beginning of every (underwriting) period t, the insurer chooses to under-

write certain portions of these risks and charges premium p
(i)
t , 1 ≤ i ≤ N , in return. More

precisely, as within the one-period model in Section 2.2, the underwriting decision corre-
sponds to choosing an indemnity parameter q

(i)
t ∈ Φ

(i)
t , where Φ

(i)
t are compact choice sets,

so that the indemnity for loss i in period t is:

I
(i)
t = I

(i)
t (L

(i)
t , q

(i)
t ),

where we require I
(i)
t (0, q

(i)
t ) = 0, i = {1, 2, . . . , N}. As before, for analytical convenience

we focus on proportional insurance transactions, i.e. we assume:

I
(i)
t = I(i)(L

(i)
t , q

(i)
t ) = q

(i)
t × L

(i)
t .

Again, generalizations are possible. We denote the aggregate period-t loss by It =
∑

i I
(i)
t .

The company has the possibility to raise or shed (i.e. pay dividends) capital Rb
t at the

beginning of the period at cost c1(Rb
t), c1(x) = 0 for x ≤ 0. Moreover, it can raise capital Re

t ,
Re
t ≥ 0, at the end of the every period—after losses have been realized—at a (higher) costs

c2(Re
t ). Here we think of Rb

t as “regular” forms of capitalization whereas Re
t is emergency

capital. In particular, we assume

c2(x) > c1(x), x ≥ 0, (4.1)

i.e. raising capital under normal conditions is less costly than in distressed states. We also
assume there exists a positive carrying cost for capital at within the company as a proportion
τ of at. One may imagine τ to arise from cost-of-capital charges by the shareholders
(sometimes referred to as the average cost of capital) and depreciation, whereas c1(·) are
costs arising from raising capital in the current period (which typically will be higher than
τ).

Finally, the (constant) continuously compounded risk-free interest rate is denoted by r.
Hence, the law of motion for the company’s capital (budget constraint) is:

at =

[
at−1 × (1− τ) +Rb

t − c1(Rb
t) +

N∑
j=1

p
(j)
t

]
er +Re

t − c2(Re
t )−

N∑
j=1

I
(j)
t (4.2)
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for at−1 ≥ 0. We require that

Rb
t ≥ −at−1(1− τ), (4.3)

the company cannot pay more in dividends than its capital (after capital costs have been
deducted).

The company defaults if at < 0, which is equivalent to[
at−1 × (1− τ) +Rb

t − c1(Rb
t) +

N∑
j=1

p
(j)
t

]
er +Re

t − c2(Re
t ) <

N∑
j=1

I
(j)
t .

Due to limited liability, in this case the funds in the company are not sufficient to pay all
the claims. We assume that the remaining assets in the firm are paid to claimants at the
same rate per dollar of coverage, that is the recovery for policyholder i is

min

I(i)
t ,

[
at−1 × (1− τ) +Rb

t − c1(Rb
t) +

∑N
j=1 p

(j)
t

]
er +Re

t − c2(Re
t )∑N

j=1 I
(j)
t

× I(i)
t

 .

The premium the company is able to charge for providing insurance now depends on the
riskiness of the coverage as well as the underwriting decision—that is, price is a function
of demand as within an inverse demand function. Formally, this means that the premiums
for line i, p

(i)
t , is a quantity known at time t (i.e., it is F-predictable) given by a functional

relationship:

Pi
(
at−1, R

b
t , R

e
t , (p

(j)
t )1≤j≤N , (q

(j)
t )1≤j≤N

)
= 0, 1 ≤ i ≤ N.

One way to specify this functional relationship that is in line with the micro-foundations
of insurance is to consider a set of (binding) participation constraints :

γi = Et−1

Ui
(w

(i)
t−1 − p

(i)
t

)
er − Lit + min

I(i)
t ,

[
at−1(1− τ) +Rbt − c1(Rbt) +

∑
j p

(j)
t

]
er +Ret − c2(Ret )∑

j I
(j)
t

I
(i)
t




︸ ︷︷ ︸
=v

(i)
t (at−1,w

(i)
t−1,q

(1)
t ,...,q

(N)
t ,p

(1)
t ,...,p

(N)
t )

,

(4.4)

where Ui is increasing and concave, and we call w
(i)
t−1 “wealth” and γi “reservation utility.”

This is the approach taken in Bauer and Zanjani (2013a) in a simpler setting, and it ulti-
mately relates capitalization and capital allocation to consumer concerns about company
solvency. However, of course relating price and demand this way requires a great amount
of supporting information for fixing the various inputs—so that relying on it for empirical
applications is challenging.

Instead, for the purpose of this report, we rely on an alternative reduced-form specifi-
cation that assumes premiums—as markups on discounted expected losses—are a function
of the company’s default probability. The underlying intuition is that consumers rely on
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insurance solvency ratings for making their insurance decisions, which in turn are closely
related to default probabilities (see Section 5.1 for more details). More precisely, we set:

p
(i)
t = e−r Et−1

[
I
(i)
t

]
(4.5)

× exp

α− β Pt−1
It >

at−1(1− τ) +Rbt − c1(Rbt) +

N∑
j=1

p
(j)
t

 er +Ret − c2(Ret )

− γEt−1[I]

 ,

that is the premium charged is the expected indemnity multiplied by an exponential
function of the default rate and the aggregate expected loss. Obviously, we expect both β
and γ to have a positive sign, i.e. (i) the larger the default rate the smaller the premium
loading and (ii) the more business the company writes, the smaller are the profit margins.

Therefore, all-in-all, the company solves:

max
{p(j)t },{q

(j)
t },{Rb

t},{Re
t}


E
[∑∞

t=1 1{a1≥0,...,at≥0} e
−rt
[
er
∑
j p

(j)
t −

∑
j I

(j)
t − (τ at−1 + c1(Rbt))e

r − c2(Ret )
]

−1{a1≥0,...,at−1≥0,at<0} e
−rt [(at−1 +Rbt)e

r +Ret
] ]

 ,

(4.6)

subject to (4.2); (4.3); (4.5); Re
t ≥ 0; {p(j)

t }, {q
(j)
t }, {Rb

t} F-predictable; and {Re
t} F-

adapted.
We obtain:

Lemma 4.1.1. The objective function may be equivalently represented as:

max
{p(j)
t },{q

(j)
t },{Rbt},{Ret}

{
E
[∑

{t≤t∗:a1≥0,a2≥0,...,at∗−1≥0,at∗<0} e
−rt [−erRb

t −Re
t

] ]
− a0

}
. (4.7)

Hence, the problem can be equivalently expressed as a dividend maximization problem
conventional in the finance literature.

Denote the optimal value function, i.e. the solution to (4.6) or (4.7), by V (a0).1 Then,
under mild conditions, the value function is finite and—as the solution to a stationary
infinite-horizon dynamic problem—satisfies the following Bellman equation:

Proposition 4.1.1 (Bellman Equation). Assume r, τ > 0. Then the value function V (·)
satisfies the following Bellman equation:

V (a) = max
{p(j)},{q(j)},Rb,Re



E
[

1{(a(1−τ)+Rb−c1(Rb)+
∑
p(j))er+Re−c2(Re)≥

∑
j I

(j)}

×
(∑

j p
(j) − e−r

∑
j I

(j) − τ a− c1(Rb)− e−r c2(Re)

+e−r V
(

[a(1− τ) +Rb − c1(Rb) +
∑
j p

(j)]er +Re − c2(Re)−
∑
j I

(j)
))

−1{(a(1−τ)+Rb−c1(Rb)+
∑
p(j))er+Re−c2(Re)<

∑
j I

(j)}
(
a+Rb + e−rRe

) ]


.

1Note that the discounted expected value of dividends less capital raising will equate to V (a0) + a0, so
that a locally decreasing V (·) does not necessarily imply that a less capitalized firm is worth less—solely
that a slighlty less capitalized firm may be yielding higher profits.
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(4.8)

subject to (4.4); (4.3); {p(j)
t }, {q

(j)
t }, Rb

t ∈ R; and Re
t ≥ 0 is σ(L(j), j = 1, . . . , N)-

measurable.

Note that since raising capital at the end of the period—which we interpret as raising
capital in distressed states—is more costly than raising capital under “normal” conditions
(cf. Eq. (4.1)), at the end of the period, it only makes sense to either raise exactly enough
capital to save the company or not raise any capital at all: Raising more will not be optimal
since it is possible to raise in the beginning of the next period at better conditions; raising
less will not be optimal since the company will go bankrupt and the policyholders are the
residual claimants. This yields:

Proposition 4.1.2. Re ∈ {0, Re
∗}, where Re

∗ solves:∑
j

I(j) −

[
a(1− τ) +Rb − c1(Rb) +

∑
j

p(j)

]
er = Re

∗ − c2(Re
∗). (4.9)

More precisely,

• for
[
a(1− τ) +Rb − c1(Rb) +

∑
j p

(j)
]
er ≥

∑
j I

(j), we have Re = 0;

• for
[
a(1− τ) +Rb − c1(Rb) +

∑
j p

(j)
]
er <

∑
j I

(j) and V (0) ≥ Re
∗, we have Re =

Re
∗;

• and for V (0) < Re
∗, we have Re = 0.

The latter assertion states that it only makes sense to save the company if the (stochas-
tic) amount of capital to be raised at the end of the period is smaller than the value of the
company, i.e. if the investment has a positive net present value. For a linear specification of
end-of-period costs, this leads to the following simplification of the optimization problem:

Corollary 4.1.1. For linear costs c2(x) = ξ x, x ≥ 0:

Re
∗ =

1

1− ξ

[∑
j

I(j) −

(
a(1− τ) +Rb − c1(Rb) +

∑
j

p(j)

)
er

]
In particular, the Bellman equation becomes:

V (a) = (4.10)

max
{p(j)},{q(j)},Rb



E
[

1{(a(1−τ)+Rb−c1(Rb)+
∑
p(j))er≥

∑
j I

(j)} ×
(∑

j p
(j) − e−r

∑
j I

(j) − τ a− c1(Rb)

+e−r V
(

[a(1− τ) +Rb − c1(Rb) +
∑
j p

(j)]er −
∑
j I

(j)
))

+1{(a(1−τ)+Rb−c1(Rb)+
∑
p(j))er<

∑
j I

(j)≤(a(1−τ)+Rb−c1(Rb)+
∑
p(j))er+(1−ξ)V (0)}×(

1
1−ξ

[
[
∑
j p

(j) + a(1− τ) +Rb − c1(Rb)]− e−r
∑
j I

(j)
]

+ e−rV (0)− [a+Rb]

)
+1{

∑
j I

(j)>(a(1−τ)+Rb−c1(Rb)+
∑
p(j))er+(1−ξ)V (0)}

(
−(a+Rb)

) ]


.
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subject to

p(i) = e−r E
[
I(i)
]

(4.11)

× exp

α− β P
I >

a(1− τ) +Rb − c1(Rb) +

N∑
j=1

p(j)

 er +Re − c2(Re)

− γE[I]

 ,

where I =
∑

j I
(j).

In addition to the constraint arising from the relationship between risk and premium,
we may be interested to consider an external solvency constraint imposed by regulation.
Such a constraint will take the form:

s

(∑
j

I(j)

)
≤ a(1− τ) +Rb − c1(Rb) +

N∑
j=1

p(j) + (1− ξ)V (0)︸ ︷︷ ︸
Available Capital

, (4.12)

where s is a monetary risk measure (see Frittelli and Gianin (2002) for details on the
properties of risk measures).2

4.2 The Marginal Cost of Risk

In what follows, we will generally assume a linear cost for end of period capital as in
Corollary 4.1.1, and study the problem (4.10) subject to the participation constraint (4.11)
and the regulatory constraint (4.12). For ease of presentation, we define

S =

[
a(1− τ) +Rb − c1(Rb) +

∑
j

p(j)

]
er (4.13)

and

D =

[
a(1− τ) +Rb − c1(Rb) +

∑
j

p(j)

]
er + (1− ξ)V (0) (4.14)

as the thresholds for I for saving the company and for letting it default, respectively.
Similarly to Bauer and Zanjani (2013a), we analyze the company’s marginal cost to de-

rive suitable capital allocations. More precisely, we know that at the optimum the marginal
premium income will equal the company’s marginal cost, and we consider a formulation
that accounts for the cost of raising capital and keeps the default probability at the margin
constant:

2This specification assumes that the company can put up the present value of future profits as a part
if its capital, which is consistent with market-consistent embedded value principles (American Academy of
Actuaries, 2011).
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Proposition 4.2.1. We have for the marginal cost for risk i ∈ {1, 2, . . . , N}:

E
[
∂I(i)

∂q(i)

]
exp {α− βP(I ≥ D)}

(1− c′b1 ))
(4.15)

= E
[
∂I(i)

∂q(i)
1{I≤D}

]
+ γ E

[
∂I(i)

∂q(i)

]
exp {α− βP(I > D)− γ E[I]}

+E
[
∂I(i)

∂q(i)
V ′ (S − I) 1{I≤S}

]
+ E

[
ξ

1− ξ
∂I(i)

∂q(i)
1{S<I≤D}

]
+E

[
∂I(i)

∂q(i)

∣∣∣∣ I = D

]
×
{

1

1− c′b1 )
βfI(D)E[I] exp{α− β P(I ≥ D)}

}
+
∂ρ(I)

∂q(i)
×
{
P(I ≥ D) +

c′b1 )

1− c′1(Rb)
− ξ

1− ξ
P(S ≤ I ≤ D)

−E
[
V ′
(
S − I

)
1{S≥I}

]
− 1

1− c′1(Rb)
β fI(D)E[I] exp{α− β P(I ≥ D)}

}
.

The allocation formula (4.15) may appear opaque at first sight but we observe that the
latter parts present a “weighted allocation” of the capital level D, where the weights relate
to a the company’s cost and are discussed in more detail below. The allocation parts arise

from the external risk measure (∂ρ(I)

∂q(i) ) and Value-at-risk (E
[
∂I(i)

∂q(i)

∣∣∣ I = D
]
)—which comes

from the specification of the premium function that assumes policyholders assess company
solvency via default probabilities.

As indicated above, D indeed is a pretty good notion of “capital:”

D = [a(1− τ) +Rb − c1(R(b)) +
∑

p(j)]er + (1− ξ)V (0)

The first part is the amount of available assets (previous assets a plus money raised plus
premiums, compounded over the period) and the second part is the cost-adjusted “present
value of future profits” for a zero-capital firm. This level “D” also is the default threshold,
i.e. the company defaults when losses are greater than D whereas consumers get their
full indemnity for aggregate loss realizations less than D.3 Therefore, the marginal cost
representation gives us the allocation of “the capital” D according to marginal cost—and
it is indeed a weighted allocation echoing results from Bauer and Zanjani (2013a).

Of course the question arises regarding the significance of this result. As we pointed out
in Section 2.1, the motivation for capital allocation approaches arises from the necessity
of allocating capital costs (see also Venter (2004) or D’Arcy (2011)). For this purpose, it
is important to understand what contributes to these costs. For this purpose, we consider
the marginal cost representation in the absence of a regulatory constraint:

3The problem with this notion of capital is that upon default, the consumers actually only receive S.
Hence, (D − S) may be interpreted as an endogenous default cost/penalty.
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Corollary 4.2.1. We have for the marginal cost for risk i ∈ {1, 2, . . . , N}:

E
[
∂I(i)

∂q(i)

]
exp {α− βP(I ≥ D)}

(1− c′b1 ))
(4.16)

= E
[
∂I(i)

∂q(i)
1{I≤D}

]
︸ ︷︷ ︸

(i)

+ γ E
[
∂I(i)

∂q(i)

]
exp {α− βP(I > D)− γ E[I]}︸ ︷︷ ︸

(ii)

+E
[
∂I(i)

∂q(i)
V ′ (S − I) 1{I≤S}

]
︸ ︷︷ ︸

(iii)

+E
[

ξ

1− ξ
∂I(i)

∂q(i)
1{S<I≤D}

]
︸ ︷︷ ︸

(iv)

+E
[
∂I(i)

∂q(i)

∣∣∣∣ I = D

]
×
{
P(I ≥ D) + τ∗

}
︸ ︷︷ ︸

(v)

,

where the “shadow cost of capital” τ ∗ is defined as:

τ∗ =
c′b1 )

1− c′1(Rb)
− ξ

1− ξ
P(S ≤ I ≤ D)− E

[
V ′
(
S − I

)
1{S≥I}

]}
(4.17)

Obviously, the marginal cost has various components. First, an additional dollar issued
in some line will increase the actuarial value of the liability in solvent states (i). Moreover,
the increased supply will yield a decrease in the price of insurance—i.e. there are “scale
costs” (ii). Also, the higher exposure will lead to a change in the capitalization at the end
of the period, which will affect the value of the company—that is, there may be a cost
associated with the continuation value of the company (iii). Since a company with a larger
exposure is more expensive to bail out, there further are costs associated with “saving” it
(iv). Finally, it will be necessary to increase capital holdings, which yields capital costs
(v). However, since the company can—and will—access company in various ways, the cost
for an additional dollar of capital is not straightforward. In particular, it generally is lower
since the cost of raising external since the company will seek the most effective way of
raising capital in different states of the world. This yields the “shadow cost” of capital τ ∗.

Adding up the marginal costs, we arrive at:

e−r E [I] exp {α− βP(I ≥ D)}
(1− c′b1 )) e−r

= E
[
I 1{I≤D}

]
+ S P(I > D)

+γ E [I] exp {α− βP(I > D)− γ E[I]}

+(1− ξ)V (0)

[
P(I ≥ D)

1− c′b1 )
+

[
c′b1 )

1− c′b1 )
− ξ

1− ξ

]
P(S ≤ I < D)

+E
[(

c′b1 )

1− c′b1 )
− V ′(S − I)

)
1{S≥I}

]]
−E

[
(S − I)V ′(S − I) 1{S≥I}

]
+E

[
ξ

(I − S)

1− ξ
1{S≤I<D}

]
+

[
a(1− τ) +

∑
j p

(j)

1− c′b1 )
+
Rb − c1(Rb)

1− c′b1 )

]
c′b1 ) er.
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Generally the interpretation is not straightforward. In particular, the marginal costs may
not “add up” to total costs due to non-linearities in V (·) and c1(·).

To obtain a correct representation of the costs of the company, all of these components
have to be allocated—which implies that “allocating capital” may not be sufficient. In sol-
vent states, these allocations are according to recoveries. In non-solvent states, allocations
can be inferred from the marginal cost representation (4.15)/(4.16).

4.3 Discussion

The multi-period setting, featuring company options to bear external financing costs in
order to raise additional funding, complicates the risk pricing problem considerably. Note-
worthy is the fact that this setting no longer features a mapping of capital allocation as
currently practiced to marginal cost. That is, allocating the capital of the firm is no longer
sufficient to recapture all of the risk components of marginal cost. Risk has the potential
now to consume not only the current capital of the firm, but also capital that has yet to be
raised. Moreover, unlike the model in Bauer and Zanjani (2013a), the continuation value
of the firm is no longer independent of its capital position since there are frictional costs
of financing. The consequences of these changes is that the current capital of the firm is
no longer the only cushion absorbing risk, so the marginal cost of risk can no longer be
recovered solely by allocating the same.

We proceed in the next section to numerical analysis of the model, with the aim of
comparing the marginal costs obtained to those implied by conventional allocation methods.
Since we have specified the objectives and constraints facing the firm, we have gone through
the “rigors” of the pricing project—with the consequence that, within the context of the
model, we have the “right” answer on marginal cost. And, while one could of course make
different choices in terms of model specification, the model addresses some key areas of
interest that affect the marginal cost of risk, such as the continuation value of the firm and
costly external financing, that should provide for revealing comparisons with static single
period capital allocation models.



Chapter 5

Capital Allocation versus Marginal
Cost in the Multi-Period Model

In this chapter, we calibrate and solve the model introduced in Section 4.1. We then cal-
culate the true marginal cost of risk in the solved model to that obtained from conventional
allocation methods. We find significant differences.

5.1 Calibration of the Multi-Period Model

The model as developed in the preceding sections requires calibration in several areas. It
is necessary to specify costs of raising and holding capital. It is also necessary to specify
how the insurance company is affected by changes in risk.

As a starting point for the costs of holding capital, Cummins and Phillips (2005) es-
timate the cost of equity capital for insurance companies using data from the 1997-2000
period. They use several methods to derive a variety of estimates, including a single factor
CAPM and Fama-French three-factor cost of capital model (Fama and French, 1993). The
estimates for property-casualty insurance fall in the neighborhood of 10% to 20%. Given
that the risk-free interest rate used in the analysis was based on the 30-day T-Bill rate,
which averaged about 5% over the sample period, the estimates suggest a risk premium for
property-casualty insurance ranging from as little as 5% to as much as 15%. However, pre-
vious research has found unstable estimates of the cost of capital, suggesting that the risk
premium may be considerably smaller; some specifications even suggest that the industry’s
“beta” may be zero or even negative (Cox and Rudd (1991), Cummins and Harrington
(1985)). Given the range of results, we use τ ranging from 3% to 5% in the model. Cali-
brating the cost of raising capital is more difficult, as we are aware of no studies specific to
the property-casualty industry. Hennessy and Whited (2007), however, analyze the cost of
external financing average across industries by using the entire sample of Compustat firms.
They find marginal equity flotation costs ranging from 5% for large firms to 11% for small
firms, and we base our quadratic calibration of external financing costs on these figures,
with the linear piece being set at 7.5%.

42
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Changes in risk are known to affect insurance companies. Epermanis and Harring-
ton (2006) focus on the property-casualty insurance industry in particular, documenting
significant declines in premium growth following ratings downgrades. Sommer (1996) doc-
umented a significant connection between default risk and pricing in the property-casualty
industry. The foregoing research suggests two possible ways to model the consequences
of risk for a property-casualty insurer: Increases in risk could either produce involuntary
drops in exposure volume or drops in price, or both. In our case, the price channel is most
easily incorporated into our model setup, so we proceed by calibrating the influence of risk
on price. Proceeding, however, requires a more precise definition of “risk” and an analysis
of how risk so defined correlates with pricing.

On the question of how to define “risk,” credit ratings are a tempting solution. While
credit ratings are widely accepted proxies for market assessments of a company’s risk level,
using them requires us to map credit ratings to some quantitative measure of risk amenable
to numerical analysis. The path we choose here is to map credit ratings to default risk
levels, which is a feasible exercise given the validation studies provided by rating companies
that document the historical connection between default risk and the various letter ratings.

The question of how to connect risk with pricing is an empirical one, requiring an
analysis of the historical relation between default risk inferred from credit ratings and
insurance prices. Since the data used for our numerical analysis is drawn from a reinsurance
company, we focus on empirical analysis of reinsurers, and specifically those identified in
the Reinsurance Association of America’s annual review of underwriting and operating
results for the years 2008-2012. These reviews yield 30 companies for the analysis, and we
collected all available ratings for that set of 30 companies from Moody’s, S&P, and A.M.
Best.

To calculate the default rate, we use a multi-stage procedure. We start by collecting 1)
Moody’s, S&P, and A.M. Best ratings from the 2008-2012 period for the sample of insurance
companies, 2) the joint distribution of Moody’s and S&P ratings for corporate debt as
reported in Table 1 of Cantor, Packer, and Cole (1997), and 3) one year default rates by
rating as reported in Tables 34 and 35 of Moody’s Annual Default Study: Corporate Default
and Recovery Rates, 1920-2012 and Tables 9 and 24 of S&P’s 2012 Annual Corporate
Default Study and Rating Transitions. We then fit smoothed default rates for Moody’s by
choosing default rates for the AA1, AA2, AA3, A1, A2, and A3 categories (AAA, BAA1,
and other historical default rates are held at their historic values)1 and perform a similar
procedure for S&P ratings. We then calculate an average one year default rate for A++,
A+, A, and A- A.M. Best ratings by calculating an average “Moody’s” default rate based

1Fit is assessed by evaluating 8 measures: 1) the weighted average default rate in the Aa category (using
the modifier distribution in Cantor (Packer) for the weights), 2) the weighted average default rate in the A
category, and “fuzzy” default rates for Aa1, Aa2, Aa3, A1, A2, and A3 categories, where the fuzzy rate is
calculated by applying the distribution of S&P ratings for each modified category to the default rates (for
example, if S&P rated 20% of Moody’s Aa1 as AAA, 50% as AA+ and 30% as AA, we would calculate
the “fuzzy” default rate for Aa1 as 20%*Aaa default rate + 50%*Aa1 default rate + 30%*Aa2 default
rate. We calculate squared errors between fitted averages and averages using the actual empirical data,
and select fitted values to minimize the straight sum of squared errors over the eight measures.
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on the our sample distribution of Moody’s ratings for each A.M. Best rating, calculating an
average“S&P” default rate in a similar manner, and then averaging the two. This yields
one-year default rates for each A.M. Best rating in the 2008-2012 sample as shown in Table
5.1.2

A++ 0.006%
A+ 0.044%
A 0.072%
A- 0.095%

Table 5.1: Fitted One-Year Default Rates for A.M. Best Ratings

Finally, we identify the relation between price and default risk by fitting the model

ln pit = α + αt − βdit − γEit + eit

where pit is calculated as the ratio of net premiums earned to the sum of loss and loss
adjustment expenses incurred and company i in year t, dit is the default rate corresponding
to the letter rating of company i in year t, Eit is the expected loss of company i in year t,
and eit is an error term. The expected loss is calculated by applying the average net loss
and loss adjustment expense ratio over the sample period for each firm to that year’s net
premium earned.

We use NAIC data for the period 2002 to 2010 for the sample of companies identified
above for the analysis. The results of the regression are presented in Table 5.2.

Variable Coefficient Std. Error t-value

Intercept (α) .65897 0.0614 10.73
Default rate (β) 3.92958 0.5090 -7.72
Expected Loss (γ) 1.48 E-10 2.24 E-11 -6.57

Year dummies are omitted. Observations: 288. Adj. R2 = 26%

Table 5.2: Premium Parametrizations

2It is worth noting that these are somewhat lower than suggested by A.M. Best’s own review of one-year
impairment rates, which indicated 0.06% for the A++/A+ category and 0.17% for the A/A- category (see
Exhibit 2 of Best’s Impairment Rate and Rating Transition Study – 1977 to 2011 ). In the empirical
analysis that followed, it was also necessary to assign a default rate for the B++ rating, which did not
occur in the 2008-2012 sample but did surface when performing the analysis over a longer time period. We
used 0.20% for this default rate, which is roughly consistent with the default rates for Baa or BBB ratings.
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Parameter 1 (“base case”) 2 (“profitable company”) 3 (“empty company”)

τ 3.00% 5.00% 5.00%

c
(1)
1 7.50% 7.50% 7.50%

c
(2)
1 1.00E-010 5.00E-011 1.00E-010

ξ 50.00% 75.00% 20.00%

r 3.00% 6.00% 3.00%

α 0.3156 0.9730 0.9730

β 392.96 550.20 550.20

γ 1.48E-010 1.61E-010 1.61E-010

Table 5.3: Parametrizations

5.2 Implementation of the Multi-Period Model

We use three sets of parameters based on the calibrations above. The sets are described in
Table 5.3. We vary the cost of holding capital τ from 3% to 5%; the cost of raising capital
is represented by a quadratic cost function with the linear coefficient c

(1)
1 fixed at 7.5%; the

cost of raising capital in distressed circumstances, ξ, varies from 20% to 75%; the interest
rate r varies from 3% to 6%; and the parameters α, β, and γ specify the underwriting
margin. For the latter parameters, we use the regression results from the previous section,
with the alpha intercept being adjusted for the average of the unreported year dummy
coefficients, and we also use an alternative, more generous specification based on previous
unreported analysis that omits loss adjustment expenses.

Using the loss distributions described in Section 3.1, we solve the optimization problem
by value iteration relying on the corresponding Bellman equation (4.10) on a discretized grid
for the capital level a. That is, we commence with an arbitrary value function (constant at
zero in our case), and then iteratively solve the one-period optimization problem (4.10) by
using the optimized value function from the previous step on the right hand side. Standard
results on dynamic programming guarantee the convergence of this procedure (see e.g.
Bertsekas (1995)).

For solving the one-period problem in each step, we rely on the following basic algorithm.
Details on some of the steps, on the implementation, and evidence on the convergence is
provided below.

Algorithm 5.2.1. For a given (discretizted) end-of-period value function V end, and for
capital levels ak = ADEL× k, k = 0, 1, 2, . . . ,AGRID :

1. Given capital level ak, optimize over q(1), q(2), q(3), q(4).

2. Given capital level ak and a portfolio (q(1), q(2), q(3), q(4)), optimize over R(b).
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3. Given ak, portfolio (q(1), q(2), q(3), q(4)), and raising decision R(b), determine the pre-
mium levels by evaluating Equation (4.11).

4. Given ak, portfolio (q(1), q(2), q(3), q(4)), R(b), and premiums (p(1), p(2), p(3), p(4)) evalu-
ate V beg(ak) based on the given end-of-period function V end by interpolating in between
the grid and extrapolating off the grid.

Discretization

We rely on an equidistant grid of size of 26 (AGRID = 25) with different increments depend-
ing on the parameters (ADEL = 250, 000, 000 for the base case and ADEL = 750, 000, 000
for the (2) “profitable company” and (2) “empty company” cases). We experimented with
larger grids with finer intercepts but 26 points proved to be a suitable compromise between
accuracy and run time of the program.

Optimization

For carrying out the numerical optimization of the portfolio values q(i), i = 1, 2, 3, 4, we
rely on the so-called downhill simplex method proposed by Nelder and Mead (1965) as
available within most numerical software packages. For the starting values, we rely on the
optimized values from the previous step, with occasional manual adjustments during the
early iteration in order to smooth out the portfolio profiles.

For the optimization of the optimal raising decision Rb, in order to not get stuck in a
local maximum, we first calculate the value function based on sixty different values across
the range of possible values [−a × (1 − τ),∞). We then use the optimum of these as the
starting value in the Nelder-Mead method to derive the optimized value.

Calculation of the Premium Levels

The primary difficulty in evaluating the optimal premium level is that premiums enter the
constraint (4.11) on both sides of the equation as the default rate itself depends on the
premium, and this dependence is discontinuous (given our discrete loss distributions). We
use the following approach: Starting from a zero default rate, we calculate the minimal
amount necessary to attain the given default rate; we then check whether this amount is
incentive-compatible, i.e. if the policyholders would be willing to pay it given the default
probability; if so, we calculate a smoothed version of the premium level using (4.11) by
deriving the (hypothetical) default rate considering how much the policyholders are willing
to pay over to the minimal amount at that level relative to the amount necessary to decrease
the default rate based on the our discretized distribution; if not, we move to the next
possible default rate given our discrete loss distribution and check again.
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Interpolation and Extrapolation

For arguments in between grid points, we use linear interpolation. For values off the grid
( a > AGRID × ADEL), supported by the general shape of the value functions across
iterations, we use either linear or quadratic extrapolation. More precisely, in case fitting a
quadratic regression in a to the five greatest grid values does not yield a significant quadratic
coefficient—i.e., if the value function appears linear in this region—we use linear extrap-
olation starting from the largest grid point. Otherwise, we use a quadratic extrapolation
fitted over the entire range starting from the largest grid point.

Implementation and Run Time

We implement the algorithm in matlab, and perform the computations on a numerical server
with Dual Six Core Intel Xeon Processors and 12 Gigabytes of RAM running Ubuntu. While
we do not make direct use of parallel computing, the multi-processor environment allows
us to perform the calculations for different parametrizations and program specification
simultaneously.

The one-period evaluations take in between several hours (up to twelve) and slightly
less than two hours, depending on the optimization. In particular, since the starting values
for the optimization are very close to the optimized values as the algorithm converges,
the optimization procedure runs a lot faster. The final values shown in the following
sections rely on 320 iterations of the value function, which altogether took several months
of calculations. However, deriving sensitivities with respect to the cost parameters for the
given premiums specification is faster since we can use the optimized value function as the
initial value function, which considerably reduces the number of necessary iterations.

Convergence

We assess convergence by calculating absolute and relative errors in the value and the policy
functions from one iteration to the next. These errors are directly proportional to error
bounds for the algorithm, where the proportionality coefficients depend on the interest
and the default rate (an upper bound is given by c̄ = e−r

1−e−r , see e.g. Proposition 3.1 in
(Bertsekas, 1995, Chap. 1))). More precisely, we define the absolute and relative errors for
the value function by:

AbsErrn = max
k
{‖Vn(ak)− Vn−1(ak)‖} ,

RelErrn = max
k

{
‖Vn(ak)− Vn−1(ak)‖

Vn(ak)

}
,
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where Vn denotes the value function after iteration n. Similarly, we define absolute and
relative errors for the policy function by:

AbsErr(q(i))n = max
k

∥∥∥q(i)
n (ak)− q(i)

n−1(ak)
∥∥∥ , i = 1, 2, 3, 4,

RelErr(q(i))n = max
k

∥∥∥q(i)
n (ak)− q(i)

n−1(ak)
∥∥∥

q
(i)
n (ak)

, i = 1, 2, 3, 4,

where q
(i)
n denotes the (optimized) exposure to line i after iteration n.
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Figure 5.1: Absolute and relative error in the value function for a company with carrying
cost τ = 3%, raising costs c(1) = 7.5%, c(2) = 1.00E-10, and ξ = 50%, interest rate r = 3%,
and premium parameters α = 0.315624284, β = 392.958, and γ = 1.48E-10.

Figure 5.1 show the errors for the value function using the base case parameters and
different values of n for between 90 and 320 (in increments of 10). Results (and error
bounds) for the remaining parametrizations are even smaller. After 320 iterations, the
absolute error in the value function is 379, 230, which is only a very small fraction of the
value function ranging from 1, 813, 454, 921 to 1, 955, 844, 603 (about 0.02%). In particular,
considering the rather conservative error bound above, these results imply that the error in
V amounts to less than one percent. Similarly, Figure 5.2 shows the absolute and relative
errors for the portfolio functions. Again, we observe that relative changes from one iteration
to the next after 320 iterations are maximally around 0.02%.

5.3 Discussion of Solutions

The solutions vary considerably across the parameterizations. While the value function in
the base case ranges from approximately 1.8 billion to 2 billion for the considered capital
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Figure 5.2: Absolute and relative error in the optimal portfolio weights for a company with
carrying cost τ = 3%, raising costs c(1) = 7.5%, c(2) = 1.00E-10, and ξ = 50%, interest rate
r = 3%, and premium parameters α = 0.315624284, β = 392.958, and γ = 1.48E-10.

levels, the ranges for the “profitable company” are in between 21.7 billion to 22.4 billion
and even around 56 to 57 billion for our “empty company.” Nonetheless the basic shape of
the solution is similar across the first two cases, whereas the “empty company case” yields
a qualitatively different form (hence the name). In what follows, we discuss the solutions in
the different cases in more detail, where we particularly emphasize the economic intuition
behind the results.

5.3.1 Base Case Solution

Various aspects of the “base case” solution are depicted in Figures 5.3, 5.4 and 5.5. Table 5.4
presents detailed results at three key capital levels.

Figure 5.3 displays the value function and its derivative. We observe that the value
function is “hump-shaped” and concave—that the derivative V ′ is decreasing in capital.
However, for high capital levels, the derivative is approaching a constant level of −τ = −3%
and the value function is essentially linear.

The optimal level of capitalization here is 1 billion. If the company has less than 1
billion, it raises capital as can be seen from Figure 5.4, where the optimal raising decision for
the company is displayed. However, the high and convex cost of raising external financing
prevents the company from moving immediately to the optimal level. The adjustment can
take time: Since internally generated funds are cheaper than funds raised from investors,
the optimal policy trades off the advantages associated with higher levels of capitalization
against the costs of getting there. As capitalization increases, there is a region around the
optimal level where the company neither raises nor sheds capital. In this region, additional
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Figure 5.3: Value function V and its derivative V ′ for a company with carrying cost τ = 3%,
raising costs c(1) = 7.5%, c(2) = 1.00E-10, and ξ = 50%, interest rate r = 3%, and premium
parameters α = 0.315624284, β = 392.958, and γ = 1.48E-10.

capital may bring a benefit, but it is below the marginal cost associated with raising an
additional dollar, which is c

(1)
1 = 7.5%. The benefit of capital may also be less than its

carrying cost of τ = 3%, but since this cost is sunk in the context of the model, capital may
be retained in excess of its optimal level. For extremely high levels of capital, however, the
firm optimally sheds capital through dividends to immediately return to a maximal level
at which point the marginal benefit of holding an additional unit of capital (aside from
the sunk carrying cost) is zero. The transition is immediate, as excess capital incurs an
unnecessary carrying cost and shedding capital is costless in the model. This is also the
reason that the slope of the value function approaches −τ in this region.

Figure 5.5 reveals how the optimal portfolio varies with different levels of capitalization.
As capital is expanded, more risk can be supported, and the portfolio exposures grow in
each of the lines until capitalization reaches its maximal level. After this point, the
optimal portfolio remains constant: Even though larger amounts of risk could in principle
be supported by larger amounts of capital, it is, as noted above, preferable to immediately
shed any capital beyond a certain point and, concurrently, choose the value maximizing
portfolio. Note that the firm here has an optimal scale because of the γ parameter in the
premium function. As the firm gets larger in scale, margins shrink because of γ.

Table 5.4 reveals that firm rarely exercises its default option (measured by P(I ≥ D),
which is evidently 0.002% even at low levels of capitalization). The firm does experience
financial distress more often at low levels of capitalization. For example, the probability
of facing claims that exceed immediate financial resources, given by P(I > S), is 4.54%
when initial capital is zero but 0.45% when capital is at the optimal level and 0.13% when
capitalization is at its maximal point. In all of these cases, the firm usually resorts to
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zero capital optimal capital high capital

a 0 1,000,000,000 4,000,000,000

V (a) 1,885,787,820 1,954,359,481 1,880,954,936

R(a) 311,998,061 0 -1,926,420,812

q1(a) 0.78 1.23 1.86

q2(a) 0.72 1.13 1.71

q3(a) 1.60 2.51 3.80

q4(a) 5.06 7.96 12.06

S 550,597,000 1,406,761,416 2,615,202,661

D 1,493,490,910 2,349,655,327 3,558,096,571

E[I] 199,297,482 313,561,933 474,841,815∑
p(i)/E[i] 1.32 1.30 1.27

P(I > a) 100.00% 2.66% 0.002%

P(I > S) 4.54% 0.45% 0.13%

P(I > D) 0.002% 0.002% 0.002%

c′1(Rb) 13.74% 4.65% 0.00%
ξ

1−ξ P(S < I < D) 4.54% 0.45% 0.12%

E[V ′ 1{I<S}] 8.03% 1.09% -2.66%

τ∗ 3.36% 3.34% 2.53%

Table 5.4: Results for a company with carrying cost τ = 3%, raising costs c(1) = 7.5%, c(2) =
1.00E-10, and ξ = 50%, interest rate r = 3%, and premium parameters α = 0.315624284,
β = 392.958, and γ = 1.48E-10.



CHAPTER 5. CAPITAL ALLOCATION VERSUS MARGINAL COST 52

-4.5e+09

-4e+09

-3.5e+09

-3e+09

-2.5e+09

-2e+09

-1.5e+09

-1e+09

-5e+08

 0

 5e+08

 0  1e+09  2e+09  3e+09  4e+09  5e+09  6e+09  7e+09

R

a

R(a)

(a) Raising decisions R(a)

-1e+09

-8e+08

-6e+08

-4e+08

-2e+08

 0

 2e+08

 4e+08

 0  5e+08  1e+09  1.5e+09  2e+09  2.5e+09  3e+09

R

a

R(a)

(b) Raising decisions R(a) (lim. range)

Figure 5.4: Optimal raising decision R for a company with carrying cost τ = 3%, raising
costs c(1) = 7.5%, c(2) = 1.00E-10, and ξ = 50%, interest rate r = 3%, and premium
parameters α = 0.315624284, β = 392.958, and γ = 1.48E-10.

emergency financing when claims exceed its cash, at a per unit cost of ξ = 50%, to remedy
the deficit. Because of the high cost of emergency financing, however, it restrains its
risk taking when undercapitalized and also raises capital before underwriting to reduce the
probability of having to experience financial distress.

The bottom lines of the table show the various cost parameters at the optimized value.
Here, the marginal cost of raising capital is significantly greater than 7.5% for a = 0 due to
the quadratic adjustment, whereas clearly the marginal cost is zero in the shedding region
(a = 4 billion). As indicated above, around the optimal capitalization level of 1 billion
neither raising or shedding is optimal—so that technically the marginal cost is undefined
due to the non-differentiability of the cost function c1 at zero. To determine the correct
“shadow cost” of raising capital, we use an indirect methods: We use the aggregated
marginal cost condition from Corollary 4.2.1 to back out the value of c′1(0) that yields
the left- and right-hand side to match up.3 The cost of emergency raising in this case is
exactly the probability of using this option (as ξ = 50%), which—as indicated—increases
in the capital level. Finally, the expected cost in terms of impact on the value function
(−E[V ′ 1{I<S}]) is negative for low capital levels since the value function is increasing in
this region, whereas it is positive and approaching τ for high capital levels. Combining the
different cost components, we obtain a “shadow cost” of capital τ ∗ as defined (4.16) that
is decreasing in a, though the level is not too different across capitalizations. In particular,
it is noteworthy that τ ∗ is considerably below the cost of raising capital. The next section

3In the differentiable regions (a = 0 and 4 bn), the aggregated marginal cost condition further validate
our results—despite discretization and approximation errors, the deviation between the left- and right-hand
side is maximally about 0.025% of the left-hand side.
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Figure 5.5: Optimal portfolio weights q1, q2, q3, and q4 for a company with carrying cost
τ = 3%, raising costs c(1) = 7.5%, c(2) = 1.00E-10, and ξ = 50%, interest rate r = 3%, and
premium parameters α = 0.315624284, β = 392.958, and γ = 1.48E-10.

provides a more detailed discussion of the marginal cost of risk.

5.3.2 Profitable Company

The results for the profitable company are similar in flavor to the “base case” presented
above, except that the company is now much more valuable—despite the increases in
the carrying cost of capital and in the cost of emergency financing—because of the more
attractive premium function. The corresponding results are collected in Appendix A. More
precisely, Figure A.1 displays the value function and its derivative, Figure A.2 displays the
optimal raising decision, and Figure A.3 displays the optimal exposure to the different lines
as a function of capital.

Again, there is an interior optimum for capitalization, and the company optimally
adjusts toward that point when undercapitalized. If overcapitalized, it optimally sheds to
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zero capital optimal capital high capital

a 0 3,000,000,000 12,000,000,000

V (a) 22,164,966,957 22,404,142,801 22,018,805,587

R(a) 1,106,927,845 0 -6,102,498,331

q1(a) 4.81 6.14 7.82

q2(a) 4.42 5.64 7.18

q3(a) 9.83 12.56 15.98

q4(a) 31.19 39.85 50.69

S 3,659,208,135 6,215,949,417 9,412,766,805

D 9,200,449,874 11,757,191,157 14,954,008,545

E[I] 1,227,901,222 1,569,126,466 1,995,776,907∑
p(i)/E[i] 2.15 2.03 1.90

P(I > a) 1.00% 10.70% 0.07%

P(I > S) 3.65% 0.91% 0.34%

P(I > D) 0.002% 0.002% 0.002%

c′1(Rb) 18.57% 5.97% 0.00%
ξ

1−ξ P(S < I < D) 10.94% 2.72% 1.00%

E[V ′ 1{I<S}] 2.93% -2.99% -4.58%

τ∗ 8.94% 6.62% 3.58%

Table 5.5: Results for a company with carrying cost τ = 5%, raising costs c(1) = 7.5%,
c(2) = 5.00E-11, and ξ = 75%, interest rate r = 6%, and premium parameters α = 0.973046,
β = 550.203, and γ = 1.61E-10.

a point where the net marginal benefit associated with holding a dollar of capital (aside
from the current period carrying cost which is a sunk cost) is zero. There is thus a
range where the company neither raises nor sheds capital, and the risk portfolio gradually
expands with capitalization until it reaches the point where the firm is optimally shedding
additional capital on a dollar-for-dollar basis.

As before, Table 5.5 again presents detailed results at three key capital levels. Although
parameters have changed, the company again rarely exercises the option to default, which
has a probability of occurrence of 0.002% even at low levels of capitalization. In most
circumstances, the firm chooses to raise emergency financing when claims exceed cash
resources, which happens as much as 3.65% of the time (at zero capitalization).

In contrast to the base case, the “shadow cost” of capital τ ∗ now is considerably higher
than before. To some extent, this originates from the different cost parameters. In partic-
ular, the cost of raising emergency capital now is ξ = 75% and the carrying cost τ = 5%.
However, in addition to higher costs, another aspect is that given the more profitable
premium function, it now is optimal to write more business requiring a higher level of
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capital—which in turn leads to higher capital costs. Essentially, the marginal pricing con-
dition (4.16) requires marginal cost to equal marginal return/profit—and the point where
the two sides align now is at a higher level.

5.3.3 Empty Company

Figure 5.6 presents the value function and the optimal raising decision for the “empty
company.” Figure 5.7 plots the corresponding optimal exposures to the different business
lines.

We call this case the “empty company” because it is optimal to run the company without
any capital. This can be seen from Figure 5.6, which shows that the total continuation
value of the company is decreasing in capital and that the optimal policy is to shed any
and all accumulated capital through dividends. The optimal portfolio is thus, as can be
seen in Figure 5.7, always the same—corresponding to the portfolio chosen when a = 0.
Again, note that there is an optimal scale in this case, because greater size is associated
with a compression in margins.
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Figure 5.6: Value function V and optimal raising decision Rb for a company with carrying
cost τ = 5%, raising costs c(1) = 7.5%, c(2) = 1.00E-10, and ξ = 20%, interest rate r = 3%,
and premium parameters α = 0.973046, β = 550.203, and γ = 1.61E-10.

However, even though the company is always empty, it never defaults. This extreme
result is produced by two key drivers—the premium function and the cost of emergency
financing. As with the “profitable company,” the premium function is extremely profitable
in expectation. Because of these high margins, staying in business is extremely valuable.
Usually, the premiums collected are sufficient to cover losses. When they are not, which
happens about 12% of the time, the company resorts to emergency financing. This happens
because, in contrast to the “profitable company,” emergency financing is relatively cheap
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Figure 5.7: Optimal portfolio weights q1, q2, q3, and q4 for a company with carrying cost
τ = 5%, raising costs c(1) = 7.5%, c(2) = 1.00E-10, and ξ = 20%, interest rate r = 3%, and
premium parameters α = 0.973046, β = 550.203, and γ = 1.61E-10.

at 20% (versus 75% in the “profitable company” case). Thus, it makes sense for the
company to forego the certain cost of holding capital—the primary benefit of which is
to lessen the probability of having to resort to emergency financing—and instead just
endure the emergency cost whenever it has to be incurred. In numbers, the cost of holding
capital at a = 0 is τ × P(I ≤ S) = 4.38%, whereas the cost of raising emergency funds is
ξ

1−ξP(I > S) = 3.08%.

5.4 The Marginal Cost of Risk and Capital Allocation

We now contemplate the marginal cost of risk and the allocation of capital within the
three example setups. The solutions presented above suggest some immediate difficulties
in applying traditional capital allocation methods to price risk. For example, consider
the extremely unrealistic (but pedagogically important) example of the “empty company,”
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where it is optimal to hold zero capital. Zero capital would imply zero risk penalties under
typical allocation methods. However, risk clearly extends beyond actuarial values, as the
insurer, even though it shuns default, may have to raise emergency financing to dig out of a
hole. This example thus raises a key question: If we are to use an risk allocation approach
for pricing, what exactly we should be allocating? Clearly, the traditional accounting capi-
tal, which is isomorphic with risk in single period models featuring risk measure constraints,
is no longer adequate: After all, in the case of the “empty company,” it is zero.

Equation (4.16) suggests that we need a broader conception of what capital is and
in fact indicates that the correct quantity to allocate is D, which represents all financial
resources currently held by the firm (capital and premiums) and the maximum amount of
emergency financing that it is willing to raise in case of distress. The correct allocation
of D, as well as allocations obtained from a variety of current allocation approaches, are
presented for the various capitalization levels of the “base case” in Tables 5.6 through 5.8.
Corresponding results for the “profitable company” are presented in Tables A.3, A.4, and
A.5 in Appendix A.

If we focus on percentage allocations to line, allocation using traditional methods comes
close to the correct allocation in a number of circumstances. Value-at-Risk allocations cen-
tered on the point of default, for example, are generally very close to the correct allocations
as suggested by the theory. Allocations according to the expected value (“ExpVal”) also
tend to be close in terms of the relative risk weightings assigned to the lines. TVaR al-
locations are often, though not always, close—depending on the specification and on the
threshold.

However, the problems suggested by Equation (4.16) go much deeper than relative
weightings. Even if we identify the correct quantity to allocate, Equation (4.16) shows
that the marginal cost of risk goes far beyond that obtained from a simple allocation
of D in two respects. First, calculating the cost of “capital” when allocating D is not
straightforward: The theoretical analysis indicates that the key quantity is P(I ≥ D) + τ ∗,
where τ ∗ is defined as a marginal cost of raising capital, net of the benefits it provides, as
defined by Equation (4.17). Second, the marginal cost of risk involves terms connected to
the scale of the company, the continuation value of the company, and the costs associated
with emergency capital raises that lie outside any allocation of capital, whether broadly
defined or otherwise: These additional terms are not difficult to allocate to line in theory
(as their allocation follows from actuarial values or conditional actuarial values), but 1)
they are not ones typically considered in insurance pricing practice and 2) they are not
embedded in the risk penalty emerging from a traditional allocation.

Tables 5.9, 5.10, and 5.11 show the cost allocation decomposition for the various sce-
narios in the three cases.4

The component corresponding to the allocation of D—identified as “Capital Cost (v)”
in the tables—varies considerably in terms of its importance in the total cost picture.
Restricting our attention to parts (ii) through (v), which are the cost components other

4In the tables we are taking the product of marginal cost and total exposure quantity, so it is worth
noting that the sum total will not add up to total costs because of nonlinearities in the cost function.
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Line 1 Line 2 Line 3 Line 4 Aggregate

Correct Allocation 149,175,009 730,716,509 232,234,592 381,467,263 1,493,593,373
9.99% 48.92% 15.55% 25.54% 100.00%

VaRP(I>D) (bell) 148,255,950 658,888,004 258,908,109 426,676,536 1,492,728,598
9.93% 44.14% 17.34% 28.58% 100.00%

VaRP(I>D) (simple) 153,267,910 655,303,241 263,136,489 421,593,655 1,493,301,295
10.26% 43.88% 17.62% 28.23% 100.00%

VaRP(I>S) (bell) 60,284,530 282,096,680 78,152,633 129,837,379 550,371,222
10.95% 51.26% 14.20% 23.59% 100.00%

VaRP(I>a) (bell) 7,689,462 34,310,013 9,235,134 20,716,784 71,951,393
10.69% 47.68% 12.84% 28.79% 100.00%

TVaRP(I>D) 6,420,436 1,424,420,512 86,571,987 365,933,109 1,883,346,043
0.34% 75.63% 4.60% 19.43% 100.00%

TVaRP(I>S) 53,954,170 337,608,266 97,876,124 214,796,846 704,235,407
7.66% 47.94% 13.90% 30.50% 100.00%

TVaRP(I>a) 18,220,905 96,769,504 29,767,618 54,539,455 199,297,482
9.14% 48.56% 14.94% 27.37% 100.00%

CovWBeta (β = 2) 43,787,166 247,492,845 72,036,476 139,593,820 502,910,307
8.71% 49.21% 14.32% 27.76% 100.00%

MyersRead (D) -47,443,233 1,138,355,651 -1,425,462 204,706,472 1,294,193,428
-3.67% 87.96% -0.11% 15.82% 100.00%

MyersRead (S) 21,686,773 166,239,162 45,160,653 118,212,931 351,299,518
6.17% 47.32% 12.86% 33.65% 100.00%

MyersRead (a) -18,220,905 -96,769,504 -29,767,618 -54,539,455 -199,297,482
9.14% 48.56% 14.94% 27.37% 100.00%

RTVaRP(I>S) (β = 2) 75,562,556 510,094,422 152,856,860 264,660,684 1,003,174,523
7.53% 50.85% 15.24% 26.38% 100.00%

RTVaRP(I>a) (β = 2) 37,431,008 257,760,951 81,138,377 144,113,111 520,443,447
7.19% 49.53% 15.59% 27.69% 100.00%

AvgTVaR 26,198,504 619,599,427 71,405,243 211,756,470 928,959,644
2.82% 66.70% 7.69% 22.80% 100.00%

ExpVal 18,220,905 96,769,504 29,767,618 54,539,455 199,297,482
9.14% 48.56% 14.94% 27.37% 100.00%

Table 5.6: Capital allocations in the base case, a = 0.
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Line 1 Line 2 Line 3 Line 4 Aggregate

Correct Allocation 217,683,368 1,135,677,070 349,208,277 646,896,471 2,349,465,186
9.27% 48.34% 14.86% 27.53% 100.00%

VaRP(I>D) (bell) 189,930,440 1,120,941,130 358,864,552 673,023,611 2,342,759,733
8.11% 47.85% 15.32% 28.73% 100.00%

VaRP(I>D) (simple) 318,656,623 790,497,728 482,903,474 757,407,881 2,349,465,707
13.56% 33.65% 20.55% 32.24% 100.00%

VaRP(I>S) (bell) 104,913,687 689,427,368 212,102,988 397,041,508 1,403,485,552
7.48% 49.12% 15.11% 28.29% 100.00%

VaRP(I>a) (bell) 64,610,209 419,263,617 138,669,493 371,631,693 994,175,011
6.50% 42.17% 13.95% 37.38% 100.00%

TVaRP(I>D) 10,101,520 2,241,089,988 136,207,073 575,735,990 2,963,134,571
0.34% 75.63% 4.60% 19.43% 100.00%

TVaRP(I>S) 135,605,382 843,389,578 271,352,094 402,104,339 1,652,451,393
8.21% 51.04% 16.42% 24.33% 100.00%

TVaRP(I>a) 98,906,139 609,566,595 174,086,637 347,485,834 1,230,045,205
8.04% 49.56% 14.15% 28.25% 100.00%

CovWBeta (β = 2) 68,892,108 389,388,848 113,337,863 219,628,132 791,246,950
8.71% 49.21% 14.32% 27.76% 100.00%

MyersRead (D) -74,653,968 1,790,962,760 -2,258,578 322,043,179 2,036,093,393
-3.67% 87.96% -0.11% 15.82% 100.00%

MyersRead (S) 84,475,324 571,843,375 187,820,551 249,060,233 1,093,199,483
7.73% 52.31% 17.18% 22.78% 100.00%

MyersRead (a) 49,206,418 345,616,751 92,891,844 198,723,054 686,438,067
7.17% 50.35% 13.53% 28.95% 100.00%

RTVaRP(I>S) (β = 2) 169,603,332 1,114,766,034 357,856,176 480,557,523 2,122,783,065
7.99% 52.51% 16.86% 22.64% 100.00%

RTVaRP(I>a) (β = 2) 129,130,587 862,858,690 254,910,745 488,415,718 1,735,315,741
7.44% 49.72% 14.69% 28.15% 100.00%

AvgTVaR 81,537,680 1,231,348,720 193,881,935 441,775,388 1,948,543,723
4.18% 63.19% 9.95% 22.67% 100.00%

ExpVal 28,667,653 152,250,803 46,834,551 85,808,926 313,561,933
9.14% 48.56% 14.94% 27.37% 100.00%

Table 5.7: Capital allocations in the base case, a = 1, 000, 000, 000.
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Line 1 Line 2 Line 3 Line 4 Aggregate

Correct Allocation 328,403,144 1,724,946,618 527,156,732 980,870,637 3,561,377,132
9.22% 48.43% 14.80% 27.54% 100.00%

VaRP(I>D) (bell) 319,534,978 1,622,723,777 581,996,230 1,027,979,717 3,552,234,701
9.00% 45.68% 16.38% 28.94% 100.00%

VaRP(I>D) (simple) 365,172,764 1,561,311,149 626,943,235 1,004,479,808 3,557,906,956
10.26% 43.88% 17.62% 28.23% 100.00%

VaRP(I>S) (bell) 71,944,639 1,695,239,957 439,712,073 403,382,905 2,610,279,573
2.76% 64.94% 16.85% 15.45% 100.00%

VaRP(I>a) (bell) 364,712,276 1,559,342,958 626,152,829 1,003,213,664 3,553,421,727
10.26% 43.88% 17.62% 28.23% 100.00%

TVaRP(I>D) 15,297,190 3,393,793,111 206,264,519 871,864,211 4,487,219,031
0.34% 75.63% 4.60% 19.43% 100.00%

TVaRP(I>S) 244,649,099 1,547,523,123 558,781,234 638,042,037 2,988,995,494
8.18% 51.77% 18.69% 21.35% 100.00%

TVaRP(I>a) 15,297,190 3,393,793,111 206,264,519 871,864,211 4,487,219,031
0.34% 75.63% 4.60% 19.43% 100.00%

CovWBeta (β = 2) 104,326,342 589,671,032 171,632,529 332,593,179 1,198,223,083
8.71% 49.21% 14.32% 27.76% 100.00%

MyersRead (D) -113,061,175 2,712,093,947 -3,435,431 487,657,416 3,083,254,757
-3.67% 87.96% -0.11% 15.82% 100.00%

MyersRead (S) 167,062,113 1,135,465,965 432,026,838 405,805,930 2,140,360,847
7.81% 53.05% 20.18% 18.96% 100.00%

MyersRead (a) -72,659,861 2,926,661,514 62,568,475 608,588,057 3,525,158,185
-2.06% 83.02% 1.77% 17.26% 100.00%

RTVaRP(I>S) (β = 2) 296,132,765 1,958,484,860 689,777,132 756,846,526 3,701,241,284
8.00% 52.91% 18.64% 20.45% 100.00%

RTVaRP(I>a) (β = 2) 61,066,762 3,777,367,806 328,659,365 1,085,280,442 5,252,374,375
1.16% 71.92% 6.26% 20.66% 100.00%

AvgTVaR 91,747,826 2,778,369,782 323,770,091 793,923,486 3,987,811,185
2.30% 69.67% 8.12% 19.91% 100.00%

ExpVal 43,412,728 230,560,901 70,923,674 129,944,511 474,841,815
9.14% 48.56% 14.94% 27.37% 100.00%

Table 5.8: Capital allocations in the base case, a = 4, 000, 000, 000.
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a = 0 Line 1 Line 2 Line 3 Line 4 Aggregate

Line 1 Line 2 Line 3 Line 4 Aggregate
Solvent payments, (i) 23,345,530 135,002,000 18,657,049 10,772,967 199,259,815

(E[L(i) 1{I<D}]) 9.14% 48.55% 14.94% 27.37% 100.00%
Scale effect, (ii) 1,054,415 6,099,197 842,700 486,629 9,001,325

( γ
1−c′1(Rb)

E[L(i)]
∑
k p

(k)) 9.14% 48.56% 14.94% 27.37% 100.00%

Continuation value, (iii) 1,787,494 10,069,585 1,395,397 781,737 14,794,219
(E[L(i) 1{I<S} V

′]) 9.43% 48.77% 15.05% 26.75% 100.00%
Raising cost, (iv) 3,136,921 21,340,216 2,782,890 1,924,195 31,920,536

( ξ
1−ξ E[L(i) 1{S<I<D}]) 7.67% 47.91% 13.91% 30.51% 100.00%

Capital cost, (v) 6,423,322 34,269,301 4,891,903 2,532,602 50,194,848
(E[L(i)|I = D]× [P(I > D) + τ∗]) 9.99% 48.92% 15.55% 25.54% 100.00%

Cost, (iii)-(v) 11,347,737 65,679,102 9,070,189 5,238,533 96,909,604
9.14% 48.57% 14.93% 27.36% 100.00%

Non payments, (ii)-(v) 12,402,152 71,778,299 9,912,889 5,725,162 105,910,928
9.14% 48.56% 14.93% 27.36% 100.00%

a = 1, 250, 000, 000 Line 1 Line 2 Line 3 Line 4 Aggregate

Line 1 Line 2 Line 3 Line 4 Aggregate
Solvent payments, (i) 23,345,530 135,002,000 18,657,049 10,772,967 313,502,671

(E[L(i) 1{I<D}]) 9.14% 48.55% 14.94% 27.37% 100.00%
Scale effect, (ii) 1,475,632 8,535,701 1,179,341 681,028 19,819,580

( γ
1−c′1(Rb)

E[L(i)]
∑
k p

(k)) 9.14% 48.56% 14.94% 27.37% 100.00%

Continuation value, (iii) 557,566 3,411,166 442,838 281,845 7,886,781
(E[L(i) 1{I<S} V

′]) 8.68% 48.76% 14.09% 28.46% 100.00%
Raising cost, (iv) 501,193 3,356,439 489,699 227,776 7,442,867

( ξ
1−ξ E[L(i) 1{S<I<D}]) 8.27% 50.84% 16.52% 24.37% 100.00%

Capital cost, (v) 5,917,572 33,625,361 4,643,976 2,711,437 78,428,268
(E[L(i)|I = D]× [P(I > D) + τ∗]) 9.27% 48.34% 14.86% 27.53% 100.00%

Cost, (iii)-(v) 6,976,331 40,392,966 5,576,513 3,221,059 93,757,915
9.14% 48.57% 14.93% 27.36% 100.00%

Non payments, (ii)-(v) 8,451,962 48,928,667 6,755,854 3,902,086 113,577,496
9.14% 48.57% 14.93% 27.36% 100.00%

a = 4, 000, 000, 000 Line 1 Line 2 Line 3 Line 4 Aggregate

Solvent payments, (i) 23,345,530 135,002,000 18,657,049 10,772,967 474,752,070
(E[L(i) 1{I<D}]) 9.14% 48.55% 14.94% 27.37% 100.00%

Scale effect, (ii) 2,080,451 12,034,241 1,662,719 960,161 42,315,511
( γ

1−c′1(Rb)
E[L(i)]

∑
k p

(k)) 9.14% 48.56% 14.94% 27.37% 100.00%

Continuation value, (iii) -467,409 -2,524,447 -361,943 -198,677 -8,951,208
(E[L(i) 1{I<S} V

′]) 9.71% 48.15% 15.37% 26.77% 100.00%
Raising cost, (iv) 165,605 1,102,308 184,135 65,213 3,676,390

( ξ
1−ξ E[L(i) 1{S<I<D}]) 8.38% 51.19% 19.04% 21.39% 100.00%

Capital cost, (v) 4,479,576 25,627,009 3,517,682 2,062,943 90,335,366
(E[L(i)|I = D]× [P(I > D) + τ∗]) 9.22% 48.43% 14.80% 27.54% 100.00%

Cost, (iii)-(v) 4,177,771 24,204,869 3,339,874 1,929,479 85,060,548
9.13% 48.58% 14.93% 27.36% 100.00%

Non payments, (ii)-(v) 6,258,222 36,239,111 5,002,593 2,889,640 127,376,059
9.14% 48.57% 14.93% 27.36% 100.00%

Table 5.9: Cost allocation in the base case.
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a = 0 Line 1 Line 2 Line 3 Line 4 Aggregate

Solvent payments, (i) 23,345,530 135,002,000 18,657,049 10,772,967 1,227,669,151
(E[L(i) 1{I<D}]) 9.14% 48.55% 14.94% 27.37% 100.00%

Scale effect, (ii) 12,171,966 70,408,002 9,727,968 5,617,558 640,202,514
( γ

1−c′1(Rb)
E[L(i)]

∑
k p

(k)) 9.14% 48.56% 14.94% 27.37% 100.00%

Continuation value, (iii) 1,029,167 5,837,049 782,958 436,750 52,036,839
(E[L(i) 1{I<S} V

′]) 9.51% 49.52% 14.79% 26.18% 100.00%
Raising cost, (iv) 7,837,319 53,467,331 6,897,003 4,951,601 495,968,512

( ξ
1−ξ E[L(i) 1{S<I<D}]) 7.60% 47.60% 13.67% 31.14% 100.00%

Capital cost, (v) 17,186,342 91,435,424 13,142,696 6,636,818 822,504,916
(E[L(i)|I = D]× [P(I > D) + τ∗]) 10.05% 49.08% 15.71% 25.17% 100.00%

Cost, (iii)-(v) 26,052,827 150,739,804 20,822,658 12,025,168 1,370,510,267
9.14% 48.56% 14.93% 27.36% 100.00%

Non payments, (ii)-(v) 38,224,794 221,147,806 30,550,626 17,642,726 2,010,712,781
9.14% 48.56% 14.94% 27.36% 100.00%

a = 3, 000, 000, 000 Line 1 Line 2 Line 3 Line 4 Aggregate

Solvent payments, (i) 23,345,530 135,002,000 18,657,049 10,772,967 1,568,829,904
(E[L(i) 1{I<D}]) 9.14% 48.55% 14.94% 27.37% 100.00%

Scale effect, (ii) 12,749,807 73,750,484 10,189,785 5,884,241 856,948,543
( γ

1−c′1(Rb)
E[L(i)]

∑
k p

(k)) 9.14% 48.56% 14.94% 27.37% 100.00%

Continuation value, (iii) -235,099 -1,116,997 -202,680 -67,987 -13,002,123
(E[L(i) 1{I<S} V

′]) 11.11% 48.47% 19.58% 20.84% 100.00%
Raising cost, (iv) 2,579,077 18,401,683 2,557,559 1,239,091 201,178,046

( ξ
1−ξ E[L(i) 1{S<I<D}]) 7.88% 51.61% 15.97% 24.55% 100.00%

Capital cost, (v) 12,029,113 65,894,390 9,133,206 5,463,678 778,163,393
(E[L(i)|I = D]× [P(I > D) + τ∗]) 9.50% 47.78% 14.74% 27.98% 100.00%

Cost, (iii)-(v) 14,373,091 83,179,077 11,488,085 6,634,782 966,339,316
9.14% 48.56% 14.93% 27.36% 100.00%

Non payments, (ii)-(v) 27,122,898 156,929,561 21,677,870 12,519,023 1,823,287,859
9.14% 48.56% 14.93% 27.36% 100.00%

a = 12, 000, 000, 000 Line 1 Line 2 Line 3 Line 4 Aggregate

Line 1 Line 2 Line 3 Line 4 Aggregate
Solvent payments, (i) 23,345,530 135,002,000 18,657,049 10,772,967 1,995,399,708

(E[L(i) 1{I<D}]) 9.14% 48.55% 14.94% 27.37% 100.00%
Scale effect, (ii) 14,236,612 82,350,817 11,378,055 6,570,425 1,217,059,553

( γ
1−c′1(Rb)

E[L(i)]
∑
k p

(k)) 9.14% 48.56% 14.94% 27.37% 100.00%

Continuation value, (iii) -861,553 -4,764,429 -676,234 -373,605 -70,665,323
(E[L(i) 1{I<S} V

′]) 9.53% 48.38% 15.29% 26.80% 100.00%
Raising cost, (iv) 1,063,664 8,031,264 1,171,071 494,784 109,736,215

( ξ
1−ξ E[L(i) 1{S<I<D}]) 7.58% 52.52% 17.05% 22.86% 100.00%

Capital cost, (v) 6,522,382 35,669,393 4,880,405 2,983,652 536,155,774
(E[L(i)|I = D]× [P(I > D) + τ∗]) 9.51% 47.74% 14.54% 28.21% 100.00%

Cost, (iii)-(v) 6,724,493 38,936,228 5,375,242 3,104,832 575,226,667
9.14% 48.57% 14.93% 27.36% 100.00%

Non payments, (ii)-(v) 20,961,105 121,287,045 16,753,298 9,675,257 1,792,286,220
9.14% 48.56% 14.93% 27.36% 100.00%

Table 5.10: Cost allocation in the profitable company.
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a = 0 Line 1 Line 2 Line 3 Line 4 Aggregate

Solvent payments, (i) 23,345,695 135,041,756 18,658,134 10,774,413 2,487,582,817
(E[L(i) 1{I<D}]) 9.86% 46.23% 17.75% 26.16% 100.00%

Scale effect, (ii) 17,919,327 103,653,262 14,321,322 8,270,057 1,909,380,339
( γ

1−c′1(Rb)
E[L(i)]

∑
k p

(k)) 9.86% 46.23% 17.75% 26.16% 100.00%

Continuation value, (iii) -782,453 -4,526,226 -625,396 -361,120 -83,376,677
(E[L(i) 1{I<S} V

′]) 9.86% 46.23% 17.75% 26.16% 100.00%
Raising cost, (iv) 1,924,160 11,129,311 1,537,555 888,004 205,012,321

( ξ
1−ξ E[L(i) 1{S<I<D}]) 9.86% 46.23% 17.75% 26.16% 100.00%

Capital cost, (v) na na na na na
(E[L(i)|I = D]× [P(I > D) + τ∗]) na na na na na

Cost, (iii)-(v) 1,141,707 6,603,085 912,159 526,885 121,635,644
9.86% 46.23% 17.75% 26.16% 100.00%

Non payments, (ii)-(v) 19,061,034 110,256,347 15,233,481 8,796,942 2,031,015,983
9.86% 46.23% 17.75% 26.16% 100.00%

Table 5.11: Cost allocation in the empty company.

than claims payments, we see that the capital cost component share of non-payment costs
ranges from more than 90% (in the “base case” at an initial capitalization of a = 0) to less
than a third (in the “profitable” case with a = 12, 000, 000, 000).

It is therefore evident that correct risk pricing entails an appreciation of all of the
components of the marginal cost of risk, one of which can be obtained from an allocation of a
broadly defined measure of capital. However, existing allocation methods will misprice risk
if the other marginal cost components are overlooked or if capital is defined too narrowly.
To get a sense of this, we calculate risk-adjusted returns on capital (RAROC) for the “base”
case and the “profitable company” case under VaR, TVaR, and Myers-Read, and we vary
both the definition of capital and the types of costs being considered. We compare the
results to correct RAROC obtained from the model. We calculate RAROC as the marginal
premium received minus costs (with the types of costs considered varying from a complete
set to partial sets) divided by allocated capital. The results are presented in Tables 5.12
and 5.13.

Since the insurance portfolio has been optimized, true RAROC has been equated across
all lines. If all costs are properly accounted for and an appropriately broad definition of
capital (D) is used, VaR-based allocation yields RAROCs that are quite close to the true
RAROCs. The results with TVaR and Myers-Read, however, do not tend to give accurate
results. In particular, they allocate too little capital to lines 1 and 3 (with Myers-Read,
the amounts are actually negative), while overpenalizing line 2. The misstatements are
significant. For example, although the correct figure never exceeds 10 % in our scenarios,
RAROC estimated under TVaR for line 1 routinely exceeds 50% and sometimes goes beyond
100%.

Things get worse if cost components are overlooked, or if an incorrect notion of capital
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Allocating Cost considered Line 1 Line 2 Line 3 Line 4
a = 0
Correct Allocation D yes 3.36% 3.36% 3.36% 3.36%
VaR Allocation D yes 3.38% 3.73% 3.01% 3.00%
TVaR Allocation D yes 98.46% 2.17% 11.37% 4.42%
MyersRead D yes -9.16% 1.87% -474.45% 5.43%
VaR Allocation D act. only 6.53% 7.81% 6.11% 6.79%
VaR Allocation S act. only 16.06% 18.23% 20.24% 22.32%
VaR Allocation a act. only na na na na
VaR Allocation D act. and scale 5.97% 7.14% 5.59% 6.21%
VaR Allocation S act. and scale 14.69% 16.68% 18.52% 20.42%
VaR Allocation a act. and scale na na na na
TVaR Allocation D act. only 190.10% 4.55% 23.04% 9.99%
TVaR Allocation S act. only 22.95% 19.49% 20.67% 17.26%
TVaR Allocation a act. only na na na na
TVaR Allocation D act. and scale 173.94% 4.17% 21.08% 9.14%
TVaR Allocation S act. and scale 21.00% 17.83% 18.91% 15.79%
TVaR Allocation a act. and scale na na na na
a = 1, 000, 000, 000
Correct Allocation D yes 3.34% 3.34% 3.34% 3.34%
VaR Allocation D yes 3.83% 3.38% 3.25% 3.21%
TVaR Allocation D yes 90.72% 2.13% 10.79% 4.73%
MyersRead D yes -8.43% 1.83% -447.25% 5.81%
VaR Allocation D act. only 5.46% 4.92% 4.73% 4.62%
VaR Allocation S act. only 9.89% 8.00% 8.00% 7.83%
VaR Allocation a act. only 16.06% 13.16% 12.23% 8.36%
VaR Allocation D act. and scale 4.51% 4.06% 3.90% 3.81%
VaR Allocation S act. and scale 8.17% 6.61% 6.60% 6.46%
VaR Allocation a act. and scale 13.26% 10.86% 10.09% 6.90%
TVaR Allocation D act. only 129.58% 3.10% 15.70% 6.81%
TVaR Allocation S act. only 8.99% 7.68% 7.34% 9.08%
TVaR Allocation a act. only 12.91% 11.13% 11.98% 11.00%
TVaR Allocation D act. and scale 106.96% 2.56% 12.96% 5.62%
TVaR Allocation S act. and scale 7.42% 6.34% 6.06% 7.49%
TVaR Allocation a act. and scale 10.65% 9.19% 9.89% 9.08%
a = 4, 000, 000, 000

Allocating Cost considered Line 1 Line 2 Line 3 Line 4
Correct Allocation D yes 2.54% 2.54% 2.54% 2.54%
VaR Allocation D yes 2.61% 2.70% 2.30% 2.42%
TVaR Allocation D yes 68.61% 1.62% 8.17% 3.60%
MyersRead D yes -6.38% 1.40% -337.28% 4.42%
VaR Allocation D act. only 3.64% 3.81% 3.27% 3.39%
VaR Allocation S act. only 16.18% 3.65% 4.32% 8.64%
VaR Allocation a act. only 3.19% 3.97% 3.04% 3.47%
VaR Allocation D act. and scale 2.43% 2.55% 2.18% 2.26%
VaR Allocation S act. and scale 10.80% 2.44% 2.89% 5.77%
VaR Allocation a act. and scale 2.13% 2.65% 2.03% 2.32%
TVaR Allocation D act. only 95.85% 2.30% 11.62% 5.04%
TVaR Allocation S act. only 5.44% 4.57% 3.89% 6.24%
TVaR Allocation a act. only 85.34% 2.05% 10.34% 4.48%
TVaR Allocation D act. and scale 63.99% 1.53% 7.76% 3.36%
TVaR Allocation S act. and scale 3.63% 3.05% 2.60% 4.17%
TVaR Allocation a act. and scale 56.97% 1.37% 6.90% 2.99%

Table 5.12: RAROC calculations, base case.
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Allocating Cost considered Line 1 Line 2 Line 3 Line 4
a = 0
Correct Allocation D yes 8.94% 8.94% 8.94% 8.94%
VaR Allocation D yes 9.23% 9.90% 8.19% 7.84%
TVaR Allocation D yes 263.48% 5.80% 30.55% 11.58%
MyersRead D yes -24.49% 4.99% -1249.82% 14.22%
VaR Allocation D act. only 20.53% 23.93% 19.03% 20.83%
VaR Allocation S act. only 83.91% 61.61% 69.60% 38.51%
VaR Allocation a act. only na na na na
VaR Allocation D act. and scale 13.99% 16.31% 12.97% 14.20%
VaR Allocation S act. and scale 57.19% 41.99% 47.44% 26.25%
VaR Allocation a act. and scale na na na na
TVaR Allocation D act. only 586.01% 14.03% 71.00% 30.78%
TVaR Allocation S act. only 66.20% 56.01% 60.09% 48.32%
TVaR Allocation a act. only na na na na
TVaR Allocation D act. and scale 399.40% 9.56% 48.39% 20.98%
TVaR Allocation S act. and scale 45.12% 38.18% 40.96% 32.93%
TVaR Allocation a act. and scale na na na na
3, 000, 000, 000
Correct Allocation D yes 6.62% 6.62% 6.62% 6.62%
VaR Allocation D yes 7.21% 6.85% 6.08% 6.42%
TVaR Allocation D yes 184.42% 4.18% 21.23% 9.53%
MyersRead D yes -17.14% 3.59% -868.54% 11.71%
VaR Allocation D act. only 16.25% 16.32% 14.42% 14.70%
VaR Allocation S act. only 33.65% 27.35% 31.83% 30.88%
VaR Allocation a act. only 58.55% 59.79% 63.05% 62.84%
VaR Allocation D act. and scale 8.61% 8.65% 7.64% 7.79%
VaR Allocation S act. and scale 17.83% 14.50% 16.87% 16.37%
VaR Allocation a act. and scale 31.03% 31.69% 33.42% 33.31%
TVaR Allocation D act. only 415.83% 9.96% 50.38% 21.84%
TVaR Allocation S act. only 34.18% 27.54% 27.52% 32.73%
TVaR Allocation a act. only 64.22% 59.89% 64.24% 59.52%
TVaR Allocation D act. and scale 220.36% 5.28% 26.70% 11.58%
TVaR Allocation S act. and scale 18.11% 14.60% 14.58% 17.35%
TVaR Allocation a act. and scale 34.03% 31.74% 34.04% 31.55%
a = 4, 000, 000, 000
Correct Allocation D yes 3.58% 3.58% 3.58% 3.58%
VaR Allocation D yes 3.75% 3.77% 3.16% 3.50%
TVaR Allocation D yes 99.82% 2.26% 11.32% 5.20%
MyersRead D yes -9.29% 1.95% -464.11% 6.39%
VaR Allocation D act. only 12.05% 12.82% 10.86% 11.35%
VaR Allocation S act. only 19.48% 18.18% 20.07% 20.06%
VaR Allocation a act. only 11.41% 15.32% 11.92% 18.85%
VaR Allocation D act. and scale 3.87% 4.12% 3.48% 3.64%
VaR Allocation S act. and scale 6.25% 5.84% 6.44% 6.44%
VaR Allocation a act. and scale 3.66% 4.92% 3.83% 6.05%
TVaR Allocation D act. only 320.79% 7.68% 38.87% 16.85%
TVaR Allocation S act. only 23.20% 17.53% 16.80% 22.83%
TVaR Allocation a act. only 15.96% 14.51% 10.59% 20.03%
TVaR Allocation D act. and scale 102.91% 2.47% 12.47% 5.41%
TVaR Allocation S act. and scale 7.44% 5.63% 5.39% 7.33%
TVaR Allocation a act. and scale 5.12% 4.66% 3.40% 6.43%

Table 5.13: RAROC calculations, profitable company case.



CHAPTER 5. CAPITAL ALLOCATION VERSUS MARGINAL COST 66

is used in the allocation process. We consider such errors in the table by reporting what
happens if return in the RAROC numerator is calculated only by referencing actuarial (i)
or actuarial and scale costs (i) and (ii), or if a more narrow definition of capital—such as a
or S—is used when constructing the numerator. In our scenarios, where the additional cost
components are positive, both of these errors tend to work in the same direction to inflate
estimates of RAROC. In a number of cases, the incorrectly calculated RAROC appears to
indicate high levels of profitability across the board.



Chapter 6

Conclusion

The model presented in Chapter 4 represents a step toward greater sophistication in firm
valuation and risk pricing, but only a step. Other nuances—such as regulatory frictions
and rating agency requirements—would obviously merit consideration in a richer model.
Moreover, calibration of any model would obviously have to be tailored to the unique
circumstances of each firm.

For example, different model specifications could favor different risk measures. Our
setup was a relatively favorable one for VaR rather than TVaR, and part of this was rooted
in how we specified the premium function. More realistic specifications would undoubt-
edly point the way to risk measures more complicated than either VaR or TVaR. But a
practitioner faces deeper problems: Even if armed with the right risk measure and capi-
tal allocation technique, one can get highly distorted results unless the right threshold is
chosen and the right costs are considered in setting hurdle rates.

These caveats are addressed only with a deeper understanding of what creates value
at the level of the firm. As our models move in this direction, it is evident that greater
sophisitication is bound to lead to more complication in pricing risk and measuring perfor-
mance in insurance. Allocation is valid as a pricing guide only if great care is taken in its
implementation and interpretation.
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Figure A.1: Value function V and its derivative V ′ for a company with carrying cost
τ = 5%, raising costs c(1) = 7.5%, c(2) = 5.00E-11, and ξ = 75%, interest rate r = 6%, and
premium parameters α = 0.973046, β = 550.203, and γ = 1.61E-10.
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Allocation Line 1 Line 2 Line 3 Line 4 Sum RiskMeas
ExpVal 23,329,288 135,081,949 18,649,808 10,796,053 187,857,098 187,857,098

12.42% 71.91% 9.93% 5.75% 100%
CovWBeta 61,319,372 393,205,296 38,138,703 13,273,421 505,936,792 505,936,792
β = 2 12.12% 77.72% 7.54% 2.62% 100%
CovWBeta/RMK 62,421,630 399,587,622 39,019,865 13,783,511 514,812,628 514,812,628

12.13% 77.62% 7.58% 2.68% 100%
TVaR75% 51,175,628 301,536,000 34,962,680 13,584,693 401,259,001 401,259,001

12.75% 75.15% 8.71% 3.39% 100%
TVaR90% 73,065,626 462,257,299 42,467,260 12,320,392 590,110,577 590,110,577

12.38% 78.33% 7.20% 2.09% 100%
TVaR95% 85,919,276 595,845,552 44,645,301 11,854,265 738,264,394 738,264,394

11.64% 80.71% 6.05% 1.61% 100%
TVaR99% 105,723,179 870,554,590 58,366,883 11,061,400 1,045,706,051 1,045,706,051

10.11% 83.25% 5.58% 1.06% 100%
VaR95% (simple) 9,790,141 506,240,268 7,441,716 4,978,026 528,450,152 528,450,152

1.85% 95.80% 1.41% 0.94% 100%
VaR95% (bell) 62,650,462 406,650,419 50,921,868 8,262,860 528,485,609 528,485,609

11.85% 76.95% 9.64% 1.56% 100%
VaR99% (simple) 9,542,646 832,379,600 19,010,865 5,915,580 866,848,691 866,848,691

1.10% 96.02% 2.19% 0.68% 100%
VaR99% (bell) 95,848,173 726,083,642 30,395,988 14,471,275 866,799,078 866,799,078

11.06% 83.77% 3.51% 1.67% 100%
Exponential Alloc. 27,278,567 163,314,603 20,467,020 10,785,671 221,845,861 221,845,861
c = 0.1 12.30% 73.62% 9.23% 4.86% 100%
Exponential Alloc’ 36,470,857 241,091,476 22,984,852 8,563,043 309,110,227 309,110,227
c = 0.25 11.80% 78.00% 7.44% 2.77% 100%
Exponential Alloc. -3,645,886,606 23,549,065,241 -4,852,942,072 -3,243,983,432 11,806,253,131 11,806,253,131
c = 1 -30.88% 199.46% -41.10% -27.48% 100%
Wang 27,318,178 161,115,903 20,879,150 11,242,753 220,555,984 220,555,984
λ = 0.25 12.39% 73.05% 9.47% 5.10% 100%
Wang 32,716,629 197,421,588 23,801,554 11,779,604 265,719,375 265,719,375
λ = 0.5 12.31% 74.30% 8.96% 4.43% 100%
Wang 39,056,077 242,148,639 27,017,016 12,168,327 320,390,060 320,390,060
λ = 0.75 12.19% 75.58% 8.43% 3.80% 100%
MyersRead, a = 120,916,916 1,006,167,989 50,620,099 -7,918,138 1,169,786,866 1,169,786,866
1,357,643,965 10.34% 86.01% 4.33% -0.68% 100%
MyersRead, a = 66,203,197 755,703,821 37,250,753 -8,601,447 850,556,325 850,556,325
1,038,413,423 7.78% 88.85% 4.38% -1.01% 100%
MyersRead, a = 60,182,247 606,862,111 21,960,730 -10,013,495 678,991,592 678,991,592
867,358,356 8.86% 89.38% 3.23% -1.47% 100%
Esscher, t = 8,226,240 1,987,777,539 54,262,714 72,291,051 2,122,557,544 2,122,557,544
1.E-07 0.39% 93.65% 2.56% 3.41% 100%
Esscher, t= 27,344,590 163,247,072 20,684,092 11,047,543 222,323,297 222,323,297
1.E-09 12.30% 73.43% 9.30% 4.97% 100%
Kamps, t= 26,634,429 155,054,747 20,715,324 11,428,757 213,833,257 213,833,257
1.E-08 12.46% 72.51% 9.69% 5.34% 100%
Kamps, t= 40,174,490 249,023,141 27,429,888 12,085,777 328,713,296 328,713,296
1.E-11 12.22% 75.76% 8.34% 3.68% 100%
D’Arcy, a = 56,585,273 417,182,061 25,843,237 5,606,089 505,216,661 505,216,661
1,357,643,965 11.20% 82.57% 5.12% 1.11% 100%
D’Arcy, a = 106,249,613 882,347,465 62,762,070 11,376,773 1,062,735,922 1,062,735,922
1,038,413,423 10.00% 83.03% 5.91% 1.07% 100%
Bodoff, 47,746,418 273,299,373 36,568,471 18,636,590 376,250,851 376,250,851
VaR90% 12.69% 72.64% 9.72% 4.95% 100%
Bodoff, 66,858,358 393,031,893 46,939,467 21,620,434 528,450,152 528,450,152
VaR95% 12.65% 74.37% 8.88% 4.09% 100%
Bodoff, 104,399,510 670,161,589 66,169,820 26,117,771 866,848,691 866,848,691
VaR99% 12.04% 77.31% 7.63% 3.01% 100%
RTVaR 93,578,301 654,516,995 50,094,493 11,340,089 809,529,877 809,529,877
α = 75%, β = 2 11.56% 80.85% 6.19% 1.40% 100%
RTVaR 107,311,793 824,901,649 53,570,493 11,367,332 997,151,267 997,151,267
α = 90%, β = 2 10.76% 82.73% 5.37% 1.14% 100%
RTVaR 113,722,457 936,385,190 61,465,579 11,542,358 1,123,115,583 1,123,115,583
α = 95%, β = 2 10.13% 83.37% 5.47% 1.03% 100%
AvgTVaR 78,970,927 557,548,360 45,110,531 12,205,188 693,835,006 693,835,006

11.38% 80.36% 6.50% 1.76% 100%

Table A.1: Agg 3 Allocations when Removing 1000 Arbitrary Samples
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Allocation Line 1 Line 2 Line 3 Line 4 Sum RiskMeas
ExpVal 23,320,023 135,041,756 18,658,134 10,774,413 187,794,326 187,807,891

12.42% 71.91% 9.94% 5.74% 100%
CovWBeta 61,811,437 398,728,060 39,014,221 13,826,768 513,380,486 513,362,750
β = 2 12.04% 77.67% 7.60% 2.69% 100%
CovWBeta/RMK 61,811,437 398,708,430 39,006,992 13,822,327 513,349,186 513,362,750

12.04% 77.67% 7.60% 2.69% 100%
TVaR75% 51,109,439 301,524,393 34,972,585 13,579,677 401,186,094 401,186,094

12.74% 75.16% 8.72% 3.38% 100%
TVaR90% 72,718,843 462,574,223 42,463,907 12,369,992 590,126,965 590,126,965

12.32% 78.39% 7.20% 2.10% 100%
TVaR95% 85,094,349 596,621,170 44,585,766 12,018,216 738,319,501 738,319,501

11.53% 80.81% 6.04% 1.63% 100%
TVaR99% 103,726,159 870,456,639 58,481,885 11,487,420 1,044,152,103 1,044,152,103

9.93% 83.36% 5.60% 1.10% 100%
VaR95% (simple) 9,776,274 330,811,906 173,984,700 14,118,944 528,691,824 528,691,824

1.85% 62.57% 32.91% 2.67% 100%
VaR95% (bell) 62,367,597 404,259,189 51,869,109 10,157,414 528,653,309 528,653,309

11.80% 76.47% 9.81% 1.92% 100%
VaR99% (simple) 7,170,815 816,870,497 39,256,266 4,060,778 867,358,356 867,358,356

0.83% 94.18% 4.53% 0.47% 100%
VaR99% (bell) 40,819,623 780,226,792 29,835,131 16,807,649 867,689,194 867,689,194

4.70% 89.92% 3.44% 1.94% 100%
Exponential Alloc. 27,743,921 166,623,092 20,911,877 11,001,079 226,279,969 226,276,726
c = 0.1 12.26% 73.64% 9.24% 4.86% 100%
Exponential Alloc’ 36,585,576 245,779,923 23,664,375 8,855,200 314,885,074 314,871,167
c = 0.25 11.62% 78.05% 7.52% 2.81% 100%
Exponential Alloc. -1,577,802,041 13,966,106,590 -1,766,629,859 -2,185,234,909 8,436,439,780 8,432,460,413
c = 1 -18.70% 165.55% -20.94% -25.90% 100%
Wang 27,829,070 164,381,902 21,321,736 11,456,790 224,989,498 224,989,498
λ = 0.25 12.37% 73.06% 9.48% 5.09% 100%
Wang 33,249,531 201,449,328 24,314,253 12,015,497 271,028,610 271,028,610
λ = 0.5 12.27% 74.33% 8.97% 4.43% 100%
Wang 39,529,281 247,125,378 27,618,048 12,433,274 326,705,981 326,705,981
λ = 0.75 12.10% 75.64% 8.45% 3.81% 100%
MyersRead, a = 80,648,896 1,034,900,995 57,824,571 -3,512,528 1,169,861,934 1,169,836,074
1,357,643,965 6.89% 88.46% 4.94% -0.30% 100%
MyersRead, a = 57,940,077 761,392,555 38,892,125 -7,593,136 850,631,621 850,605,533
1,038,413,423 6.81% 89.51% 4.57% -0.89% 100%
MyersRead, a = 58,453,734 608,292,759 22,259,838 -9,429,533 679,576,799 679,550,465
867,358,356 8.60% 89.51% 3.28% -1.39% 100%
Esscher, t = 7,199,337 1,554,281,231 82,553,803 47,811,835 1,691,846,205 1,691,846,205
1.E-07 0.43% 91.87% 4.88% 2.83% 100%
Esscher, t= 27,242,017 163,132,734 20,702,112 11,036,495 222,113,358 222,113,358
1.E-09 12.26% 73.45% 9.32% 4.97% 100%
Kamps, t= 26,620,099 155,031,979 20,729,329 11,408,823 213,790,229 213,790,229
1.E-08 12.45% 72.52% 9.70% 5.34% 100%
Kamps, t= 39,962,084 249,005,484 27,461,013 12,096,360 328,524,942 328,524,942
1.E-11 12.16% 75.80% 8.36% 3.68% 100%
D’Arcy, a = 35,948,479 385,874,795 26,670,954 5,927,468 454,421,695 454,421,695
1,357,643,965 7.91% 84.92% 5.87% 1.30% 100%
D’Arcy, a = 90,130,123 865,840,580 63,717,184 11,941,086 1,031,628,973 1,031,628,973
1,038,413,423 8.74% 83.93% 6.18% 1.16% 100%
Bodoff, 47,749,632 273,103,335 36,575,583 18,593,413 376,021,964 376,021,964
VaR90% 12.70% 72.63% 9.73% 4.94% 100%
Bodoff, 66,837,235 393,278,916 46,978,020 21,597,652 528,691,824 528,691,824
VaR95% 12.64% 74.39% 8.89% 4.09% 100%
Bodoff, 104,288,359 670,654,110 66,224,381 26,191,506 867,358,356 867,358,356
VaR99% 12.02% 77.32% 7.64% 3.02% 100%
RTVaR 92,191,642 654,907,352 50,243,952 11,538,735 808,881,681 808,881,681
α = 75%, β = 2 11.40% 80.96% 6.21% 1.43% 100%
RTVaR 104,309,477 825,609,089 53,918,083 11,770,668 995,607,317 995,607,317
α = 90%, β = 2 10.48% 82.93% 5.42% 1.18% 100%
RTVaR 108,694,586 936,445,113 62,250,592 12,110,754 1,119,501,045 1,119,501,045
α = 95%, β = 2 9.71% 83.65% 5.56% 1.08% 100%
AvgTVaR 78,162,198 557,794,106 45,126,036 12,363,826 693,446,166 693,446,166

11.27% 80.44% 6.51% 1.78% 100%

Table A.2: Agg 3 Allocations when Replacing Five Worst Cases by Sixth Worst
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Line 1 Line 2 Line 3 Line 4 Aggregate

Correct Allocation 924,492,199 4,515,871,816 1,445,163,636 2,315,441,323 9,200,968,974
10.05% 49.08% 15.71% 25.17% 100.00%

VaRP(I>D) (bell) 895,312,658 4,079,524,656 1,578,307,057 2,641,594,891 9,194,739,261
9.74% 44.37% 17.17% 28.73% 100.00%

VaRP(I>D) (simple) 944,306,229 4,037,420,059 1,621,222,774 2,597,500,779 9,200,449,840
10.26% 43.88% 17.62% 28.23% 100.00%

VaRP(I>S) (bell) 219,067,031 1,584,762,125 431,475,923 1,428,645,156 3,663,950,235
5.98% 43.25% 11.78% 38.99% 100.00%

VaRP(I>a) (bell) 47,144,333 207,868,587 49,844,712 126,645,156 431,502,789
10.93% 48.17% 11.55% 29.35% 100.00%

TVaRP(I>D) 39,557,255 8,776,065,161 533,382,797 2,254,567,934 11,603,573,147
0.34% 75.63% 4.60% 19.43% 100.00%

TVaRP(I>S) 344,384,440 2,161,783,307 619,764,663 1,412,305,219 4,538,237,629
7.59% 47.63% 13.66% 31.12% 100.00%

TVaRP(I>a) 112,261,684 596,211,208 183,402,691 336,025,639 1,227,901,222
9.14% 48.56% 14.94% 27.37% 100.00%

CovWBeta (β = 2) 269,779,195 1,524,839,975 443,827,368 860,058,147 3,098,504,684
8.71% 49.21% 14.32% 27.76% 100.00%

MyersRead (D) -292,411,570 7,013,010,071 -8,956,970 1,260,907,121 7,972,548,652
-3.67% 87.96% -0.11% 15.82% 100.00%

MyersRead (S) 151,756,901 1,138,756,629 305,067,719 835,725,664 2,431,306,913
6.24% 46.84% 12.55% 34.37% 100.00%

MyersRead (a) -112,261,684 -596,211,208 -183,402,691 -336,025,639 -1,227,901,222
9.14% 48.56% 14.94% 27.37% 100.00%

RTVaRP(I>S) (β = 2) 477,516,896 3,224,495,989 958,509,100 1,719,523,692 6,380,045,677
7.48% 50.54% 15.02% 26.95% 100.00%

RTVaRP(I>a) (β = 2) 230,617,968 1,588,103,291 499,905,525 887,902,166 3,206,528,950
7.19% 49.53% 15.59% 27.69% 100.00%

AvgTVaR 165,401,126 3,844,686,559 445,516,717 1,334,299,597 5,789,903,999
2.86% 66.40% 7.69% 23.05% 100.00%

ExpVal 112,261,684 596,211,208 183,402,691 336,025,639 1,227,901,222
9.14% 48.56% 14.94% 27.37% 100.00%

Table A.3: Capital allocations for the profitable company, a = 0.
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Line 1 Line 2 Line 3 Line 4 Aggregate

Correct Allocation 1,116,826,342 5,617,043,707 1,733,357,009 3,289,964,064 11,757,191,122
9.50% 47.78% 14.74% 27.98% 100.00%

VaRP(I>D) (bell) 1,025,637,266 5,426,604,978 1,888,133,348 3,393,934,505 11,734,310,096
8.74% 46.25% 16.09% 28.92% 100.00%

VaRP(I>D) (simple) 1,206,722,389 5,159,391,128 2,071,749,351 3,319,328,254 11,757,191,122
10.26% 43.88% 17.62% 28.23% 100.00%

VaRP(I>S) (bell) 495,331,163 3,237,355,077 855,486,486 1,615,680,969 6,203,853,695
7.98% 52.18% 13.79% 26.04% 100.00%

VaRP(I>a) (bell) 284,658,353 1,480,892,132 431,850,078 793,933,117 2,991,333,679
9.52% 49.51% 14.44% 26.54% 100.00%

TVaRP(I>D) 50,549,942 11,214,872,882 681,606,181 2,881,096,747 14,828,125,752
0.34% 75.63% 4.60% 19.43% 100.00%

TVaRP(I>S) 581,915,040 3,836,036,482 1,180,872,652 1,819,227,730 7,418,051,904
7.84% 51.71% 15.92% 24.52% 100.00%

TVaRP(I>a) 380,859,753 2,169,705,613 622,108,862 1,230,170,351 4,402,844,579
8.65% 49.28% 14.13% 27.94% 100.00%

CovWBeta (β = 2) 344,748,964 1,948,582,443 567,163,918 1,099,062,349 3,959,557,673
8.71% 49.21% 14.32% 27.76% 100.00%

MyersRead (D) -373,670,720 8,961,876,988 -11,446,051 1,611,304,474 10,188,064,690
-3.67% 87.96% -0.11% 15.82% 100.00%

MyersRead (S) 328,553,594 2,490,457,756 766,954,303 1,060,857,297 4,646,822,951
7.07% 53.59% 16.50% 22.83% 100.00%

MyersRead (a) 109,145,328 726,655,947 178,207,125 416,865,134 1,430,873,534
7.63% 50.78% 12.45% 29.13% 100.00%

RTVaRP(I>S) (β = 2) 752,044,083 5,194,069,658 1,613,751,819 2,211,820,091 9,771,685,651
7.70% 53.15% 16.51% 22.63% 100.00%

RTVaRP(I>a) (β = 2) 532,106,428 3,437,237,635 1,026,565,641 1,935,409,544 6,931,319,248
7.68% 49.59% 14.81% 27.92% 100.00%

AvgTVaR 337,774,912 5,740,204,992 828,195,898 1,976,831,609 8,883,007,412
3.80% 64.62% 9.32% 22.25% 100.00%

ExpVal 143,458,428 761,894,173 234,369,028 429,404,837 1,569,126,466
9.14% 48.56% 14.94% 27.37% 100.00%

Table A.4: Capital allocations for the profitable company, a = 3, 000, 000, 000.
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Line 1 Line 2 Line 3 Line 4 Aggregate

Correct Allocation 1,424,358,388 7,151,812,046 2,178,620,986 4,225,861,527 14,980,652,946
9.51% 47.74% 14.54% 28.21% 100.00%

VaRP(I>D) (bell) 1,359,255,983 6,787,374,942 2,464,638,899 4,321,093,427 14,932,363,249
9.10% 45.45% 16.51% 28.94% 100.00%

VaRP(I>D) (simple) 1,534,834,017 6,562,245,866 2,635,064,543 4,221,864,085 14,954,008,511
10.26% 43.88% 17.62% 28.23% 100.00%

VaRP(I>S) (bell) 841,023,894 4,787,835,746 1,333,940,496 2,445,339,478 9,408,139,614
8.94% 50.89% 14.18% 25.99% 100.00%

VaRP(I>a) (bell) 1,435,335,446 5,681,611,221 2,244,813,624 2,601,250,385 11,963,010,676
12.00% 47.49% 18.76% 21.74% 100.00%

TVaRP(I>D) 64,294,630 14,264,232,228 866,937,054 3,664,476,049 18,859,939,961
0.34% 75.63% 4.60% 19.43% 100.00%

TVaRP(I>S) 825,123,192 5,802,377,598 1,861,291,677 2,509,998,369 10,998,790,835
7.50% 52.75% 16.92% 22.82% 100.00%

TVaRP(I>a) 1,151,683,772 6,729,175,361 2,836,620,159 2,747,092,977 13,464,572,269
8.55% 49.98% 21.07% 20.40% 100.00%

CovWBeta (β = 2) 438,487,296 2,478,408,161 721,377,579 1,397,900,871 5,036,173,907
8.71% 49.21% 14.32% 27.76% 100.00%

MyersRead (D) -475,272,970 11,398,639,633 -14,558,270 2,049,423,245 12,958,231,638
-3.67% 87.96% -0.11% 15.82% 100.00%

MyersRead (S) 497,654,664 4,063,223,157 1,326,304,076 1,529,808,002 7,416,989,898
6.71% 54.78% 17.88% 20.63% 100.00%

MyersRead (a) 835,319,052 5,048,992,195 2,319,772,925 1,800,138,920 10,004,223,093
8.35% 50.47% 23.19% 17.99% 100.00%

RTVaRP(I>S) (β = 2) 1,041,510,859 7,529,664,282 2,411,872,059 3,009,337,830 13,992,385,030
7.44% 53.81% 17.24% 21.51% 100.00%

RTVaRP(I>a) (β = 2) 1,344,054,896 8,341,353,342 3,351,050,015 3,644,088,931 16,680,547,184
8.06% 50.01% 20.09% 21.85% 100.00%

AvgTVaR 680,367,198 8,931,928,396 1,854,949,630 2,973,855,798 14,441,101,022
4.71% 61.85% 12.84% 20.59% 100.00%

ExpVal 182,465,228 969,055,604 298,094,707 546,161,368 1,995,776,907
9.14% 48.56% 14.94% 27.37% 100.00%

Table A.5: Capital allocations for the profitable company, a = 12, 000, 000, 000.
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Figure A.2: Optimal raising decision R for a company with carrying cost τ = 5%, raising
costs c(1) = 7.5%, c(2) = 5.00E-11, and ξ = 75%, interest rate r = 6%, and premium
parameters α = 0.973046, β = 550.203, and γ = 1.61E-10.
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Figure A.3: Optimal portfolio weights q1, q2, q3, and q4 for a company with carrying cost
τ = 5%, raising costs c(1) = 7.5%, c(2) = 5.00E-11, and ξ = 75%, interest rate r = 6%, and
premium parameters α = 0.973046, β = 550.203, and γ = 1.61E-10.



Appendix B

Technical Appendix

B.1 Proofs

Proof of Lemma 4.1.1. With the budget constraint (4.2):

e−rt at − e−r(t−1) at−1 − e−rt[erRbt +Ret ] = e−rt

er∑
j

p
(j)
t −

∑
j

I
(j)
t − (τ at−1 + c1(Rbt)) e

r − c2(Ret )

 .
Hence, the sum in (4.6) can be written as:

∞∑
t=1

1{a1≥0,...,at≥0} e
−rt

[
er
∑
j

p
(j)
t −

∑
j

I
(j)
t − (τ at−1 + c1(Rb

t))e
r − c2(Re

t )

]
−1{a1≥0,...,at−1≥0,at<0} e

−rt [(at−1 +Rb
t)e

r +Re
t

]
=

∑
{t<t∗:a1≥0,a2≥0,...,at∗−1≥0,at∗<0}

[
e−rt at − e−r(t−1) at−1

]
− e−rt[erRb

t +Re
t ]

−e−rt∗
[
(at∗−1 +Rb

t∗)e
r +Re

t∗

]
=

[∑
t≤t∗

e−rt[−erRb
t −Re

t ]

]
+ e−r(t

∗−1) at∗−1 − a0 − e−r(t
∗−1) at∗−1

=

[∑
t≤t∗

e−rt[−erRb
t −Re

t ]

]
− a0,

which completes the proof.

Proof of Proposition 4.1.1. Notice that our per-period profit function in (4.6) is bounded
from above, so the Bellman equation follows from classical infinite-horizon dynamic pro-
gramming results (see e.g. Proposition 1.1 in Bertsekas (1995, Chap. 3)).
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Proof of Proposition 4.1.2. Let

a′ =

[
a(1− τ) +Rb − c1(Rb) +

∑
j

p(j)

]
er +Re − c2(Re)−

∑
j

I(j);

then, conditional on a′ < 0, the objective function is decreasing in Re so that zero is the
optimal choice. Conditional on a′ > 0, if Re > 0, on the other hand, decreasing Re by a
(small) ε > 0 and increasing Rb in the beginning of the next period will be dominant (since
c2 > c1), so Re > 0 cannot be optimal. Finally, if a′ = 0 and Re > 0, then Re = Re

∗.
Moreover,

−
(
a+Rb

)
<

∑
j

p(j) − e−r
∑
j

I(j) − τ a− c1(Rb)− e−r c2(Re∗)

+e−r V
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∑
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 er +
∑
j

I(j) + c2(Re∗)

⇔ V (0) > Re∗,

which proves the last assertion.

Proof of Proposition 4.2.1. The first order conditions from the Bellman equation (4.10)
are:
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From [pi] and [Rb], we obtain:

λi =
∑
k

λk E[I(k)]β fI(D) exp {α− βP(I > D)− γ E[I]}+
1

1− ξ
E
[
1{S<I≤D}

]
+ ζ

+E

1 + V ′

[a(1− τ) +Rb − c1(Rb) +
∑
j

p(j)]er − I

 1{S≥I}


=

1

1− c′1(Rb)

[
ζ(1− c′1(Rb)) +

∑
k

λk E[I(k)]β fI(D) (1− c′1(Rb)) exp {α− βP(I > D)− γ E[I]}

+(1− c′1(Rb))E

V ′
[a(1− τ) +Rb − c1(Rb) +

∑
j

p(j)]er − I

1{S≥I}


+

1− c′1(Rb)

1− ξ
P(S < I ≤ D) + (1− c′1(Rb))P(S ≥ I)

]
=

1

1− c′1(Rb)
.

Then, we can write [Rb] as:

ζ =
P(I > D)

1− c′1(Rb)
+

c′1(Rb)

1− c′1(Rb)
P(I ≤ D)− ξ

1− ξ
P(S < I ≤ D) (B.1)

−E

[
V ′

(
[a(1− τ) +Rb − c1(Rb) +

∑
j

p(j)]er − I

)
1{S≥I}

]

− 1

1− c′1(Rb)

∑
k

E[I(k)] β fI(D) exp {α− βP(I > D)− γ E[I]}



APPENDIX B. TECHNICAL APPENDIX 79

Then we obtain with [qi]:
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which is exactly the expression in Proposition 4.2.1.

Proof of Corollary 4.2.1. In the absence of a regulatory constraint, ζ = so that Equation
(B.1) yields:

1
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]
,

which together with Proposition 4.2.1 yields the claim.
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Supporting Material

C.1 Proposal

Capital Allocation And Insurer’s Objective

Question raised: How do the line level marginal costs implied by various capital alloca-
tion methods proposed in the actuarial literature compare with those obtained from profit-
maximizing models of the firm?

It is well known that different allocation methods can yield different results, even given
the same data (e.g., Venter (2002)), and we know from Gründl and Schmeiser (2007) that
popular capital allocation methods may yield pricing results that are suboptimal from the
standpoint of firm profitability, a result which stems from the fact that the risk measures
on which the methods rely are not tailored to the task of maximizing profits. We show
in our recent paper Bauer and Zanjani (2013a) that risk measures can be engineered to
yield capital allocation results consistent with profit maximization, although this result has
been derived in a simplified one-period model for the firm. Moreover, thus far, we have not
considered the practical applications and implications of this approach.

For this research project, we will consider multi-period models of a profit-maximizing
insurance company, where the company faces various costs or constraints in raising capital
between periods. An extreme and simple example is the case where the company cannot
raise funds from external financiers and simply defaults whenever liabilities exceed assets.
First analyses show that in this case, the optimal capital allocation rule for a profit max-
imizing insurer consists of three components: (1) An allocation rule driven by regulatory
constraints that adheres to the Euler allocation based on an exogenously specified risk
measure (assuming that the regulatory constraint is in the form of a risk measure); (2) an
allocation rule that derives from the firm’s value as a going concern and takes the form
of the gradient of Value-at-Risk (VaR); and (3) an “internal policyholder” allocation rule
which depends on how that risk associated with a certain line of business affects the firm’s
other lines or, more precisely, the recoveries of the corresponding beneficiaries in the case
of default. In the case of a complete and frictionless market for risk, the latter allocation
rule collapses to the one derived by Ibragimov, Jaffee and Walden (2010), who extend the
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results from Myers and Read (2001) to a more realistic pro-rata sharing rule in the case
of default. A more realistic multi-period model would feature the company being able to
raise funds from outside investors at significant cost. Preliminary analyses indicate that
the second component of the capital allocation—the piece derived from the firm’s value as a
“going concern”—appears to evolve into a form corresponding to the gradient of Tail-Value-
at-Risk (TVaR), possibly with a spectral weighting function associated with the marginal
cost of raising capital.

Thus, gradients of popular risk measures such as VaR or (spectral) TVaR, as well as
recent approaches proposed in the academic literature (such as the Ibragimov et al. allo-
cation formula) do arise endogenously within the framework as parts of the theoretically
correct capital allocation. However, the correct allocation becomes more complex as the
models become more complex, and it contains components that do not directly align with
predominant allocation methods (such as the second component described above—the “in-
ternal policyholder” allocation). Consequently, it is not clear if existing methods are able
to produce close approximations to correct capital allocations, or if there exist alternative,
practicable methods that are able to yield accurate answers. Part of this uncertainty can
be attributed to the multi-faceted nature of capital allocation: Since there are different
“pieces” to the puzzle, it is not clear which pieces are of the greatest relative importance in
practice, and the answer may well depend on the specifics of the institutional environment.

After studying in more detail the theoretical implications of the multi-period framework
outlined above, we propose to investigate these questions in the context of a model for a
representative P&C insurer featuring realistic loss distributions.1 Specifically, by relying
on numerical techniques, we will first solve the company’s optimization problem and then
derive the “optimal” allocation according to marginal costs. In order to give nuanced an-
swers, we intend to study different institutional circumstances—for example, circumstances
with uninsured policyholders (where the effects of risk on financial strength may have pro-
found influences on consumer demand) versus circumstances with insured policyholders
(where the greater issue with risk may concern its affects on the firm’s value as a “going
concern”). Subsequently, we will compare the ensuing allocations to allocations yielded by
popular allocation methods from the actuarial literature in order to evaluate their validity
in different situations.2

1This “representative P&C insurer” is to be created in collaboration with our industry advisors (see
below), where we intend to build on related efforts such as the models proposed in response to the CAS
Committee on Dynamic Financial Analysis 2001 Call for Papers (e.g., Burkett, McIntyre and Sonlin (2001)),
previous related studies (e.g., Ruhm and Mango (2003) or Vaughn (2007)), and recent industry investiga-
tions based on example companies In particular, we intend to use available data to estimate/calibrate the
corresponding model.

2For examples, general versions of the gradient method are derived in Denault (2001) and Kalkbrener
(2005). Other methods include Dhaene et al. (2008) and Sherris (2006).
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Stability of allocations

Question Raised: How stable are line level allocations obtained from the various methods
when confronted with representative and/or actual insurance data?

As early as Myers and Read (2001), it was anticipated that stability of allocations could
be an issue in property-casualty insurance. Blackboard examples of this can be extreme
(e.g., Zanjani (2010)), and the general problem stems from the sensitivity of most allo-
cation methods to portfolio composition. Small deviations from a target portfolio could,
in theory, produce significant changes in capital allocations and such instability could en-
gender economically irrational decision-making to the extent that portfolio composition is
determined in a decentralized manner by independent line managers.

This is a crucial way in which capital allocations can distort company portfolios in the
presence of asymmetric information within the company: Ex ante allocations determine the
costs that individual line managers “see” for the purposes of making underwriting decisions
in the course of building the portfolio, but the correct allocations will only be known ex
post when the portfolio is complete. In theory, small changes in the ultimate portfolio could
yield drastically different allocations. However, the key question is whether this instability
exists in practice. Given realistic loss distributions, how stable are the results produced by
different capital allocation methods?

We propose to investigate this question in the context of a “representative P&C insurer”
as outlined above

Outline

We will address these in the manner described below:

• Step 1: Identify capital allocation methods. We will review current and past
literature to identify reasonable capital allocation methods for evaluation.

• Step 2: Obtain data for multi-period models of multi-line insurance com-
panies. We will obtain (or fit) suitable loss distributions for various lines of property-
casualty insurance. We will use historic industry data for information on prevailing
market prices and expense ratios in various lines of insurance. We will survey the
literature for evidence on suitable assumptions for the cost of insurance company
capital and the cost of external financing such as equity flotations.

• Step 3: Build and estimate models. We will build structural models of multi-
period/multi-line insurance companies and numerically calculate optimal portfolios
under various assumptions from ranges derived from our Step 2 data. Infer true
marginal costs and optimal capital allocations from optimized portfolios.

• Step 4: Calculate capital allocations. Using the optimized portfolios from Step
3, we will apply the various methods identified in Step 1 to obtain capital allocations,
and these will be compared to optimal allocations identified in Step 3. We will develop
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summary measures of the correspondence between the method-based allocations and
the optimal allocations.

• Step 5: Study robustness of optimal allocations and of method-based al-
locations. We will test the sensitivity of optimal allocations and of method-based
allocations to changes in underlying assumptions and to changes in the optimal port-
folios. We will develop summary measures of sensitivity.

• Step 6: Summary and communication We will fully report the results of the
research in a final report.
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