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1 Introduction 

Statistical models may be evaluated using a variety of measures of predictive accuracy.  The 
purpose of this study note is to clarify some aspects of the calculation of some of these measures as 
tested on the Modern Actuarial Statistics II (MAS-II) exam.  The study note does not introduce 
anything that has not been covered by the text references in the content outline but rather clarifies 
details of the calculations that are implied but not outrightly stated in the texts.  The study note 
assumes that the reader is already familiar with Chapter 8 of the James et al. text and Chapter 7 for 
the GLM text and the use of these measures in model evaluation. 
 
This study note will cover the following measures: 

• Gini Index (for Node Purity) 

• Entropy 

• Lift  

• Gini Index (for Lift) 

• Confusion Matrix Ratios 

• Area Under the Receiver Operator Characteristic Curve (AUROC) 

 
 
 

  

https://www.casact.org/sites/default/files/2022-12/James-G.-et-al.-2nd-edition-Springer-2021.pdf
https://www.casact.org/sites/default/files/2021-01/05-Goldburd-Khare-Tevet.pdf
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2 Measures of Node Purity 

Section 8.1.2 of the James et al. text describes two measures of node purity for classification trees: 
the Gini index and entropy.  This section will cover clarifications on these calculations as well as how 
they can be used to measure the quality of a split. 
 
 

2.1 Gini Index (for Node Purity) 
The Gini index for node purity is separate and independent from the Gini index for lift which is 
discussed in Section 3.2 of this study note.  The Gini index for node purity is only used in 
classification trees, whereas the Gini index for lift can measure the segmentation power of any type 
of predictive model. 
 
The formula for the Gini index for node purity and an example calculation are given in Section 2.3 of 
this study note. 
 
 

2.2 Entropy 
The calculation of entropy includes a logarithm of 𝑝̂𝑚𝑘 (the proportion of training observations in the 
mth region that are from the kth class), which may leave the base of the logarithm ambiguous.  The 
choice of logarithm only changes the calculation by a constant multiplicative factor, but it is 
necessary to have a single standard in the exam context.  The normal interpretation of the logarithm 
as used in James et al. is that it refers to the natural logarithm.  This is corroborated by the 
comparison of entropy to deviance (James et al. p. 353).  Other texts that discuss entropy in the 
context of a decision tree may use a different base, but the natural logarithm will be assumed in the 
entropy calculations for the MAS-II exam: 

𝐷𝑚 = − ∑ 𝑝̂𝑚𝑘 log(𝑝̂𝑚𝑘)

𝐾

𝑘=1

 

 

It should also be noted that in the case where 𝑝̂𝑚𝑘 = 0 for some class k, the absence of class k is an 
indication of greater purity of the node, and class k does not contribute to the entropy sum.  The 
formula for entropy is still valid despite the mathematical error in taking the logarithm of 0 since: 
 

lim
𝑝→0+

𝑝 ∙ log(𝑝) = 0 

 
 

2.3 Split Quality 
Section 8.1.2 of the James et al. text uses Gini index and entropy to evaluate the quality of a split by 
comparing these measures on a node before and after making a split.  This requires defining these 
measures in a way in which they can capture the average node purity across multiple terminal nodes.  
The derivation in this section will focus on the Gini index, although the same steps can show the 
derivation for entropy. 
 
The Gini index is based on the proportion of observations in each class and is defined for a particular 
region m.  However, it can be rewritten as a weighted average of the “impurity” of each class, where 
the “impurity” of a class is the proportion of observations in the node that do not belong to that class 

(1 − 𝑝̂𝑚𝑘): 
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𝐺𝑚 = ∑ 𝑝̂𝑚𝑘(1 − 𝑝̂𝑚𝑘)

𝐾

𝑘=1

 

𝑝̂𝑚𝑘 =
𝑛𝑚𝑘

𝑛𝑚
 

𝐺𝑚 =
1

𝑛𝑚
∑ 𝑛𝑚𝑘(1 − 𝑝̂𝑚𝑘)

𝐾

𝑘=1

 

 

where 𝑛𝑚 is the number of observations in the mth region and 𝑛𝑚𝑘 is the number of observations in 
the mth region that belong to the kth class. 
 
When a node is split, the “impurity” of each class changes because the observations are split 
between two regions, creating more unique class-node combinations.  If the split creates two new 
regions, 𝑚1 and 𝑚2, the Gini index of the original node after the split can be calculated as follows: 

𝐺𝑚
′ =

1

𝑛𝑚
(∑ 𝑛𝑚1𝑘(1 − 𝑝̂𝑚1𝑘)

𝐾

𝑘=1

+ ∑ 𝑛𝑚2𝑘(1 − 𝑝̂𝑚2𝑘)

𝐾

𝑘=1

) 

𝐺𝑚
′ =

1

𝑛𝑚
(𝑛𝑚1

∙ 𝐺𝑚1
+ 𝑛𝑚2

∙ 𝐺𝑚2
) 

 
This shows that the Gini index of the original node after the split is equal to the weighted average of 
the Gini indices of the new terminal nodes where the weights are the number of observations in each 
terminal node. 
 
The text also states that using the Gini index or entropy to evaluate the quality of a split is more 
sensitive to node purity than is the classification error rate (James et al. p. 336).  This can be 
illustrated in the example in Table 1 from a tree predicting a trinary target.  The majority class of the 
original node is Class A, and it has a classification error rate of 40%.  After the split, not only is Class 
A still the majority class of both new terminal nodes, but the classification error rate is still 40% for 
both nodes.  The split is valuable, not because it reduces the classification error rate, but rather 
because it increases node purity by better segmenting Class B from Class C.  In this case, both the 
Gini index and entropy are lower in both new nodes than in the original node, so the average Gini 
index and entropy for the original node has decreased as well.  The difference between the Gini 
indices or entropies for the original node before and after the split provides one measure of the 
quality of that split. 
 

Table 1. Example Calculation of Gini Index and Entropy 

Region 

Observations by Class Error 

Rate 

Gini 

Index Entropy A B C 

Original Node (before split) 9 3 3 0.40 0.56 0.95 

New Node 1 6 3 1 0.40 0.54 0.90 

New Node 2 3 0 2 0.40 0.48 0.67 

Original Node (after split)    0.40 0.52 0.82 

Difference    0.00 0.04 0.13 
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3 Measures of Model Lift 

Section 7.2 of the GLM text describes multiple measures of model lift, which are ways of quantifying 
the “economic value” of a model.  This study note will provide clarifications on the mechanics of the 
calculations for two of these measures: lift and the Gini index. 
 
 

3.1 Lift 
Within the context of measures of “model lift”, the measure of “lift” is defined as “the vertical distance 
between the first and last quantiles” (GLM p. 77).  There are several ways to measure this “vertical 
distance”.  In the insurance context (especially in predicting frequency, severity, pure premium, and 
loss ratio), the vertical distance is usually measured as the ratio of the actual target rates in the last 
and first quantiles.  When predicting a binary target, lift can also be measured as the odds ratio of the 
last and first quantiles.  In some contexts, the difference between the last and first quantiles can be 
used. 
 
The ratio, odds ratio, and difference calculations are shown below, where 𝐿 is the lift and 𝑌1 and 𝑌𝑄 

are the actual target rates in the first and last quantiles, respectively: 
 

𝐿𝑟𝑎𝑡𝑖𝑜 =
𝑌𝑄

𝑌1
 

𝐿𝑜𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 = (
𝑌𝑄

1 − 𝑌𝑄
) ∙ (

1 − 𝑌1

𝑌1
) 

𝐿𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑌𝑄 − 𝑌1 
 
The MAS-II exam will not directly test the calculation of lift as a metric, but understanding how this 
“vertical distance” can be calculated can be useful in comparing competing models. 
 
 

3.2 Gini Index (for Lift) 
Section 7.2.4 of the GLM text describes the method to construct the points on the Lorenz curve but 
does not provide specific details on calculating the area between the Lorenz curve and the line of 
equality.  There are several theoretical considerations for accurately representing the Gini index 
which are out of scope for this study note and the MAS-II exam.  For the purposes of the exam, the 
Gini index will be calculated using the trapezoidal method on an empirical sample of data, which is 
illustrated in this section of the study note.  In practice, this is often sufficient to make useful 
comparisons of lift between competing models. 
 
In the insurance context, model targets are often represented as a ratio.  Some of these common 
insurance targets are listed in Table 2.  In building the Lorenz curve, the numerator and denominator 
of the target are separated, since the denominator will be used to calculate the x-coordinate, and the 
numerator will be used to calculate the y-coordinate. 
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Table 2. Common Insurance Targets 

Target Denominator Numerator 

Frequency Exposure Claim Count 

Severity Claim Count Loss Amount 

Pure Premium 
(Loss Cost) 

Exposure Loss Amount 

Loss Ratio Premium Loss Amount 

 
In this example, the model will be predicting pure premium.  Table 3 displays the holdout dataset, 
which contains 10 observations that have been sorted by predicted loss cost. 
 

Table 3. Holdout Data for Gini Index 

Policy ID 

Predicted 

Loss Cost Exposure Loss 

1 50 0.5 100 

2 50 0.5 100 

3 60 2.0 100 

4 60 1.0 0 

5 80 1.0 0 

6 100 0.5 0 

7 100 1.5 100 

8 150 0.5 0 

9 150 1.5 200 

10 200 1.0 400 

  
There are only 6 unique predicted loss costs, so the precise order in which the observations are 
sorted is ambiguous.  Without any modification to the data structure, the calculation of cumulative 
exposures and losses would be different depending on the order in which observations with ties in 
the predicted loss cost are sorted.  For this reason, the exposure and loss must first be aggregated 
by predicted loss cost and then the cumulative percentage of exposures and losses can be 
calculated.  Table 4 has this aggregation and calculation of the cumulative percentage of exposures 
and losses. 
 

Table 4. Plot Data for Lorenz Curve 

Predicted 

Loss Cost Exposure Loss 

Cumulative 

Percentage of 

Exposures (xj) 

Cumulative 

Percentage 

of Losses (yj) 

50 1.0 200 0.1 0.2 

60 3.0 100 0.4 0.3 

80 1.0 0 0.5 0.3 

100 2.0 100 0.7 0.4 

150 2.0 200 0.9 0.6 

190 1.0 400 1.0 1.0 

Total 10.0 1000   

 
Adding the implied point at (0,0), the Lorenz curve can be plotted with the cumulative percentage of 
exposures on the x-axis and the cumulative percentage of losses on the y-axis as shown in Figure 1.  
The Lorenz curve connects each point with a straight line.  This has an intuitive interpretation that 
each exposure within the unique predicted value contributes a constant amount of loss, which fits 
the assumption that there is no better way to sort the observations that contain the same predicted 
value. 
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There are many approaches to calculate the area between the Lorenz curve and the line of equality.  
A simple way is to calculate the area under the Lorenz curve and subtract it from the area under the 
line of equality.  The shape formed under the line of equality is a triangle with a base and height both 
equal to 1, which has an area of 0.5.  The shape under the Lorenz curve can be divided into a series 
of trapezoids as shown in Figure 2.  Each trapezoid has base lengths of 𝑦𝑗−1 and 𝑦𝑗 and a height of 

𝑥𝑗 − 𝑥𝑗−1.  (The first “trapezoid” in the series is actually a triangle, but it can be thought of as a special 

case of a trapezoid where one of the bases is 0.) 
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The Gini index can then be calculated as twice the difference between 0.5 and the sum of the areas 
of these trapezoids: 

𝐺 = 2 (
1

2
− ∑

1

2
(𝑥𝑗 − 𝑥𝑗−1)(𝑦𝑗−1 + 𝑦𝑗)

𝐽

𝑗=1

) 

𝐺 = 1 − ∑(𝑥𝑗 − 𝑥𝑗−1)(𝑦𝑗−1 + 𝑦𝑗)

𝐽

𝑗=1

 

 
Using the second equation, Table 5 shows the calculation of each partial sum.  (By definition, 𝑥0 =
𝑦0 = 0.)  The Gini index is the difference between 1 and the sum of the partial sums, which is 0.27. 
 

Table 5. Gini Index Calculation 

j xj yj Partial Sum 

0 0.00 0.00  

1 0.10 0.20 0.02 

2 0.40 0.30 0.15 

3 0.50 0.30 0.06 

4 0.70 0.40 0.14 

5 0.90 0.60 0.20 

6 1.00 1.00 0.16 

Sum 0.73 

 
In the original economics use case of the Gini index, the Lorenz curve can never cross the line of 
equality.  This is because households are rank ordered by their income and then that same income is 
measured on the y-axis.  However, in a modeling context, the rank ordering of observations comes 
from the model prediction and the values for the y-axis come from the actual experience in the data.  
Due to random variation in the target, it is possible that the Lorenz curve may be above the line of 
equality, which happens in this example and is shown in Figure 1.  This is a similar effect as reversals 
appearing in the simple quantile plot.  The area that under the Lorenz curve that is above the line of 
equality has a negative contribution to the Gini index, which effectively penalizes the model for this 
reversal. 
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4 Measures for Binary Models 

Section 7.3 of the GLM text describes the confusion matrix and receiver operator characteristic 
(ROC) curve to describe the fit of the model.  This study note will cover the additional material on the 
confusion matrix from Section 4.4.2 of the James et al. text as well as clarify the calculation of 
AUROC. 
 
 

4.1 Confusion Matrix Ratios 
Tables 6 and 7 show some ratios (with their commonly used names) that can be derived from a 
confusion matrix (shown with its marginals): 
 

Table 6. Confusion Matrix 

  Predicted Class 

  Positive Negative Total 

Actual 

(True) 

Class 

Positive TP FN P 

Negative FP TN N 

Total P* N* T 

 

Table 7. Confusion Matrix Ratios 

Calculation Name(s) 

(FN + FP) / T • Error Rate 

TP / P • True Positive Rate 

• Sensitivity 

• Recall 

• Power 

FN / P • False Negative Rate 

• Type II Error 

TN / N • True Negative Rate 

• Specificity 

FP / N • False Positive Rate 

• Type I Error 

• 1 – Specificity 

TP / P* • Positive Predicted Value 

• Precision 

FP / P* • False Discovery Proportion 

TN / N* • Negative Predicted Value 

 
 

4.2 AUROC 
This section covers an example calculation of the area under the receiver operator characteristic 
curve (AUROC).  The holdout dataset is shown in Table 8.  It contains 15 observations with their 
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predicted probabilities (of an outcome of 1) and actual outcome, sorted by predicted probability. 

 

Table 8. Holdout Data for AUROC 

Observation 

Predicted 

Probability Actual 

1 0.10 0 

2 0.10 0 

3 0.10 0 

4 0.10 0 

5 0.20 0 

6 0.20 0 

7 0.20 1 

8 0.30 1 

9 0.30 0 

10 0.40 0 

11 0.40 1 

12 0.50 0 

13 0.60 1 

14 0.70 1 

15 0.80 0 

 
Each point plotted on the receiver operator characteristic (ROC) curve is derived from the specificity 
and sensitivity associated with a discrimination threshold.  As an example, Table 9 shows the 
construction of the confusion matrix for a discrimination threshold of 0.55.  At this discrimination 
threshold, the specificity is 9/10 = 0.9 and the sensitivity is 2/5 = 0.4. 
 

Table 9. Confusion Matrix for Table 8 with 

Discrimination Threshold of 0.55 

  Predicted Class 

  Positive Negative Total 

Actual 

(True) 

Class 

Positive 2 3 5 

Negative 1 9 10 

Total 3 12 15 

 
Since there are 8 unique predicted probabilities, there will be 9 unique discriminations: 7 from 
discrimination thresholds lying between the unique predicted probabilities and 2 from a 
discrimination threshold above the highest predicted probability and a discrimination threshold below 
the lowest predicted probability.  The 9 selected discrimination thresholds with their associated 
points on the ROC curve are shown in Table 10 and plotted in Figure 3. 
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Table 10. Plot Data for ROC Curve 

Discrimination 

Threshold 

1-Specificity 

(xj) 

 Sensitivity 

(yj) 

0.90 0.0 0.0 

0.75 0.1 0.0 

0.65 0.1 0.2 

0.55 0.1 0.4 

0.45 0.2 0.4 

0.35 0.3 0.6 

0.25 0.4 0.8 

0.15 0.6 1.0 

0.05 1.0 1.0 

 

 
AUROC is simply the area under the curve.  Like the Gini index, it is calculated as a sum of the area 
of trapezoids, which are constructed in Figure 4.  In this calculation, the line of equality is not used, so 
it has been removed from the graph. 
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Each trapezoid has base lengths of 𝑦𝑗−1 and 𝑦𝑗 and a height of 𝑥𝑗 − 𝑥𝑗−1.  AUROC can then be 

calculated the sum of the areas of all these trapezoids: 

𝐴𝑈𝑅𝑂𝐶 = ∑
1

2
(𝑥𝑗 − 𝑥𝑗−1)(𝑦𝑗−1 + 𝑦𝑗)

𝐽

𝑗=1

 

 
Table 11 shows the calculation of the trapezoidal areas.  AUROC is the sum of the trapezoidal areas, 
which is 0.74. 
 

Table 11. AUROC Calculation 

j xj yj 

Trapezoidal 

Area 

0 0.0 0.0  

1 0.1 0.0 0.00 

2 0.1 0.2 0.00 

3 0.1 0.4 0.00 

4 0.2 0.4 0.04 

5 0.3 0.6 0.05 

6 0.4 0.8 0.07 

7 0.6 1.0 0.18 

8 1.0 1.0 0.40 

Sum 0.74 
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Another equivalent formulation of the table is to aggregate rows by unique predicted value (in 
descending order), which is shown in Table 12.  The predicted probability of 1 is included to fill the 
index of 0. 

 

Table 12. Alternative AUROC Calculation 

i 

Predicted 

Probability 

Number of 

Actual 

Negatives 

(ni) 

Number of 

Actual 

Positives 

(pi) 

Cumulative 

Actual 

Positives 

(ci) ni (ci-1+ ci) 

0 1.0 0 0 0  

1 0.8 1 0 0 0 

2 0.7 0 1 1 0 

3 0.6 0 1 2 0 

4 0.5 1 0 2 4 

5 0.4 1 1 3 5 

6 0.3 1 1 4 7 

7 0.2 2 1 5 18 

8 0.1 4 0 5 40 

Total 10 5  74 

 
The number of negatives (ni) corresponds to the difference in specificities (𝑥𝑗 − 𝑥𝑗−1) and the 

cumulative number of positives (ci) corresponds to the sensitivities (𝑦𝑗).  The equation for AUROC 

can be rewritten as: 

𝐴𝑈𝑅𝑂𝐶 =
1

2𝑁𝑃
∑ 𝑛𝑖(𝑐𝑖−1 + 𝑐𝑖)

𝐼

𝑖=1

 

where N is the total number of observations with a target in the negative class and P is the total 
number of observations with a target in the positive class.  Then AUROC = 74 / (2 • 10 • 5) = 0.74. 


