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1 Introduction

Statistical models may be evaluated using a variety of measures of predictive accuracy. The
purpose of this study note is to clarify some aspects of the calculation of some of these measures as
tested on the Modern Actuarial Statistics Il (MAS-Il) exam. The study note does not introduce
anything that has not been covered by the text references in the content outline but rather clarifies
details of the calculations that are implied but not outrightly stated in the texts. The study note
assumes that the reader is already familiar with Chapter 8 of the James et al. text and Chapter 7 for
the GLM text and the use of these measures in model evaluation.

This study note will cover the following measures:
e Gini Index (for Node Purity)

e Entropy

o Lift

e Gini Index (for Lift)

e Confusion Matrix Ratios

e Area Under the Receiver Operator Characteristic Curve (AUROC)
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https://www.casact.org/sites/default/files/2022-12/James-G.-et-al.-2nd-edition-Springer-2021.pdf
https://www.casact.org/sites/default/files/2021-01/05-Goldburd-Khare-Tevet.pdf

2 Measures of Node Purity

Section 8.1.2 of the James et al. text describes two measures of node purity for classification trees:
the Gini index and entropy. This section will cover clarifications on these calculations as well as how
they can be used to measure the quality of a split.

2.1 Gini Index (for Node Purity)

The Gini index for node purity is separate and independent from the Gini index for lift which is
discussed in Section 3.2 of this study note. The Gini index for node purity is only used in
classification trees, whereas the Gini index for lift can measure the segmentation power of any type
of predictive model.

The formula for the Gini index for node purity and an example calculation are given in Section 2.3 of
this study note.

2.2 Entropy

The calculation of entropy includes a logarithm of p,,,; (the proportion of training observations in the
mth region that are from the kth class), which may leave the base of the logarithm ambiguous. The
choice of logarithm only changes the calculation by a constant multiplicative factor, but it is
necessary to have a single standard in the exam context. The normal interpretation of the logarithm
as used in James et al. is that it refers to the natural logarithm. This is corroborated by the
comparison of entropy to deviance (James et al. p. 353). Other texts that discuss entropy in the
context of a decision tree may use a different base, but the natural logarithm will be assumed in the
entropy calculations for the MAS-Il exam:

K
Dy =— Z Pmk log(ﬁmk)
k=1

It should also be noted that in the case where p,,;, = 0 for some class k, the absence of class k is an
indication of greater purity of the node, and class k does not contribute to the entropy sum. The
formula for entropy is still valid despite the mathematical error in taking the logarithm of O since:

;Lgap “log(p) =0

2.3 Split Quality

Section 8.1.2 of the James et al. text uses Gini index and entropy to evaluate the quality of a split by
comparing these measures on a node before and after making a split. This requires defining these
measures in a way in which they can capture the average node purity across multiple terminal nodes.
The derivation in this section will focus on the Gini index, although the same steps can show the
derivation for entropy.

The Gini index is based on the proportion of observations in each class and is defined for a particular
region m. However, it can be rewritten as a weighted average of the “impurity” of each class, where
the “impurity” of a class is the proportion of observations in the node that do not belong to that class

(1 = Doi):
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where n,, is the number of observations in the mth region and n,,; is the number of observations in
the mth region that belong to the kth class.

When a node is split, the “impurity” of each class changes because the observations are split
between two regions, creating more unique class-node combinations. If the split creates two new
regions, m; and m,, the Gini index of the original node after the split can be calculated as follows:

K K
1
G = n < § nmlk(l - ﬁmlk) + § nmzk(l - ﬁmzk)>
m =

k=1 k=1

) 1
Gy = — (N, * G, + N, * Gim,)
Nm

This shows that the Gini index of the original node after the split is equal to the weighted average of
the Gini indices of the new terminal nodes where the weights are the number of observations in each
terminal node.

The text also states that using the Gini index or entropy to evaluate the quality of a split is more
sensitive to node purity than is the classification error rate (James et al. p. 336). This can be
illustrated in the example in Table 1 from a tree predicting a trinary target. The majority class of the
original node is Class A, and it has a classification error rate of 40%. After the split, not only is Class
A still the majority class of both new terminal nodes, but the classification error rate is still 40% for
both nodes. The split is valuable, not because it reduces the classification error rate, but rather
because it increases node purity by better segmenting Class B from Class C. In this case, both the
Gini index and entropy are lower in both new nodes than in the original node, so the average Gini
index and entropy for the original node has decreased as well. The difference between the Gini
indices or entropies for the original node before and after the split provides one measure of the
quality of that split.

Table 1. Example Calculation of Gini Index and Entropy

Observations by Class Error Gini
Region A B C Rate Index | Entropy
Original Node (before split) 9 3 3 0.40 0.56 0.95
New Node 1 6 3 1 0.40 0.54 0.90
New Node 2 3 0 2 0.40 0.48 0.67
Original Node (after split) 0.40 0.52 0.82
Difference 0.00 0.04 0.13
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3 Measures of Model Lift

Section 7.2 of the GLM text describes multiple measures of model lift, which are ways of quantifying
the “economic value” of a model. This study note will provide clarifications on the mechanics of the
calculations for two of these measures: lift and the Gini index.

3.1 Lift

Within the context of measures of “model lift”, the measure of “lift” is defined as “the vertical distance
between the first and last quantiles” (GLM p. 77). There are several ways to measure this “vertical
distance”. In the insurance context (especially in predicting frequency, severity, pure premium, and
loss ratio), the vertical distance is usually measured as the ratio of the actual target rates in the last
and first quantiles. When predicting a binary target, lift can also be measured as the odds ratio of the
last and first quantiles. In some contexts, the difference between the last and first quantiles can be
used.

The ratio, odds ratio, and difference calculations are shown below, where L is the lift and ¥; and Y,
are the actual target rates in the first and last quantiles, respectively:

Y
Q
Lyatio = Y.
1

Y, 1-Y,
L 0 = :
odds ratio 1— YQ ( Yl )

Ldifference = YQ -

The MAS-II exam will not directly test the calculation of lift as a metric, but understanding how this
“vertical distance” can be calculated can be useful in comparing competing models.

3.2 Gini Index (for Lift)

Section 7.2.4 of the GLM text describes the method to construct the points on the Lorenz curve but
does not provide specific details on calculating the area between the Lorenz curve and the line of
equality. There are several theoretical considerations for accurately representing the Gini index
which are out of scope for this study note and the MAS-Il exam. For the purposes of the exam, the
Gini index will be calculated using the trapezoidal method on an empirical sample of data, which is
illustrated in this section of the study note. In practice, this is often sufficient to make useful
comparisons of lift between competing models.

In the insurance context, model targets are often represented as a ratio. Some of these common
insurance targets are listed in Table 2. In building the Lorenz curve, the numerator and denominator
of the target are separated, since the denominator will be used to calculate the x-coordinate, and the
numerator will be used to calculate the y-coordinate.
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Table 2. Common Insurance Targets

Target Denominator Numerator
Frequency Exposure Claim Count
Severity Claim Count Loss Amount
Pure Premium
(Loss Cost) Exposure Loss Amount
Loss Ratio Premium Loss Amount

In this example, the model will be predicting pure premium. Table 3 displays the holdout dataset,
which contains 10 observations that have been sorted by predicted loss cost.

Table 3. Holdout Data for Gini Index

Predicted
Policy ID | Loss Cost | Exposure Loss
1 50 0.5 100
2 50 0.5 100
3 60 2.0 100
4 60 1.0 0
5 80 1.0 0
6 100 0.5 0
7 100 1.5 100
8 150 0.5 0
9 150 1.5 200
10 200 1.0 400

There are only 6 unique predicted loss costs, so the precise order in which the observations are
sorted is ambiguous. Without any modification to the data structure, the calculation of cumulative
exposures and losses would be different depending on the order in which observations with ties in
the predicted loss cost are sorted. For this reason, the exposure and loss must first be aggregated
by predicted loss cost and then the cumulative percentage of exposures and losses can be
calculated. Table 4 has this aggregation and calculation of the cumulative percentage of exposures
and losses.

Table 4. Plot Data for Lorenz Curve

Cumulative Cumulative

Predicted Percentage of Percentage
Loss Cost | Exposure Loss Exposures (x;) | of Losses (y))

50 1.0 200 0.1 0.2

60 3.0 100 0.4 0.3

80 1.0 0 0.5 0.3

100 2.0 100 0.7 04

150 2.0 200 0.9 0.6

190 1.0 400 1.0 1.0

Total 10.0 1000

Adding the implied point at (0,0), the Lorenz curve can be plotted with the cumulative percentage of
exposures on the x-axis and the cumulative percentage of losses on the y-axis as shown in Figure 1.
The Lorenz curve connects each point with a straight line. This has an intuitive interpretation that
each exposure within the unique predicted value contributes a constant amount of loss, which fits
the assumption that there is no better way to sort the observations that contain the same predicted
value.

Updated: November 6, 2025



Figure 1. Gini Index Plot
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There are many approaches to calculate the area between the Lorenz curve and the line of equality.
A simple way is to calculate the area under the Lorenz curve and subtract it from the area under the
line of equality. The shape formed under the line of equality is a triangle with a base and height both
equal to 1, which has an area of 0.5. The shape under the Lorenz curve can be divided into a series
of trapezoids as shown in Figure 2. Each trapezoid has base lengths of y;_; and y; and a height of
x; — x;_4. (The first “trapezoid” in the series is actually a triangle, but it can be thought of as a special
case of a trapezoid where one of the bases is 0.)

Figure 2. Lorenz Curve Trapezoids
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The Gini index can then be calculated as twice the difference between 0.5 and the sum of the areas

of these trapezoids:
J
1 1
G=2 (g - Z 5 (5 = %) (-1 + 3’1’))
1

j=

J
G=1- Z(xj - xj—l)(yj—l + }’j)
j=1

Using the second equation, Table 5 shows the calculation of each partial sum. (By definition, x, =
¥o = 0.) The Gini index is the difference between 1 and the sum of the partial sums, which is 0.27.

Table 5. Gini Index Calculation

i Xj Vi Partial Sum

0 0.00 0.00

1 0.10 0.20 0.02

2 0.40 0.30 0.15

3 0.50 0.30 0.06

4 0.70 0.40 0.14

5 0.90 0.60 0.20

6 1.00 1.00 0.16
Sum 0.73

In the original economics use case of the Gini index, the Lorenz curve can never cross the line of
equality. This is because households are rank ordered by their income and then that same income is
measured on the y-axis. However, in a modeling context, the rank ordering of observations comes
from the model prediction and the values for the y-axis come from the actual experience in the data.
Due to random variation in the target, it is possible that the Lorenz curve may be above the line of
equality, which happens in this example and is shown in Figure 1. This is a similar effect as reversals
appearing in the simple quantile plot. The area that under the Lorenz curve that is above the line of
equality has a negative contribution to the Gini index, which effectively penalizes the model for this
reversal.
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4 Measures for Binary Models

Section 7.3 of the GLM text describes the confusion matrix and receiver operator characteristic
(ROC) curve to describe the fit of the model. This study note will cover the additional material on the
confusion matrix from Section 4.4.2 of the James et al. text as well as clarify the calculation of

AUROC.

4.1 Confusion Matrix Ratios

Tables 6 and 7 show some ratios (with their commonly used names) that can be derived from a

confusion matrix (shown with its marginals):

4.2 AUROC

This section covers an example calculation of the area under the receiver operator characteristic
curve (AUROC). The holdout dataset is shown in Table 8. It contains 15 observations with their

Table 6. Confusion Matrix

Predicted Class
Positive | Negative Total
Actual Positive TP FN P
(True) Negative FP TN N
Class Total P* N* T
Table 7. Confusion Matrix Ratios
Calculation | Name(s)
(FN+FP)/ T | e Error Rate
TP/P ¢ True Positive Rate
e Sensitivity
e Recall
e Power
FN/P ¢ False Negative Rate
e Type Il Error
TN/N ¢ True Negative Rate
e Specificity
FP/N e False Positive Rate
e Type | Error
¢ 1- Specificity
TP/ P* ¢ Positive Predicted Value
e Precision
FP/ P* ¢ False Discovery Proportion
TN / N* ¢ Negative Predicted Value
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predicted probabilities (of an outcome of 1) and actual outcome, sorted by predicted probability.

Table 8. Holdout Data for AUROC

Predicted
Observation | Probability Actual

1 0.10 0
2 0.10 0
3 0.10 0
4 0.10 0
5 0.20 0
6 0.20 0
7 0.20 1
8 0.30 1
9 0.30 0
10 0.40 0
11 0.40 1
12 0.50 0
13 0.60 1
14 0.70 1
15 0.80 0

Each point plotted on the receiver operator characteristic (ROC) curve is derived from the specificity
and sensitivity associated with a discrimination threshold. As an example, Table 9 shows the
construction of the confusion matrix for a discrimination threshold of 0.55. At this discrimination
threshold, the specificity is 9/10 = 0.9 and the sensitivity is 2/5 = 0.4.

Table 9. Confusion Matrix for Table 8 with
Discrimination Threshold of 0.55

Predicted Class
Positive | Negative Total
Actual Positive 2 3 5
(True) Negative 1 9 10
Class Total 3 12 15

Since there are 8 unique predicted probabilities, there will be 9 unique discriminations: 7 from
discrimination thresholds lying between the unique predicted probabilities and 2 from a
discrimination threshold above the highest predicted probability and a discrimination threshold below
the lowest predicted probability. The 9 selected discrimination thresholds with their associated
points on the ROC curve are shown in Table 10 and plotted in Figure 3.
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Table 10. Plot Data for ROC Curve

Discrimination 1-Specificity Sensitivity
Threshold (x;) (v)
0.90 0.0 0.0
0.75 0.1 0.0
0.65 0.1 0.2
0.55 0.1 0.4
0.45 0.2 0.4
0.35 0.3 0.6
0.25 0.4 0.8
0.15 0.6 1.0
0.05 1.0 1.0

Figure 3. ROC Curve
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AUROC is simply the area under the curve. Like the Giniindex, it is calculated as a sum of the area
of trapezoids, which are constructed in Figure 4. In this calculation, the line of equality is not used, so
it has been removed from the graph.
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Figure 4. ROC Curve Trapezoids

100% ®
—@— ROC Curve :
80%
2 60%
=
=
[%2])
C
$ 40%
20%
0% @ oo o ¢
0% 20% 40% 60% 80% 100%
1-Specificity

Each trapezoid has base lengths of y;_; and y; and a height of x; — x;_;. AUROC can then be
calculated the sum of the areas of all these trapezoids:

]
1
AUROC = ZE(XJ' - xj—l)(yj—l + yj)
=1

Table 11 shows the calculation of the trapezoidal areas. AUROC is the sum of the trapezoidal areas,
which is 0.74.

Table 11. AUROC Calculation

Trapezoidal

i Xj Vi Area
0 0.0 0.0
1 0.1 0.0 0.00
2 0.1 0.2 0.00
3 0.1 04 0.00
4 0.2 0.4 0.04
5 0.3 0.6 0.05
6 04 0.8 0.07
7 0.6 1.0 0.18
8 1.0 1.0 0.40

Sum 0.74
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Another equivalent formulation of the table is to aggregate rows by unique predicted value (in

descending order), which is shown in Table 12. The predicted probability of 1is included to fill the

index of O.
Table 12. Alternative AUROC Calculation
Number of Number of Cumulative
Actual Actual Actual
Predicted Negatives Positives Positives

i Probability (n) (p) (c) n;(ci* ci)
0 1.0 0 0 0
1 0.8 1 0 0 0
2 0.7 0 1 1 0
3 0.6 0 1 2 0
4 0.5 1 0 2 4
5 0.4 1 1 3 5
6 0.3 1 1 4 7
7 0.2 2 1 5 18
8 0.1 4 0 5 40

Total 10 5 74

The number of negatives (n)) corresponds to the difference in specificities (x; — x;_,) and the
cumulative number of positives (c;) corresponds to the sensitivities (y;). The equation for AUROC
can be rewritten as:

1
1
AUROC = WZ‘ ey + )
where N is the total number of observations with a target in the negative class and P is the total

number of observations with a target in the positive class. Then AUROC =74 /(210 +5) = 0.74.
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