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Preface
Writing a monograph on capital modeling is a humbling experience. Capital Modeling,
also known as Dynamic Financial Analysis (DFA), Enterprise Risk Analysis, or Internal
Risk Modeling, is at least 120 years old. It began in 1903, when Swedish actuary Filip
Lundberg introduced the stochastic compound-Poisson risk model to describe how an
insurer’s surplus evolves over time. The literature is vast, thousands of pages across hun-
dreds of books and articles. How can one condense that all down to a comprehensive
how-to manual? The answer is, one cannot, and we do not try. Instead, we attempt to
sketch out what needs to happen, and provide sufficient references to the existing litera-
ture so that the reader can obtain whatever detail is needed.

Where we have introduced some innovation is at the very end of the process—capital
allocation, or, more properly, the allocation of cost of capital. Here, we explore in detail
the (unfortunate) consequences of assuming a fixed cost of capital rate and offer a TVaR-
based generalization in its place: Spectral Risk Measures, also known as Distortion Risk
Measures, and their Natural Allocation. Yet we cannot claim originality here, either, as
we are leaning heavily on another decades-long vein of actuarial research.

With allocation, we deliberately adopt a single-period perspective. We do not address
the time required for claims to develop to ultimate, nor do we treat the insurer as a go-
ing concern. The first omission aligns with most regulatory capital models, which focus
on one-year changes in reserves and new accident year loss bookings. They account for
reserve risk, but not the full run-off risk. The second reflects our desire to avoid getting
bogged down in what David Babbel (discussion in Reitano (1997)) calls the “quagmire
of equity valuation”—a topic one of us has written about already and the other chooses
to avoid.

It is perhaps a fitting irony that the quantification of risk is riddled with uncertainty.
Capital modeling is part science, part dark art—and its real value often isn’t the final
number, but the insight gained along the way. While some may chase the best estimate,
models are most useful when they show a range of outcomes and the assumptions be-
hind them. Some inputs are squishy, like risk appetite, and it’s often easier to rule out
wrong answers than pin down the right one. Think of capital modeling less as a calcu-
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lator and more as a compass: it won’t give you the answer, but it helps you head in the
right direction.

We draw heavily from our book Mildenhall and Major (2022). You do not need the
book to implement the mechanics presented in this monograph; we wrote it to stand
alone. However, it is a good source for the whys and wherefores, and advanced topics.

Finally, capital modeling is a participation sport not a spectator sport. We recom-
mend strongly that you open your favorite spreadsheet or software tool and reproduce
the simple examples. Generally, as the models become more realistic, they scale up in
terms of number of rows and columns but not in terms of conceptual complexity. Both
authors have used the basic methods outlined on 10,000+ simulated events with 100+
units and obtained satisfactory results—though this should not be attempted in a spread-
sheet unless you are exceedingly patient. We apologize that straightforward spreadsheet
concepts, such as the sum product of two columns or a weighted average, become intim-
idating mathematical formulas, but since we want to be explicit, we need to present the
formulas and there’s no sidestepping this. The reader will find it helpful to see through
the formulas to their simple spreadsheet form, best done hands-on. Lastly, this paragraph
should not be taken as an endorsement of spreadsheets. You should learn to program!
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1. Introduction
1.1. What are you getting yourself into?

Congratulations! You have been tasked with developing a capital modeling system! But
what does thismean? Maybe youwere lucky enough to be handed a detailed specification
of what this capital model is supposed to do and who is going to make use of its outputs
and how those outputs will affect business operations. Or perhaps not.

But what is a capital modeling system? What is it for? And how do you build one?
Actuarial standards define capital as “the funds…over and above those funds backing

the liabilities,” where “funds backing the liabilities” are amounts booked to support in-
curred liabilities (loss reserves) or future liabilities (unearned premiums) (Actuarial Stan-
dards Board 2011). Capital is then a cushion in excess of those amounts. This definition
highlights that capital is an accounting concept whose value will vary with the account-
ing standard. Since the distinction between capital and reserves is blurry, it is often more
productive to focus on all available assets. Pricing then splits assets between policyholder-
provided premium and reserves and owner-provided capital.

The modeling standard (Actuarial Standards Board 2019) defines amodel as “a sim-
plified representation of relationships among real-world variables, entities, or events us-
ing statistical, financial, economic,mathematical, non-quantitative, or scientific concepts
and equations.” A key word here is simplified; as Gabaix and Laibson (2008) point out,
“a perfect replica of the earth would reproduce every contour, but such a representation
would be impractical.” Capital modelers should take to heart the admonition attributed
to Einstein to make things “as simple as possible, but no simpler.” Any increment of
complexity should materially improve the utility of your model. Modelers face many
pressures to build granular, complex models but receive no countervailing rewards for
accuracy and practicality.

Today, computers are ubiquitous in modeling, and this monograph will focus exclu-
sively on quantitative models embedded in computer systems.

A capital modeling systemmay be expected to support:

• risk identification and analysis
• product pricing (ratemaking)

Casualty Actuarial Society 1
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• rating and underwriting
• reinsurance decisions
• business unit performance assessment
• portfolio optimization
• valuation of a potential spinoff or acquisition
• regulatory compliance
• rating agency discussions
• strategic planning

We will assume in this monograph that your goal is, ultimately, a comprehensive sys-
tem that can support all of the above activities. Of course, as you build it, you will need
to prioritize interim goals and use cases, but directionally this is where we assume you are
heading. Formodelers in theUS, questions of pricing aremore important thanquestions
of capital adequacy, as the latter constraints tend to be externally imposed. In the EU,
however, an internal model may be called on to determine capital adequacy. There, reg-
ulators issue extensive guidance onmodel building that obviously trump any conflicting
advice we offer.

The system’s core modeling function is to mirror and tie into the plan. It is first a
system to support and enhance the existing planning process and second to quantify risk
around the plan. Support for the other listed tasks stems from this capability to repre-
sent risk.

1.2. Structure of the monograph

The remainder of the Introductionhelps youwithGetting started, addressinghigh-level
goals and operational issues to get you off the ground in Section 1.3, making someClar-
ifying remarks in Section 1.4, providing a System overview in Section 1.5 that outlines
a generic capital modeling system and that forms the basis for subsequent discussions of
functionality, and in Section 1.6, Introduction to InsCo, presenting a highly simplified
example that is used throughout for illustration.

The rest of the monograph is structured as follows:

• Chapter 1 Introduction is this chapter.
• Chapter 2 Business operations discusses the largest module in the capital modeling
system. This is where the financial fortunes of the firm are simulated. Building or
acquiring and implementing this module will absorb most of your resources. This
function is also where decades of training, experience, and literature can be brought to
bear. In this chapter we will provide further pointers into that literature.

• Chapter 3Capital adequacy and sources of risk discusses the secondmodule, which
is smaller and easier to implement. It depends on the outputs from Business Oper-
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ations and reflects well-understood principles of risk measurement. Basic risk mea-
surement as well as regulatory aspects are discussed in this chapter. We also discuss
risk analysis applications. The simple example continues. At the end of the chapter,
algorithms for computing expected value, quantiles (VaR), and TVaR on discrete dis-
tributions are presented.

• Chapter 4Pricing and allocation is wherewe introduce newways of thinking, specifi-
cally Spectral RiskMeasures (SRMs) and theNatural Allocation thereof. In this chap-
ter, InsCo is treatedwith a complete pricing and allocation exercise. Along theway, we
discuss the industry standard approach to capital allocation and why it is problematic.
At the endof the chapter, algorithms for computing SRMs and theNaturalAllocation
on discrete distributions are presented.

• Chapter 5Applications of pricing and allocation use the outputs of the Capital Ad-
equacy and Pricing and Allocation modules in performance assessment, new business
pricing, reinsurance decision-making, portfolio optimization, and mergers and acqui-
sitions.

• Chapter 6 Selecting and calibrating an SRM discusses how choice of an SRM im-
pacts the various portfolio components and presents an approach to finding an accept-
able solution. It also discusses how to leverage the range of consistent outcomes and
understand their implications on risk appetite.

• Chapter 7 Evaluating models discusses how to evaluate your ownmodel, third-party
models, and modeling platforms.

• Chapter 8Advanced topics deals with uncertainty and allocating capital (if youmust)
and a clever technique to implement correlation.

• Chapter 9 Calculations with aggregate shows how to use the open-source
aggregate package to work the examples in this monograph.

• The Appendices include a table of symbols, list of relevant Actuarial Standards of
Practice, and a glossary.

1.3. Getting started

1.3.1. The charter

The maxim “If you build it, they will use it” does not apply to capital models. Success-
ful models are built in response to business needs, with high-level direction set by a se-
nior business leader. A charter can be a valuable tool in crystallizing that direction. You
should have some more-or-less formal document answering design questions such as:

• Why are we building a capital modeling system?
– Is this driven by regulatory concerns, dissatisfactionwith the current planning pro-
cess, or something else?
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• What types of decisions will it support?
– See examples in Section 1.1.

• Who is going to use this model?
– Who is going to run it, hands on?
– How often will it run (daily, weekly, monthly, etc.)?
– Who is going to be in a position to set inputs or pose queries?
– Who is going to receive reports?
– What is the users’ level of sophistication, in terms of what they are likely to ask and
what sort of output or report they are willing and able to absorb?

– Is the model intended for senior staff to be reviewing outputs or junior staff to be
integrating outputs with their own workflow? This may differ across functional
units.

• When will the outputs be used?
– During the planning process, presumably, but probably other times as well.

• Whose business processes will be affected by the system?
• How will outputs be integrated into planning and underwriting?
• How will we know if we are successful?
– Define metrics such as use and impact.
– What stakeholders need to be in agreement to make the system successful?

Ideally, this document will bear a cover memo endorsed by some sufficiently high-
ranking executive. At the very least, it must be widely exposed to senior management
and key stakeholders (typically Lines of Business) via road shows.

Howwill you know if you are successful? Mainly, by seeing yourmodel get used, i.e.,
“fully embedded into the risk strategy and operational processes of the insurer” (IAIS
2008). This means, among other things:

1. Management has an overall understanding ofwhat yourmodel does, in terms of input
versus output.

2. The model is used in the planning cycle; results are regularly discussed and reviewed.
3. Decisions that affect the firm’s risk profile usually refer to model results.
4. Decision-makers ask when the next set of outputs will be ready.

The European Insurance and Occupational Pension Authority (EIOPA (2009), title I,
chapter VI, section 4, article 120; EIOPA (2015) title I, chapter 6) elaborates on these
points in the context of the use test.

1.3.2. Organizational factors

Your project plan needs to address organizational issues. What resources will be available
for initial development, ongoing maintenance, and operations? What actuarial and pro-
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gramming staffwill need to be involved? What data are required? What funds are needed
to purchase software? What hardware is needed?

DonMango addresses organizational and human factors related to implementing an
internal risk model (IRM) in Brehm et al. (2007, Section 3.1). He covers the following
areas:

1. Startup staffing: This step includes considering the organizational chart, business
functions represented, resource commitments, roles, and responsibilities. He recom-
mends that system implementation is “the establishment of a new competency” and
calls for the transfer of full-time employees or even adding new hires. Control of in-
puts and outputs of the model needs to be taken as seriously as general ledger or re-
serving systems.

2. Purpose and scope: He suggests initially to cover only the prospective underwriting
year and to quantify variation around that plan; later, expand the scope to include
reserves, assets, and operational risks with more formal probability distributions.

3. Parameter development: Data quality issues will require expert judgment from un-
derwriting, claims, planning, and actuarial staff. “Develop a systematicway to capture
expert risk opinion.” Correlation is as important as it is problematic.

4. Software: Evaluate available software solutions, and decide whether to build or buy.
This decision depends on the strength and skills of the modeling team.

5. Validation testing: Thiswill occurover time and requires significantplanning. Reach
out to affected parties and make sure they understand what validation does and how
it works.

6. Rollout: Early in theprocess, secure topmanagementbacking forprioritization, com-
munications and training, and pilot testing.

7. Integration and maintenance: Of course, he recommends mandatory inclusion of
model reports as part of decision support in the planning cycle. Make major updates
no more frequently than semiannually. Maintain centralized control of inputs and
outputs.

Emma et al. (2000, Chapter 6) discuss dangers and pitfalls. We can recast that advice
as things to do:

1. Make sure to get sufficient senior management support.

• Get a charter!
• Make sure the effort is going to support a real business use.

2. Attend to communication between the team and key stakeholders.

• The model design may be quite technical. Make sure stakeholders understand
enough about the model to be informed on what it can and cannot do, as well
as what is required to develop and maintain it.
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• Use the same language as stakeholders. This is especially important when talking
to professionals like accountants.

• Allocate enough time to communication.

3. Make sure model results can be integrated into planning.

• Results must reconcile to plan.
• Results must emerge in time to be used in the planning process.

Planning the development of a capital modeling system is very much like planning
any other significant software system. Treat it with the same level of care.

1.4. Clarifying remarks

1.4.1. Pricing, ratemaking, and costing

Throughout themonographwe talk about pricing, usingphrases like the “requiredprice”
to mean a model indicated price. For actuaries working outside highly regulated lines,
we believe our terminology is standard and immediately comprehensible. However, ac-
tuaries working in regulated lines may be sensitive to the distinction between costing,
ratemaking, and pricing. Cost estimates consider only loss-related differences between
insureds. Ratemaking allows behavioral differences to creep into premiums, consider-
ing price elasticity and propensity to shop in determining a profit maximizing rate, i.e.,
allowing price optimization. Finally, price is usually reserved for a market determined
sold rate. Acceptable prices may include corporate strategic objectives aside from consid-
erations of the insured’s risk. We do not explicitly consider price optimization or other
strategic pricing objectives and are therefore really engaged in costing, but we find the
word “pricing” preferable and trust that no confusion will arise.

1.4.2. Margins and returns

Much actuarial ink has been spilled on the distinction betweenmargins and returns (Mc-
Clenahan 1999). The situation is straightforward. Insureds care about premiums and
hence margins to premium. Investors care about capital and hence the return on capi-
tal. Insurers and regulators care about both. Capital is a cost for an insurer, hence they
speak of the cost of capital. Investors purchase the securities (equity, bonds) insurers use
to finance capital, and they are interested in the return on their investment. Cost of cap-
ital is almost always ex ante and expected; return on investment can be expected or ex
post and actual. The rate regulator focuses on premiummargins and the embedded cost
of capital, whereas the solvency regulator monitors actual returns and the risks taken to
achieve them.

Premium leverage forms the bridge between premium and capital. The comparison
inTable 1.1helps illustrate this bridge. It contrasts the typical economics of an attritional,
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Table 1.1. Comparison of loss ratio, leverage and return for attritional and catastrophe
type units.

Unit Type Measure Value Qualitative Quantitative

Attritional Loss ratio (%) High Cheap insurance 90s
Leverage High Efficient pooling 2:1
Return (%) High High returns Teens to 20s

Catastrophe Loss ratio (%) Low Expensive insurance 30s
Leverage Low Inefficient pooling 1:5
Return (%) Low Low returns Single digit

low-risk unit with those of a high-risk, catastrophe-exposed one. The value column is
particularly important: it clarifies a common point of confusion. Attritional insurance
is typically inexpensive in the sense it is written at a high loss ratio. It is also written at
high leverage, often producing a high equity-like return on capital. Conversely, catastro-
phe risk is expensive and written at a low loss ratio. It is difficult to pool efficiently and as
a consequence is written at low leverage, resulting in low debt-like returns, as seen in the
catastrophe bond market. This can seem paradoxical: business that is more risky from
an insurance perspective yields a lower return on capital, and vice versa. The paradox is
resolved by recognizing the difference between risk to the insurer and risk to the investor.
Capital supporting attritional risk faces a roughly 50% chance of short-term loss, whereas
capital supporting pure catastrophe risk has a very lowprobability of loss. The loss-given-
default characteristics also differ substantially. Last, it might seem we should use margin
in this table to measure expense rather than loss ratio. We don’t because margin is neg-
atively correlated with loss ratio, so using margin would break the clean high/high/high
vs. low/low/low symmetry of the table.

1.4.3. Expected, plan, actual, and other flavors
Whenwe talk about pricing, terms like “loss” and “margin” usuallymean expected loss or
margin. It is helpful to distinguish several different pricing viewpoints (Robbin 1992).
A premium or rate can be:

1. Filed: Incorporated into filed rates in a regulated line.
2. Required or Target: Premium required to hit a (corporate) pricing target.
3. Plan: Reflects adjusted targets actually embedded in a plan.
4. Indicated: Produced by an actuarial pricing model or process.
5. Priced: Produced by an actuarial underwriting process.
6. Quoted: Actually released into the market as a bindable rate.
7. Sold: The premium actually sold in a transaction.
8. Market: An estimate of sold rates.
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The same terms can be applied to margins. These terms are almost always meant
prospectively and are ex ante. In addition, for margins there is the important:

9. Actual: Achieved margin reflecting developed ultimate loss experience.

Actual is obviously after the fact or ex post.
Our pricing discussions primarily focus on setting some flavor of required premium

in the context of a corporate or business unit plan. We often use the term “required” as a
synonym for “target” or “indicated,” i.e., a price computed by a model in order to meet
some specified objective.

1.4.4. Parts of a model

Before describing what should be in a model, some distinctions should be kept in mind.
There are various levels to modeling, starting from the computer infrastructure and ex-
tending all the way up to the application being run by the end-user. Table 1.2 lays out
these levels and associated concepts.

Table 1.2. Model components from hardware to output.

Concept Examples

Levels include
Computer hardware Mac, PC, server, workstation, cloud (AWS, Databricks)

Operating system and macOS, Windows, Linux
system utilities

Programming language Python, R, Java, Visual BASIC, C++

Modeling platform Excel, ReMetrica, IGLOO,MetaRisk, Oasis,
your own custom “empty” spreadsheet or function library

Model Spreadsheet
Rating agency capital models, Solvency II standard calculation
Specific peril cat model, e.g., vendor US Hurricane model

Models include
Modeling techniques Simulation, calculation

Structural parameters Protected cells, e.g., unit loss volatility and correlations
Cat model damage curve

Business parameters User input cells, e.g., unit plan premium and loss ratios
Cat model property portfolio

Raw outputs Cat model event or yearly loss tables, event timeline database

Output exhibits Probable maximal loss table, summary statistics, pro forma financials
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Figure 1.1. Three modules of a capital modeling system.

Structural parameters are changed infrequently. Business parameters are changed
frequently, especially during planning when it is standard to run many different itera-
tions.

1.5. System overview

There is considerable variation in how a capital modeling system could be designed and
implemented. In this section we provide a conceptual template to follow.

We canmentally decompose a capitalmodeling system into three components shown
in Figure 1.1. By far, the biggest and most complex module represents the stochastic
business of an insurer. This is labeled Business Operations in the diagram. A capital
modeling systemmust represent some or all of the firm’s portfolio of insurance liabilities.

There is a wide range of sophistication possible to this representation, depending on
the particulars of the purpose forwhich the system is to serve. The core concept is the loss
that the portfoliomight incur. This loss, being a priori uncertain, is a randomvariable. It
might be represented by a distribution of losses or by a set of loss scenarios, whichwewill
call events. The output could include just the losses, or it could include a complete set
of financial statements—balance sheet, income statement, and cash flows—all of which
ultimately depend on the losses. If the latter, there are numerous accounting standards
that could be followed. These possibilities are discussed in Chapter 2.

Output from the Business Operations module feeds into the much simpler Capi-
tal Adequacy and Pricing & Allocationmodules. This is signified by the solid arrows.
Dotted arrows signify that these two modules, in turn, affect business operations in the
real world and hence, indirectly, the Business Operationsmodule. Indeed, the real-world
effect of these modules is the raison d’être of the entire capital modeling system.

Figure 1.2 expands the Business Operations module.
Starting at the left of the diagram is theUnitsmodule, with inputs labeledU.We use

the term unit to refer to a component of the portfolio. A unit can be a single policy or a
group of policies defined by line of business, geography, branch, business unit, or other
characteristics. A unit can also represent the segmentation between ceded and assumed
reinsurance.
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Figure 1.2. Internal structure of Business Operations module.

The output of Units is a representation of experience, which means paid loss, at the
very least, but could also include a time series of loss developments, reserves, etc. Input
parameters are things like exposure and possibly shape parameters for loss distributions.

These loss outputs are likely to be correlated (not independent) across the units ei-
ther by common economic or social factors or enforced correlation via copulas, Iman-
Conover sampling (Section 8.2), etc.

If investment experience is included as one (or more than one) unit, then input from
the Economic Scenario Generator (labeled ESG) will be important. This is an optional
module that represents external economic factors such as interest rates, returns onvarious
asset classes, rates of monetary inflation, unemployment, etc.

The Reinsurance module, with inputs labeled R, modifies the gross experience of
the units. This includes all outward (ceded) reinsurance. Any inward (assumed) reinsur-
ance would be represented among the units. The output, net experience, includes the
effect of any retrocession.

Accounting translates experience realizations into Pro formas, i.e., financial state-
ments. This output from the Accounting module is a core element of the system. Mul-
tiple occurrences of pro formas, generated on the fly or possibly stored in a database, are
used in stochastic simulation, whereas single occurrences are used for analyzing specific
events. The level of detail here must match the specification of the units.

The system is likely to include the input labeled Capital Structure. This specifies,
at the very least, the total amount of assets available to pay claims. It may also specify
details of noninsurance liabilities, such as bonds, preferred stock, and equity issued by
the firm. The Economic Scenario Generator may have some influence on the outward
cashflows—which reduce assets—frompreferred and common stockdividends. TheAc-
countingmodule would take into account the fact that losses in excess of total assets lead
to insolvency and haircuts in claim payments. If there is no capital structure information
at all, asset limitations are ignored and assets are in effect assumed to be infinite.
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Figure 1.3. Full detail of the capital modeling system.

Figure 1.3 expands the picture by bringing in the remaining modules.
The Capital Adequacymodule, with inputs labeled C, operates on the pro formas

and determines the minimal amount of assets to satisfy requirements from regulators,
rating agencies, and the risk committee of the firm’s board of directors. Such determi-
nations could include a simple Value at Risk (VaR) calculation or more complex Best’s
Capital Adequacy Ratio (BCAR) calculation. The module also includes risk reports—
analysis of what is driving the need for assets. The input parameters can be regarded as
the firm’s risk tolerance, specifying what level of risk is acceptable for a given amount
of capital or vice versa. Outputs feed back into the real world and implicitly affect the
capital structure, hence the dotted line. This is discussed in more detail in Chapter 3.

The Pricing module has two separately identified inputs. First, the Profit Target
specifies the desired overall profitability of the portfolio as a whole. This could be posed
as an aggregate premium, margin, loss ratio, or return on capital; these are equivalent
specifications discussed in Chapter 4. The second input, labeled P, specifies more eso-
teric properties such as the shape of the distortion function underlying an SRM—also
discussed in Chapter 4. The two inputs can be interpreted as specifying the firm’s risk
appetite.

Allocation takes the required portfolio premium as given and allocates the premium
(equivalently, margin, loss ratio) to the individual units. This information, presumably,
has real-world impacts on the units via performancemanagement, riskmanagement, un-
derwriting actions, etc. Impact is represented by the dotted arrows to Units.
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1.6. Introduction to InsCo

InsCo is our one-period simplified model of insurance company operations.
Wewill use an extremely simple toy example to illustrate the operation of the system

presented in Section 1.5. It deliberately abstracts away from much of the complexity,
detail, and nuance of the real world. Readers should be able to reproduce the example
easily in a spreadsheet.

A more complex and realistic example can be found in Section 9.5, and more in
Mildenhall andMajor (2022). Those, as well as this simple example and even more com-
plex portfolios, can all be analyzedwith aggregate, an open-source Python library (Mil-
denhall 2024) that “builds approximations to compound (aggregate) probability distri-
butions quickly and accurately.” Because aggregate uses Fast Fourier Transforms, it
“delivers the speed and accuracy of parametric distributions to situations that usually
require simulation” and is therefore much faster than simulation. All the analytical tech-
niques discussed in this monograph can be implemented in aggregate.

InsCo is a limited liability company that intermediates between insureds and invest-
ors. InsCo’s customers are insureds (policyholders) who are subject to risks they wish to
insure. Insureds who use insurance for risk transfer or financing are sensitive to insurer
quality and possible default because it correlates with their own misfortune.

Insurance legal entities serve two principal purposes. First, they provide statutory
insurance such as mandatory automobile liability. Second, they allow insureds to pool
together and benefit from diversification without requiring onerous bilateral contracts.
They do this through insolvency rules, which provide the framework under which unre-
lated insureds interact in the unlikely event of an insolvency.

InsCo comes into existence at time 𝑡 = 0 and lasts for one period. InsCohas no initial
liabilities. At 𝑡 = 0, it writes one or more single-period insurance contracts and collects
premiums from its insureds.

When InsCo writes a policy, it collects premium at 𝑡 = 0 and earns it over the pe-
riod. We assume all other transactions occur at the end of the period. Therefore all the
premium is earned and available to pay claims at 𝑡 = 1. If InsCo’s ending assets 𝑎 are
insufficient to pay the claims, then it defaults.

InsCo has promised to pay policyholders claims under various contingencies, with
the aggregate promise represented by the random variable𝛸 ≥ 0. If𝛸 > 𝑎, then only 𝑎
gets paid out, i.e., the actual payments are the minimum of 𝛸 and 𝑎, which we write as
𝛸 ∧ 𝑎. We assume the probability distribution of𝛸 is known.

InsCo is owned by investorswho provide risk-bearing capital. Investors are also risk
averse. The market structure is displayed in Figure 1.4.
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Figure 1.4. InsCo, insureds, regulators, and investors: roles and cash flows.

At time 𝑡 = 0, while collecting premiums, InsCo also raises capital from investors by
selling them its uncertain 𝑡 = 1 residual value. That is, at time 𝑡 = 1, InsCo pays any
claims due in the amount of 𝛸 ∧ 𝑎 and pays any residual value (𝛸 − 𝑎)+, if it exists, to
its investors as return of capital plus a dividend or investment return. If InsCo’s ending
assets are insufficient to pay the claims, 𝛸 > 𝑎, then it defaults. Investors have limited
liability: they may lose their original investment but owe nothing more.

Premiums cover expected losses and loss adjustment expenses, as well as the cost of
capital including frictional capital costs. All other expenses are outside our model.

Symbolically, at time 𝑡 = 0, InsCo collects premiums 𝛲 from policyholders and cap-
ital 𝑄 from investors. These are the only sources of funds and comprise the total assets
via the funding equation:

𝑎 = 𝛲 + 𝑄. (1.1)

Two important questions arise from InsCo’s promises to pay.

1. Are there sufficient assets to honor those promises?
2. Are investors being adequately compensated for taking on those risks?

Crucially, we need to talk about not one but two different risk measures to answer
these questions.

Question 1 concerns risk tolerance and is answered by theCapital Adequacymodule.
It determines the assets necessary to back an existing or hypothetical portfolio at a given
level of risk. This exercise can also be reverse engineered: given existing or hypothetical
assets, what constraints on business does the risk tolerance entail? Alternatively, given
business and capital, what is the implied risk tolerance?
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Assets 𝑎 and liabilities 𝛸 are related by some rule driven by a combination of regu-
latory authorities, rating agencies, and InsCo’s own internal risk management policies,
representing a risk tolerance. Such a rulewe call a capital riskmeasure, andwemaywrite
𝑎 as a functional 𝑎(𝛸). Value at Risk (VaR) or Tail Value at Risk (TVaR) at some high
confidence level, such as 99.5% or 1 in 200 years, are both popular, but other possible
measures exist; see Chapter 3. As a first approximation, we may take it that 𝑎 is sufficient
to avoid insolvency altogether, i.e., in all events, all claims are paid.

Question 2, answered by the Pricing module, concerns how that asset amount 𝑎 is
to be split between premium 𝛲 and capital𝑄 (Equation 1.1); this is quite different from
determining 𝑎. It is about risk pricing or risk appetite. We must determine the expected
margin insureds need to pay in total to make it worthwhile for investors to bear the port-
folio’s risk. Such a rule we call a pricing risk measure, and we may write premium as a
functional 𝛲 = 𝜌(𝛸).
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2. Business operations
Remember that all models are wrong; the practical question

is how wrong do they have to be to not be useful.
—George E. P. Box

2.1. General considerations

Modeling the insurance business operations—in terms of cash flows and other account-
ing concepts—is themost significant part of capital modeling work. It would be imprac-
tical to try to explain this in detail here; multiple book volumes would be required. In-
deed, much of the actuarial syllabus is devoted to knowledge that could be applied to this
effort. Instead, this chapter offers an overview using a simple example and adds pointers
into the existing literature.

After you have addressed the broad questions posed in Section 1.3, you will have to
drill down into more specific design issues such as:

• Will the model be deterministic or stochastic?
• What is the planning time horizon: one year versus an ongoing concern?
• What is the calculation time horizon: one year versus to ultimate?
• What is the time granularity: annual, quarterly, monthly, etc.?
• Will it deal with the runoff of current business only, or will it model an ongoing con-
cern?

• How will it treat reserve risk?
• How will it treat asset risk?
• How will it treat investment income (risk-free rate, crediting, capital charge, simplifi-
cations from discounting)?

• How will multiple related legal entities be reflected in the model?
• What is the balance of variables between user-selected inputs (e.g., plan premium) and
modeler-selected inputs (e.g., correlation or severity)?

• What accounting and regulatory frameworks and constraints are supported (US Statu-
tory, Solvency II, US GAAP, IFRS 17, rating agencies)?

• How will the model relate to other corporate systems?
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See Emma et al. (2000)Chapter 4 for somemore considerations on these dimensions
of functionality; Chapter 7 goes into more detail about outputs and reports. Chapter 5
presents a classification of risks:

• Asset risk (default, market value, liquidity)
• Obligation risk (reserve, premium, loss projection, catastrophe, reinsurance, and ex-
pense)

• Interest rate risk (asset, obligation, and net cash flows)
• Mismanagement risk

How deeply each is to be modeled is part of the requirements to be determined.
Emma et al. (2000) discuss the first three at length, but not the last.

Subsequent sections in this chapter elaborate on some of these issues.

2.2. Units

Business operations start with the individual business units. These are the sources of pre-
miums, losses, and some of the expenses. Expect to devote considerable effort to model-
ing losses; your loss model implementations will live in the Units module.

The design issues at this stage include:

• Granularity of represented components, i.e., breakdowns by geography, line of busi-
ness, etc.

• Granularity of frequency and severity assumptions.
• Inclusion of parameter uncertainty, see Section 8.1.
• Interactions among variables.
• Feedback loops, i.e., embedded automatic conditional decisions. For example, future
rate changes might be calculated based on emerging loss ratios.

The existence of mismanagement risk (Section 2.1) suggests that building in feed-
back loops—“management in a box”—might be toooptimistic. We strongly recommend
against trying to do this. Adjusting rates to follow inflation is reasonable because this is
very likely to happen in reality. Adjusting rates on the basis of a previous random good
or bad year is not reasonable because it is highly speculative as to what will happen in
reality. Instead, have the model in effect state “if nothing is changed, this is what would
likely happen next….”

Daykin et al. (1993) include the following chapters relevant to theUnits submodule:

• 2 - Frequency
• 3 - Severity
• 4 - Compound distributions
• 5 - Simulation
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• 9 - Extended time horizons, including reserves
• 10 - Premiums and markets
• 11 - Expenses
• 12 - Cycles and growth

Brehm et al. (2007) include:

• 5.1 - Frequency and severity distributions
• 5.2, 5.3 - Reserves
• 5.5 - Underwriting cycles

Nearly the entirety of Klugman et al. (2019) is devoted to selecting, fitting, and ap-
plying mathematical models of losses.

If you aremodeling reserves, youmust accurately represent your own firm’smethod-
ology. The literature on setting reserves is enormous, with Friedland (2010) being a good
place to start. Seventeen text references on advanced reserving are listed at Casualty Ac-
tuarial Society (2022). Wüthrich and Merz (2015) is a rich source of information on
stochastic reserve models. Szkoda et al. (1995) has a list of about 200 reserving consider-
ations. Actuarial Standards Board (2007) is also relevant.

Modeling the correlation between units’ loss experience can be particularly tricky.
Reshuffling simulated loss outcomes to obtain a desired correlation matrix can be done
by the Iman-Conover methods; see Section 8.2.

Aas et al. (2009), Embrechts andPuccetti (2010), andBrehmet al. (2007, Section3.3)
discuss copulas, which are mechanisms for introducing dependency that goes beyond
simple correlation. For example, the routine loss bodies of two loss distributions can be
uncorrelated while the high-loss tails become correlated.

Another technique for inducing dependence is the use of common causes. If there
are underlying phenomena that influence losses in different units, then modeling those
first, and the conditional distribution of unit losses second, can induce the desired de-
pendence. This is most commonly seen in catastrophe modeling but can also appear in
a technique called timeline simulation (Brehm et al. 2007, Section 3.4), where specific
events are modeled as occurring at specific points of time.

We now illustrate the workings of the Business Operations module with our InsCo
example.

In a real engagement, we would start with historical data on exposures, premiums,
and losses. They would be on-leveled to represent the current (or anticipated next ac-
counting year) situation. Probabilistic models would be fit, and a simulated sample of
future possible outcomes generated. This work is covered early in the actuarial exam syl-
labus, and we imagine it has already been done.
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InsCo has units 𝑖 = 1, … ,𝑚 = 3, called A, B, and C. We represent their random
experience 𝛸𝑖 by a table consisting of 10 outcomes with equal probabilities 𝑝𝑗 = 1/10,
𝑗 = 1, … , 𝑛 = 10, with components 𝛸𝑖

𝑗 and portfolio totals 𝛸𝑗. The exact assumptions
are detailed in Table 2.1.

Table 2.1. InsCo loss probability mass function by unit with expected (EX) loss, CV loss,
and plan premium.

Event 𝑗 Unit A𝛸1
𝑗 Unit B𝛸2

𝑗 Unit C𝛸3
𝑗 Total𝛸𝑗

1 15 7 0 22
2 15 13 0 28
3 5 20 11 36
4 7 33 0 40
5 13 20 7 40
6 5 27 8 40
7 15 16 9 40
8 26 19 10 55
9 17 8 40 65
10 16 20 64 100
EX 13.4 18.3 14.9 46.6
CV 0.453 0.412 1.324 0.455
Plan premium 13.9 18.7 19.6 52.2

There is some correlation among the simulated experience of the units. This cor-
relation might have been imposed by a sampling technique involving copulas, but here
we simply present the results. Table 2.1 represents the loss portion of the Unit module.
Statisticians would call this table a discrete joint distribution, sample, or empirical distri-
bution. Cat modelers might call it a probabilistic database. It shows expected loss for
the portfolio is 46.6, plan premium is 52.2, and hence plan profit, or margin, is 5.6.

2.3. Reinsurance

Assumed reinsurance, i.e., selling reinsurance or retrocessional cover to other insurance
companies, should be treated as another unit, like homeowners or auto. Ceded reinsur-
ance can be treated in one of two ways.

The simplest way is to treat reinsurance as a negative unit in parallel with the un-
derlying unit. The premiums it receives are booked as negative (because they are really
paid), and the losses it pays are booked as negative (because they are really received). For
example, say there is the homeowners line of business being protected with catastrophe
reinsurance. Then, the homeowners gross premiums and losses are posted to one unit
and the reinsurance ceded premiums and ceded losses are posted as negatives to a parallel
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ceded homeowners unit. The algebraic sum of premiums (respectively, losses) constitute
the net homeowners position, which is not explicitly represented.

The more complicated way, and that implied by the design presented in Section 1.5,
is to have the operation of reinsurance modeled downstream of the units. This is rec-
ommended because there are many situations, such as corporate catastrophe covers, that
impact multiple units.

In the end, it is simply a computational design choice aboutwhere calculations occur.
Mathematically, the same gross-to-net transformation is being modeled either way.

The capital modeler may encounter two different types of reinsurance. The first is
that purchased by business units. It is often reasonable for the corporatemodeler towork
withdistributionsnet of this reinsurance, at least initially—business units typically frown
on corporate modelers criticizing their reinsurance decisions! The second is reinsurance
purchased at the corporate level that covers a number of different business units. Catas-
trophe reinsurance is typically of this form. Optimizing the purchase of catastrophe rein-
surance (and allocating its cost to business units) is a wonderful application of capital
models, and corporate purchases should usually be modeled explicitly to facilitate it.

Counterparty credit risk should be handled by representing the probabilistic nature
of ceded losses. What is supposed to be received as a reinsurance payout may or may not
actually occur. Brehm et al. (2007) Section 6.1 is devoted to reinsurance receivables as a
risk class.

Our InsCo example includes a 35 excess of 65 portfolio stop-loss contract with ceded
losses of 35 occurring only in event 10. There is no counterparty risk. This example is
discussed in Section 5.2.

2.4. Asset risk and Economic Scenario Generator

While the primary focus of the capital model is on how insurance liabilities impact the
profitability and solvency of the firm, it may be desirable to represent contingencies on
the asset side: first, to model assets as another source of volatility in the firm’s financial
position, and, second, to model how macroeconomic phenomena impact the insurance
liabilities themselves. The key to modeling asset risk is a module that simulates interest
rates and returns onvarious asset classes andpossiblyunemployment, inflation, andother
socioeconomic indices. Such a module is generally referred to as an Economic Scenario
Generator.

Brehm et al. (2007) Section 6.2 is devoted to investments. Daykin et al. (1993)Chap-
ter 7 deals with inflation, andChapter 8 is devoted to investments and asset/liability con-
siderations such as the dynamics of reinvestment. Conning (2020) provides a compre-
hensive “basic guide to Economic ScenarioGenerators, with an emphasis on applications
for the property/casualty insurance industry.” Also note that the American Academy of
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Actuaries and the Society of Actuaries (SOA) have joined resources to manage the Eco-
nomic Scenario Generators used in regulatory reserve and capital calculations (Society
of Actuaries 2024). We are not using an Economic Scenario Generator in the InsCo
example.

2.5. Capital structure

Capital structure, in corporate finance, refers to the division of liabilities corresponding
to the sources of funds used to finance the firm. The basic division consists of sharehold-
ers’ equity, (possibly) preferred stock, various types of debt, and possibly other liabilities.
Reinsurance can also be considered part of the capital structure. SeeMildenhall andMa-
jor (2022) for more on this perspective.

An important aspect of capital structure is its hierarchical nature insofar as there ex-
ists a pecking order in which the claimants providing these funds must be repaid in the
course of liquidation. Insureds, providing premiums, come first. Common stockholders
come last.

For an insurance entity, capital refers to the excess of assets over policyholder liabili-
ties, whereas equity refers to the excess of assets over all other liabilities. Thus, debt can
count as capital but not equity. For example, InsCo’s assets consist of cash in the amount
𝑎 = 100. The corresponding liabilities—the capital structure—consist of unearned pre-
miums, a bond that InsCohad issued in the past and uponwhich itmust pay a 3% annual
coupon, and shareholder equity. See Table 2.2.

In the analysis presented in this monograph, it is usually sufficient to distinguish pre-
miums 𝛲 from capital𝑄 (but adhere to Equation 1.1). However, it may be desirable to
distinguish components of 𝑄 in reporting the financial fortunes of the firm. The hier-
archy of claimants induces thresholds or benchmarks to distinguish degrees of financial
distress or insolvency. This is elaborated upon in Chapter 3.

2.6. Accounting

Accounting is the language of business that defines themeasurement of success or failure.
It has its own vocabulary and grammar. Youmust have someone well versed in insurance
accounting on the model development team. Whatever underlying representation for
business cash flows themodel usesmust be translated into one ormore standard account-
ing frameworks. This is material covered in the Casualty Actuarial Society’s Exam 6. A
good place to start is the detailed reading by Odomirok et al. (2020) or the earlier short
introduction by Blanchard (2008).

Accounting is important for several reasons.
First, model output must be readily integrated with the firm’s business plan. The

plan is the key document orienting the goals of the company. The capital model is in-
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tended to express and quantify the possible future variations from the plan that may
emerge. In order to be useful and readily communicated to a variety of business actors
in the firm, the model output needs to be expressed in the same terms as, and in a com-
parable format to, the plan. Companies often use their own management accounting
conventions, usually slight variations on their reporting or regulatory standards. There-
fore, the outputs must hew to the same accounting standards as the plan.

Second, accountinghas real-world consequences. Insurers are subject to various types
of valuation accounting standards, including:

1. Statutory or regulatory standards, such as US NAIC, EU Solvency II, APRA.
2. Financial reporting standards, such as GAAP and IFRS.
3. Rating agency standards, such as Standard and Poor’s and AM Best’s.

Failure to maintain an adequate financial position under any one of these standards
could prove ruinous to the firm. This is elaborated on in Mildenhall and Major (2022)
Section 8.3.

Emma et al. (2000)Chapter 7 opines thatmodels should simultaneously represent at
least cash (economic), statutory, reporting (GAAP, IFRS17), and tax accounting because
“this is the only way to reflect the details of the interrelationships among constraints.”
The model must model cash flows, which form the basis for the other accrual account-
ing models. In addition to representing external reporting standards, it is advisable to
support your entity’s management accounting, which is usually a slight variant of its re-
porting standard.

Figure 2.1 illustrates the relationship between three accounting views. For example,
reserves areundiscountedunderUSGAAPand themarket viewof loss reservesmaydiffer
frommanagement’s.

Figure 2.1. Capital, surplus, and equity under market value, GAAP, and statutory ac-
counting views. From Mildenhall and Major (2022), used by permission.
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Accounting produces income and balance sheet statements. The InsCo beginning
period 𝑡 = 0 balance sheet is shown in Table 2.2. Recall that the total plan premium
is 52.2, received at the beginning of the policy period; expenses are excluded from this
model and are assumed to be zero.

Table 2.2. InsCo’s starting balance sheet.

Assets Liabilities

Cash 100.0 Unearned premium reserve 52.2
Debt (bond) 20.0
Shareholder equity 27.8

2.7. Pro formas

Pro formafinancial statements are hypothetical financial statements about future states
of the business. Whatever internal representation the model uses for outcomes, they
must be translated into standard financial reports. We focus here on InsCo’s balance
sheet and income statements. Others are possible, including:

• Cash flow
• Sources and uses of funds
• Change in equity
• Comprehensive income
• Various statutory blanks, NAIC annual statement

For our one-period InsCo, the ending period shareholder value, if positive, is released
to investors at time 𝑡 = 1. For event 4 in Table 2.1, the income statement and balance
sheet prior to paying losses and dividends are shown in Table 2.3 and Table 2.4. The
balance sheet after payments is obviously 0 = 0 because InsCo is a one-period entity.

The Accounting module would produce 10 such pairs of financial statements.

Table 2.3. InsCo income statement, event 4.

Income Expense

Premiums 52.2 Loss & LAE 40.0
Bond coupon 0.6
Shareholder dividends 11.6
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Table 2.4. InsCo ending balance sheet, event 4 prior to paying losses.

Assets Liabilities

Cash 100.0 Unearned premium reserve 0.0
Loss reserves 40.0
Debt (bond) 20.0
Accrued interest 0.6
Shareholder equity 39.4

Statutory reporting, done to satisfy regulatory authorities, is a deep and complex sub-
ject. Actuaries operating in the US should be familiar with the NAIC procedures man-
uals that can be found in Appendix V of Koca et al. (2023).
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3. Capital adequacy and sources of risk
Too much of everything is just enough.
—Grateful Dead, “I Need aMiracle”

3.1. Capital adequacy
What quantity of assets is needed to back the liabilities the firm is taking on? The answer
depends on who you ask. Insureds want more protection, meaning lower probability of
insolvency and therefore higher assets. Regulators, representing the public, are aligned
with the insureds. Investors want to minimize their own risk, so they want to invest less
capital (for a given expected profit). Rating agencies are concernedwith the counterparty
(bond) creditworthiness and claims-paying ability of the firm, so they want to see an ad-
equate level of lower-priority (equity, reinsurance) capital. The firm’s own management
must adjudicate these competing demands in their own minds: on the one hand, they
don’t want the firm to go under, but on the other hand, they need to deliver an accept-
able rate of return to investors. They will have their own view of the ideal level of assets.

Even 100% collateralization of liabilities only theoretically guarantees 100% proba-
bility of solvency. In practice, insolvency can be caused by nonmodeled or inadequately
modeled operational risks, such as fraud, rogue actors within the organization, manage-
ment missteps, or bad-faith claim judgments in excess of policy limits. Capital adequacy
is all about pegging an amount of assets deemed to be safe enough.

In practice it works like this:

1. Local regulatory authorities prescribe a minimum amount of assets and set reserving
and valuation standards, which together imply a minimum capital requirement.

2. Rating agencies specify amounts that correspond to different rating levels (effectively,
grades) given to the firm. Their models are generally based on statutory valuations
but with adjustments, for example, for discount in loss reserves. The implied capital
levels are usually higher than the regulatory minimums.

3. Management decides a target rating level (or in the EU, a ratio of capital to Solvency
II required capital), balancing revenue and profit needs with what they believe their
customers will tolerate. For example, personal lines markets are relatively insensitive
to ratings, whereas large commercial markets require more highly rated insurers.
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4. Management—with the help of the capital model—will look at the probabilities of
adverse events causing the end-of-period assets to breach the above thresholds. They
will then likely consider changing reinsurance, raising capital, or reducing exposure
to keep these probabilities in control. In a startup situation, they might require an
extra capital buffer, but a going concern rarely raises capital except for specific growth
opportunities.

While insurance regulations and laws in the US are created and enforced by the in-
dividual states, the National Association of Insurance Commissioners (NAIC) develops
model laws, regulations, and standards that most states follow. The NAIC created and
maintains the Risk-Based Capital (RBC) framework, which is the primary method reg-
ulators use to assess capital adequacy. It specifies minimal capital requirements lest an
insurer be put under watch or, worse, taken over by the regulators. NAIC (2024) pro-
vides background on RBC and links to related content.

Insurers in the European Union are bound by the Solvency II Directive (EIOPA
2009). This specifies a Solvency Capital Requirement to be calculated either by a stan-
dard model or by a firm’s internal model. See IAARiskMarginWorking Group (2009),
Floreani (2011), andMeyers (2019).

Rating agencies include S&P Global Ratings, AM Best, Moody’s, and Fitch. They
are primarily concerned with credit risk, i.e., assigning bonds a letter grade, but they also
concern themselves with insurer claims paying ability, so there are two distinct types
of rating. Rating agencies have their own models, often factor-based models similar to
NAIC’s RBC. Karakuyu et al. (2023) describe “S&P Global Ratings’ methodology and
assumptions for analyzing the risk-based capital (RBC) adequacy of insurers and reinsur-
ers.” Jakobsen et al. (2020) explainAMBest’sUniversal BCAR(Best’sCapitalAdequacy
Ratio) model. Chan et al. (2024) “specifies Fitch Ratings’ criteria for assigning new and
monitoring existing international scale insurer Financial Strength (IFS) ratings.” Read-
ers should consult the agencies’ websites for themost recentmodels, as these frameworks
are periodically revised.

Larger insurance firms, especially publicly traded firms, tend to be organized into
multiple legal entities, groups, and subsidiaries. Szkoda et al. (1995) state: “To properly
analyze the financial condition of a companywith subsidiaries, each subsidiary should be
analyzed separately.” Also, “understand debt obligations of company and parent com-
pany, look through on debt structure to determine if subsidiaries, etc., have sufficient
cash flows to meet parent’s obligations.” Emma et al. (2000) say that either a consoli-
datedmodelwith internal cash flowsbetween entities or entirely separatemodels (feeding
each other) can be developed. Bear inmind that in stressed situations capital can become
trapped.
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Brehm et al. (2007) Section 2.3 compares regulatory and rating agency capital ad-
equacy models. Eling and Holzmüller (2008) provide an overview and comparison of
RBC requirements from the US, the EU, Switzerland, and New Zealand, although it is
somewhat dated.

The firm’s management will likely attend to a hierarchy of event possibilities (not
necessarily distinct or in order):

• Missed earnings
• Spreads widen on bonds; stock price goes down
• Market value less than book value
• Bond ratings outlook change (watch)
• Bond ratings downgrade
• Claims paying ratings downgrade
• Being placed on regulatory watch
• Regulatory supervision, conservatorship or liquidation
• Loss of significant shareholder equity
• Loss of all shareholder equity
• Failure to pay bond interest
• Failure to fully redeem a bond
• Bankruptcy and reorganization

All these are highly correlated with the size of loss experienced in an accounting pe-
riod, and all but missed earnings and market effects can be ameliorated by holding more
capital.

Consider the InsCo example described in Table 3.1. If losses exceed 52.2 (premi-
ums), then InsCo’s investors will not receive any gain on their investment. This event
has a probability of 30%. If losses are 80 or more (52.2 + 27.8 capital), then shareholders
will be wiped out (lose all their investment); the probability is 10%. Sixty cents more and
bondholders will not receive their promised coupons, and the company defaults and is
put to the debt holders. If losses reach 100 (also a 10% chance), then bondholders will be

Table 3.1. InsCo critical loss levels.

Event Loss Level Probability

Zero profit 52.2 30%
Shareholders wiped out 80.0 10%
Failure to pay coupons 80.6 10%
Failure to redeem bonds 100.0 10%
99% average loss (TVaR) 100.0 10%
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wiped out as well, suffering a 100% loss-given-default. Regulatory intervention thresh-
oldsmight be defined by intermediate levels of loss and corresponding probabilities. Any
of these might be used as VaR levels to define required assets. This is elaborated on in the
next section.

3.2. Value at Risk and Tail Value at Risk

Various different risk measures can be used to calculate required capital. For a thorough
discussion, see Section 3.6.3 of Mildenhall and Major (2022). Typically, the goal is to
avoid a particular event with specified probability. An exceedance probability measure
tells you the probability a firm becomes insolvent at a particular future time given an
initial capital level. Inverting that relation determines the capital needed to attain the de-
sired probability of safety. Thus there is a correspondence between risk measures and ad-
equacy measures (Cherny andMadan 2009). Exceedance probability measures are com-
mon and lead to one ormoreValue at Risk (VaR) criteria: given a threshold probability,
e.g., 99.5%, what size of loss will not be exceeded at that probability level?

VaR has a bit of a problem, however. It is not subadditive, which means there are
situations where the VaR of the sum of two risks is greater than the sum of the twoVaRs.
Subadditivity is a good property for a risk measure because it means you manage risk
from the bottom up: by managing the risk of each unit to be below its own threshold,
you havemanaged the total risk to be below the sumof the thresholds. There are obvious
implications for risk and capacitymanagement. Theoretically, because VaR is not subad-
ditive, it is not a good choice to manage risk at the unit level on up. However, this failure
is more an academic quibble than a practical shortcoming. Inmany real-world situations
VaR is subadditive, and it has the added benefits of being easy to understand, estimate,
and back-test, and of always existing. In practice VaR is the risk measure of choice for
insurance regulators around the world—with the exception of the Swiss.

Academics, the Swiss, and bankers in Basel 3 (also in Switzerland) posit a better alter-
native isTail Value at Risk (TVaR). TVaR asks, for a given probability level, what is the
average loss in the worst events representing that accumulated probability? Defined in
this way, TVaR is subadditive, a plus. On the downside, TVaR does not exist for thick-
tailed distributionswith nomean. It is alsomuch harder to elicit and back-test thanVaR.
See Mildenhall andMajor (2022) for an elaboration on this.

Another issue with TVaR is its precise definition. Historically, TVaR was called Ex-
pected Shortfall (ES) and Conditional Value at Risk (CVaR) by some authors. In addi-
tion, there are two subtly different measures called Tail Conditional Expectation (TCE)
andWorst Conditional Expectation (WCE). In many cases these are all the same, but in
many other realistic (discrete) cases they are not. See Chapter 4 ofMildenhall andMajor
(2022) for a thorough analysis of VaR and TVaR.
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In many older texts, TVaR is defined as the average of losses above a specified VaR
loss value. This coincides with the TCE definition for continuous random variables but
not for discrete or mixed variables, and, in those cases, the resulting measure is not sub-
additive! More recent literature, led by McNeil et al. (2005), uses the definition we give.
Formally,

TVaR𝑝(𝛸) ∶=
1

1 − 𝑝 ∫
1

𝑝
VaR𝑠(𝛸) 𝑑𝑠 =

1
1 − 𝑝 ∫

1

𝑝
𝐹−(𝑠) 𝑑𝑠,

where 𝐹−(𝑝) is the least inverse of the cumulative distribution function. In particular
TVaR0(𝛸) = E[𝛸] andTVaR1(𝛸) is defined to be sup(𝛸), the largest possible outcome.

Here are two simple examples to help demystify subadditivity.

1. Discrete example: Consider a probability space with three outcomes, with probabil-
ity 0.9, 0.05, and 0.05. Unit 1 has outcomes 0, 0, and 10, and unit 2 has 0, 10, and 0.
The total outcomes are 0, 10, and 10. The 𝑝 = 0.9 VaRs are 0 for each unit, but it is
10 in total. The corresponding TVaRs are 5 for each unit and 10 in total.

2. Continuous example: It is a curious fact that the sum of two standard exponen-
tial distributions fails to be subadditive at 𝑝 = 0.7 (and neighboring 𝑝), so the fail-
ure can also apply for continuous variables. The unit VaRs are − log(0.3) = 1.204
and the sum (a gamma with shape 2) has VaR equal to 2.439, which is greater than
2 × 1.204 = 2.408.
Mirroring the broader VaR-TVaR debate, your authors split in favor of VaR and

TVaR.Your capitalmodelmust, however, employ some riskmeasure criteria to determine
the amount of assets necessary to protect the firm against adverse loss experience. It can,
of course, also cheat and select a (T)VaR threshold equating to actual capital held.

Our InsCo example uses assets 𝑎 = 100, which can be characterized in various ways.
One way is to say there is a TVaR0.99 standard for the amount of assets needed. This
is input “C” in Section 1.5. The other way says it is VaR1. Both result in 𝑎 = 100, the
maximum loss among the events, which is the asset value assumedpreviously. Notice two
points. First, in practice the order of operations flows from accountants determining the
amount of capital tomodelers describing its adequacy (99%TVaR). Second, that𝑎 = 100
corresponds to full collateralization, and so it means there is no possibility of default.
Default is not driving any results in this example! Nor should it in the preponderance of
realistic models for well-rated companies. We might have chosen any VaR or TVaR level
beyond 90% and obtained the same arithmetical results. We use TVaR to illustrate the
algebra involved with a nontrivial asset risk measure.
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In addition to specifying themodel capital amount, it would be helpful to have some
analytical capabilities to explain what drives the results. This is discussed in the next
section.

3.3. Risk analysis

A main output of the Capital Adequacy module is an assessment of how often there is
sufficient capital to avoid various undesirable outcomes. Natural follow-up questions
revolve around explaining those results. Having drill-down and diagnostic capabilities is
helpful, especially for complex models. These may include:

1. Statistics of selected variables
2. Identification of extreme events
3. Explaining what variables drive outputs
4. Evaluation of decision rules (e.g., reinsurance)
5. Risk/reward analysis
6. A battery of what-if questions

A systematic battery of what-if questions—What if trend is 3% higher than plan?
What if hurricane frequency is actually 20% higher than the cat model assumptions?—
can reveal where assumptions are particularly sensitive.

Evenwithin the plan, there is an opportunity for sophisticated analysis. For example,
machine learning could construct a decision tree to characterize simulation events with
high losses.

At this point, there is a fork in the analytic roadwith twodivergent paths that surpris-
ingly rejoin to produce the same conclusion. The paths lead along a dynamic marginal
impact analysis and a more static risk-adjusted probability analysis. Early work of Ven-
ter et al. (2006) saw the two paths, and more technical work of Delbaen (2000) actually
knew the paths rejoined. Our work, Mildenhall and Major (2022), connected the dots
more explicitly in an actuarial context.

The first form of risk analysis looks at the marginal impact on required assets of
changes in the underlying portfolio. While unrealistic, a linear scaling of the unit loss
distributions is often used, i.e., assets 𝑎(𝛸) become 𝑎((1 + 𝜖)𝛸). This is unrealistic be-
cause, e.g., doubling one’s auto exposures homogeneously will not change 𝛸 into 2𝛸.
While it may approximately double the expected loss, the shape of the distribution will
change: the standard deviation will less than double (Mildenhall 2017). Nonetheless,
linear scaling is useful as a directional indicator. We will return to the issue of nonlinear
scaling in Section 5.5.

Specifically, themarginal approach looks at the gradient (slope) of the riskmeasure:
the change resulting from a small change in exposure. If 𝛸 = ∑𝑖𝛸𝑖 and 𝜙(𝛸) is a risk
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measure, then define

∇𝑖𝜙(𝛸) = 𝜕
𝜕𝜖𝜙(𝛸 + 𝜖𝛸𝑖) = lim𝜖↓0

𝜙(𝛸 + 𝜖𝛸𝑖) − 𝜙(𝛸)
𝜖 .

If 𝜙 is continuous and homogeneous, that is, 𝜙(𝑡𝛸) = 𝑡𝜙(𝛸) for 𝑡 > 0, then Euler’s
homogeneous function theorem tells us that

∑
𝑖
∇𝑖𝜙(𝛸) = 𝜙(𝛸),

i.e., the marginals consist of an allocation of the original measure (Mildenhall 2004).
In our example, the risk measure is 𝜙(𝛸) = TVaR0.99(𝛸). The gradient of this is

∇𝑖(𝜙(𝛸)) = 1
1 − 𝑝 ∫

1

𝑝
E[𝛸𝑖 ∣ 𝛸 = VaR𝑠(𝛸)] 𝑑𝑠,

often called the coTVaR. Those measures on the three units in our example refer again
to the worst of the 10 losses, so the answers are 16, 20, and 64, respectively; see the last
event in Table 2.1.

So far, the discussion refers to required assets, not capital. To calculate capital, we
have to subtract premiums (Equation 1.1). This is detailed in Table 3.2. Ideally, required
capital is calculated based on required premiums, but at this stage in our calculations we
do not have those numbers.

Table 3.2. InsCo marginal analysis.

Item Unit A Unit B Unit C Portfolio

Required assets coTVaR, 𝑎 16.0 20.0 64.0 100.0
Expected loss, 𝐿 13.4 18.3 14.9 46.6
Plan premium 13.9 18.7 19.6 52.2
Required capital (plan) 2.1 1.3 44.4 47.8

Note that while TVaR submits to marginal analysis fairly well, VaR needs special
handling. Say we were concerned with VaR0.85 = 65. This occurs solidly in event 9
(Table 2.1). A straightforward marginal analysis breaks this down to Table 3.3.

Table 3.3. InsCo marginal analysis of VaR0.85.

Unit A Unit B Unit C Portfolio

17.0 8.0 40.0 65.0
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Yet, for both the lower event 8 and higher event 10, line B’s contribution is higher.
Imagine amore detailed simulationwhere each event is only worth 1/10,000 probability.
Looking at just that specific event, defining the VaR is inviting a good deal of instabil-
ity. Another run with different random numbers will likely produce materially different
results.

There are two ways out of this problem. One is to estimate the conditional expected
loss values described in Section 4.3. The other is to use a more robust replacement for
VaR known asRange Value at Risk (RVaR) (Cont et al. 2010). This is the average loss
occurring between two probability levels. For example, instead of using VaR0.99, you
might use RVaR0.985,0.995.

A sign of problems of the marginal approach is the need to stipulate that epsilon
decreases to zero. When there are ties in the outcome distribution, the riskmeasure is not
actually differentiable! It has a cusp, and depending on whether you increase or decrease
volume in a given line, you get different answers. The risk measure is analogous to the
absolute value function at zero, where the left and right derivatives are different. (We
will see this haunt us in Section 5.5.) To ensure the risk measure is differentiable, and
a marginal approach is really valid, it is enough to require that all outcomes of the total
distribution be distinct. In that case, for a small enough change in any unit, there is no
reorderingof the total outcomes and the riskmeasure is differentiable. Wewill implement
that requirement in the next chapter.

The second form of risk analysis, again following Venter et al. (2006), looks for a set
of risk-adjusted probabilities that reproduce the results of the risk measure. With these
adjusted probabilities in hand, it is natural to use the risk-adjusted expected value of each
unit as an allocation of risk. This method is the basis of theNatural Allocation described
inMildenhall andMajor (2022) and picked up in Chapter 4 to allocate premium.

3.4. Algorithms

3.4.1. Algorithm to evaluate expected loss for discrete random
variables

The algorithm in this subsection is very basic. We present it to establish an approach to
working with discrete random variables that we generalize in subsequent chapters.

We present an algorithm to compute E[𝛸] in two ways, based on

E[𝛸] = ∫
∞

0
𝑥𝑑𝐹(𝑥) = ∫

∞

0
𝑆(𝑥)𝑑𝑥. (3.1)

Algorithm Input: 𝛸 is a discrete random variable, taking finitely many values 𝛸𝑗 ≥ 0,
and 𝑝𝑗 = P(𝛸 = 𝑥𝑗).
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Follow these steps to evaluate Equation 3.1.

Algorithm Steps

(1) Pad the input by adding a zero outcome𝛸 = 0with probability 0.
(2) Group by𝛸𝑗 and sum the corresponding 𝑝𝑗.
(3) Sort events by outcome𝛸𝑗 into ascending order. Relabel events𝛸0 < 𝛸1 < ⋯ < 𝛸𝑚

and probabilities 𝑝0, … , 𝑝𝑚.
(4) Decumulate probabilities to compute the survival function 𝑆𝑗 ∶= 𝑆(𝛸𝑗) using 𝑆0 =

1 − 𝑝0 and 𝑆𝑗 = 𝑆𝑗−1 − 𝑝𝑗, 𝑗 > 0.
(5) Difference the outcomes to computeΔ𝛸𝑗 = 𝛸𝑗+1 − 𝛸𝑗, 𝑗 = 0, … ,𝑚 − 1.
(6) Outcome-probability sum-product:

E[𝛸] = ∫
∞

0
𝑥𝑑𝐹(𝑥) =

𝑚
∑
𝑗=1

𝛸𝑗𝑝𝑗. (3.2)

(7) Survival function sum-product:

E[𝛸] = ∫
∞

0
𝑆(𝑥)𝑑𝑥 =

𝑚−1
∑
𝑗=0

𝑆𝑗Δ𝛸𝑗. (3.3)

Comments

(a) Step (1) treats 0 as special because the second integral in Equation 3.1 starts at𝛸 = 0.
Step (1) allows us to systematically deal with any discrete data. It adds a newoutcome
row only when the smallest observation is > 0.

(b) After Step (3), the 𝛸𝑗 are distinct; they are in ascending order, 𝛸0 = 0, and 𝑝𝑗 =
P(𝛸 = 𝛸𝑗).

(c) In Step (4), 𝑆𝑚 = P(𝛸 > 𝛸𝑚) = 0 since𝛸𝑚 is the maximum value of𝛸.
(d) The forward difference Δ𝛸 computed in Step (5) replaces 𝑑𝑥 in various formulas.

Since it is a forward difference,Δ𝛸𝑚 is undefined. It is also unneeded.
(e) In Step (6), the sum starts at 𝑗 = 1because𝛸0 = 0. Notice thatP(𝛸 = 𝛸𝑗) = 𝑆𝑗−1−𝑆𝑗

is the negative backward difference of 𝑆.
(f) Note the index shift between Equation 3.2 and Equation 3.3.
(g) Both Equation 3.2 and Equation 3.3 are exact evaluations. The approximation oc-

curs when the underlying distribution being modeled is replaced with the discrete
sample given by𝛸.
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3.4.2. Algorithm to evaluate VaR for a discrete distribution

Algorithm Input: 𝛸 is a discrete random variable, taking𝛮 equally likely values𝛸𝑗 ≥ 0,
𝑗 = 0, … ,𝛮 − 1. Probability level 𝑝.

Follow these steps to determine VaR𝑝(𝛸).

Algorithm Steps

(1) Sort outcomes into ascending order𝛸0 < ⋯ < 𝛸𝛮−1.
(2) Calculate 𝑛 = ⌊𝑝𝛮⌋, the greatest integer less than or equal to 𝑝𝛮.
(3) Return VaR𝑝(𝛸) ∶= 𝛸𝑛 (since the indexing starts at 0).

These steps compute the least quantile at level 𝑝. A 𝑝 quantile is any value 𝑥 so that
P(𝛸 < 𝑥) ≤ 𝑝 ≤ P(𝛸 ≤ 𝑥) and VaR𝑝 is the smallest such 𝑥. If you draw a graph of the
distribution function and allow the vertical lines joining jumps to be part of the graph,
then this algorithm is just inverting the distribution function by finding the leftmost 𝑥
at which the graph reaches height 𝑝; see Chapter 4 of Mildenhall andMajor (2022).

3.4.3. Algorithm to evaluate TVaR for a discrete distribution

Algorithm Input: 𝛸 is a discrete random variable, taking𝛮 equally likely values𝛸𝑗 ≥ 0,
𝑗 = 0, … ,𝛮 − 1. Probability level 𝑝.

Follow these steps to determine TVaR𝑝(𝛸).

Algorithm Steps

(1) Sort outcomes into ascending order𝛸0 < ⋯ < 𝛸𝛮−1.
(2) Find 𝑛 so that 𝑛 ≤ 𝑝𝛮 < (𝑛 + 1).
(3) If 𝑛 + 1 = 𝛮, then TVaR𝑝(𝛸) ∶= 𝛸𝛮−1 is the largest observation; exit.
(4) Else 𝑛 < 𝛮 − 1 and continue.
(5) Compute 𝛵1 ∶= 𝛸𝑛+1 + ⋯ + 𝛸𝛮−1.
(6) Compute 𝛵2 ∶= ((𝑛 + 1) − 𝑝𝛮)𝑥𝑛.
(7) Compute TVaR𝑝(𝛸) ∶= (1 − 𝑝)−1(𝛵1 + 𝛵2)/𝛮.

These steps compute the average of the largest𝛮(1 − 𝑝) observations. Step (6) adds
a pro rata portion of the ⌊𝛮(1−𝑝)⌋ largest observation when𝛮(1−𝑝) is not an integer.
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4. Pricing and allocation
This chapter is about the basic theory of allocating premium and capital based on the
Natural Allocation of Spectral Risk Measures (SRMs). Here, we present the logic in an
informal fashion. Think of it as the CliffsNotes or Schaum’s Outlines version. Topics
include:

• The one-year InsCo model
• The relationship between assets, capital, and premium
• Capital risk measures versus pricing risk measures
• Portfolio pricing
• Layer pricing
• Event pricing
• Unit pricing
• The constant cost of capital assumption.

Allocating capital per se is addressed in Section 8.3.
The theory presented here revolves around a one-period model. In reality, insurance

claims often evolve over time with multiple payments spanning more than one account-
ing period. The output of the BusinessOperationsmodule will undoubtedly reflect this.
In order to apply the theory, we must collapse the multiperiod view into a single-period
equivalent. There are two ways to do this. One, we can represent paid claims in a unit
and carry a one-year change in reserves as a separate but parallel unit. Two, we can operate
entirely in ultimate claims, discounting them back to time zero. To do this, we lean on
the principles espoused inWüthrich et al. (2010):

• If interest rates are not being modeled (you do not have an Economic Scenario Gener-
ator), use the latest available risk-free zero-coupon bond yield curve to discount future
simulated paid claims to the baseline time in question.

• If an Economic Scenario Generator is available to generate random interest rates, use
the generated zero-coupon bond yield curve in each event to discount payments in the
same event.

Using risk-free rates to discount losses is somewhat controversial. Fairley (1979) ar-
gued for a risk-free rate because “policyholders do not share in [the insurer’s] investment
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risks….” Cummins (1990) argued for using the market return on the company’s actual
portfolio because adding investment risk increases the probability of default for policy-
holders and therefore changes their expected loss recoveries, i.e., they do share in the in-
vestment risk. However, note that the insolvency priority order of payments puts poli-
cyholders first in line to be paid and shareholders last (i.e., first in line for losing money).
Investment risk is not shared equally—ifwewant to followCummins’s line of reasoning,
the correct discount rate for losses is nearer risk-free than it is the full investment yield.
The risk-free rate is probably not a bad approximation.

An alternative theory is embedded in IFRS17 rules (Caramagno et al. 2021). There,
a discount rate for future liability cash flows is the sum of a risk-free rate and a liquidity
premium. Since insurance contracts cannot be traded continuously in a liquid market,
investors must therefore demand a liquidity premium. Typically this is around 50 basis
points. The IFRS17 rate proxies an entity independent market rate.

Formore complex situationswhere cash flows dependmore directly on financial out-
comes (as is the case in much of life insurance), refer toWüthrich et al. (2010)—but not
the parts about risk loads; their approach is not the same as the SRM approach presented
here!

4.1. Pricing the whole

Pricing applications of capital models typically proceed from the top down (Bühlmann
1985) and start by determining the premium needed for the whole portfolio tomeet cor-
porate return objectives. Total needed return depends on the amount of capital and the
required return on that capital. Following the market structure laid out for InsCo (Fig-
ure 1.4), the amount is determined by regulators or rating agencies using a capital risk
measure. The return is estimated using a separate analysis that will be used to calibrate
the pricing risk measure.

Figure 4.1. The insurance pentagon.

Casualty Actuarial Society 35



Introduction to Capital Modeling and Portfolio Management

A stock insurer uses a peer analysis of valuation against relevant financial metrics to
estimate what it believes its investors require as a return on equity to support the current
or desired share price. This return is combined with the capital structure (known debt
costs) to determine a weighted average cost of capital across debt and equity, producing
an implied needed total income. Income is then adjusted for non-underwriting income
and taxes to determine needed income from insurance operations. It is this amount that
is handed to the capital modelers to be allocated to individual units (Section 4.2). The
analysis below ignores non-underwriting income and taxes and proceeds directly from
the implied weighted average cost of capital. Mutual companies substitute their own
analysis, reflecting their founding charter and mission, and their lack of access to equity
financing, to determine an analogous cost of capital.

Say the analysis determines that investors require a 15% return on capital for their in-
vestment in InsCo. The portfolio’s premium, margin, capital, assets, and expected losses
have a simple relationship with rate of return. The time value of money is ignored, i.e.,
the risk-free rate is zero. Here we analyze only the gross losses, leaving the analysis of
reinsurance for later.

Define the expected loss 𝐿 = E[𝛸 ∧ 𝑎]. 𝐿 is slightly less than the promised loss E[𝛸]
because of the possibility of default; in practice the adjustment is so small you can often
ignore it. Premium can be decomposed into expected loss plus margin:

𝛲 = 𝐿 +𝛭. (4.1)

Equation 1.1, the funding equation, says 𝑎 = 𝛲 + 𝑄 giving the split of assets between
policyholder premium and investor capital. Policyholders in aggregate have been prom-
ised 𝛸 and investors the balance of funds (𝑎 − 𝛸)+. If 𝛸 > 𝑎 policyholders are paid 𝑎
and investors nothing. Nomatter the loss outcome, all ending assets are paid in losses or
returned to investors:

𝑎 ≡ 𝛸 ∧ 𝑎 + (𝑎 − 𝛸)+.

Investors expect to receive

E[(𝑎 − 𝛸)+] = 𝑎 − 𝐿 = (𝛲 + 𝑄) − 𝐿 = (𝐿 +𝛭) + 𝑄 − 𝐿 = 𝛭 + 𝑄,

and therefore their expected return on investment is 𝜄 = 𝛭/𝑄.
In Section 10.5 of Mildenhall and Major (2022), we introduce the insurance pen-

tagon, Figure 4.1, which displays key insurance pricing variables and the relationships
between them. There are five monetary variables: premium, loss, margin, assets, and
capital, and three ratios describing leverage, loss ratio, and return (ROE).
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Table 4.1 displays a number of relationships between the eight key insurance variables
that we use repeatedly: you should become familiar with them. The table uses Greek
letters for the ratios and Roman for monetary amounts.

Table 4.1. The eight pentagon variables and relationships between them and with
other insurance statistics.

Ref Variable or Relationship Interpretation

Monetary amounts
1 𝐿 Expected loss
2 𝛲 Premium
3 𝛭 Margin
4 𝑎 Total assets
5 𝑄 Capital

Related amounts
𝑎 − 𝐿 The unfunded liability above expected loss, funded by margin and

capital
Monetary identities

Prem 𝛲 = 𝐿 +𝛭 Premium is expected loss plus margin
Fund 𝑎 = 𝛲 + 𝑄 Funding equation: premium and capital only source of 𝑡 = 0 assets

Ratios
6 𝜆 = 𝐿/𝛲 Loss ratio
7 𝛾 = 𝛲/𝑎 Premium to asset leverage (gamma = g for leveraGe)
8 𝜄 = 𝛭/𝑄 Expected return on capital (investor) or cost of capital (insured)

Related ratios
𝜈 = 1/(1 + 𝜄) Risk discount factor, analog of 𝑣 = 1/(1 + 𝑖)
𝛿 = 𝜄/(1 + 𝜄) Risk discount rate, analog of paying interest at 𝑡 = 0

7a 𝛲/𝑄 = 𝛾/(1 − 𝛾) Premium to capital leverage ratio, divide top/btm by 𝑎, used Fund
Ratio identities
𝛿 = 𝜄𝜈 Analog of 𝑑 = 𝑖𝑣 in theory of interest

Disc 1 = 𝜈 + 𝛿 Analog to 1 = 𝑣 + 𝑑
Capital identities

Q 𝑄 = 𝜈(𝑎 − 𝐿) 𝑄 is 𝑡 = 0 price paid for asset with expected 𝑡 = 1 return 𝑎 − 𝐿
8a 𝜄 = (𝛲 − 𝐿)/(𝑎 − 𝛲) Substitute Prem and Fund into (8)

𝛿 = (𝛲 − 𝐿)/(𝑎 − 𝐿) Substitute Prem and Fund into (8)

Premium identities
P1 𝛲 = 𝜈𝐿 + 𝛿𝑎 Premium =weighted average of expected loss and maximum loss, 𝑎
P2 𝛲 = 𝑎 − 𝜈(𝑎 − 𝐿) Premium = assets not funded by investor capital
P3 𝛲 = 𝐿 + 𝛿(𝑎 − 𝐿) Premium = expected loss plus share of unfunded liability
P3a 𝛲 = 𝐿 + 𝜄𝑄 As P3 but expressed in terms of cost of capital
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Premium (like discount) is received at 𝑡 = 0, hence the relevance of 𝛿. Income (like
interest) is earned and paid at 𝑡 = 1 andmeasured with 𝜄. Discount is easier to work with
as a measure of return because it is always between 0 and 1: 𝛿 = 1 corresponds to an
infinite return.

Pricing is the process of splitting the unfunded liability 𝑎−𝐿 into premiummargin
and capital parts funded by the policyholder and investor. The risk discount factors tell
you how to accomplish this.

The relationship between premium and loss can be expressed using the loss ratio or
its reciprocal, the premiummultiplier. The latter is sometimes used in catastrophe pric-
ing, when loss ratios seem embarrassingly low. Likewise, leverage could be expressed as
premium to capital rather than as premium to assets. The point is there is a measure of
leverage, a measure of margin to volume, and a measure of return-cost to capital.

Given required expected return from a top-down approach analysis, the standard
pentagon equations in Table 4.1 show that knowing 𝜄, 𝐿, and 𝑎 determines total pre-
mium. It can be expressed in multiple ways, the most helpful of which are

𝛲 = 𝐿 + 𝛿(𝑎 − 𝐿) = 𝐿 + 𝜄𝑄 = 𝜈𝐿 + 𝛿𝑎. (4.2)

The first two expressions make it clear that premium equals expected loss plus cost of
capital. The third will reappear again and again in this monograph.

Example: TVaR Capital Risk Measure. Before considering allocation, let’s look at
total pricing with a TVaR capital measure, 𝑎 = TVaR𝑝(𝛸). The quantity 𝑎 − 𝐿 =
TVaR𝑝(𝛸)−E[𝛸] is usually referred to asXTVaR𝑝(𝛸), for excess TVaR above themean.
Total premium, from Equation 4.2 becomes

𝛲 = 𝐿 + 𝛿(𝑎 − 𝐿)
= 𝐿 + 𝛿XTVaR𝑝(𝛸)
= 𝐿 + 𝜄𝑄.

Example: InsCo. Recall from Table 3.2 that the portfolio plan premium is 52.2. When
𝜄 = 0.15, we have 𝜈 = 0.86956 and 𝛿 = 0.13043, resulting in a required portfolio pre-
mium of 46.6 + 0.13043 ⋅ (100 − 46.6) = 53.565. The premium required to achieve a
15% return is 53.6, or 1.4 higher than plan. The required margin is 7.0, also 1.4 higher
than the plan margin. This difference between plan and required profitability (negative
here) is sometimes called economic value added or EVA. It represents the amount of
profit over and above what is required to satisfy investors. In Section 5.5 we see if we can
improve the situation. In the rest of this chapter, we address how to allocate the required
portfolio premium and margin to the units.
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The pentagon contains eight variables and five relationships (funding, premium, loss
ratio, leverage, and return), leaving three free variables, i.e., most of the time knowing
three of the eight variables is enough to determine the rest. This sometimes fails, e.g.,
knowing the three ratios does not determine volume.

You should become familiar with the underlying algebra of Table 4.1, not memorize
it, but be able to figure it out quickly. Here are some examples.

• Using 𝜈 + 𝛿 = 1 and starting from𝛲 = 𝜈𝐿+ 𝛿𝑎 gives𝛲 = (1 − 𝛿)𝐿 + 𝛿𝑎 = 𝐿+ 𝛿(𝑎 − 𝐿).
Since we know 𝛲 = 𝐿 +𝛭, this implies𝛭 = 𝛿(𝑎 − 𝐿).

• Alternatively, 𝛲 = 𝜈𝐿 + (1 − 𝜈)𝑎 = 𝑎 − 𝜈(𝑎 − 𝐿). Now, since we know 𝑎 = 𝛲 + 𝑄 so
𝛲 = 𝑎 − 𝑄, this implies𝑄 = 𝜈(𝑎 − 𝐿).

• Hence return 𝜄 = 𝛭/𝑄 = 𝛿/𝜈.
Make sure you are happy with P3 and P3a. These are used repeatedly below.

4.2. Allocation to units: Overview

Introducing the Natural Allocation. TheNatural Allocation (NA) is a way to allocate to-
tal premium or margin down to individual units. The method is natural because it relies
on so few assumptions, is easy to compute, and gives a reasonable range of interpretable
answers. It also agrees with the marginal and risk-adjusted probability methods when
they are well defined—a huge conceptual advantage. The NAworks by taking the prob-
lem of pricing the whole risk and dividing it into a series of simpler problems involving
pricing individual layers of assets and then solving those simpler problems. Layers are
easier to price because they are binary, involving no loss or a full loss, and are completely
characterized by their probability of a loss. The NA is described in the next six sections.

• Section 4.3 describes four adjustments that must be made to raw simulated output
before starting. These are technical, computational adjustments.

• Section 4.4 describes how themethodworks in total. It concludes by showing that the
NA depends on the selection of a distortion function to determine the return to each
layer of assets.

• Section 4.5 explains how tomove from a total price for each layer to a price by layer by
unit. Summing these allocations up across layers gives the unit NA.

• To this point, we have not introduced any distortion functions, so Section 4.6 intro-
duces five families. These essentially span the full range of risk appetites. We compute
the NA for the Wang distortion, which corresponds to a middle-of-the-road risk ap-
petite.

• Section 4.7 describes how the NA works for the constant cost of capital distortion
(CCoC) ,which assigns the same return to each layer. TheCCoCcorresponds to a very
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extreme tail-risk averse risk appetite. Unfortunately, while the CCoC is an unrealistic
assumption, it is the basis forwhatwe call the industry standard approach. It is the root
cause ofmany problems encountered in practical allocationwork. We explainwhy and
how it came to be accepted.

• Finally, Section 4.8 tries to head off objections to the NA caused by interpreting sce-
narios defined by outcome loss amount as events. If this idea has not occurred to you
before already, we recommend skipping it! However, someone invariably brings it up,
and you need to be able to explain why it is not a problem, so you do need to read it
eventually.

4.3. Four technical adjustments

In order to make the algebra work out in subsequent sections, we need to adjust our
events so that four simplifying conditions hold. These alter the form of the simulation
data, but not the underlying meaning. We adjust our simulated loss outcomes so that

1. Loss outcomes are sorted by total loss, from lowest to highest.
2. The first loss is zero.
3. Losses are capped at the available assets.
4. Portfolio losses are unique by event.

Zero Loss. If, in our table of loss probabilities, the first, lowest, portfolio loss 𝛸1 is
greater than zero (and this is true in Table 2.1), then it is computationally simpler to
introduce another row with 𝛸0 = 0 and 𝑝0 = 0. This does not change the results be-
cause 𝑝0 = 0. If𝛸1 = 0 already, then no such adjustment is necessary. However, in that
case, we do renumber so that the first event is called 𝑘 = 0. The reason for this will be-
come apparent in the next section; layer size and exceedance probabilitymust be properly
accounted for.

Capped Losses. When there is zero probability of insolvency, allocating the portfolio’s
expected loss E[𝛸] to unit 𝑖 is easy—it’s just the unit’s expected loss E[𝛸𝑖]. When assets
are lower and there is a nonzero probability of default𝛸 > 𝑎, we need to consider what
actually happens to claim payouts. The most common rule, and the one we assume, is
equal priority. Payments to unit 𝑖 are given a common haircut:

𝛸𝑖(𝑎) ∶= 𝛸𝑖𝛸 ∧ 𝑎
𝛸

= {
𝛸𝑖 𝛸 ≤ 𝑎
𝛸𝑖 𝑎

𝛸 𝛸 > 𝑎.
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This expresses payments to unit 𝑖 as a constant pro rata (haircut) proportion (𝛸∧𝑎)/𝛸of
the contractually promised payment𝛸𝑖. The factor is the same for all units, hence equal
priority. We assume the appropriate substitutions have been made in our loss table:

𝛸𝑖 ← 𝛸𝑖(𝑎),
𝛸 ← 𝛸 ∧ 𝑎.

It is important to realize that once this adjustment has beenmadewe can ignore default.
Default has not disappeared; by replacing promised loss payments𝛸𝑖 with actual𝛸𝑖(𝑎),
we have “baked in” default. Going forward we can therefore ignore default as a separate
phenomenon.

Unique Losses. Consider a particular outcome𝛸 = 𝛸𝑘. If there is only one event with
𝛸 = 𝛸𝑘, then there is only one set of unit losses {𝛸1

𝑘 , … , 𝛸𝑚
𝑘 } whose sum is𝛸𝑘. If there

are multiple events with 𝛸 = 𝛸𝑘 but the same set of {𝛸𝑖
𝑘}, then we can, with no loss of

information, collapse them all (summing the probabilities) and consider the result to be
one event.

However, if there are two or more distinctly different events resulting in 𝛸 = 𝛸𝑘,
then the above logic cannot be applied. This is true in Table 2.1. In this case marginal
calculations do not make sense, and when, in Section 4.4, we go to distort probabilities,
there will be an ambiguity in the ordering of the events that will be material to the cal-
culations. We need to resolve that ambiguity, and we can do it by using the conditional
expected loss of the units. Define

𝜅𝑖(𝑥) ∶= E[𝛸𝑖 ∣ 𝛸 = 𝑥].

Then collapse the events sharing 𝛸 = 𝛸𝑘, replacing the particular 𝛸𝑖 values with their
conditional expectation 𝜅𝑖(𝛸𝑘) and summing the probabilities into the newly defined 𝑝𝑘.
We appeal to a symmetry argument: within the set of events resulting in𝛸 = 𝛸𝑘, beyond
their relative probabilities, there is no reason to prioritize one over another. Henceforth,
we will assume the substitutions

𝛸𝑖
𝑘 ← 𝜅𝑖(𝛸𝑘) (4.3)

have beenmade in our table of outcomes. Notice that Equation 4.3 always applies when
losses exceed assets. The substitution Equation 4.3 relies on equal priority in the sense
that the recovery to the collapsed event equals the conditional expectation of the recov-
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eries to its components:

E [𝛸𝑖𝛸 ∧ 𝑎
𝛸 ∣ 𝛸 = 𝑥] = E [𝛸𝑖 ∣ 𝛸 = 𝑥] 𝛸 ∧ 𝑎

𝛸
= 𝜅𝑖(𝛸)𝛸 ∧ 𝑎

𝛸 .

Thus, equal priority is essential to make the approach work. Luckily, equal priority is
universal in insurance regulation, even though other approaches are possible in theory
(Mildenhall andMajor (2022), Section 12.3).

In our example, notice in Table 2.1 that the events 4, 5, 6, and 7 all have 𝛸 = 40.
Taking the 𝑝-weighted averages of each unit’s losses across those events, collapsing the
events down to one event, renumbering, and inserting the zero row, we get Table 4.2.
The table has also added a row 0with 0 loss and probability. There is no need for a default
adjustment because 𝑎 = 100, sufficient to pay the maximum loss.

Table 4.2. InsCo loss probability distribution by unit with duplicate 𝛸 averaged out and
zero row inserted. Index now called 𝑘 rather than 𝑗.

𝑘 𝑝 Unit A𝛸1
𝑘 Unit B𝛸2

𝑘 Unit C𝛸3
𝑘 Portfolio𝛸𝑘

0 0 0 0 0 0
1 0.1 15 7 0 22
2 0.1 15 13 0 28
3 0.1 5 20 11 36
4 0.4 10 24 6 40
5 0.1 26 19 10 55
6 0.1 17 8 40 65
7 0.1 16 20 64 100
E[𝛸] 13.4 18.3 14.9 46.6
Plan premium 13.9 18.7 19.6 52.2

4.4. Pricing layers in total

Layer pricing assumes the required return associated with each individual dollar of assets
is given by a function of its risk of being consumed for claim payments.

The NA is based on the principle of layer pricing, introduced formally by Wang
(1996) and articulated by Venter (1991), Bodoff (2007), and others.

Suppose the total assets 𝑎 are funded by premium and the sale of the residual value
of separate layers or tranches. These layers are analogous to collateralized aggregate rein-
surance, as we shall now explain. Reinsurance in our one-period model is a transaction
where ceded premium is paid to the reinsurer at 𝑡 = 0 and ceded losses are recovered
from the reinsurer at 𝑡 = 1. Let’s turn that around to make the role of reinsurance as
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capital more transparent. InsCo (or its regulator) demands collateralized reinsurance.
Consider a layer of width Δ𝛸𝑘. The layer has its own funding equation and needs to be
supported by assets of Δ𝛸𝑘 in total. At 𝑡 = 0 the counterparty remits 𝜈(Δ𝛸𝑘 − 𝐿𝑘) and
the insurer 𝐿𝑘 + 𝛿(Δ𝛸𝑘 − 𝐿𝑘) into the collateral account, where 𝐿𝑘 is expected loss in the
layer. Since 𝜈 + 𝛿 = 1, the layer is fully collateralized. At 𝑡 = 1 the layer loss becomes
known and is paid in full from collateral. Any amounts remaining are remitted back to
the counterparty. This is reinsurance, but with the transactions reversed to reveal the
capital financing function.

To be concrete, say we understand the distribution of portfolio losses 𝛸 through a
simulation. Say the annual aggregate results

𝛸 ∈ {𝛸0 < 𝛸1 < ⋯ < 𝛸𝑛 = 𝑎}

and each outcome has its probability {𝑝0, 𝑝1, … , 𝑝𝑛}.
We tranche total assets 𝑎 into a stack of fully collateralized aggregate reinsurance lay-

ers. Each layer is a half-open interval, 𝑘 = 0, … , 𝑛 − 1, covering losses𝛸 ∈ (𝛸𝑘, 𝛸𝑘+1], i.e.,
for a loss of𝛸 it pays

{
0 𝛸 ≤ 𝛸𝑘
𝛸 − 𝛸𝑘 𝛸𝑘 < 𝛸 ≤ 𝛸𝑘+1
Δ𝛸𝑘 𝛸𝑘+1 < 𝛸.

However, there are no partial payments because𝛸𝑘 are the only possible outcomes, so the
cover reduces to one paying nothing when𝛸 ≤ 𝛸𝑘 andΔ𝛸𝑘 as soon as𝛸 > 𝛸𝑘.

For our InsCo numerical example, 𝛸 ∈ {0, 22, 28, 36, 40, 55, 65, 100} and 𝑛 = 7.
So, we have seven layers (𝛸𝑘, 𝛸𝑘+1] that we imagine are funded separately, each by a com-
bination of investor capital (security market purchase price of the returned collateral)
and insured’s premiums. The probability that losses exactly equal 𝛸𝑘 is 𝑝𝑘. The proba-
bility that layer 𝑘 is used for loss payments (rather than handed back to investors) is the
exceedance probability or survival function (hence notation 𝑆):

𝑆𝑘 = 𝑆(𝛸𝑘) ∶= P{𝛸 > 𝛸𝑘} =
𝑛
∑
𝑗=𝑘+1

𝑝𝑗.

The numbers for our example are laid out in Table 4.3.
How is layer 𝑘 to be funded? Analogous to our portfolio funding Equation 1.1, we

have the layer funding equation:

Δ𝛸𝑘 = 𝛲𝑘 + 𝑄𝑘. (4.4)
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Table 4.3. InsCo layer loss details and survival probabilities.

Unit A Unit B Unit C Portfolio Layer Size Exceedance Pr
𝑘 𝑝 𝛸1

𝑘 𝛸2
𝑘 𝛸3

𝑘 𝛸𝑘 Δ𝛸𝑘 𝑆𝑘
0 0 0 0 0 0 22 1
1 0.1 15 7 0 22 6 0.9
2 0.1 15 13 0 28 8 0.8
3 0.1 5 20 11 36 4 0.7
4 0.4 10 24 6 40 15 0.3
5 0.1 26 19 10 55 10 0.2
6 0.1 17 8 40 65 35 0.1
7 0.1 16 20 64 100 0 0

While the portfolio funding equation is self-evident, is it necessary to constrain a
layer’s capital to 𝑄𝑘 = Δ𝛸𝑘 − 𝛲𝑘, or can it be something else? It is easy to see it cannot
provided 𝛲 = ∑𝑘 𝛲𝑘. Let’s assume that (we’ll justify it later) and see why. First, note that
𝑄𝑘 ≥ Δ𝛸𝑘 − 𝛲𝑘 for each 𝑘, otherwise there could be a shortfall in loss payments on the
layer. This is just the statement that each layer must be fully collateralized. Now, if the
inequality is strict for any 𝑘, we get𝑄 = ∑𝑘𝑄𝑘 > ∑𝑘 Δ𝛸𝑘 − 𝛲𝑘 = 𝑎 − 𝛲 = 𝑄, which is a
contradiction. Hence𝑄𝑘 = Δ𝛸𝑘 − 𝛲𝑘.

We still need to justify𝛲 = ∑𝑘 𝛲𝑘. Youmight think that the aggregate premiumcould
be less than the sum of the premiums by layer because of potential diversification oppor-
tunities between the layers. However, in a sense there are no diversification opportunities
between the layers because they are comonotonic: they are all increasing functions of the
total loss𝛸. Some, but not all, pricing functionals are comonotonic additive, meaning
that the price of the sum of comonotonic risks equals the sum of the prices. To proceed,
we need to use a comonotonic additive pricing functional. This is not a problem, as the
functionals we are proposing to use are comonotonic additive. Thus, wemay assume the
layer funding Equation 4.4 holds.

Wehave reduced the pricing problem topricing a fully collateralized layer. Here again
we can apply our general rules: if we know the expected loss and return by layer, we
know the premium. 𝑆𝑘 is the probability that layer 𝑘 is needed to pay claims and so 𝐿𝑘 =
𝑆𝑘Δ𝛸𝑘 is the expected value of layer 𝑘’s contribution to the total portfolio expected claim
payments 𝐿. For the return, we need to made one last assumption: 𝑆𝑘 is the only thing
that investors deem relevant to pricing layer 𝑘. In layer 𝑘, the investors getΔ𝛸𝑘 back with
probability 1 − 𝑆𝑘 and nothing with probability 𝑆𝑘. Layer 𝑘’s payoff as a fraction of its
limitΔ𝛸𝑘 is a Bernoulli random variable with one parameter: 1 − 𝑆𝑘. We assume that its
probability distribution, determined by 𝑆𝑘, is all that matters. This restriction is known
as law invariance.
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A riskmeasure 𝜌(𝛸) is law invariant if and only if it is a function of the distribution
𝐹 of𝛸. That is, if𝛸 and𝑌 have the same distribution function, then 𝜌(𝛸) = 𝜌(𝑌). Law
invariant risk measures do not depend on the cause of loss or the particulars of the event
generating the loss. VaR, TVaR, and standard deviation are examples of law invariant
risk measures. A measure like 𝜌(𝛸) = E[𝛸] + 𝜆cov(𝛸, 𝑌), which depends on a state
variable 𝑌, is not.

Law invariance may seem a strange assumption for a pricing risk measure, especially
in the light of theories like the capital asset pricing model where systematic or nondiver-
sifiable risk is considered (these are not law invariant). The rationale is that insurance
risk is diversifiable and has no analog of market risk. The motivation for law invariance
in the capital risk measure stems from a regulator’s desire for an objective default prob-
ability measure. An entity’s risk of insolvency depends only on the distribution of its
future change in surplus—the cause of loss is irrelevant. Law invariance enables risk to
be estimated statistically, from an empirical sample or a model fit to𝛸. Law invariance is
sometimes calledobjectivity for these reasons. It allows regulators to calibrate theirmod-
els using only losses. While the justification for law invariance in the pricing measure is
admittedly weaker, we find it eminently useful.

Supposewe know (or, being actuaries, assume) a function 𝑔(𝑠) thatmaps attachment
probability 𝑆𝑘 to rate on line (premium to limit ratio) allowing us to write

𝛲𝑘 = 𝑔(𝑆𝑘)Δ𝛸𝑘.

The function 𝑔(𝑠) is known as a distortion function.
Before moving on, here is a summary of the key assumptions that we have made and

how they are used:

1. Equal priority in default—collapse equal outcomes to one.
2. Comonotonic additive pricing risk measure—funding equation by layer.
3. Law invariant pricing risk measure—price layer using a distortion function.
4. Existence of a rate on line distortion function 𝑔 for pricing Bernoulli layers.

Distortion functionsmust have certain properties if the layer prices are to be rational.
In particular, 𝑔(0) = 0, 𝑔(1) = 1, and 𝑔 must be increasing and concave (decreasing
slope). Violations of these lead to irrational pricing behavior, as defined and explained in
Mildenhall andMajor (2022), Chapter 10.

The logic forpricing layer𝑘 is exactly the same aswhatwasused toderiveEquation4.2
and gives

𝛲𝑘 = 𝑔(𝑆)Δ𝛸𝑘 = 𝜈𝑘𝑆𝑘Δ𝛸𝑘 + 𝛿𝑘Δ𝛸𝑘, (4.5)
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where the return 𝜄𝑘 and risk discount factors 𝜈𝑘 and 𝛿𝑘 are functions of 𝑆 (hence the sub-
scripts). So, if we knew the required return 𝜄𝑘 associated with layer 𝑘, we could deter-
mine its premium and capital. Summing across all layers we would then know both total
premium and total capital, and they would sum to total assets 𝑎. Computing the total
premium

𝛲 = ∑
𝑗
𝑔(𝑆𝑗)Δ𝛸𝑗

in this way is known as a Spectral Risk Measure (SRM). SRMs are coherent risk mea-
sures in the sense of Artzner et al. (1999). They are also law invariant (of course) and
comonotonic additive, and in fact are the only risk measures that have all these properties.

Let’s lookmore closely at Equation 4.5. From our setup, the largest possible loss and
∑Δ𝛸𝑘 = 𝑎. Using that, recall the two ways of computing the mean (integration by
parts):

E[𝛸] =
𝑛
∑
𝑘=0

𝛸𝑘𝑝𝑘 =
𝑛−1
∑
𝑘=0

Δ𝛸𝑘𝑆𝑘.

The right-hand term is a sum over expected losses in each layer 𝑘. This formula is illus-
trated in Figure 4.2 by the blue area and explained in the context of the Lee diagram in
Chapter 3 of Mildenhall and Major (2022). Now, if each layer of capital costs 𝑔(𝑆𝑗), we
can use integration by parts to get

𝛲 =
𝑛−1
∑
𝑘=0

𝑔(𝑆𝑘)Δ𝛸𝑘

=
𝑛−1
∑
𝑘=0

𝑔(𝑆(𝛸𝑘))(𝛸𝑘+1 − 𝛸𝑘)

=
𝑛
∑
𝑘=0

(𝑔(𝑆𝑘−1) − 𝑔(𝑆𝑘)))𝛸𝑘

=
𝑛
∑
𝑘=0

𝑞𝑘𝛸𝑘,

(4.6)

where 𝑔(𝑆−1) ∶= 1. Refer to Figure 4.2. The size of each vertical step is Δ𝛸𝑘, and the
left-to-right distance from each blue (respectively, orange) vertical step to the 𝑝 = 1 axis
is 𝑆𝑘 (respectively, 𝑔(𝑆𝑘)). The area under the blue line is the expected loss. The area un-
der the orange line is the premium, corresponding to either expression in Equation 4.6.
The difference is the margin, shown in orange shading in the second panel. The com-
plement of premium is capital, above the orange line, shaded in light blue. This view
of the relationship between capital, margin, and loss is dramatically different from the
conventional view in the third panel.
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Figure 4.2. Computing loss, margin, and premium for the simple example, CCoC distor-
tion.

In Equation 4.6, the last two formulas can be interpreted as the expected value out-
comes𝛸𝑘with respect to adjusted ordistorted probabilities 𝑞𝑘, analogous to 𝑝𝑘 = 𝑆𝑘−1−
𝑆𝑘. (This symbol 𝑞 for a probability measure is not to be confused with capital amount
symbol𝑄.) Notice that∑𝑛

𝑗=0 𝑞𝑗 = 1. Since all 𝑞𝑗 are nonnegative, collectively they satisfy
the properties of a probability distribution.

Exercise. For E[𝛸], prove that∑𝑗 𝑆𝑗Δ𝛸𝑗 = ∑𝑗 𝑝𝑗𝛸𝑗.

Solution.
𝑛
∑
𝑗=0

𝑝𝑗𝛸𝑗 =
𝑛
∑
𝑗=1

(𝑆𝑗−1 − 𝑆𝑗)𝛸𝑗

=
𝑛−1
∑
𝑗=0

𝑆𝑗𝛸𝑗+1 −
𝑛
∑
𝑗=1

𝑆𝑗𝛸𝑗

=
𝑛−1
∑
𝑗=0

𝑆𝑗Δ𝛸𝑗

because 𝑆0𝛸0 = 𝑆𝑛𝛸𝑛 = 0.

Exercise. For 𝜌(𝛸), prove that∑𝑗 𝑔(𝑆𝑗)Δ𝛸𝑗 = ∑𝑗 𝑞𝑗𝛸𝑗.

Solution. This is essentially the same derivation as for E[𝛸] but with 𝑔(𝑆) substituted
for 𝑆 and 𝑞 substituted for 𝑝.
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We can go one step further and write

𝛲 =
𝑛
∑
𝑘=0

𝑞𝑘𝛸𝑘 =
𝑛
∑
𝑘=0

𝛸𝑘𝛧𝑘𝑝𝑘. (4.7)

The likelihood ratios 𝛧𝑗 = 𝑞𝑗/𝑝𝑗 individually can be less than, equal to, or greater than
one, but their expected value equals one.

Recall that for our example 𝜄 = 0.15, 𝜈 = 0.86956, and 𝛿 = 0.13043. Table 4.4
tabulates the portfolio expected loss and premiumbased on theCCoCdistortion, which
we define in Section 4.6. We can see, comparing to Table 4.11, that the same portfolio
premium is obtained.

Table 4.4. Pricing the portfolio with CCoC distorted 𝑔(𝑆).

Portfolio Layer Size Exceedance Pr Distorted
𝑘 𝑝 𝛸𝑘 Δ𝛸𝑘 𝑆𝑘 𝑔(𝑆) 𝑆Δ𝛸 𝑔(𝑆)Δ𝛸
0 0 0 22 1 1 22 22
1 0.1 22 6 0.9 0.913 5.4 5.478
2 0.1 28 8 0.8 0.826 6.4 6.609
3 0.1 36 4 0.7 0.739 2.800 2.957
4 0.4 40 15 0.3 0.391 4.500 5.870
5 0.1 55 10 0.2 0.304 2 3.043
6 0.1 65 35 0.1 0.217 3.5 7.609
7 0.1 100 0 0 0 0 0
Sum 1 100 46.6 53.565

4.5. Pricing units via pricing layers

A portfolio’s premium, computed by an SRM, has an NA to units.
We are now in a position to consider the pricing of portfolio units. Let the portfolio

aggregate loss be the sum of𝑚 unit losses:

𝛸 =
𝑚
∑
𝑖=1

𝛸𝑖.

The various𝛸𝑖 may or may not be correlated. We assume they are nonnegative.
It is natural to look at Equation 4.6 and suppose that the price of𝛸𝑖 should be

𝛲𝑖 =
𝑎
∑
𝑗=0

𝑞𝑗𝛸𝑖
𝑗 . (4.8)
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Note the resemblance of this to the expected value of𝛸𝑖:

𝐿𝑖 =
𝑎
∑
𝑗=0

𝑝𝑗𝛸𝑖
𝑗 . (4.9)

Finally, of course, unit margin (analogous to Equation 4.1) is simply the difference:

𝛭𝑖 = 𝛲𝑖 − 𝐿𝑖. (4.10)

This decomposition of 𝛲 into∑𝑖 𝛲𝑖 is known as theNA of an SRM—so-called be-
cause it relies on no additional assumptions. It is the distorted expectation of𝛸𝑖. Other
ways of writing it are

𝛲𝑖 = 𝛦[𝛧 ⋅ 𝛸𝑖] = E[𝛸𝑖]E[𝛧] + cov(𝛧,𝛸𝑖) = E[𝛸𝑖] + cov(𝛧,𝛸𝑖) (4.11)

because E[𝛧] = 1. The first expression resembles a pricing kernel in modern finance
theory or a co-measure (Venter et al. 2006). The last expression resembles the capital
asset pricing model.

Exercise. Verify Equation 4.11.

Solution. cov(𝛧,𝛸) = E[𝛧𝛸] − E[𝛧]E[𝛸] = E[𝛧𝛸] − E[𝛸] because E[𝛧] = 1.

Why do we require unique outcome values for𝛸? To enforce a unique ordering of
outcomes. The values 𝑞𝑘 depend on the order of events. If there are multiple 𝑘 with
equal𝛸𝑘, that ambiguity doesn’t matter for computing total premium 𝛲. But when we
consider allocations to units it does, because it allows some unwanted flexibility in 𝑞𝑘.
When the outcomes of 𝛸 are distinct, we are also guaranteed that the NA equals the
marginal cost of increasing business in unit 𝑖. Since the outcomes are distinct, the order
of outcomes of 𝛸 and of 𝛸 + 𝜖𝛸𝑖 is the same provided 𝜖 is small enough (positive or
negative). As noted above, 𝑞 reproduces stand-alone pricing for all risks comonotonic
with (same order as)𝛸. Thus

∇𝑖𝜌𝛸 = lim𝜖→0
𝜌(𝛸 + 𝜖𝛸𝑖) − 𝜌(𝛸)

𝜖

= lim𝜖→0

E𝑞[𝛸 + 𝜖𝛸𝑖] − E𝑞[𝛸]
𝜖

= lim𝜖→0

E𝑞[𝛸] + E𝑞[𝜖𝛸𝑖] − E𝑞[𝛸]
𝜖

= lim𝜖→0

𝜖E𝑞[𝛸𝑖]
𝜖

= E𝑞[𝛸𝑖].
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This very important result was proved by Delbaen around 2000. It shows that the NA is
the natural extension of Tasche (1999).

4.6. Five representative distortion functions

Wenow introduce five carefully selected families of distortion functions: constant cost of
capital (CCoC), proportional hazards (PH), Wang transform, dual moment transform,
and TVaR. Table 4.5 shows the formulas for each and parameters selected to achieve
InsCo’s portfolio pricing consistent with an expected return of 𝜄 = 0.15. For the Wang
distortion, introduced in Wang (2000),Φ is the standard Gaussian cumulative distribu-
tion function. For the PH (respectively, other four) a lower (respectively, higher) param-
eter indicates a more risk averse distortion resulting in higher prices for a given risk.

Table 4.5. Distortion functions calibrated to portfolio price 𝜌(𝛸) = 53.565.

Distortion Formula Parameter

CCoC 𝜈𝑠 + 𝛿 𝜄 = 0.1500
PH 𝑠𝛼 𝛼 = 0.7205
Wang Φ(Φ−1(𝑠) + 𝜆) 𝜆 = 0.3427
Dual 1 − (1 − 𝑠)𝑚 𝑚 = 1.5951
TVaR 1 ∧ 𝑠/(1 − 𝑝) 𝑝 = 0.2713

Figure 4.3 plots the five distortion functions and distorted probabilities. The blue
star above 𝑠 = 0 on the right reminds us of the probability mass for the CCoC . The thin
black line shows the reference𝛧 = 1 line, where risk-adjusted and objective probabilities

Figure 4.3. Distorted exceedance (𝑔(𝑠), left) and distorted probabilities (𝑞, right) by dis-
tortion type.
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are equal. The plots explain the order of the distortions: CCoC gives the greatest weight
to the worst 𝑠 = 0 loss (remember the ∗ above the worst event) and TVaR the least.
Conversely, TVaRgives the greatestweight tomoderate losses between the 25th and 75th
percentiles. Table 4.6 shows the 𝑔(𝑠) values corresponding to each of the five distortions
for𝑆 values in our example, Table 4.7 shows the distortedprobabilities (𝑞) associatedwith
each distortion function, and Table 4.8 shows the 𝛧 = 𝑞/𝑝 factor for each distortion,
showing the proportionate increase or decrease over objective probabilities 𝑝.

Table 4.6. Distorted exceedance (𝑔(𝑠)) by distortion type.

𝑘 𝑆 CCoC PH Wang Dual TVaR

0 1 1 1 1 1 1
1 0.9 0.9130 0.9269 0.9478 0.9746 1
2 0.8 0.8261 0.8515 0.8819 0.9233 1
3 0.7 0.7391 0.7734 0.8071 0.8535 0.9606
4 0.3 0.3913 0.4200 0.4279 0.4339 0.4117
5 0.2 0.3043 0.3136 0.3089 0.2995 0.2745
6 0.1 0.2174 0.1903 0.1739 0.1547 0.1372
7 0 0 0 0 0 0

Table 4.7. Distorted probabilities (𝑞) by distortion type.

𝑘 𝑝 CCoC PH Wang Dual TVaR

1 0.1 0.0870 0.0731 0.0522 0.0254 0
2 0.1 0.0870 0.0754 0.0660 0.0513 0
3 0.1 0.0870 0.0781 0.0748 0.0698 0.0394
4 0.4 0.3478 0.3534 0.3791 0.4196 0.5489
5 0.1 0.0870 0.1064 0.1190 0.1344 0.1372
6 0.1 0.0870 0.1233 0.1350 0.1448 0.1372
7 0.1 0.2174 0.1903 0.1739 0.1547 0.1372

Table 4.8. Likelihood ratios (𝛧 = 𝑞/𝑝) by distortion type.

𝑘 𝑝 CCoC PH Wang Dual TVaR

1 1 0.8696 0.7310 0.5216 0.2540 0
2 1 0.8696 0.7541 0.6598 0.5134 0
3 1 0.8696 0.7810 0.7480 0.6979 0.3941
4 1 0.8696 0.8834 0.9479 1.0490 1.3723
5 1 0.8696 1.0640 1.1899 1.3439 1.3723
6 1 0.8696 1.2329 1.3502 1.4479 1.3723
7 1 2.1739 1.9033 1.7391 1.5470 1.3723
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All of the distortions underweight events 1 through 3. Event 4 has the median loss.
TVaR, while assigning zero weight to the lowest losses, is still the most body focused
because it overweights events 4 and above—equally—and among all distortions applies
the smallest weight to the largest loss. CCoC, however, applies the largest weight to event
7 (the largest loss) and only that event. The other distortions apply weights to event 7 in
the order of presentation in the table. The ordering for event 4, representing body focus,
is the opposite of the ordering for event 7, representing tail focus.

The results obtained by using the Wang distortion are shown in Table 4.9.

Table 4.9. Pricing the portfolio with Wang transformed probabilities 𝑞.

Unit A Unit B Unit C Portfolio
𝑘 𝑝 𝛸1

𝑘 𝛸2
𝑘 𝛸3

𝑘 𝛸𝑘 𝑆 𝑔(𝑆) 𝑞 𝛧
0 0 0 0 0 0 1 1 0 0
1 0.1 15 7 0 22 0.9 0.948 0.052 0.522
2 0.1 15 13 0 28 0.8 0.882 0.066 0.660
3 0.1 5 20 11 36 0.7 0.807 0.075 0.748
4 0.4 10 24 6 40 0.3 0.428 0.379 0.948
5 0.1 26 19 10 55 0.2 0.309 0.119 1.190
6 0.1 17 8 40 65 0.1 0.174 0.135 1.350
7 0.1 16 20 64 100 0 0 0.174 1.739
𝐿 = E𝑝 13.4 18.3 14.9 46.6
𝛲 = E𝑞 14.109 18.637 20.818 53.565
𝛭 = 𝛲 − 𝐿 0.709 0.337 5.918 6.965
Prop of tot𝛭 0.102 0.048 0.850 1

So far, we have seen how to allocate premium 𝛲 (and therefore margin𝛭, via Equa-
tion 4.1) to portfolio units via the NA of an SRM, once a distortion function 𝑔(𝑠) is
available. Chapter 8 discusses how to choose a distortion function. A premium alloca-
tion allows us to compute economic value added by unit, the actual premium in excess of
required premium, and to assess static portfolio performance by unit—motivations for
performing capital allocation in the first place (Chapter 5). Inmany ways it is also a good
place to stop.

However, if desired, the ideas behind thenatural premiumallocation canbe extended
to give a capital allocation consistent with SRMpremium allocation. This is discussed in
Section 8.3.

4.7. The industry standard approach and its problems

In this section we step back to the 1990s, before the layer approach was formally intro-
duced, and describe howwhat we call the industry standard approach (ISA) evolved and
the problems it generates. At that time, actuaries determined prices on a stand-alone
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basis, because in an efficient market prices are additive. They used the formula premium
equals loss cost plus margin, and margin was computed as cost of capital times amount
of capital, giving (Table 4.1 P1, P3a)

𝛲 = 𝐿 + 𝜄𝑄 = 𝜈𝐿 + 𝛿𝑎. (4.12)

It was deemed obvious that the cost of capital should vary by unit according to differ-
ent levels of systematic risk. However, attempts to compute underwriting betas from
accounting data failed or had standard errors that swamped differences by unit. In conse-
quence, it became standard to assume that 𝜄was constant across units. This story emerges
in Myers and Cohn (1987), Cummins (2000), and Kozik (1994).

Around the same time, Tasche (1999) pointed out that marginal capital is the “only
definition for the risk contributions which is suitable for performance measurement.”
Tasche’s analysis relies on a constant cost of capital to equate needs more capital with
needs more margin. That relationship obviously fails if capital costs vary. As a result, by
2000, the ISA was to use a CCoC and marginal capital by unit to steer portfolios. This
is called RAROC, return on risk-adjusted capital: the return is constant but the capital
varies with risk.

As we saw in Section 4.4, in the mid-1990s Wang and others introduced the idea of
pricing by layer. It is easy to translate Equation 4.12 into the layer framework. Without
loss of generality, we can assume the four adjustments of Section 4.3, so 𝑎 = max(𝛸).
Then,

𝛲 = 𝐿 + 𝜄𝑄
= 𝜈 𝐿 + 𝛿 𝑎
= 𝜈 E[𝛸] + 𝛿 max(𝛸)

= 𝜈
𝑛−1
∑
𝑘=0

𝑆𝑘Δ𝛸𝑘 + 𝛿
𝑛−1
∑
𝑘=0

Δ𝛸𝑘

=
𝑛−1
∑
𝑘=0

(𝜈𝑆𝑘 + 𝛿)Δ𝛸𝑘

=
𝑛−1
∑
𝑘=0

𝑔(𝑆𝑘)Δ𝛸𝑘

is exactly the premium associated with the CCoC distortion 𝑔(𝑠) = 𝜈𝑠 + 𝛿. Here an im-
portant transformation has occurred. ISA (reasonably) assumed a CCoC by unit. The
layer view shows that constant unit costs mathematically imply a CCoC by layer, an im-
plication that went unremarked at the time. The problem is that capital costs are man-
ifestly not constant by layer. Numerous websites such as the Federal Reserve’s FRED
and Bank of America’s ICE provide the latest information on credit yield spreads. Low-
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Figure 4.4. Assuming a constant cost of capital. © S. Mildenhall, 2024.

risk instruments such as government or AAA-rated bonds require lower yields than non-
investment-grade or junk bonds. This is true even after corrections are made to the yield
calculations to take default probability into account (Heynderickx et al. 2016).

Aside from the factual inconvenience of making an empirically false assumption, the
CCoCdistortion causes other problems. It is numerically unstable because it puts a large
weight on the worst outcome and underweights all others. For the same reason, it is very
averse to tail risk but blithely ignores volatility risk around the mean. None of the four
other distortions in Table 4.5 has these problems: all have a cost of capital that varies by
layer and distribute their probability weight more evenly across events. CCoC is further
unusual because it provides no diversification benefit for independent risks.

Exercise. Show that CCoC distortion pricing is additive for independent risks.

Solution. 𝛲 = 𝜈E[𝛸] + 𝛿max(𝛸) and expectation and maximum are additive for inde-
pendent risks.

Table 4.10 shows the calculation of 𝑞𝑘, E[𝛸], and the price of𝛸 using the 𝑞 s. It gives
the same result as Table 4.4.

Let us examine the allocations obtained by the CCoC assumption and compare the
results obtained by using the Wang distortion.

The𝛧 values associated with theWang distortion are shown in Table 4.9; the CCoC
values are in Table 4.10. The last three 𝛧 values are greater than one for Wang, whereas
only the last one is greater than one for CCoC.
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Table 4.10. Pricing the portfolio with CCoC distorted probabilities 𝑞.

Portfolio Layer Size Exceedance Pr Distorted
𝑘 𝑝 𝛸𝑘 Δ𝛸𝑘 𝑆𝑘 𝑝𝛸 𝑞 𝑞𝛸 𝛧 = 𝑞/𝑝
0 0 0 22 1 0 0 0
1 0.1 22 6 0.9 2.2 0.087 1.913 0.870
2 0.1 28 8 0.8 2.800 0.087 2.435 0.870
3 0.1 36 4 0.7 3.6 0.087 3.130 0.870
4 0.4 40 15 0.3 16 0.348 13.913 0.870
5 0.1 55 10 0.2 5.5 0.087 4.783 0.870
6 0.1 65 35 0.1 6.5 0.087 5.652 0.870
7 0.1 100 0 0 10 0.217 21.739 2.174
Sum 1 100 53.565

For InsCo, the results of the CCoC allocation are shown in Table 4.11. Unit C,
because of its outsize presence in the worst event, gets 91.9% of the capital and margin
allocated to it. This tends to be the outcome from practical applications of the standard
approach: the thick-tail lines of business get nearly all the capital andmargin allocated to
them and the thin tail lines get a free pass. With the Wang distortion, instead of getting
8% of the margin, Units A and B get 15% of the margin.

Table 4.11. Industry standard approach to allocation.

Variable Unit A𝛸1
𝑗 Unit B𝛸2

𝑗 Unit C𝛸3
𝑗 Total𝛸𝑗

𝐿 = E[𝛸] 13.4 18.3 14.9 46.6
𝑎 = TVaR 16 20 64 100
𝑄 = 𝜈XTVaR 2.261 1.478 42.696 46.435
𝛲 13.739 18.522 21.304 53.565
𝛭 = 𝛲 − 𝐿 0.339 0.222 6.404 6.965
Allocation of𝛭 0.049 0.032 0.919 1
𝜄 = 𝛭/𝑄 0.150 0.150 0.150 0.150

To recap: It is often assumed that one can transition from allocating capital to allo-
cating cost of capital (i.e., margin or premium) simply by multiplying capital by a single
cost of capital rate. Indeed, it is basically that simple when dealing with the entire busi-
ness portfolio in aggregate (because the total cost of capital is the weighted average cost
times the amount). However, when disaggregating results into units, this simple tactic
founders for two reasons. First, as we saw above, purported capital allocation procedures
based on marginal analysis of the capital risk measure aren’t really relevant to pricing.
Second, it is likely that CCoC is not appropriate because there is no single cost of capital
rate that applies to all layers of risk and different units consume a different mix of cap-
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ital by layer. Each contributor to the business has its own risk profile and its own joint
dependency with the aggregate risk profile—and therefore its own cost of capital.

Understanding the flaws of the ISA highlights the improvements offered by layer
pricing and allocation. First, by choice of distortion 𝑔, we can match the cost of capi-
tal by layer to market observables. Second, since unit consumption of capital varies by
layer, the calculationnaturally produces different returns by unit in total, thus solving the
problem from the 1990s originally tackled using underwriting betas. Moreover, the so-
lution is consistent with the observations in Table 1.1. Thick-tailed, catastrophe exposed
lines consume relatively more higher layer capital. Higher layer capital is less exposed to
loss (like a higher rated bond) and earns a lower return. Thus, such lines will be charged
with a lower cost of capital. They will run with lower leverage too, resulting in a low loss
ratio. This is why catastrophe reinsurance works economically: it substitutes expensive
equity for cheaper debt-like capital.

4.8. Pricing events: An explanation

We saw in Equation 4.6 that premium can be computed as the expected value of the loss
outcomes 𝛸𝑘 with respect to altered probabilities 𝑞𝑘. This seems to provide us with an
interpretation of pricing events, rather than layers, but that interpretation comes with a
big caveat.

So far, this is just algebra. We would like to interpret𝛧𝑘 as the unique state price for
event 𝑘 and take this as the definitive statement of event pricing, backed by a no-arbitrage
argument. Alas, that interpretation is not quite correct for reasons that involve bid-ask
spreads and are beyond the scope of this monograph. They are explained more fully in
Chapter 10 of Mildenhall andMajor (2022).

However, it does provide a set of internally consistent allocations to events as part
of the total. The portfolio premium 𝛲 can be regarded as an expectation taken under
the new 𝑞 probability E𝑞[𝛸] or, equivalently, as a weighted expectation E𝑝[𝛧𝛸] under
the original distribution with 𝛧 as the weight. Using the 𝑞 probabilities this way is also
applying an SRM to 𝛸, equivalent to how we did it previously through layer pricing.
Using a distorted expectation to represent price is very much in the spirit of using risk
neutral probabilities in modern finance; they are not always unique there, either. Thus,
if we fix𝛸, then we can price any subunit𝛸𝑖 of𝛸 using 𝑞𝑘

allocation to𝛸𝑖 = ∑
𝑘
𝛸𝑖
𝑘𝑞𝑘

and never run into logical or economic inconsistencies. This is exactly the same as the
procedure for computing coTVaR and is the basis of the NA.
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In general, Equation 4.7 can also be used to price any set of outcomes 𝑌𝑘 that are
comonotonic with 𝛸𝑘—in the sense that it will give the same stand-alone price as the
spectral measure. This follows because the ordering of events determined by 𝛸𝑘 gives a
nondecreasing ordering of events for 𝑌𝑘. (The converse may not be true. For example, a
constant is comonotonic with any𝛸𝑘, but would admit any ordering of events as nonde-
creasing.) In our case, each layer is comonotonic with the total, so Equation 4.7 can be
seen as an application. In general, the allocation will be less than or equal to the stand-
alone price. There is a lower bound too; see Chapter 10 ofMildenhall andMajor (2022).

4.9. Summary

Spectral pricing gives the price of the total (whole portfolio) risk in the market. In con-
trast, the NA gives an allocation to part of the total risk—and crucially depends on the
total. The allocation equals the stand-alone spectral price only in the case that the risk
is comonotonic with the total risk. You can use and interpret the NA as a risk-adjusted
expected value, and never have a problem, provided you understand it in the context of a
total𝛸. As an allocation, it has the beauty of being consistent with a marginal approach
in the case that all the outcomes of𝛸 are distinct. In fact, it is consistent if and only if all
the outcomes are distinct.

Spectral prices are subadditive, so insureds benefit frompooling together—providing
a motivation for insurance companies to exist! The insurer has to figure out how to allo-
cate that lower price fairly among its insureds. Of course, the insurer is happy with any
price greater than or equal to a fair allocation, particularly with the marginal interpreta-
tion of allocation. The marginal interpretation drives profit maximizing behavior in a
standard sense.

We conceptualized the cash flows between policyholders and investors via the InsCo
one-year model with claim payouts 𝛸 and probabilities 𝑝. We distinguished between
capital andpricing riskmeasures. Portfolio fundingwas subject to the constraints𝛲+𝑄 =
𝑎 and 𝛲 = 𝐿 +𝛭with the investor return being 𝜄 = 𝛭/𝑄, resulting in Equation 4.2:

𝛲 = 𝐿 + 𝛿(𝑎 − 𝐿) = 𝐿 + 𝜄𝑄.

These relationships were carried down to hold for each asset layer. Pricing was done
via SRMs through distorted probabilities with 𝑆 being replaced by 𝑔(𝑆) and 𝑝 being re-
placed by 𝑞 = Δ𝑔(𝑆). This allows us to price any cash flow that is a function of specific
value outcomes𝛸. In particular we can price the units of the portfolio: lines of business
or even policies.

We saw that while understanding themarginal impact of increasing a unit’s exposure
on the overall asset requirement (the capital measure) was meaningful for risk manage-
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ment, it had little relevance to pricing per se. We also saw that assuming a CCoC had
troublesome implications about event weights 𝛧 = 𝑞/𝑝.

4.10. Algorithms

Thenext two algorithms are taken fromMildenhall andMajor (2022). They are included
here for completeness and ease of reference. As is often the case, they look more intimi-
dating than they are—build the spreadsheet and you’ll see they are quite straightforward!

4.10.1. Algorithm to evaluate an SRM on a discrete random
variable

Algorithm Input: 𝛸 is a discrete random variable, taking values 𝛸𝑗 ≥ 0, and 𝑝𝑗 =
P(𝛸 = 𝛸𝑗), 𝑗 = 1, … , 𝑛. 𝜌𝑔 is an SRM.

Follow these steps to determine 𝜌𝑔(𝛸).

Algorithm Steps

(1) Pad the input by adding a zero outcome𝛸0 = 0with probability 0.
(2) Sort events by outcome𝛸𝑗 into ascending order.
(3) Group by𝛸𝑗 and sum the corresponding 𝑝𝑗. Relabel events𝛸0 < 𝛸1 < ⋯ < 𝛸𝑛′ and

probabilities 𝑝0, … , 𝑝𝑛′ . All𝛸𝑗 are distinct.
(4) Decumulate probabilities to determine the survival function 𝑆𝑗 ∶= 𝑆(𝛸𝑗) using 𝑆0 =

1 − 𝑝0 and 𝑆𝑗 = 𝑆𝑗−1 − 𝑝𝑗, 𝑗 > 0.
(5) Distort the survival function, computing 𝑔(𝑆𝑗).
(6) Difference𝑔(𝑆𝑗) to compute risk-adjustedprobabilitiesΔ𝑔(𝑆0) = 1−𝑔(𝑆0),Δ𝑔(𝑆𝑗) =

𝑔(𝑆𝑗−1) − 𝑔(𝑆𝑗), 𝑗 > 0.
(7) Sum-product to compute 𝜌𝑔(𝛸) = ∑𝑗𝛸𝑗 Δ𝑔(𝑆𝑗).

Steps (4) and (6) are inverse to one another. The transition 𝑝 → 𝑆 → 𝑔𝑆 → Δ𝑔𝑆
from input probabilities to risk-adjusted probabilities is used in all SRM-related algo-
rithms.

The algorithm computes the outcome-probability formula

𝜌𝑔(𝛸) = ∫
∞

0
𝑥𝑔′(𝑆(𝑥)) 𝑑𝐹(𝑥) = ∑

𝑗>0
𝛸𝑗Δ𝑔(𝑆𝑗).

When𝛸 is discrete the Steiltjes integral becomes a sum—the joy of using𝑑𝐹. We can also
use the survival function form withΔ𝛸𝑗 = 𝛸𝑗+1 − 𝛸𝑗:

𝜌𝑔(𝛸) = ∫
∞

0
𝑔(𝑆(𝑥)) 𝑑𝑥 = ∑

𝑗≥0
𝑔(𝑆𝑗)Δ𝛸𝑗.
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4.10.2. Algorithm to compute the linear NA for discrete random
variables

Algorithm Inputs:

(i) The outcome values (𝛸1
𝑗 , … , 𝛸𝑚

𝑗 ), 𝑗 = 1, … , 𝑛, of a discrete 𝑚-dimensional multi-
variate loss random variable. Outcome 𝑗 occurs with probability 𝑝𝑗. 𝛸𝑗 = ∑𝑖𝛸𝑖

𝑗
denotes the total loss for outcome 𝑗.

(ii) An SRM 𝜌𝑔 associated with the distortion function 𝑔.

Follow these steps to determine𝐷𝑛𝜌𝛸(𝛸𝑖), the NA of 𝜌(𝛸) to unit 𝑖.

Algorithm Steps

(1) Pad the input by adding a zero outcome𝛸1
0 = ⋯ = 𝛸𝑚

0 = 𝛸0 = 0 with probability
𝑝0 = 0.

(2) Sort events by total outcome𝛸𝑗 into ascending order.
(3) Group by𝛸𝑗 and take 𝑝-weighted averages of the𝛸𝑖

𝑗 within each 𝑖 and𝛸𝑗 = 𝑥 group.
Sum the corresponding 𝑝𝑗. Relabel events using 𝑗 = 0, 1, … , 𝑛′ as𝛸𝑖

𝑗 and probabili-
ties 𝑝0, … , 𝑝𝑛′ .

(4) Decumulate probabilities to determine the survival function 𝑆𝑗 ∶= 𝑆(𝛸𝑗) using 𝑆0 =
1 − 𝑝0 and 𝑆𝑗 = 𝑆𝑗−1 − 𝑝𝑗, 𝑗 > 0.

(5) Distort the survival function, computing 𝑔(𝑆𝑗).
(6) Difference 𝑔(𝑆𝑗) to compute risk-adjusted probabilities Δ𝑔(𝑆0) = 1 − 𝑔(𝑆0) and

Δ𝑔(𝑆𝑗) = 𝑔(𝑆𝑗−1) − 𝑔(𝑆𝑗), 𝑗 > 0.
(7) Sum-product to compute 𝜌𝑔(𝛸) = ∑𝑗𝛸𝑗 Δ𝑔(𝑆𝑗) and

𝐷𝑛𝜌𝛸(𝛸𝑖) = E[𝛸𝑖𝛧] = ∑
𝑗
𝛸𝑖
𝑗 𝛧𝑗 𝑝𝑗 = ∑

𝑗
𝛸𝑖
𝑗
Δ𝑔(𝑆𝑗)
𝑝𝑗

𝑝𝑗 = ∑
𝑗
𝛸𝑖
𝑗 Δ𝑔(𝑆𝑗). (4.13)

Comments

(a) When the data are produced by a simulation model, 𝑛 equals the number of events
and 𝑚 the number of units. With realistic data, 𝑛 is in the range thousands to mil-
lions, and𝑚 ranges from a handful up to the hundreds for a full corporate model.

(b) Step (1) only results in a new outcome row when the smallest𝛸𝑗 observation is > 0.
(c) The averages in Step (3) are implemented as

𝜅𝑖(𝑥) = E[𝛸𝑖 ∣ 𝛸 = 𝑥] =
∑𝑗∶𝛸𝑗=𝑥 𝑝𝑗𝛸

𝑖
𝑗

∑𝑗∶𝛸𝑗=𝑥 𝑝𝑗
.
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(d) After Step (3), the 𝛸𝑗 are distinct, they are in ascending order, 𝛸0 = 0, and 𝑝𝑗 =
P(𝛸 = 𝛸𝑗).

(e) ThebackwarddifferenceΔ𝑔(𝑆𝑗) computed in Step (6) replaces𝑔′(𝑆)𝑑𝐹(𝑥) in various
formulas.

(f) Equation 4.13 is an exact equation for a discrete distribution. Approximation oc-
curs if it is applied to the empirical distribution of a discrete sample representing a
different underlying distribution, possibly one with density.

60 Casualty Actuarial Society



5. Applications of pricing and allocation
Performance assessment, new business pricing, and reinsurance decision-making are all es-
sentially the same exercise as price allocation. Mergers and acquisitions, and portfolio opti-
mization, must be approached differently.

Table 5.1 summarizes the events affecting InsCo’s three units of business as well as an
available 35 excess of 65 stop loss reinsurance cover. This has ceded losses of zero in events
0 through 6 and 35 in event 7. It has an expected payout of 3.5 (loss on line 10%) and
ceded premiumof 6.5 (rate on line 18.6%). The expected net profit to the reinsurer is 3.0.

In the last three rows of the table we see the expected loss, the plan premium, and the
required premium as calculated by a Wang transform calibrated to achieve a 15% return
on capital for the (gross) portfolio.

Table 5.1. Events with unit losses and statistics.

𝑘 𝑝 Unit A Unit B Unit C Gross 35 xs 65 Net

0 0.0 0 0 0 0 0 0
1 0.1 15 7 0 22 0 22
2 0.1 15 13 0 28 0 28
3 0.1 5 20 11 36 0 36
4 0.4 10 24 6 40 0 40
5 0.1 26 19 10 55 0 55
6 0.1 17 8 40 65 0 65
7 0.1 16 20 64 100 35 65

E[𝛸] 13.400 18.300 14.900 46.600 3.500 43.100
Plan 13.900 18.700 19.600 52.200 6.500 45.700
𝜌Wang 14.109 18.637 20.819 53.565 6.087 47.478

5.1. Performance assessment

Which units are performing at a satisfactory level?
Performance assessment is a multiattribute question, involving:

• Recent and prospective growth
• Expense control
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• Employee turnover
• Customer retention
• Competitive standing
• Product and operational innovation

and other qualities. However, a key factor is profitability. The first question is always: is
this unit meeting a profit benchmark?

Recall we have a 15% return benchmark for the (gross) portfolio as a whole. Table 5.1
shows that additional premium of 53.565−52.2 = 1.365 is required tomeet this thresh-
old. This is true independent of the choice of distortion function—it is a direct conse-
quence of the 15% return on capital requirement. Here we assume a calibrated Wang
transform is used to allocate the portfolio requirement down to the units.

Table 5.2 shows that of the three units, only Unit B has a plan premium that exceeds
the allocated target premium, and there, only by 0.063. Unit A has a deficit of 0.209,
and Unit C has most of the portfolio deficit at 1.219. Putting these shortfalls in perspec-
tive, Unit C still has the highest gap measured in loss ratio (4.45%), but Unit A needs to
increase its plan margin by the greatest factor (41.8%).

Table 5.2. Plan premium relative to target required premium.

Metric Unit A Unit B Unit C Gross

Plan premium 13.900 18.700 19.600 52.200
𝜌Wang 14.109 18.637 20.819 53.565
E[𝛸] 13.400 18.300 14.900 46.600
Plan margin 0.500 0.400 4.700 5.600
Excess margin -0.209 0.063 -1.219 -1.365
% of plan -41.8% 15.6% -25.9% -24.4%
Excess LR -1.43% 0.33% -4.45% -2.28%

Note this analysis depends heavily on the fact that we have chosen the Wang trans-
form to drive our SRM allocation. What if a different distortion function were used?
And how do we decide which one to use? These questions are addressed in Chapter 8.

5.2. Reinsurance decision-making

Reinsurance serves as loss protection and a source of loss-bearing capital. Table 5.1 shows
a 35 excess of 65 portfolio stop loss contract. We assume this is aggregate cover, so ques-
tions of reinstatement do not apply. Per-occurrence cover would need to be analyzed to
see its impact on aggregate results.

Should this cover be purchased?
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Reinsurance decisions must weigh several factors, including impact on capital re-
quirements and underwriting constraints, counterparty credit risk, and price. First let
us consider capital requirements.

Previously, we assumed a TVaR0.99 standard for required assets. For the gross port-
folio, this led to 𝑎 = 100, full collateral in this example. For the net portfolio, it would
lead to 𝑎 = 65 if full credit were to be allowed or if the same standard were applied to net
losses.

Exercise. Apply the rate of return-driven pricing formula (Equation 4.2) to derive the
required premium for the net portfolio based on a 15% required return. Whatmight you
conclude about the price of the reinsurance cover?

Solution.

𝛲 = 𝜈𝐿 + 𝛿𝑎 = (0.86956)(43.1) + (0.13043)(65) = 45.956,

where 𝐿 = 43.1 is the net expected loss per Table 5.1, and 𝑎 = 65 is the required as-
set conditional on having stop loss reinsurance. For comparison, recall from the end of
Section 4.1 that 𝛲(gross) = 0.86956 ⋅ 46.6 + 0.13043 ⋅ 100 = 53.565 (consistent with
plugging in values from theGross columnofTable 5.1). This represents savings of 7.609,
which is themaximum that InsCo should bewilling to cede for the cover. Since the cover
costs 6.5 (Table 5.1), wemight conclude that the price of the cover is advantageously low
and it should be purchased (unless a better deal were available).

Unfortunately, this line of thinking relies on the familiar CCoC assumption. The
risk profile has changed between the gross and net portfolio, so there is no basis for as-
suming that the same rate of return is required. An alternative approach is to use the loss
protection interpretation and view reinsurance as a source of capital. This is elaborated
upon inMildenhall andMajor (2022).

Applying the same Wang transformation allocation to the reinsurance cash flows,
Table 5.1 shows a target required premium of 6.087, which is 0.413 lower than the actual
6.5 ceded premium. We conclude the cover should not be purchased.

Exercise. Using theWang allocation and assuming𝑎 = 65, compute the returnon capital
for the net portfolio. Explain why the result is in this direction.

Solution.

𝜄 = 𝛭
𝑄 = 𝛲 − 𝐿

𝑎 − 𝛲 = 47.478 − 43.1
65 − 47.478 = 4.378

17.522 = 25%.
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All investment tranches (𝑄Net
𝑗 ,𝛭Net

𝑗 ) = (𝑄Gross
𝑗 ,𝛭Gross

𝑗 ), 𝑗 = 1, … , 5, are identical, but
the last tranche 𝑗 = 6 hasΔ𝛸Net

𝑗 = 0 < Δ𝛸Gross
𝑗 . Relative to gross, the net weighted aver-

age cost of capital is therefore skewed to the lower tranches, which have higher exceedance
probabilities and therefore higher required returns.

5.3. New business pricing

While underwriting involvesmany factors other thanpricing, such as exposure guidelines
and physical and financial standards reflecting moral hazard, etc., pricing is a key task in
the onboarding of new business.

At first glance, this seems equivalent to the performance assessment task: calculating
a required premium as a distorted loss expectation. It would seem there is not much to
add to this discussion. Typically, however, proposed new business is not run through
the full capital model directly because that would be inefficient in terms of computing
resources and timeliness. Rather, a simplified or surrogate version of the capital model is
used to extract key loss statistics.

Let’s say for example we have a (relatively) simple cat model through which the port-
folio has been run—once, and the results stored—and through which a new business
prospect has just been run. Non-cat losses are represented by an independent lognor-
mal variable calibrated on exposure characteristics. The resulting scatter plot is shown in
Figure 5.1.

Figure 5.1. Simulated losses from a surrogate model applied to the gross portfolio and
a new business prospect.
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The problem is to translate these results into a form suitable for SRMallocation pric-
ing. One could use the calibrated Wang transform to sort these results by the portfolio
loss and calculate distorted probabilities, but we have no guarantee that the surrogate
model accurately reproduces the distribution of portfolio losses that the capital model
uses. The solution is to extract the conditional expected new business losses for each
portfolio loss in Table 5.1. (See the discussion of 𝜅𝑖(𝛸𝑘) in Section 4.3).

This extraction can be done via local regression (LOWESS, LOESS, kernel smooth-
ing; Friedman et al. (2008)). Figure 5.2 shows the scatter plot of Figure 5.1 with an esti-
mate of the conditional mean loss curve and the specific event points. This leads to the
augmented loss (Table 5.3).

Figure 5.2. Estimating conditional expected losses using locally weighted regression
(LOWESS).

Exercise. Why is it reasonable to treat a small new business addition as if it were a unit
within the portfolio, using the SRM allocation to calculate a reservation price?

Solution. Because it would have little or no impact on the sort order of portfolio losses.
The distorted event probabilities𝑞 are functions of the distorted exceedance probabilities
𝑔(𝑆), which are in turn functions of exceedance 𝑆, which in turn is crucially dependent
on the sort order of portfolio event losses. In the simple example, adding the newbusiness
losses𝛸𝑛 to portfolio losses𝛸 did not change the sort order of𝛸 + 𝛸𝑛 compared to𝛸.
In general, with a realistically fine-grained simulation, theremay indeed be changes in the
sort order, but they will be small and not be material to the results.
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Table 5.3. Events with new business conditional expected losses.

𝑘 𝑝 𝑞 Gross New Business

0 0.0 0.0000 0 0.00000
1 0.1 0.0522 22 0.02028
2 0.1 0.0660 28 0.01965
3 0.1 0.0748 36 0.01849
4 0.4 0.3791 40 0.01855
5 0.1 0.1190 55 0.02402
6 0.1 0.1350 65 0.02910
7 0.1 0.1739 100 0.06339
𝐿 = E[𝛸] 46.600 0.02491
𝛲 = 𝜌Wang(𝛸) 53.565 0.02858
𝛭 = 𝛲 − 𝐿 6.965 0.00367

5.4. Mergers and acquisitions

What do you need to consider in a merger or acquisition? In general, there are quite a
few considerations, such as strategic fit, financial performance of the target company, cul-
tural compatibility, synergies and cost savings, regulatory compliance, tax implications,
valuation for the target company, and risk management.

While the finance departmentwill nodoubt have anopinionon valuation, the capital
modeling team could also be tasked with an analysis of how the risk profile of the new
portfolio fits with the existing portfolio. The same principles discussed previously still
apply, but with a twist. Whereas it was reasonable to treat a new business policy as if it
were already a (relatively small) unit within the portfolio, a sizable acquisition requires a
different approach.

Say instead of the loss distribution portrayed in Figure 5.1, we had an acquisition
opportunity with losses scaled up nearly 2,000 times larger on the 𝑦-axis at every point,
having a mean loss of 48.35. We will focus on losses, with the acquired premiums to be
compared to the required premium we will calculate.

Rather than the conditional mean loss of the acquired business (hereinafter𝛸𝑎), we
need the entire conditional distribution (or at least a representative sample). There are
several technical approaches to this, such as quantile regression (Koenker and Hallock
2001) or kernel smoothing (Wand and Jones 1994). For our example, we will take what
is possibly the simplest nontrivial approach.

1. Calculate the conditional mean 𝛸̄𝑎 = E[𝛸𝑎|𝛸] via LOWESS at every𝛸 point in the
scaled-up equivalent to Figure 5.1, just as we did to obtain Figure 5.2.

2. At each such𝛸 point, compute the squared difference between𝛸𝑎 and 𝛸̄𝑎.
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Figure 5.3. Representing the conditional loss distribution using locallyweighted regres-
sion (LOWESS): mean plus or minus one standard deviation.

3. Use LOWESS again to compute the conditional mean square deviation, i.e., the vari-
ance, and its square root, the conditional standard deviation, 𝜎𝑎.

4. Inspired byGauss-Hermite quadrature (Kovvali 2022), we compute 𝛸̄𝑎 plus orminus
one standard deviation. This is depicted in Figure 5.3.

5. Duplicate each row in Table 5.1, inserting a new column for loss 𝛸𝑎 consisting of
those 𝛸̄𝑎 ± 𝜎𝑎 points. Rescale each probability by half.

6. Insert a new column for merger losses𝛸𝑚 = 𝛸 + 𝛸𝑎. Sort on𝛸𝑚.
7. Compute 𝑆, 𝑔(𝑆), and 𝑞 as before, based on the same Wang transform SRM. This is

shown in Table 5.4.

The required premium split between our original portfolio 𝛸 (52.74) and the ac-
quired𝛸𝑎 (59.09) is irrelevant to this analysis! Recall the original portfolio required pre-
mium was 53.57. What is important is the difference between the new merger portfo-
lio premium 111.83 and the original premium of 53.57, i.e., 58.26. This is what InsCo
would require for premium from the new business to secure enough margin to satisfy
investors.

Exercise. Explain the capital situation. What increment of assets is needed with the
newly acquired business? What capital? What is the total return on capital for the com-
bined business? Return on incremental capital? Explain why this is not the 15% return
originally specified.
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Table 5.4. Eventswith acquired businessGauss-Hermite two-point sampled conditional
losses.

𝑘 𝑝 𝛸 𝛸𝑎 𝛸𝑚 𝑆 𝑔(𝑆) 𝑞
0 0 0 0 0 1 1 0
1 0.05 22 29.37 51.37 0.95 0.9766 0.0234
2 0.05 28 25.47 53.47 0.9 0.9478 0.0287
3 0.05 36 21.55 57.55 0.85 0.9161 0.0318
4 0.2 40 22.74 62.74 0.65 0.7667 0.1494
5 0.05 22 49.35 71.35 0.6 0.7244 0.0423
6 0.05 28 50.79 78.79 0.55 0.6802 0.0442
7 0.05 55 30.83 85.83 0.5 0.6341 0.0461
8 0.05 36 50.22 86.22 0.45 0.5859 0.0482
9 0.2 40 49.27 89.27 0.25 0.3700 0.2159
10 0.05 65 29.89 94.89 0.2 0.3089 0.0611
11 0.05 55 62.38 117.38 0.15 0.2439 0.0650
12 0.05 100 47.73 147.73 0.1 0.1739 0.0700
13 0.05 65 83.06 148.06 0.05 0.0964 0.0775
14 0.05 100 198.30 298.30 0 0 0.0964
𝐿 = E[𝛸] 46.60 48.35 94.95
𝛲 = 𝜌Wang(𝛸) 52.74 59.09 111.83

Solution. Using a 95% TVaR criterion, total assets of 298.30 are needed for the com-
bined portfolio, which is an increase of 198.30 over the original 100. With required pre-
mium of 111.83, this corresponds to capital of 186.46 for the combined portfolio, an in-
crease of 140.03 over the original 46.43 (= 100−53.57) capital. Margin on the combined
portfolio is 16.88, for a return of 9.06%. The margin has gone up by 9.92, correspond-
ing to a return of 7.08% on incremental capital. More capital is backing more remote
probability losses, requiring less margin and therefore lower returns on capital.

5.5. Portfolio optimization
If this is the best of possible worlds,

what then are the others?
—Voltaire, “Candide”

5.5.1. Theory

Portfolio management is an inverse problem to pricing. Rather than taking the portfolio
as given and determining appropriate pricing, the problem becomes to take the pricing
as given and determine the best (or at least a better) composition of the portfolio. This
task is typically complicated, however, by constraints such as volume or risk measures.
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The textbook approach to optimization (e.g., Postek et al. (2024b), available online
at Postek et al. (2024a)) starts with an objective function 𝑓(𝑥) where 𝑥 is typically a vec-
tor parameter. The problem is to find the value of 𝑥 that maximizes (or minimizes) 𝑓(𝑥).
This is often complicated by the existence of multiple constraint functions ℎ𝑗(𝑥) requir-
ing ℎ𝑗(𝑥) ≤ 0 for 𝑗 = 1, … , 𝑛 and ℎ𝑗(𝑥) = 0 for 𝑗 = 𝑛 + 1, … ,𝑚.

What should be our objective function? It is tempting to think it should be margin,
the difference between plan premium and expected loss. However, if our revelations in
Chapter 4 taught us anything, it is that modifying the portfolio will modify the risk and
that being properly rewarded for risk goes beyond expected loss. We need to compare the
(rescaled) plan premium to the (rescaled) required premium from the pricing functional.

We found at the end of Section 4.1 that InsCo’s economic value added (EVA) is−1.4.
Our goal will be to make EVA as large (positive) as possible, or at the very least make it
less negative.

For portfolio optimization, the particulars will likely look like:

• Objective function is economic value added.
• The parameters are scale factors, one for each unit.
• The primary constraint is to stay at the current capital.
• Secondary constraints are limits on growing or shrinking each unit.

Scale factors determine the volume of each unit. The current portfolio includes the
random variable 𝛸𝑖 representing the losses from unit 𝑖. We now introduce the random
variable 𝛸𝑖(𝜖) to represent its losses if the unit volume has changed by the factor 1 + 𝜖.
The original portfolio loss variable is 𝛸 = ∑𝑖𝛸𝑖(0) in this notation. If unit 𝑖 were to
grow, say, 5%, its loss random variable would be represented as𝛸𝑖(0.05).

Let the portfolio loss random variable be𝛸(𝜖1, … ) = ∑𝑖𝛸𝑖(𝜖𝑖) and denote the cor-
responding required assets by 𝑎(𝜖1, … ). For any particular 𝜖 values, the capital model can
compute these.

For the InsCo example, we will assume the constraints are −0.5 ≤ 𝜖 ≤ 0.5.
If unit losses scaled linearly, as they do in stock portfolios, then we would have

𝛸𝑖(𝜖) = (1 + 𝜖)𝛸𝑖(0). Unfortunately, this is usually not the case with insurance, al-
though catastrophe cover in a limited geographic area comes close. However, a properly
defined scale factor will give us scaling in planned premium.

There is a second source of nonlinearity here. As units grow or shrink, so do their
losses in each event. Because the computation of the pricing SRM (and probably the
capital measure as well) depends on the ordering of portfolio losses, that ordering may
change, and so themeasure will vary nonlinearly with the scale factors. For small changes
in scale (i.e., 𝜖 close to 0), this reordering may not happen or may not make a material
difference. Our approach will take this into account.
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The primary capital constraint listed above needs elaboration. As the portfolio com-
position shifts, the asset requirement (specified by the capital risk measure 𝑎(𝛸)) will
change. So will the total plan premium. We interpret the constraint to mean that the
portion of assets not supplied by premium,𝑄 = 𝑎 − 𝛲 (Equation 1.1), be maintained at
the current level. The constraint might have been simply not to exceed the current level,
butwe don’twant to “leavemoney on the table” in the sense of holdingmore capital than
we are currently using to support risk. So the constraint is an equality. In some other ap-
plication, there could be a target capital different than the current level. Our approach is
easily adaptable to that.

In a real application, there might be other constraints. For example, we might
not want total portfolio margin to go down. We will keep the example here relatively
simple.

If EVA and required assets scaled linearly, then the above would be a linear program-
ming (LP) problem that could be solvedwith readily available linear programming codes.
Locally, that is to saywith 𝜖 close to zero, this should be a good approximation. However,
we want to handle bigger steps correctly, so we need a nonlinear optimization strategy.
The Nelder-Mead Simplex algorithm is generally applicable, but its performance may
suffer in comparison to methods that use first derivatives such as the conjugate gradi-
ent algorithm by Polak andRibière and the quasi-Newtonmethod of Broyden, Fletcher,
Goldfarb, and Shanno. Other methods, such as the Newton conjugate gradient algo-
rithm, use both first and second derivatives.

In Python, these and other methods are available in scipy.optimize. In R, the
same holds for nloptr. Some of these implementations rely on FORTRAN codes writ-
ten half a century ago!

If we treat losses as scaling linearly, thenwe canmake use of first derivatives in our so-
lutionmethod. First derivatives are almost automatically provided when the objective—
portfolio EVA—is evaluated. Second derivatives are impractical to compute here. If we
do not wish to treat losses as scaling linearly, then we have a few options:

1. Use a method like Nelder-Mead that does not require derivatives.
2. Compute derivatives numerically by evaluating the objective at nearby points. This

could be computationally inefficient.
3. Use a proxy model—a simpler version of the complete model that approximates it—

to provide derivatives. This is essentially what we are doing when we assume linear
scaling, but a more accurate nonlinear proxy might be available.
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The overall solution strategy here is stepwise hill climbing:

1. Identify promising directions for scale changes.
2. Select new scale parameters satisfying the capital and scale constraints.
3. Rerun the model at the new scales.
4. Repeat until EVA improvement seems impossible.

With linear scaling, the important thing to remember is that allocatedquantities (pre-
mium, assets, capital) are the same as marginal quantities. If a unit is scaled up by 1%
(𝜖 = 0.01), say, then the allocated quantity will go up by 1%.

5.5.2. InsCo optimization

The input data for InsCo is provided in Table 5.5.

Table 5.5. InsCo marginal EVA and capital.

Quantity Unit A Unit B Unit C Portfolio

Plan premium 𝛲𝛲 13.9000 18.7000 19.6000 52.2000
Required premium 𝛲𝑅 14.1092 18.6375 20.8186 53.5652
EVA𝑉 = 𝛲𝛲 − 𝛲𝑅 −0.2092 0.0625 −1.2186 −1.3652
Required assets 𝑎 16.0000 20.0000 64.0000 100.0000
Plan capital𝑄𝛲 = 𝑎 − 𝛲𝛲 2.1000 1.3000 44.4000 47.8000
EVA/capital ratio 𝑟 = 𝑉/𝑄𝛲 −0.0996 0.0481 −0.0274
Minimum scale 𝜖− −0.5 −0.5 −0.5
Maximum scale 𝜖+ 0.5 0.5 0.5

Exercise. Assume that event 10 is always the one to produce the largest portfolio loss
and therefore the capital measure. Compute an expression for 𝜖3 (Unit C) in terms of 𝜖1
(Unit A) and 𝜖2 (Unit B) so that the capital equality constraint is maintained.

Solution. Plan capital is the difference between assets and plan premium (Equation 1.1).
Given the event 10 assumption, both scale linearly in 𝜖, so 𝑄 does as well. The require-
ment is

47.8 = ∑
𝑖
𝑄𝑖
𝛲(1 + 𝜖𝑖) = 2.1(1 + 𝜖1) + 1.3(1 + 𝜖2) + 44.4(1 + 𝜖3),

therefore

𝜖3 = − 2.1
44.4𝜖

1 − 1.3
44.4𝜖

2 = −0.047297𝜖1 − 0.029279𝜖2.
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A naive approach to optimization might take the linear approximation at face value
and take the biggest andmost advantageous change in scale parameters possible. Let’s see
how this plays out with InsCo.

• The most advantageous first move is to reduce Unit A by 50%. This increases EVA by
(−0.2092) ⋅ (−0.5) = 0.1046. It also changes capital by (2.1) ⋅ (−0.5) = −1.05.

• Now we need to increase overall writings to use up all available capital and get it back
to the target. Unit B has a positive EVA/capital ratio and Unit C a negative, so Unit B
has themost advantage. Wewould have to increase Unit B’s scale by 1.05/1.3 = 0.808
to completely use the capital, but this is outside the constrained range. Scaling by the
max allowed 50% adds 1.3 ⋅ 0.5 = 0.65 to the capital, bringing the net position to
−1.05 + 0.65 = −0.4. It also brings the EVA up by 0.0625 ⋅ 0.5 = 0.0313 to 0.1358.

• We need a further adjustment, and the only candidate left is Unit C. Here we need
a scale change of 0.4/44.4 = 0.0090, which is well within the allowed range. (The
formula from the previous exercise tells us the same thing.) That brings the change
in capital back to zero but changes EVA by (−1.2186) ⋅ 0.0090 = −0.0110 for a net
EVA of −1.2403 and an improvement of 0.1249. Adding these predicted changes to
the original figures gives the results in Table 5.6.

Table 5.6. InsCo linear predictions for EVA and capital.

Quantity Unit A Unit B Unit C Portfolio

Scale change 𝜖𝑖 −0.5 0.5 0.009
Plan premium 𝛲𝛲 6.9500 28.0500 19.7766 54.7766
Required premium 𝛲𝑅 7.0546 27.9562 21.0061 56.0169
EVA𝑉 = 𝛲𝛲 − 𝛲𝑅 −0.1046 0.0938 −1.2295 −1.2403
Required assets 𝑎 8.0000 30.0000 64.5766 102.5766
Plan capital𝑄𝛲 = 𝑎 − 𝛲𝛲 1.0500 1.9500 44.8000 47.8000

Now, had these moves been limited to, say 2%, we might be satisfied to stop here. In
a real application, such a schedule of scale changes would be scrutinized for other busi-
ness factors and questions of implementation feasibility. Some targets would probably
be modified; for example, the Unit C scale change would no doubt be rounded to 1%.

However, with 50% scale changes, we need to be wary of nonlinear effects. Let us
rerun the model at the new scales.

Our starting point is the original, 10-event loss distribution fromTable 2.1. Wemul-
tiply the losses in each column 𝑖 by the scale factor 1 + 𝜖𝑖, retabulate the portfolio total
loss, and then sort on the portfolio loss. We apply the same asset metric—essentially the
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maximum loss—and the same Wang transform for pricing. We do not compute a new
Wang parameter to obtain a 15% portfolio return. Rather, we use the same parameter
because this represents the investors’ risk appetite. With a new loss distribution and new
asset requirement, we do not expect the same required return. The new loss table is set
out in Table 5.7. The first column shows the original sorted event number 𝑗, highlight-
ing the reordering that has occurred with the change in volume by unit; see Table 2.1.
Events 3, 4, 5, 7, and 8 all move and are therefore given a different weight by the Wang
distortion. This extensive reshuffling accounts for the large (relative to EVA) change in
required premium shown in Table 5.8.

Table 5.7. InsCo losses after rescaling and re-sorting.

𝑗 𝑝 Unit A Unit B Unit C Portfolio 𝑆 𝑔(𝑆) 𝑞
0 0 0 0 0 1.0 1.000 0.000

1 0.1 7.5 10.5 0 18.0000 0.9 0.931 0.069
2 0.1 7.5 19.5 0 27.0000 0.8 0.851 0.080
7 0.1 7.5 24.0 9.0811 40.5811 0.7 0.766 0.086
5 0.1 6.5 30.0 7.0631 43.5631 0.6 0.675 0.091
3 0.1 2.5 30.0 11.0991 43.5991 0.5 0.579 0.096
6 0.1 2.5 40.5 8.0721 51.0721 0.4 0.479 0.101
8 0.1 13.0 28.5 10.0901 51.5901 0.3 0.373 0.106
4 0.1 3.5 49.5 0 53.0000 0.2 0.261 0.112
9 0.1 8.5 12.0 40.3604 60.8604 0.1 0.140 0.121
10 0.1 8.0 30.0 64.5766 102.5766 0 0.000 0.140

Table 5.8. InsCo model rerun, EVA, and capital solutions.

Quantity Unit A Unit B Unit C Portfolio

Scale change 𝜖𝑖 −0.5000 0.5000 0.0090
Plan premium 𝛲𝛲 6.9500 28.0500 19.7766 54.7766
Required premium 𝛲𝑅 6.8115 28.6040 20.8271 56.2426
EVA𝑉 = 𝛲𝛲 − 𝛲𝑅 0.1385 −0.5540 −1.0505 −1.4660
Required assets 𝑎 8.0000 30.0000 64.5766 102.5766
Plan capital𝑄𝛲 = 𝑎 − 𝛲𝛲 1.0500 1.9500 44.8000 47.8000
EVA/capital ratio 𝑟 = 𝑉/𝑄𝛲 0.1319 −0.2841 −0.0234

The final EVA of −1.466 is not only not as good as the predicted −1.240; it is worse
than the original−1.365. Such is the curse of nonlinearity. Studying the derivatives here,
it seems we need to go backwards, increasing the scale of Unit A and decreasing Unit B.
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If we run the model with Unit B rescaled at many points throughout the [−0.5, 0.5]
range, we obtain the results shown in Figure 5.4. Nonlinearity is obvious. This is why
most optimization algorithms take relatively small steps when updating parameters.

Figure 5.4. EVA at –50% Unit A and various Unit B.

Applying the Nelder-Mead Simplex algorithm, we obtain the surprising result that
the scale constraints are not binding at the optimal solution. Unit A is to be reduced
by almost, but not quite, 50%. Unit B is to be reduced by almost 21%. Details are in
Table 5.9.

Table 5.9. InsCo model rerun, EVA, and capital solutions.

Quantity Unit A Unit B Unit C Portfolio

Scale 𝜖𝑖 −0.478165 −0.209790 0.028758
Plan premium 𝛲𝛲 7.253507 14.776927 20.163665 42.194098
Required premium 𝛲𝑅 7.269164 14.816395 21.453658 43.539217
EVA𝑉 = 𝛲𝛲 − 𝛲𝑅 −0.015658 −0.039468 −1.289993 −1.345119
Required assets 𝑎 8.349360 15.804200 65.840538 89.994098
Plan capital𝑄𝛲 = 𝑎 − 𝛲𝛲 1.095854 1.027273 45.676874 47.800000
EVA/capital ratio 𝑟 = 𝑉/𝑄𝛲 −0.014288 −0.038420 −0.028242 −0.080950

Agrid search shows the situation in the neighborhoodof the solution. See Figure 5.5.
The optimal point has an EVA value of −1.345. The innermost contour represents an
EVA level set of −1.350. Parameters inside this contour get at least 75% of the way from
the original EVA to the optimal EVA.

The solution suggests that Unit A and Unit B both need further reduction because
of negative EVA. However, there is more going on here. Not only is there nonlinearity,
there is discontinuity in first derivatives as evidenced by Figure 5.4. If we were to change
the Unit B scale ever so slightly, from −0.20979 to −0.209795, we obtain dramatically
different EVA allocations, shown in Table 5.10.
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Figure 5.5. Contours of EVA at various Unit A and Unit B.

Table 5.10. InsCo model rerun, EVA, and capital solutions.

Quantity Unit A Unit B Unit C Portfolio

Scale 𝜖𝑖 −0.478165 −0.209795 0.028759 −0.659201
Plan premium 𝛲𝛲 7.253507 14.776834 20.163668 42.194008
Required premium 𝛲𝑅 7.334042 14.607535 21.597550 43.539127
EVA𝑉 = 𝛲𝛲 − 𝛲𝑅 −0.080535 0.169298 −1.433882 −1.345119
Required assets 𝑎 8.349360 15.804100 65.840548 89.994008
Plan capital𝑄𝛲 = 𝑎 − 𝛲𝛲 1.095854 1.027267 45.676880 47.800000
EVA/capital ratio 𝑟 = 𝑉/𝑄𝛲 −0.073491 0.164805 −0.031392 0.059922

5.5.3. Summary

The term “portfolio optimization” is quite ambitious. There are some questionable as-
sumptions that have to be imposed on the problem to get to a solution. There are inher-
ent nonlinearities and discontinuous derivatives. The uncertainties (see Section 8.1) in
the inputs and the underlying model itself no doubt add breadth to the range of near-
optimal solutions. One should approach the task with a healthy dose of humility.

Perhaps the best that can be hoped for is to provide directions for portfolio improve-
ment that are probably, approximately, correct.
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6. Selecting and calibrating an SRM
Assume we have a can opener.

—Unknown

In Chapter 1, we saw that the overall portfolio profitability target—whether stated as
total premium,margin, or return on capital—is typically given as an input. InChapter 4,
we saw the crucial importance of the distortion function in determining how that profit
requirement is distributed to portfolio units. This chapter discusses how to develop a
suitable distortion function.

6.1. Theenvelopeof possibilities and thefive representatives

TVaR is an SRM. The distortion function corresponding to TVaR𝑝 goes linearly from
𝑔(0) = 0 to 𝑔(1 − 𝑝) = 1 and then stays at 1 for 𝑠 > 1 − 𝑝; see Figure 4.3. A weighted
combinationof SRMswithpositiveweights summing toone (i.e., a convex combination)
is also an SRM. In particular, we call such a weighted sum of two TVaRs a bi-TVaR.

Exercise. Derive an explicit expression for the distortion function associated with the
bi-TVaR 𝜃TVaR𝑝0 + (1 − 𝜃)TVaR𝑝1 .

For any portfolio (i.e., loss random variable)𝛸, there are two extreme values at which
SRMs can price it. At one extreme, TVaR0(𝛸) = E[𝛸] is the minimum possible price;
at the other, TVaR1(𝛸) = max(𝛸) is the maximum.

Exercise. Prove that for any price𝛲 betweenE[𝛸] andmax(𝛸), there are infinitelymany
SRMS 𝜌with 𝜌(𝛸) = 𝛲.

Solution. Because TVaR𝑝(𝛸) is continuous in 𝑝, the intermediate value theorem im-
plies that there is a 𝑝⋆ with TVaR𝑝⋆(𝛸) = 𝛲. Similarly, because 𝜌𝜃(𝛸) ≡ 𝜃TVaR0 +
(1 − 𝜃)TVaR1 is continuous in 𝜃, there is a 𝜃⋆ with 𝜌𝜃⋆(𝛸) = 𝛲. The first is a TVaR and
the second is a bi-TVaR, so they are distinct. Any convex combination of the two—and
there are infinitely many of them—will also price𝛸 as 𝛲.
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There aremore than that, however. The same logic applies to anybi-TVaR𝜃TVaR𝑝0+
(1 − 𝜃)TVaR𝑝1 with 𝑝0 < 𝑝⋆ < 𝑝1; there is a 𝜃⋆ pricing it at 𝛲. There are infinitely many
of those. Combinations of those also work. Combinations of those combinations also
work. If we pass to the limit and construct infinite combinations, we get SRMs with
smooth curves for distortion functions like the Wang transform.

So there are many, many SRMs 𝜌 that have 𝜌(𝛸) = 𝛲. But applied to a particular
unit (via NA), they are unlikely to all give the same price to the unit. It would be use-
ful to be able to explore the limits of high and low unit prices consistent with the given
portfolio price. Mildenhall and Major (2022) give an in-depth theoretical explanation,
with Section 11.2 detailing the construction. Fortunately, the five representative distor-
tions introduced in Section 4.6 do a good job of spanning the space of possibilities from
body- (volatility-)centric to tail- (extreme risk-)centric and so in this monograph, we will
consider only them.

A warning, however: unless one distortion 𝑔 dominates another ℎ in the sense that
𝑔(𝑠) ≥ ℎ(𝑠) for all 𝑠 with strict inequality for some 𝑠, then there are risks 𝛸 and 𝑌 such
that 𝜌𝑔(𝛸) > 𝜌𝑔(𝑌) and 𝜌ℎ(𝛸) < 𝜌ℎ(𝑌), i.e., 𝑔 and ℎ disagree about the relative price
(riskiness) of𝛸 and 𝑌. That is, it is not generally possible to put distortion functions in
an unambiguous order by implied price across all risks.

Exercise. Verify that CCoC in Table 4.7 is the bi-TVaR between TVaR1 and TVaR0
with 𝜃 = 0.87.

Solution. Table 6.1 shows the 𝑞 values corresponding to TVaR0 = E[𝛸] and TVaR1 =
max(𝛸). The first consists of 𝑞 = 𝑝, and the second consists of 𝑞 = 1 for the top event
only, zero elsewhere.

Table 6.1. 𝑞 values for TVaR0 = E[𝛸], TVaR1 = max(𝛸), and the 𝜃 = 0.87 blend.

𝑘 𝑝 𝑆 TVaR0 TVaR1 Blend

0 0 1 0 0 0
1 0.1 0.9 0.1 0 0.087
2 0.1 0.8 0.1 0 0.087
3 0.1 0.7 0.1 0 0.087
4 0.4 0.3 0.4 0 0.348
5 0.1 0.2 0.1 0 0.087
6 0.1 0.1 0.1 0 0.087
7 0.1 0 0.1 1 0.217

The final column, a 1:0.15 blend of the previous two, matches the CCoC column in
Table 4.7.
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6.2. Required premium by distortion

Table 6.2 shows required premiums and loss ratios for each unit, by distortion function.
Remember, required here means required to meet the internally specified 15% return on
capital hurdle. Also shown are plan premiums and loss ratios.

Table 6.2. Example units with pricing by distortion.

Unit A Unit B Unit C Portfolio

View Premium Loss Ratio Premium Loss Ratio Premium Loss Ratio Premium Loss Ratio

CCoC 13.739 97.5% 18.522 98.8% 21.304 69.9% 53.565 87.0%
Dual 14.127 94.9% 19.117 95.7% 20.321 73.3% 53.565 87.0%
PH 14.060 95.3% 18.349 99.7% 21.156 70.4% 53.565 87.0%
TVaR 13.783 97.2% 20.412 89.7% 19.371 76.9% 53.565 87.0%
Wang 14.109 95.0% 18.637 98.2% 20.818 71.6% 53.565 87.0%
Plan 13.9 96.4% 18.7 97.9% 19.6 76.0% 52.2 89.3%

Relative tomodel benchmarks, the entire portfolio is underpriced by 53.565−52.2 =
1.365. But which units need to do better, and by howmuch?

Table 6.3 shows the plan loss ratio, the range of target loss ratios generated by the five
distortions, and which distortion suggests the lowest premium for each unit. A higher
required loss ratio implies a lower margin and premium. Unit management may regard
a lower premium as better because it makes it easier to sell policies in the marketplace.
The table shows that for each unit there is at least one distortion whose pricing it can
meet, because the plan loss ratio is no greater than the distortion indicated loss ratio. For
example, Unit B’s management would be happy to target the PH-indicated 0.997 loss
ratio instead of the current plan’s 0.979. However, there is no single distortion whose
pricing all units can meet. How should the modeler proceed? A monograph with two
authors can offer two paths.

Table 6.3. Range of implied loss ratios and cheapest distortion by unit.

Unit CCoC PH Wang Dual TVaR Plan Cheapest

Unit A 97.5% 95.3% 95.0% 94.9% 97.2% 96.4% CCoC
Unit B 98.8% 99.7% 98.2% 95.7% 89.7% 97.9% PH
Unit C 69.9% 70.4% 71.6% 73.3% 76.9% 76.0% TVaR

Before discussing the two paths, it is worthwhile reflecting on how a market distor-
tion emerges. Insurance is fundamentally risk sharing. The market consists of individ-
uals with different endowments, owning different risks, and understood to have their
own risk appetites. Each individual can cede risk into the pool and assume risk from it
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as a shareholder or mutual company owner. Typically there are more of the former than
the latter. We assume appetites for insurable, diversifiable risk are given by distortion risk
measures. The appetite for investment risk, with its systematic components, may be dif-
ferent. The efficient insurancemarket solution is for everyone to pool their risks together,
for maximal diversification benefit, and then to layer out the total risk to the individual
offering the cheapest price for it in each layer. This corresponds to looking at the min-
imum of the individual distortion functions. Figure 4.3 could correspond to a market
of five individuals. In it, the TVaR individual assumes large risks (above about the 75th
percentile, lower left) and CCoC the rest. TVaR is risk neutral in the tail, and equity
financing is well known to be an effective solution for nicely diversifiable risk. This the-
oretical model is described in a famous paper Jouini et al. (2008). There are many steps
between a simple model and reality, but it is a good picture to bear inmind for the rest of
this chapter. Readers who work for brokers may be happy to learn the model implies an
important role for themmatching risk to its cheapest financing. Finally, notice themodel
implies the risk appetite that matters is that of investors, not management—despite man-
agement often talking about “their risk appetite.”

6.3. Zeroing in on a distortion function

Path 1 holds there is a best distortion function that should be discoverable by themodeler.
On this path, the modeler must avoid excessive naval gazing. Present the facts, being the
range of indications from Table 6.2 with relevant commentary, but recognize the deci-
sion is for unit and corporate management to negotiate. As always, Table 6.2 hides many
details and assumptions. What is the historical performance of each unit compared to
prior plans? The growth prospects? The quality of the data and certainty in the simula-
tions? Again, present facts and avoid selling against your model.

In an ideal world, we choose our distortion based on first principles and recommend
each unit meets the target specified by that principle. A core principle of modern finance
and accounting is to calibrate models to market observables where possible. Is the dis-
tortion consistent with cat bond pricing for extreme events? What about InsCo’s capital
structure? A discussion with the finance department might be in order, to ask: What is
the structure of the capital supporting the business and what are the costs of the various
components of capital? For example, InsCo may have a Baa-rated corporate bond with
initial annual default probability between 1.5% and 2% and a valuation equating to a risk-
neutral default probability between 2.5% and 4%. These correspond to the exceedance
probability 𝑠 and distorted probability 𝑔(𝑠), respectively, of a distortion function. Which
calibrated distortions are consistent with these findings? A quick analysis reveals that the
Dual andWang distortions are themost likely candidates, withTVaRcoming in a distant
third place.
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6.4. Embracing the range

Path 2 holds that searching for a single best distortion is an unanswerable metaphysical
quest, but it suggests there is much to learn from the range of indications. While no
choice is correct, some are logically inconsistent and should be avoided.

The choice of a distortion corresponds to a statement of risk appetite. The order-
ing CCoC, PH, Wang, Dual, and TVaR we use to show the five representative distor-
tions ranks them frommost concerned about tail (extremeVaR) losses tomost concerned
about attritional (near plan) losses. TheCCoC, drivenby themaximum loss, is obviously
the most tail-centric. Conversely, TVaR is the most attritional loss averse. This ranking
corresponds to the heights of the distortion functions plotted in Figure 4.3; remember
that left on the horizontal axis is extreme losses. How does management talk about risk,
for example, in quarterly analyst calls for stock companies? Often, their statements re-
veal they understand their investors are more concerned with attritional volatility. After
a large catastrophe event, themarket expects all players to have large losses, whereas amiss
on attritional volatility suggests management is not pricing correctly and can cause dis-
quiet among investors. Managements prodded by their investors to be more concerned
with volatility typically find targets driven byTVaR or theDual distortion to better align
with their intuitions.

The range of implications across different distortions turns out to overlap with the
range of the reinsurance pricing cycle, so these are not just academic considerations. For
example, in Table 9.10, the model recommended maximum buy-price for reinsurance is
7.6 (a 46% loss ratio or higher) under CCoC but only 4.8 (73% loss ratio) under TVaR.
Over a market cycle the loss ratio for catastrophe reinsurance can vary substantially, and
whereas a CCoC view may recommend a buy in all markets, TVaR could be more cir-
cumspect. The authors have bothworkedwithmanagementswho have expressed exactly
these concerns and who have disliked a CCoC-driven, industry-standard approach anal-
ysis as a consequence.

Knowing the range of indications means you can determine whether a plan loss ra-
tio is consistent with some risk appetite (it is within the range). For our simple model,
Table 6.3 shows they all are, but that is not always the case. A unit with plan outside
the range can be criticized because it is inconsistent with any risk appetite; it should be
investigated accordingly. A plan far outside the range needs especial scrutiny.
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7. Evaluating models
The trouble with most of us is that we would rather

be ruined by praise than saved by criticism.
—Norman Vincent Peale

This chapter encompasses three distinct tasks:
1. Evaluating your particular capital model.
2. Evaluating a third-party model, e.g., regulatory or rating agency model.
3. Evaluating a modeling platform you might use to build your ownmodel.

7.1. Evaluating your model

There are several phases to evaluating your ownmodel.
First, does it meet its design specifications in terms of features and functionality?

You will refer back to the requirements document you prepared per Section 1.3. (You
did prepare a formal document, didn’t you?) This serves as a checklist as you review the
features of your model.

Second, like any software development project, you need to run a battery of tests to
verify it is behaving—especially calculating—correctly. If you built the model from the
ground up, you might have created tests concurrently with module development. Use
those, and add some more.

Third is validation: does the model produce realistic results? Whereas the first two
phases apply to all themodules listed in Section 1.5, the third applies only to the Business
Operations module. Validation might consist of expert judgment—but beware echo-
chamber effects. Ideally, however, you have access to historical data that can be used to
run the model as if it had existed in times past. Then, its outputs can be compared with
what really did come to pass. Components of validation include:

1. Best estimates: With inputs corresponding to the plan, do central values (means or
medians) of key variables (cash flows and derived accounting values) calibrate to the
plan? Do the output distributions seem reasonable?

2. Variability: Do basic statistics (coefficient of variation, skewness, quantiles, etc.) of
outputs seem reasonable? Are you getting what you expect? Are they consistent with
historical (your own or industry) experience?
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3. Back testing: If historical replays are possible, compute where the historical values lie
in terms of percentiles of the output distributions, i.e., 𝑝 values. The 𝑝 values should
reasonably be draws from uniform distributions. They should not cluster together
at the low or high end—this indicates bias. They should not clump together in the
middle—this indicates that historical variation is low compared to the model. Nor
should they create a void in themiddle—this indicates toomuch variation. Be careful
not to overthink this, however. With only a handful of observations, only egregiously
bad results can be considered statistically significant.

4. Repeat: As themodel gets used, repeat back testing regularly (quarterly or annually).
Build a growing library of 𝑝 values to demonstrate thatmodel ranges are wide enough
and symmetrical.

7.2. Evaluating third-party models

Third-partymodels, if they includeBusinessOperations simulation, shouldbe evaluated—
to the extent possible—in the manner described in Section 7.1.

Some third-party models, like minimum capital requirements created and used by
regulators and rating agencies, do not simulate business outcomes but rather proceed
directly from business characteristics as input to required capital as output. You may
want to use such a model in one of several ways:

1. It is your only model; all you want to know is required capital. Unfortunately, this
may not give you a clear path to allocating cost of capital and required premiums.
However, it is a start if you have no capital model at all. Apply the non-Business Op-
erations evaluation steps outlined in Section 7.1.

2. You intend to run it in parallel with your own model and compare results. Evaluate
as in the previous bullet.

3. You intend to integrate it with your ownmodel. This can mean several things.
a. Integrated reporting but otherwise separate calculations can be treated as previ-
ously but with additional testing to ensure the reporting is working correctly.

b. If the third-partymodel is to function as the Capital Adequacymodule, then care-
ful testing and review is needed to determinewhether its outputswill be consistent
with theworkings of theBusinessOperations andPricing andAllocationmodules.
For example, if a change to the portfoliomoves the 95% and 99% loss quantiles up-
wards but the required capital goes down, then you might rethink the wisdom of
relying solely on the third-party model. If it has capital allocation functionality, is
it implementing something like CCoC? Can it be modified to perform anNA, or
can that part be bypassed in favor of a different Pricing and Allocation module?

Some companies manage to (or are at least acutely aware of) their binding rating
agency’s or regulator’s view of capital. You may be asked the point of an internal model,
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given this binding view. The answer should goback to the charter for the internalmodel—
after all, it is not a surprise that an external model is binding. What additional value was
anticipated from an internal model before you started building? Reconsider why you are
building an internal model if you cannot answer this question ahead of time.

7.3. Evaluating modeling platforms

Model building platforms range from programming languages with integrated develop-
ment environments to heavily graphical user interface-basedwiring diagramapplications.
What they have in common is that they are not ready-to-run models. How they differ is
the extent towhich they offer prefabricated computationalmodules and the support they
offer for translating specifications into a model. Some programming languages, like R or
Python, have many open-source libraries available to the public for free.

The first question to be addressed is: can the platformbe used to build themodel you
have specified in Section 1.3? The second, trickier question is: how difficult will that be?
Of course, budget limitations need also be taken into account. However, youmay find a
trade-off between direct expense to acquire the platform and labor expense to build the
model with it.

Here are some items to consider when evaluating a modeling platform:

1. Modeling
a. What accounting bases are supported for financial computations?
b. How can loss payout patterns be modeled?
c. How can assets be modeled (e.g., sweep accounts with proportionate investment

strategies)?
d. How can dependency be modeled (e.g., Iman-Conover shuffling, copulas, other)?
e. What options are available for defining required capital?
f. What options are available for defining and allocating required margins?

2. Parameters
a. What parameters are explicitly variable and which are implicit and “hard-coded”?
b. How are parameters stored? Can they easily be changed from one run to another?
c. Is there an explicit provision for uncertainty in parameterization? (See also Sec-

tion 8.1.)
3. Input and output

a. What formats/databases are supported for data input? Report output? Simula-
tion details?

b. What are the report generation options?
c. What tabular output options are there?
d. What graphical output options are there?
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4. Integration
a. How is integration with Excel handled?
b. Is integration with a separate Economic Scenario Generator possible?
c. How is integration with commercial catastrophe models handled?

5. Running
a. Are automatic multi-assumption model runs supported?
b. Is there scripting? In what language?

6. System issues
a. How are version control and model security handled?
b. What are the hardware requirements (one PC, cluster, cloud)?
c. Is there a front-end app or web interface?
d. Is there an Application Programming Interface (API)?

7. Track record
a. Are there models in production used for the London Market, Solvency II, and
Swiss Solvency Test?

b. What is the typical size of a client model (lines, year, assets, etc.) and what is the
corresponding simulation run time?
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8. Advanced topics
In this world, nothing is certain except death and taxes.

—Benjamin Franklin, letter to Jean-Baptiste Leroy

8.1. Dealing with uncertainty
The purpose of simulation is to estimate certain quantities of interest orQoI. A QoI is
typically a quantile or other function (e.g., mean, risk measure) of the sample outcomes
that the simulation created. Since it is being estimated from a sample, it cannot be mea-
sured with perfect accuracy because of sampling error. The more simulated samples are
created, themore accurate the estimate can be. However, there is another reason that the
estimate will not be accurate.

Parameter uncertainty here is to be distinguished from process risk. For example,
when you simulate the outcome from a random variable with a lognormal distribution
with particular parameters, you are modeling process risk. When you aren’t sure what
the parameter values should be, you are suffering from parameter uncertainty. The un-
certainty around input parameters will propagate to uncertainty about the QoI. For ex-
ample, it is well known that ignoring parameter uncertainty often systematically biases
estimated quantiles downward. See Jewson et al. (2025) for an approach to adjust for
this bias.

Parameter uncertainty arises from nonsampling error. There are many potential
sources of this in a capital model. Data used to build the model could have erroneous
entries, or it might not be of an appropriate vintage or refer to a population that is suf-
ficiently relevant to the modeling task. In building the model, perhaps not all relevant
factors have been taken into account. This is not an exhaustive list!

In addition, some parameters vary over time. A data snapshot taken to estimate pa-
rameters may be inappropriate to modeling the same phenomenon at a later date.

Parameter uncertaintywill likely permeate yourmodeling efforts, especially if you are
trying to make a model that can replicate historical experience. There are several ways to
deal with uncertainty:

1. Ignore it. Use a best estimate of parameter values and let it go at that. While this
may be acceptable for early versions of the model, it is not recommended for the long
term. At the very least you must disclose that there is some uncertainty as to the QoI
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values and what the business risks of that are. “The answer is 𝛢, but there is some
uncertainty.”

2. Report it. Statistical analysis of data will usually give some indication of the range
(e.g., variance) of parameter values consistent with a chosen model for the data. If
you want to push your luck, that insight can be turned into a distributional model
for the parameters. Rerun your model with carefully chosen exemplars or a sample
from the putative distribution of those random parameters. Report the range or the
resulting distribution of the QoI. “The answer is𝛢 ± 𝜖.”

3. Absorb it. Classical (frequentist) statistics has prediction intervals to accommodate
uncertainty in the parameters; Bayesian theory provides a formal framework for treat-
ing parameter uncertainty as another species of process risk. Essentially, this means
treating the randomparameter asmixing the distributionofQoI, creatingwhatBayes-
ians call a predictive distribution; see Bolstad and Curran (2016) or Geisser (2017).
This is explained in an actuarial context in Kreps (1997); however,Major (1999) finds
reasons to doubt it is always the right approach. Prediction intervals are bigger than
classically estimated intervals. TheQoI is likely to be sensitive to the upper tail, which
moves up. “The answer is𝛢 + 𝛿.”

4. Isolate it. Find a credible worst case to offer as an example of what can go wrong.
This is the approach covered in Hansen and Sargent (2008) and Major et al. (2015).
Again, this is likely to increase a risk-sensitive QoI. “The answer is 𝛢, but it could be
as bad as𝛢 + 𝛾.”

For a general treatment, see Smith (2024).

8.2. The Iman-Conover method
Correlation is not causation, but you can cause some correlation.

The Iman-Conover method is an easy way to induce correlation between marginal
distributions. Here is the idea. Given samples of 𝑛 values from 𝑟 known marginal distri-
butions𝛸1, … , 𝛸𝑟 and a desired 𝑟 × 𝑟 (linear) correlationmatrix Σ between them, reorder
the 𝑖th sample to have the same rank order as the 𝑖th column of a reference distribution
of size 𝑛 × 𝑟 with linear correlation Σ. The reordered output will then have the same
rank correlation as the reference, and since linear correlation and rank correlation are
typically close, it will have close to the desired correlation structure. What makes the
Iman-Conover method work so effectively is the existence of easy algorithms to deter-
mine samples from reference distributions with prescribed correlation structures.

The Iman-Conover method is very powerful, quick, and easy to use. However, it is
not magic, and it is constrained by mathematical reality. For given pairs of distributions
there is often an upper bound on the linear correlation between them, so if you ask for
very high correlation youmay be disappointed. You should go back and ask yourself why
you think the linear correlation is so high.
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Iman-Conover is usually used to induce a desired linear correlation. There are other
measures, such as rank correlation and Kendall’s tau, that could be used (Mildenhall
2005) and the user should reflect on which is most appropriate to their application. If
your target is rank correlation, Iman-Conover will give you an exact match.

The aggregate documentation1 provides a detailed description of the algorithm,
including discussion of using different reference distributions (called scores) in place of
the normal, and a comparison with the normal copula method.

8.2.1. Loss or loss ratio?
Are you modeling correlation of loss ratios or correlation of losses? It is a surprising em-
pirical fact that the former is often greater than the latter, leading to the conclusion that
correlation in underwriting results is driven by correlation in premium more than loss;
see Mildenhall (2022). These findings highlight a stark property-casualty split. Prop-
erty tends to be loss-volatility driven, with loss correlation caused (and explained) by ge-
ographic proximity. Casualty tends to be premium-volatility driven, with loss ratio cor-
relation caused by (account) underwriting and the underwriting cycle.

8.2.2. Example 1: A simple example
This section presents a simple example applying Iman-Conover to realistic distributions,
using theaggregate library. It showshoweasy it is to use Iman-Conover inmodernpro-
gramming languages. Another example, withmore the details, appears in theaggregate
documentation.2 See Section 9.3 for instructions to set up your Python environment to
replicate the code samples. The full source code to replicate the examples is available on
the monograph website.3

The example works with 𝑟 = 3 different marginals: Auto, general liability (GL),
and Property. Losses are simulated using frequency-severity aggregate distributions with
a lognormal severity and per occurrence limits. Frequency is a gamma-mixed Poisson
(negative binomial) with varying CVs. See Mildenhall (2023b) for a description of the
aggregateDecL language, used to specify these portfolios.

port ICExample
agg Auto 5000 loss 2000 xs 0 sev lognorm 30 cv 2 mixed gamma 0.2
agg GL 2000 loss 5000 xs 0 sev lognorm 50 cv 5 mixed gamma 0.3
agg Property 7000 loss 10000 xs 0 sev lognorm 100 cv 5 mixed gamma 0.1

This example uses only 1,000 simulations, but the software can easily handle 100,000
or more. The slowest part of the Iman-Conover algorithm is creating the scores. These
are cached, so subsequent runs are very fast, even if the desired correlationmatrix changes.

1 https://aggregate.readthedocs.io/en/latest/5_technical_guides/5_x_iman_conover.html#algorithm.
2 https://aggregate.readthedocs.io/en/latest/5_technical_guides/5_x_iman_conover.html#simple-
example-of-iman-conover.
3 https://casact.github.io/capital-modeling/.
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Table 8.1 shows summary statistics and the first few samples of the underlyingmulti-
variate distribution, and Figure 8.1 shows histograms of each marginal and scatter plots.
By construction, the units are approximately independent.

Table 8.1. Set up and summary statistics of sample for Iman-Conover example using
1,000 samples.

(a) Summary statistics

Index Auto GL Property

Count 1,000 1,000 1,000
Mean 5,011.7 2,092.4 7,117.8
SD 1,289.3 1,381.2 3,323.0
Min 1,375 145 1,524
25% 4,102.5 1,152.5 4,875.5
50% 4,914.5 1,773.5 6,412.5
75% 5,771.5 2,670.5 8,597.5
Max 9,486 12,537 27,108
CV 0.257 0.660 0.467

(b) First 10 samples

Index Auto GL Property

0 4,970 207 5,684
1 4,882 1,599 9,050
2 4,192 2,576 5,538
3 6,569 2,107 6,865
4 6,236 2,472 5,342
5 4,206 1,835 5,738
6 5,537 1,313 6,217
7 4,483 4,720 12,113
8 4,325 1,323 21,139
9 5,241 541 22,005

Figure 8.1. Uncorrelated marginals input to Iman-Conover method. Diagonal shows
univariate histograms.
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In addition to marginal distributions, Iman-Conover requires a target desired corre-
lation matrix as input. This is produced by a separate analysis, and here we assume it is
given by Table 8.2. Remember, a correlation matrix must be symmetric (easy to check)
and positive definite (harder). Matrices computed from statistical analysis may fail to be
positive definite if they are not computed from a multivariate sample. Iman-Conover
fails if given a nonpositive definite matrix.

Table 8.2. Target correlation matrix.

Index Auto GL Property

Auto 1 −0.3 0
GL −0.3 1 0.8
Property 0 0.8 1

The Iman-Conover method is implemented in aggregate by the function
iman_conover, so the transformation is simply

df2 = iman_conover(df, desired)

where desired is the desired correlation matrix. Table 8.3 shows the achieved linear
and rank correlation, and the absolute and relative errors. Finally, Figure 8.2 provides a
scatter plot of the shuffled inputs, making the correlation evident. It is possible to obtain
a correlated sample from a Portfolio object by passing in a correlationmatrix: the code
below extracts a sample and automatically applies Iman-Conover.

df = port.sample(n, desired_correlation=desired, keep_total=False)

Table 8.3. Achieved correlation matrix and output errors with Iman-Conover method.

(a) Linear correlation

Index Auto GL Property

Auto 1 −0.271 0.003
GL −0.271 1 0.772
Property 0.003 0.772 1

(b) Rank correlation

Index Auto GL Property

Auto 1 −0.287 0.003
GL −0.287 1 0.779
Property 0.003 0.779 1

(c) Absolute error

Index Auto GL Property

Auto 0 0.029 0.003
GL 0.029 0 0.028
Property 0.003 0.028 0

(d) Relative error

Index Auto GL Property

Auto 0 −0.095 Infinite
GL −0.095 0 −0.035
Property Infinite −0.035 0
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Figure 8.2. Correlatedmarginals output by the Iman-Conover method. Diagonal shows
unchanged univariate histograms, but the scatter plots clearly show the introduction
of correlation.

8.2.3. Different reference distributions

The Iman-Conover algorithm relies on a sample from a multivariate reference distri-
bution called scores. A straightforward method to compute a reference is to use the
Cholesky decomposition method applied to certain independent scores (samples with
mean zero and standard deviation one). The standard algorithm uses standard normal
scores. However, nothing prevents the use of other distributions for the scores, provided
they are suitably normalized to havemean zero and standard deviation one. Several other
families of multivariate distributions could be used, such as elliptically contoured distri-
butions (which include the normal and 𝑡 as a special cases) and the multivariate Laplace
distribution. These are all easy to simulate.

The aggregate implementation provides 𝑡-distribution scores. It includes an argu-
ment dof. By default dof = 0 resulting in a normal reference. A dof > 0 is interpreted
as degrees of freedom, and the reference becomes a 𝑡-distribution. Figure 8.3 reruns Sec-
tion 8.2.2 using a 𝑡 referencewith twodegrees of freedom, a very extreme choice. It results
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Figure 8.3. Correlated marginals using a 𝑡-distribution with two degrees of freedom.

in more tail correlation, evident in the pinched scatter plots. Be warned, however, that
this modeling flexibility definitely falls into the “just because you can, doesn’t mean you
should” category!

8.2.4. Copulas as reference distributions

The reader may be wondering about using a copula as a reference score. Alas, most
copulas are only bivariate. Multivariate copulas, aside from those related to elliptical
or Laplace distributions already mentioned, are Archimedean, which means they have
a single parameter and cannot be calibrated to a desired correlation matrix.

See the aggregate documentation4 andMildenhall (2005) for more details.

8.2.5. Iman-Conover compared with the normal copula method

The normal copula method is described inWang (1998). Given a set of risks (𝛸1, … , 𝛸𝑘)
with marginal cumulative distribution functions 𝐹𝑖 and Kendall’s tau 𝜏𝑖𝑗 = 𝜏(𝛸𝑖, 𝛸𝑗) or
rank correlation coefficients 𝑟(𝛸𝑖, 𝛸𝑗), it works as follows. Assume that (𝛧1, … , 𝛧𝑘) have

4 https://aggregate.readthedocs.io/en/latest/5_technical_guides/5_x_working_with_samples.html#al
ternative-scores.
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a multivariate normal joint probability density function given by

𝑓(𝑧1, … , 𝑧𝑘) =
1

√(2𝜋)𝑘|Σ|
exp(−z′Σ−1z/2),

z = (𝑧1, … , 𝑧𝑘), with correlation coefficients Σ𝑖𝑗 = 𝜌𝑖𝑗 = 𝜌(𝛧𝑖, 𝛧𝑗). Let𝛨(𝑧1, … , 𝑧𝑘) be
their joint cumulative distribution function. Then

𝐶(𝑢1, … , 𝑢𝑘) = 𝛨(Φ−1(𝑢1), … , Φ−1(𝑢𝑘))

defines a multivariate uniform cumulative distribution function called the normal cop-
ula. Using𝛨, the set of variables

𝛸1 = 𝐹−11 (Φ(𝛧1)), … , 𝛸𝑘 = 𝐹−11 (Φ(𝛧𝑘)) (8.1)

have a joint cumulative function

𝐹𝛸1,…,𝛸𝑘(𝑥1, … , 𝑥𝑘) = 𝛨(Φ−1(𝐹𝑥(𝑢1)), … , Φ−1(𝐹𝑘(𝑢𝑘))

with marginal cumulative distribution functions 𝐹1, … , 𝐹𝑘. The multivariate variables
(𝛸1, … , 𝛸𝑘) have Kendall’s tau

𝜏(𝛸𝑖, 𝛸𝑗) = 𝜏(𝛧𝑖, 𝛧𝑗) =
2
𝜋 arcsin(𝜌𝑖𝑗)

and Spearman’s rank correlation coefficients

rkCorr(𝛸𝑖, 𝛸𝑗) = rkCorr(𝛧𝑖, 𝛧𝑗) =
6
𝜋 arcsin(𝜌𝑖𝑗/2),

so 𝜌 can be adjusted to achieve the desired correlation.
In the normal copula method, we simulate from 𝛨 and then invert using Equa-

tion 8.1. In the Iman-Conover method with normal scores we produce a sample from𝛨
such thatΦ(𝑧𝑖) are equally spaced between zero and one, and then, rather than invert the
distribution functions, wemake the 𝑗th order statistic from the input sample correspond
toΦ(𝑧) = 𝑗/(𝑛 + 1) where the input has 𝑛 observations. Because the 𝑗th order statistic
of a sample of 𝑛 observations from a distribution𝐹 approximates𝐹−1( 𝑗/(𝑛+1)), we see
the normal copula and Iman-Conover methods are doing essentially the same thing.

While the normal copula method and the Iman-Conover method are confusingly
similar, there are some important differences to bear in mind. Comparing and contrast-
ing the two methods should help clarify how the two algorithms are different.

1. Wang (1998) shows the normal copula method corresponds to the Iman-Conover
method when the latter is computed using normal scores and the Choleski trick.
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2. The Iman-Conover method works on a given sample of marginal distributions. The
normal copulamethod generates the sample by inverting the distribution function of
each marginal as part of the simulation process.

3. Through the use of scores, the Iman-Conover method relies on a sample of normal
variables. The normal copula method could use a similar method, or it could sample
randomly from the base normals. Conversely, a sample could be used in the Iman-
Conover method.

4. Only the Iman-Conover method has an adjustment to ensure that the reference mul-
tivariate distribution has exactly the required correlation structure.

5. Iman-Conover method samples have rank correlation exactly equal to a sample from
a reference distribution with the correct linear correlation. Normal copula samples
have approximately correct linear and rank correlations.

6. An Iman-Conover method sample must be taken in its entirety to be used correctly.
The number of output points is fixed by the number of input points, and the sample
is computed in its entirety in one step. Some Iman-Conover tools produce output,
which is in a particular order. Thus, if you sample the 𝑛th observation frommultiple
simulations, or take the first 𝑛 samples, you will not get a random sample from the
desired distribution. However, if you select random rows from multiple simulations
(or, equivalently, if you randomly permute the rows’ output prior to selecting the
𝑛th), then you will obtain the desired random sample. It is important to be aware of
these issues before using canned software routines.

7. The normal copula method produces simulations one at a time, and at each iteration
the resulting sample is a sample from the required multivariate distribution. That is,
output from the algorithm can be partitioned and used in pieces.

In summary, remember that these differences canhavematerial, practical consequences,
and it is important not to misuse Iman-Conover method samples.

8.2.6. Block Iman-Conover (BIC)

The Iman-Conover method can lead you into a state of sin: the sin of thinking you can
reliably estimate a 100 × 100 correlation matrix (or larger). You can’t; don’t try—it’s
all noise. Look at the distribution of eigenvalues to see; start by computing the singular
value decomposition (SVD) and compare your distribution with that of a random ma-
trix. However, you might be able to say something about the correlation of chunks of
your book. Generally (going back to premium is riskier than loss), lines that are under-
written together have correlated loss ratios, and properties that are nearby have correlated
losses. The Block Iman-Conover (BIC)method is a way to use this information without
fabricating large correlation matrices.
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Description of BIC. BIC is best explained through an example. You underwrite auto
liability, GL, and property in four regions: North, East, South, and West. Based on re-
liable studies, you have a sense of the loss (ratio) correlation between each line overall (a
3 × 3 matrix, with three parameters), and, separately, between the total regional results
(a 4 × 4matrix, with six parameters). The BIC produces a multivariate sample across all
12 line and region units that incorporates what you know, but using just these nine pa-
rameters rather than requiring 66 parameters (for a 12×12matrix). Here’s how it works.
Pick a number of simulations 𝑛, then:
1. Produce four 𝑛 × 3matrices with results by line for each region, 𝑅1, 𝑅2, 𝑅3, 𝑅4.
2. Apply Iman-Conover to each 𝑅𝑖 separately using your 3 × 3 between-line correlation

matrix, to produce 𝑅̃𝑖.
3. Sum across simulations in each 𝑅̃𝑖 to get total regional losses and assemble these into

a 𝑛 × 4matrix 𝛵.
4. Apply Iman-Conover to 𝛵 using your 4 × 4 between-region correlation matrix, and

capture the ranking.
5. Reorder each 𝑅̃𝑖 by row according to the ranking in Step 4 to obtain

̃𝑅̃𝑖.
6. Assemble ̃𝑅̃𝑖 together into a 𝑛 × 12multivariate sample𝛸.

The result of this algorithm has the correct by-line correlation within each region—
because in Step 5 rows are moved, which preserves their within-group correlation—and
the correct correlation of total by region, from Step 4.

The aggregate package implements BIC as block_iman_conover. It takes argu-
ments:

• unit_losses: A list of samples, in our example the four blocks 𝑅𝑖 of losses by line
within a region.

• intra_unit_corrs: A list of correlation matrices within (intra) each region.
• inter_unit_corr: The between (inter) unit correlation matrix.

The regions can have different numbers of lines, and the intra-correlation matrices
can vary across regions. In the example below, we just use four regions with three lines,
and we assume the intra-region by-line correlations are all the same.

8.2.7. Example 2: Multistate, multiline correlation

Example 2 implements the case described in Section 8.2.6: four regions each with three
lines, and reliably estimated correlationmatrices between lines and between regions. The
next block shows the specification of the regional loss distributions in DecL.

port North
agg Auto_North 4000 loss 2000 xs 0 sev lognorm 30 cv 2 mixed gamma .2
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agg GL_North 2000 loss 5000 xs 0 sev lognorm 50 cv 4 mixed gamma .3
agg Prop_North 2000 loss 10000 xs 0 sev lognorm 100 cv 5 mixed gamma .1

port East
agg Auto_East 3000 loss 2000 xs 0 sev lognorm 30 cv 2 mixed gamma .2
agg GL_East 1000 loss 5000 xs 0 sev lognorm 50 cv 4 mixed gamma .3
agg Property_East 3000 loss 10000 xs 0 sev lognorm 100 cv 5 mixed gamma .1

port West
agg Auto_West 5000 loss 2000 xs 0 sev lognorm 30 cv 2 mixed gamma .2
agg GL_West 2000 loss 5000 xs 0 sev lognorm 50 cv 4 mixed gamma .3
agg Property_West 2000 loss 10000 xs 0 sev lognorm 100 cv 5 mixed gamma .1

port South
agg Auto_South 5000 loss 2000 xs 0 sev lognorm 30 cv 2 mixed gamma .2
agg GL_South 2000 loss 5000 xs 0 sev lognorm 50 cv 4 mixed gamma .3
agg Prop_South 7000 loss 10000 xs 0 sev lognorm 100 cv 5 mixed gamma .1

The losses by line are simulated using frequency-severity aggregate distributionswith
a lognormal severity and per occurrence limits. Frequency is a gamma-mixed Poisson
(negative binomial) with varying CVs. See Mildenhall (2023b) for a description of the
aggregateDecL language, used to specify these portfolios. The South region portfolio
was previously used to illustrate the standard Iman-Conover method in Section 8.2.2.

Table 8.4 shows the expected losses, modeling error, CV, and 99th percentile of total
loss by region. Model error means the difference between the output of the Fast Fourier
Transform algorithm and the requested input mean losses. As you can see, the two are
almost identical. The CVs vary reflecting volume and mix of business between regions.

Table 8.4. Expected losses, CV, and 99th percentile loss by region.

Region Expected Loss Model Error CV 99th Percentile

North 8,000.0 −0.000 0.298 16,237
East 7,000 −0.000 0.347 15,920
South 14,000 −0.000 0.266 25,737
West 9,000 −0.000 0.276 17,331

Next, we sample 𝑛 = 1,000 losses from each region with the intra-region correlation.
In this case, all the intra-region by-line correlations are the same, but the method allows
them to vary.

The BIC is then run using:

ans = block_iman_conover(region_losses, intra_region_correl,
inter_region_correl, True)
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The three panels of Table 8.5 (respectively, Table 8.6) show the target and achieved
inter-region (respectively, intra-region) correlation and the error (difference). The achieved
results are very close to those desired.

Table 8.5. Target and achieved inter-region correlations.

(a) Target inter-region correlation

Index North East South West

North 1 0.7 0.2 0
East 0.7 1 0.4 0.2
South 0.2 0.4 1 0.8
West 0 0.2 0.8 1

(b) Achieved inter-region correlation

Index North East South West

North 1 0.683 0.167 −0.002
East 0.683 1 0.369 0.197
South 0.167 0.369 1 0.799
West −0.002 0.197 0.799 1

(c) Difference

Index North East South West

North 0 0.017 0.033 0.002
East 0.017 0 0.031 0.003
South 0.033 0.031 0 0.001
West 0.002 0.003 0.001 0

Table 8.6. Achieved (a-d) and target (e) intra-region correlation.

(a) North

Index N-AL N-GL N-Pr

N-AL 1 0.579 0.180
N-GL 0.579 1 0.332
N-Pr 0.180 0.332 1

(b) East

Index E-AL E-GL E-Pr

E-AL 1 0.544 0.191
E-GL 0.544 1 0.318
E-Pr 0.191 0.318 1

(c) South

Index S-AL S-GL S-Pr

S-AL 1 0.571 0.202
S-GL 0.571 1 0.354
S-Pr 0.202 0.354 1

(d)West

Index W-AL W-GL W-Pr

W-AL 1 0.580 0.176
W-GL 0.580 1 0.330
W-Pr 0.176 0.330 1

(e) Target

Index W-AL W-GL W-Pr

W-AL 1 0.6 0.2
W-GL 0.6 1 0.4
W-Pr 0.2 0.4 1
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Table 8.7 shows the overall correlationmatrix at the line-region level (12×12matrix),
and Figure 8.4 shows an image plot of the same matrix. The underlying block structure
is clear from the image.

Table 8.7. Achieved correlation across lines and regions.

Index N-AL N-GL N-Pr E-AL E-GL E-Pr S-AL S-GL S-Pr W-AL W-GL W-Pr

N-AL 1 0.579 0.180 0.319 0.285 0.418 0.072 0.042 0.115 −0.011 −0.071 0.008
N-GL 0.579 1 0.332 0.354 0.391 0.495 0.111 0.076 0.143 0.010 −0.025 0.010
N-Pr 0.180 0.332 1 0.281 0.363 0.426 0.129 0.089 0.067 −0.009 0.007 0.028
E-AL 0.319 0.354 0.281 1 0.544 0.191 0.170 0.097 0.216 0.088 0.122 0.099
E-GL 0.285 0.391 0.363 0.544 1 0.318 0.127 0.122 0.255 0.079 0.148 0.130
E-Pr 0.418 0.495 0.426 0.191 0.318 1 0.240 0.261 0.237 0.089 0.117 0.132
S-AL 0.072 0.111 0.129 0.170 0.127 0.240 1 0.571 0.202 0.300 0.342 0.363
S-GL 0.042 0.076 0.089 0.097 0.122 0.261 0.571 1 0.354 0.385 0.431 0.423
S-Pr 0.115 0.143 0.067 0.216 0.255 0.237 0.202 0.354 1 0.541 0.579 0.506
W-AL −0.011 0.010 −0.009 0.088 0.079 0.089 0.300 0.385 0.541 1 0.580 0.176
W-GL −0.071 −0.025 0.007 0.122 0.148 0.117 0.342 0.431 0.579 0.580 1 0.330
W-Pr 0.008 0.010 0.028 0.099 0.130 0.132 0.363 0.423 0.506 0.176 0.330 1

Figure 8.4. Image plot of achieved intra-region correlation. The block structure is
clearly evident.

8.2.8. Theoretical derivation of the Iman-Conover method

Suppose thatM is an 𝑛-element sample from an 𝑟-dimensionalmultivariate distribution,
soM is an 𝑛× 𝑟matrix. Assume that the columns ofM are uncorrelated, havemean zero,
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and have a standard deviation of one. LetM′ denote the transpose ofM. These assump-
tions imply that the correlation matrix of the sampleM can be computed as 𝑛−1M′M,
and because the columns are independent, 𝑛−1M′M = id. (There is no need to scale the
covariance matrix by the row and column standard deviations because they are all one.
In general 𝑛−1M′M is the covariance matrix ofM.)

Let S be a correlation matrix, i.e., S is a positive semidefinite symmetric matrix with
ones on the diagonal and all elements ≤ 1 in absolute value. In order to rule out lin-
early dependent variables, assume S is positive definite. These assumptions ensure S has
a Choleski decomposition

S = C′C

for someupper triangularmatrixC; seeGolub andVanLoan (2013) or Press et al. (1992).
SetT = MC. The columns ofT still havemean zero, because they are linear combinations
of the columns ofM, which have zero mean by assumption. It is less obvious, but still
true, that the columns of T still have standard deviation one. To see why, remember that
the covariance matrix of T is

𝑛−1T′T = 𝑛−1C′M′MC = C′C = S,

since 𝑛−1M′M = id is the identity by assumption. Now S also is actually the correlation
matrix because the diagonal is scaled to standard deviation one, so the covariance and
correlation matrices coincide. The process of convertingM, which is easy to simulate,
into T, which has the desired correlation structure S, is the theoretical basis of the Iman-
Conover method.

It is important to note that estimates of correlation matrices, depending on how
they are constructed, need not have the mathematical properties of a correlation matrix.
Therefore, when trying to use an estimate of a correlationmatrix in an algorithm, such as
the Iman-Conover, which actually requires a proper correlation matrix as input, it may
be necessary to check the input matrix does have the correct mathematical properties.

Next, we discuss how to make 𝑛 × 𝑟 matricesM, with independent, mean zero col-
umns. The basic idea is to take 𝑛 numbers 𝑎1, … , 𝑎𝑛 with∑𝑖 𝑎𝑖 = 0 and 𝑛−1∑𝑖 𝑎2𝑖 = 1,
use them to form one 𝑛 × 1 column ofM, and then to copy it 𝑟 times. Finally, randomly
permute the entries in each column to make them independent as columns of random
variables. Iman and Conover (1979) call these 𝑎𝑖 scores. They discuss several possible
definitions for scores, including scaled versions of 𝑎𝑖 = 𝑖 (ranks) and 𝑎𝑖 uniformly dis-
tributed. They note that the shape of the output multivariate distribution depends on
the scores. All of the examples in their paper use normal scores.

Given that the scores will be based on normal random variables, we can either simu-
late 𝑛 random standard normal variables and then shift and rescale to ensure mean zero
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and standard deviation one, or we can use a systematic sample from the standard normal,
𝑎𝑖 = Φ−1(𝑖/(𝑛 + 1)). By construction, the systematic sample has mean zero, which is an
advantage. Also, by symmetry, using the systematic sample halves the number of calls to
Φ−1. For these two reasons we prefer it in the algorithm below.

The correlation matrix ofM, constructed by randomly permuting the scores in each
column, will only be approximately equal to id because of random simulation error. In
order to correct for the slight error that could be introduced, Iman and Conover use an-
other adjustment in their algorithm. Let EE = 𝑛−1M′M be the actual correlation matrix
ofM, and let EE = F′F be the Choleski decomposition of EE, and define T = MF−1C.
The columns of T have mean zero, and the covariance matrix of T is

𝑛−1T′T = 𝑛−1C′F′−1M′MF−1C

= C′F′−1EEF−1C

= C′F′−1F′FF−1C

= C′C

= S,

and hence T has correlation matrix exactly equal to S, as desired. If EE is singular, then
the column shuffle needs to be repeated.

Now that the reference distribution T with exact correlation structure S is in hand,
all that remains to complete the Iman-Conover method is to reorder each column of the
input distribution X to have the same rank order as the corresponding column of T.

8.3. Allocating capital, if you must

Within each layer, we can allocate its expected losses and premiums to the various portfolio
units. Having done so, capital allocation to units follows.

Admonition.Wecan’t emphasize strongly enough that you should not allocate capital.
Different layers of capital do not have the same cost (think: equity, junk debt, govern-
ment bonds), therefore you do not know the appropriate target return on your allocated
capital. Without that, you can’t say if a projected return is good or bad. Allocate margin,
not capital!

Warnings about smoking don’t work either. We know your CFO, senior manage-
ment, and investors discuss allocating underwriting capacity in the language of allocating
capital, andwepreviously admonished you to speak the language of your customers. This
section describes two methods you can use to translate allocated margins into allocated
capital.
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The firstmethod is obvious: simply assume all capital earns theweighted average cost
of capital and allocate capital by dividing allocated margin by the weighted average cost
of capital. This will result in an additive allocation of capital. This has the advantage of
being simple to implement, but the disadvantage is that it obscures—nay, denies!—the
fact that different segments of capital earn different returns.

The secondmethod has amore theoretically sound basis. It applies the principles dis-
cussed in Chapter 4 to obtain an allocation of capital𝑄 and unit-specific rates of return
𝜄𝑖 consistent with the SRM approach.

Layer 𝑘 is Δ𝛸𝑘 dollars wide but is triggered by any portfolio loss 𝛸 > 𝛸𝑘. We pro-
pose that the expectation of that loss be allocated to units by equal priority, that is, in
proportion to the expected losses of the units in those triggering events. We may define
the layer-𝑘 expected loss share to unit 𝑖 as

𝛼𝑖𝑘 ∶= E𝑝 [
𝛸𝑖

𝛸 ∣ 𝛸 > 𝛸𝑘] .

In particular, this means

𝛼𝑖𝑘𝑆𝑘 = E𝑝 [
𝛸𝑖

𝛸 1∣𝛸>𝛸𝑘] = ∑
𝑗>𝑘

𝛸𝑖
𝑗

𝛸𝑗
𝑝𝑗. (8.2)

The 𝛼𝑖 sum to one across the units because (conditional) expectations are linear. The
expected loss to layer 𝑘, 𝑆𝑘Δ𝛸𝑘, can thus be partitioned into 𝛼𝑖𝑘𝑆𝑘Δ𝛸𝑘 across the various
units. The total portfolio loss, E[𝛸], is allocated to unit 𝑖 as

E[𝛸𝑖] = ∑
𝑗
𝛼𝑖𝑗𝑆𝑗Δ𝛸𝑗. (8.3)

Exercise. Prove Equation 8.3, given Equation 8.2.

Solution.

∑
𝑗
𝛼𝑖𝑗𝑆𝑗Δ𝛸𝑗 =

𝑛−1
∑
𝑘=0

(
𝑛
∑
𝑗=𝑘+1

𝛸𝑖
𝑗

𝛸𝑗
𝑝𝑗) (𝛸𝑘+1 − 𝛸𝑘)

=
𝑛
∑
𝑗=1

𝛸𝑖
𝑗

𝛸𝑗
𝑝𝑗

𝑗−1
∑
𝑘=0

(𝛸𝑘+1 − 𝛸𝑘)

=
𝑛
∑
𝑗=1

𝛸𝑖
𝑗

𝛸𝑗
𝑝𝑗𝛸𝑗

=
𝑛
∑
𝑗=1

𝛸𝑖
𝑗𝑝𝑗

= E[𝛸𝑖]

noting𝛸0 = 𝛸𝑖
0 = 0.
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What about premium? We propose that the premium associated with layer 𝑘 be allo-
cated tounits in proportion to thedistorted expected losses of the units in those triggering
events. This leads to the definition of the distorted expected loss share

𝛽𝑖𝑘 ∶= E𝑞 [
𝛸𝑖

𝛸 ∣ 𝛸 > 𝛸𝑘] .

In particular, this means

𝛽𝑖𝑘𝑔(𝑆𝑘) = ∑
𝑗>𝑘

𝛸𝑖
𝑗

𝛸𝑗
𝑞𝑗 = ∑

𝑗>𝑘

𝛸𝑖
𝑗𝛧𝑗
𝛸𝑗

𝑝𝑗,

where, recall, 𝛧𝑗 = 𝑞𝑗/𝑝𝑗 is the event weight.
The premium to layer 𝑘, given by 𝛲𝑘 = 𝑔(𝑆𝑘)Δ𝛸𝑘, is partitioned to the units as

𝛽𝑖𝑘𝑔(𝑆𝑘)Δ𝛸𝑘. The total premium is therefore allocated to the units as

E[𝛸𝑖𝛧(𝛸)] = ∑
𝑗
𝛽𝑖𝑗𝑔(𝑆𝑗)Δ𝛸𝑗

being the total premium to unit 𝑖.

Exercise. Prove the previous equality.

Solution. The same steps as the preceding exercise.

Since margin is the difference between premium and expected loss (Equation 4.1),
we immediately have the allocation of unit 𝑖’s margin

𝛭𝑖 = ∑
𝑗
(𝛽𝑖𝑗𝑔(𝑆𝑗) − 𝛼𝑖𝑗𝑆𝑗)Δ𝛸𝑗. (8.4)

Exercise. UseEquation 4.10withEquation 4.8 andEquation 4.9 to derive a simple equa-
tion for𝛭𝑖 and then prove it is the equivalent of Equation 8.4.

Recall that the layer 𝑘 cost of capital is

𝜄𝑘 ∶=
𝛭𝑘
𝑄𝑘

= 𝛲𝑘 − 𝑆𝑘Δ𝛸𝑘
Δ𝛸𝑘 − 𝛲𝑘

= 𝑔(𝑆𝑘) − 𝑆𝑘
1 − 𝑔(𝑆𝑘)

.

Here, we lean on the assumption of law invariance (see Section 4.4). We claim that for a
law invariantpricing approach, the layer cost of capitalmust be the same for all units. Law
invariance implies the risk measure is only concerned with the attachment probability of
the layer and not with the cause of loss within the layer. If 𝜄within a layer varied by unit,
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then the allocation could not be law invariant. This crucial observation underlies the
following logic.

Because cost of capital equalsmargin over capital, and seeing as bothmargin and cost
of capital are known by layer and by unit, with the latter constant across units, we can
compute unit capital by layer𝑄𝑖

𝑘 via

𝜄𝑘 ∶=
𝛭𝑘
𝑄𝑘

= 𝛭𝑖
𝑘

𝑄𝑖
𝑘

⟹ 𝑄𝑖
𝑘 =

𝛭𝑖
𝑘
𝜄𝑘
.

Substituting the details gives the following definition for theNA of capital in layer 𝑘 to
unit 𝑖:

𝑄𝑖
𝑘 =

𝛽𝑖𝑘𝑔(𝑆𝑘) − 𝛼𝑖𝑘𝑆𝑘
𝑔(𝑆𝑘) − 𝑆𝑘

(1 − 𝑔(𝑆𝑘))Δ𝛸𝑘. (8.5)

In words, taking Equation 8.5 and dividing numerator and denominator by capital
in the layer shows

𝑄𝑖
𝑘 =

Margin for unit in layer
Total margin in layer × Capital in layer = Margin for unit in layer

Layer cost of capital .

The NA is the same as method 1 (divide by weighted average cost of capital) but applied
separately for each layer of capital!

Exercise. Derive Equation 8.5.

Since 1 − 𝑔(𝑆𝑘) is the proportion of of layer 𝑘’s limit devoted to capital, this says the
proportion of capital allocated to unit 𝑖 is given by the nicely symmetric expression

𝛽𝑖𝑘𝑔(𝑆𝑘) − 𝛼𝑖𝑘𝑆𝑘
𝑔(𝑆𝑘) − 𝑆𝑘

.

To determine total capital by unit, we sum across layers

𝑄𝑖 ∶= ∑
𝑗
𝑄𝑖
𝑗.

Finally, we can determine the average cost of capital for unit 𝑖

𝜄𝑖 = 𝛭𝑖

𝑄𝑖 .

This is illustrated for our example in Table 8.8, Table 8.9, and Table 8.10. In the last
table, the columns are calculated as𝛭𝑖 = 𝛽𝑖𝑔(𝑆)− 𝛼𝑖𝑆, 𝜄 = (𝑔−𝑆)/(1− 𝑔),𝑄𝑖 = 𝛭𝑖/𝜄,
and the low rows𝛭 (respectively,𝑄) show sum products withΔ𝛸.
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Table 8.8. Calculation of loss shares by layer. The row 𝐿 shows sum products with Δ𝛸.

𝑘 Unit A𝛸1 Unit B𝛸2 Unit C𝛸3 Total𝛸 𝑝 𝑆 Δ𝛸 𝛼1𝑆 𝛼2𝑆 𝛼3𝑆
0 0 0 0 0 0 1 22 0.325 0.441 0.234
1 15 7 0 22 0.1 0.9 6 0.257 0.409 0.234
2 15 13 0 28 0.1 0.8 8 0.203 0.362 0.234
3 5 20 11 36 0.1 0.7 4 0.189 0.307 0.204
4 10 24 6 40 0.4 0.3 15 0.089 0.067 0.144
5 26 19 10 55 0.1 0.2 10 0.042 0.032 0.126
6 17 8 40 65 0.1 0.1 35 0.016 0.020 0.064
7 16 20 64 100 0.1 0 0 0 0 0
𝐿 = E𝑝 13.4 18.3 14.9 46.6 13.4 18.3 14.9

Table 8.9. Calculation of premium shares by layer. Row 𝛲 shows sum products with Δ𝛸.

Unit A Unit B Unit C Total
𝑘 𝛸1 𝛸2 𝛸3 𝛸 𝑞 𝑔𝑆 Δ𝛸 𝛽1𝑆 𝛽2𝑆 𝛽3𝑆
0 0 0 0 0 0 1 22 0.295 0.409 0.296
1 15 7 0 22 0.052 0.948 6 0.260 0.392 0.296
2 15 13 0 28 0.066 0.882 8 0.225 0.362 0.296
3 5 20 11 36 0.075 0.807 4 0.214 0.320 0.273
4 10 24 6 40 0.379 0.428 15 0.119 0.093 0.216
5 26 19 10 55 0.119 0.309 10 0.063 0.051 0.194
6 17 8 40 65 0.135 0.174 35 0.028 0.035 0.111
7 16 20 64 100 0.174 0 0 0 0 0
𝐿 = E𝑝 13.4 18.3 14.9 46.6
𝛲 = E𝑝 14.109 18.637 20.819 53.565 14.109 18.637 20.819
𝛭 = 𝛲 − 𝐿 0.709 0.337 5.919 6.965

Table 8.10. Allocation of capital.

𝑘 Total𝛸 Δ𝛸 𝛭1 𝛭2 𝛭3 𝑄1 𝑄2 𝑄3 𝜄 𝛿
0 0 22 −0.030 −0.032 0.061 0 0 0 infinite 1
1 22 6 0.003 −0.017 0.061 0.003 −0.018 0.067 0.917 0.478
2 28 8 0.021 −0.001 0.061 0.031 −0.001 0.089 0.693 0.409
3 36 4 0.025 0.013 0.069 0.045 0.024 0.125 0.555 0.357
4 40 15 0.030 0.026 0.072 0.134 0.115 0.323 0.224 0.183
5 55 10 0.021 0.019 0.069 0.133 0.121 0.437 0.158 0.136
6 65 35 0.012 0.015 0.047 0.132 0.165 0.529 0.089 0.082
7 100 0 0 0 0 0 0 0
E𝑞 0.709 0.337 5.919 8.411 8.691 29.333
𝜄 0.084 0.039 0.202 0.150
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Observe that (∑𝑖 𝜄𝑖𝑄𝑖)/𝑄 is 15%, the weighted cost of capital over all units is 15%,
as assumed.

Notice that the first layer 𝑘 = 0 has undefined cost of capital 𝜄; since 𝑆0 = 1, we have
𝑔(𝑆0) = 1, 𝛲0 = Δ𝛸0, and𝛭0 = 𝑄0 = 0. Nonetheless, we have nonzero unit margins
𝛭𝑖

0 summing to zero.
The smallest portfolio loss equals 22, meaning the first layer is entirely funded by

loss payments and requires no capital in aggregate. However, there are cross-subsidies
between the units within the layer. Were the three units to purchase insurance from an
insurance companywithonly $22of assets, itwouldbenefit themost volatile line, because
it would capture an outsized proportion of the available assets in the case it had a large
loss. The margins reflect these cross-subsidies. However because the layer is fully funded
by losses, there is no capital and hence no aggregate margin, which is why the allocated
margins sum to zero.

Although the cost of capital within each layer is the same for all units, the margin,
the proportion of limit that is capital, and the proportion of that capital attributable
to each unit, all vary across layers. Therefore, average cost of capital generally varies by
unit. Table 8.11 shows the difference in results between the natural Wang allocation and
the CCoC approaches done previously. (The natural CCoC is equivalent to the indus-
try standard approach.) The story is complex. While both non-catastrophe lines receive
more margin and more capital under the Wang allocation, it is not proportional; their
rates of return are not only lower than the 15% benchmark, but they are markedly differ-
ent.

Table 8.11. Comparison of Wang SRM and CCoC natural capital allocations.

Distortion Metric Unit A Unit B Unit C Portfolio

Wang, 0.343 Capital𝑄 8.411 8.691 29.333 46.435
Margin𝛭 0.709 0.337 5.919 6.965
Return 𝜄 8.4% 3.9% 20.2% 15.0%

CCoC, 0.150 Capital𝑄 4.874 5.288 36.273 46.435
Margin𝛭 0.339 0.222 6.404 6.965
Return 𝜄 7.0% 4.2% 17.7% 15.0%

For a typical distortion other than CCoC, in line with Table 1.1, we find:

• Lower layers of assets, below the expected losses, have a high cost of capital, but, off-
setting this, they are mostly funded by premium and require little supporting investor
capital, resulting in high leverage.

• Higher layers of assets have a lower cost of capital but higher capital content: they are
funded by capital to a greater degree.
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• Low volatility units by definition tend to have losses close to their expected value, re-
gardless of the value of total losses, and so consume relatively more of the expensive,
lower layer capital and a smaller proportion of cheaper, higher asset layers. Offsetting
this, there is more capital in higher layers than lower ones.

• High volatility units tend to have a larger proportion of total losses when the portfolio
total loss is large, and so they consume a greater proportion of cheaper, higher layer
capital.

We see all of these phenomena in the example.
With price, quantity, and proportion all variable the overall effect of the NA of cap-

ital is hard to predict. Since price, amount, and use are all correlated, it is never adequate
to assume that the unit average cost of capital is the portfolio average cost of capital. This
is the fundamental flaw in the industry standard approach, which uses the same cost of
capital for all capital layers (see Section 4.7). The SRM-based method outlined here pro-
duces varying cost of capital by unit in a defensible manner—given a choice of distortion
function. How to make that choice was discussed in Chapter 6.

8.4. Comparisons with Bodoff’s layer capital allocation

Readers may have guessed that the NA is closely related to Bodoff’s layer capital alloca-
tion (Bodoff 2007). This section will explain how they are correct and show the connec-
tions, similarities, and differences between the two approaches. Bodoff’s approach uses
𝛼𝑖, which describes how loss in each layer is shared between the units, and applies it to all
assets in the layer. Since∑𝑖 𝛼1 = 1we get a decomposition

𝑎 = ∫
𝑎

0
1 𝑑𝑥 = ∑

𝑖
∫

𝑎

0
𝛼𝑖(𝑥) 𝑑𝑥.

Thus, 𝑎𝑖 = ∫𝑎
0 𝛼𝑖(𝑥) 𝑑𝑥 is a reasonable allocation of assets. However, to determine a

premium 𝑎𝑖 needs to be split into amounts𝛲𝑖+𝑄𝑖 funded by policyholder premium and
investor capital. For example, we could fall back to CCoC, resulting in a layer premium

(𝛼𝑖(𝑥)𝑆(𝑥) + 𝛿𝛼𝑖(𝑥)(1 − 𝑆(𝑥))) + 𝜈𝛿𝛼𝑖(𝑥)(1 − 𝑆(𝑥)),

where the first parenthetic term is expected loss (Equation 8.2) plus a margin 𝛿 times the
unfunded liability (Table 4.1, P3), and the second term is investor capital (Table 4.1, Q).
This reproduces distortionCCoCpricing. Picking other distortions, which allow for the
unfunded liability to be split differently than losses, produces a range of other answers.
Bodoff’s paper is very insightful, but it falls short by not fully describing a premium allo-
cation: further assumptions are still needed to convert allocated assets into allocated pre-
miums. Table 8.12 shows Bodoff’s asset allocation in the last four right-hand columns.
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Table 8.12. Bodoff’s asset allocations, 𝛼𝑖Δ𝛸.

𝑘 Total𝛸 𝑝 𝑆 Δ𝛸 𝛼1Δ𝛸 𝛼2Δ𝛸 𝛼3Δ𝛸 ∑𝛼𝑖Δ𝛸
0 0 0 1 22 7.152 9.694 5.154 22
1 22 0.1 0.9 6 1.713 2.726 1.562 6
2 28 0.1 0.8 8 2.033 3.624 2.343 8
3 36 0.1 0.7 4 1.082 1.753 1.164 4
4 40 0.4 0.3 15 4.471 3.343 7.186 15.000
5 55 0.1 0.2 10 2.108 1.615 6.277 10.000
6 65 0.1 0.1 35 5.600 7.000 22.400 35.000
7 100 0.1 0 0 0 0 0 0
Total 46.6 24.159 29.756 46.086 100.0
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9. Calculations with aggregate
Example calculations using Python and R.

This chapter reproduces many of the exhibits from the main text using Python and
the aggregate package. It also describes how to extend to more realistic examples.
Throughout, we have included only terse subsets of code so the reader can focus on the
results and the output. Instructions for obtaining the full code are provided below.

9.1. aggregate and Python
aggregate is a Python package that can be used to build approximations to compound
(aggregate) probability distributions quickly and accurately, and to solve insurance, risk
management, and actuarial problems using realistic models that reflect underlying fre-
quency and severity. It delivers the speed and accuracy of parametric distributions to
situations that usually require simulation, making it as easy to work with an aggregate
(compound) probability distribution as the lognormal. aggregate includes an expres-
sive language called DecL to describe aggregate distributions.

The aggregatepackage is available onPyPi,5 the source code is onGitHub at https:
//github.com/mynl/aggregate, and there is extensive documentation.6 The Aggregate
class and DecL lanaguage are described in Mildenhall (2024). There is also an extensive
series of videos introducing various capabilities available on YouTube.7

9.2. aggregate and R
Python packages can be used in R via the reticulate library. Python and R code can
also be mixed in RMarkdown (now Quarto) files. A short video8 explains how to use
aggregate from R.

9.3. Reproducing the code examples
To reproduce the Python code examples, you must set up your environment and then
install aggregate using

pip install aggregate

5 https://pypi.org/project/aggregate/.
6 https://aggregate.readthedocs.io/en/latest/.
7 https://www.youtube.com/playlist?list=PLQQxycbewjqMDmw0hfZdB6Rzm60Qcq3Ao.
8 https://www.youtube.com/watch?v=jA9rVMHVqI0.
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The formatting of the examples relies on greater_tables, which can be installed
in the same way. The installation process will also install several standard packages, such
as numpy and pandas, that it depends on. If you get an error message about other miss-
ing packages, you can install them with pip. All the code in the monograph runs on
aggregate version 0.24.0 and should run on any later version. If you have an older ver-
sion installed, you can updated it with pip install -U aggregate.

Once aggregate is installed, start by importing basic libraries. The next code block
shows the relevant aggregate function. The class GT from greater_tables is used to
format dataframes consistently.

from aggregate import (
Portfolio, # creates multi-unit portfolios
make_ceder_netter, # models reinsurance
Distortion # creates a Distortion function

)
from greater_tables import GT # consistent table format

Online resources. Complete code samples can be extracted from the online version of
the monograph, available at https://casact.github.io/capital-modeling/. Each code
block has a small copy icon in the upper right-hand corner. The code blocks on each
page can all be shown or hidden using the </>Code control at the top of the page. To
download the original qmd file, use the View Source option under the same control. Al-
ternatively, the entire Quarto (previously RMarkdown) source can be downloaded from
GitHub at https://github.com/casact/capital-modeling.

9.4. Reproducing the discrete example

9.4.1. Input data and setup

The InsCo example running through this monograph is based on the 10 events shown in
Table 9.1, which reproduces Table 2.1, and adds the mean and CV. For reference, here is
the code to create the underlying dataframe.

loss_sample = pd.DataFrame(
{

'A': [ 5, 7, 15, 15, 13, 5, 15, 26, 17, 16],
'B': [20, 33, 13, 7, 20, 27, 16, 19, 8, 20],
'C': [11, 0, 0, 0, 7, 8, 9, 10, 40, 64],

}
)
loss_sample['total'] = loss_sample.sum(axis=1)
loss_sample['p_total'] = 1/10
print(loss_sample)
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A B C total p_total
0 5 20 11 36 0.1
1 7 33 0 40 0.1
2 15 13 0 28 0.1
3 15 7 0 22 0.1
4 13 20 7 40 0.1
5 5 27 8 40 0.1
6 15 16 9 40 0.1
7 26 19 10 55 0.1
8 17 8 40 65 0.1
9 16 20 64 100 0.1

Table 9.1. The 10 equally likely simulations underlying the basic examples.

Index A B C Total

0 5 20 11 36
1 7 33 0 40
2 15 13 0 28
3 15 7 0 22
4 13 20 7 40
5 5 27 8 40
6 15 16 9 40
7 26 19 10 55
8 17 8 40 65
9 16 20 64 100
E[𝛸] 13.4 18.3 14.9 46.6
CV 0.453 0.412 1.324 0.455

Nowwe create an aggregate Portfolio class instance based on the loss_sample
simulation output. The next block shows how to do this, using the Portfolio.create
_from_samplemethod. TMA1 is a label, and loss_sample is the dataframe created pre-
viously. The other arguments specify working with unit-sized buckets bs=1 appropriate
for our integer losses and to use 256 = 28 buckets, log2=8.

wport = Portfolio.create_from_sample('TMA1', loss_sample, bs=1, log2=8)

The next line of code displays Table 9.2, which shows summary output from the ob-
ject wport by accessing its describe attribute. The summary includes the mean, CV,
and skewness. The model and estimated (Est) columns are identical because we speci-
fied the distribution directly; no simulation or Fast Fourier Transform-based numerical
methods are employed.

fGT(wport.describe.drop(columns=['Err E[X]', 'Err CV(X)']))
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Table 9.2. Summary statistics for the base example.

Unit 𝛸 𝛦[𝛸] 𝛦𝑠𝑡𝛦[𝛸] 𝐶𝑉(𝛸) 𝛦𝑠𝑡𝐶𝑉(𝛸) 𝑆𝑘𝑒𝑤(𝛸) 𝛦𝑠𝑡𝑆𝑘𝑒𝑤(𝛸)
A Freq 1 0

Sev 13.4 13.4 0.453 0.453 0.281 0.281
Agg 13.4 13.4 0.453 0.453 0.281 0.281

B Freq 1 0
Sev 18.300 18.300 0.412 0.412 0.269 0.269
Agg 18.300 18.300 0.412 0.412 0.269 0.269

C Freq 1 0
Sev 14.9 14.900 1.324 1.324 1.603 1.603
Agg 14.9 14.900 1.324 1.324 1.603 1.603

Total Freq 3 0
Sev 15.533 15.533 0.827 1.884
Agg 46.6 46.600 0.471 0.471 1.177 1.177

Next, we need to calibrate distortion functions to achieve the desired pricing. The
example uses full capitalization throughout (assets equal the maximum loss), which is
equivalent to a 100% percentile level (see Table 9.5) and assumes the cost of capital is
15%. The code runs the calibration by calling wport.calibrate_distortions with
arguments for the capital percentile level Ps and cost of capital COCs. The arguments
are passed as lists because the routine can be used to solve for several percentile levels and
costs simultaneously. Table 9.3 shows the resulting parameters, which match those in
Table 4.5.

# calibrate to 15% return at p=100% capital standard
wport.calibrate_distortions(Ps=[1], COCs=[.15]);

Table 9.3. Distortion functions calibrated to 15% return on full capital.

Method 𝛲 Parameter Error

CCoC 53.565 0.150 0
PH 53.565 0.720 0.000
Wang 53.565 0.343 0.000
Dual 53.565 1.595 −0.000
TVaR 53.565 0.271 0.000

Figure 9.1 shows the resulting distortion 𝑔 functions (top) and the probability ad-
justment 𝛧 = 𝑞/𝑝 (bottom). The red star indicates a probability mass at 𝑝 = 1.

For technical reasons (discussed in Section 4.3 as well as Section 14.1.5 in Milden-
hall and Major (2022), see especially Figure 14.2), we must summarize the 10 events by
distinct totals. Routine code produces Table 9.4, reproducing Table 4.2.
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Figure 9.1. Distortion functions (top row) and distortion probability adjustment func-
tions (bottom row).

Table 9.4. Assumptions for portfolio, summarized by distinct totals.

Index A B C 𝑝 Total

0 15 7 0 0.1 22
1 15 13 0 0.1 28
2 5 20 11 0.1 36
3 10 24 6 0.4 40
4 26 19 10 0.1 55
5 17 8 40 0.1 65
6 16 20 64 0.1 100
E[𝛸] 13.4 18.3 14.9 1 46.6
Plan 13.9 18.7 19.6 1 52.2

The examples describe aVaR- orTVaR-based capital standard (seeTable 3.1), but for
this example it works out to the the same as a fully capitalized 100% standard, as shownby
the values in Table 9.5. The wportmethods q and tvar compute quantiles and TVaRs
for each unit and the total.

Table 9.5. Quantiles (VaR) and TVaR at different probability levels.

𝑝 Quantile TVaR

0.8 55 82.500
0.850 65 88.333
0.9 65 100
1 100 100
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9.4.2. Premiums by distortion

Table 4.11 shows premium assuming aCCoCdistortionwith a 15% return applied using
a 100% capital standard. The premium P row shows what Mildenhall andMajor (2022)
call the linear NA premium. Table 9.6 reproduces this exhibit, confirming an equal 15%
returns across all allocated capital. The code illustrates the power of aggregate. The
first line creates a CCoC distortion using the Distortion class; note the argument is
risk discount 𝛿. The second line uses the pricemethod to compute the linear allocation,
which it returns in a structure with various diagnostic information, including Table 9.6.

ccoc = Distortion.ccoc(.15 / 1.15)
pricing_info = wport.price(1, ccoc, allocation='linear')

Table 9.6. Industry standard approach pricing using the CCoC distortion.

Index A B C Total

L 13.4 18.3 14.900 46.6
a 16.000 20.000 64.000 100
Q 2.261 1.478 42.696 46.435
P 13.739 18.522 21.304 53.565
M 0.339 0.222 6.404 6.965
COC 0.150 0.150 0.150 0.150

Table 4.3, Table 4.4, and Table 4.10 compute 𝜌(𝛸) for 𝜌 the CCoC SRM, using
the 𝜌(𝛸) = ∫ 𝑔(𝑆(𝑥)) 𝑑𝑥 (second table) and 𝜌(𝛸) = ∫ 𝑥𝑔′(𝑆(𝑥))𝑓(𝑥) 𝑑𝑥 (third) rep-
resentations. The numbers needed for these calculations are shown in Table 9.7, where
𝑞 = 𝑔′(𝑆(𝑥))𝑓(𝑥). These are extracted from the dataframe wport.density_df,which
contains the probability mass, density, and survival functions for the portfolio, among
other facts. The last row carries out the calculations and confirms the two methods give

Table 9.7. Industry standard approach pricing: raw ingredients and computed means.

Loss 𝑝total 𝐹 𝑆 𝑔𝑆 𝑞 Δ𝛸
22 0.1 0.1 0.9 0.913 0.087 6
28 0.1 0.2 0.8 0.826 0.087 8
36 0.1 0.3 0.7 0.739 0.087 4
40 0.4 0.7 0.3 0.391 0.348 15
55 0.1 0.8 0.2 0.304 0.087 10
65 0.1 0.9 0.1 0.217 0.087 35
100 0.1 1 0 0 0.217 0
𝜌(𝛸) 53.565 53.565
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the same result, the total under 𝑔𝑆 using the former representation and under 𝑞 using the
latter representation.

Table 9.8 shows the results for the other standarddistortions. The calculationsmatch
those of the Wang in Table 9.8c. All of the calibrated distortions are carried in the dic-
tionary wport.dists. These tables also include the NA of capital (a process we do not
recommend, but that is described in Section 8.3). The Q row matches the calculation of
allocated capital shown in Table 8.10.

Table 9.8. Pricing by distortion by unit.

(a) CCoC

Statistic A B C Total

L 13.400 18.300 14.900 46.600
a 18.613 23.810 57.577 100.0
Q 4.874 5.288 36.273 46.435
P 13.739 18.522 21.304 53.565
M 0.339 0.222 6.404 6.965
COC 0.070 0.042 0.177 0.150

(b) PH

Statistic A B C Total

L 13.400 18.300 14.900 46.600
a 21.133 24.914 53.952 100.000
Q 7.074 6.565 32.796 46.435
P 14.060 18.349 21.156 53.565
M 0.660 0.049 6.256 6.965
COC 0.093 0.008 0.191 0.150

(c)Wang

Statistic A B C Total

L 13.400 18.300 14.900 46.600
a 22.520 27.328 50.152 100.000
Q 8.411 8.691 29.333 46.435
P 14.109 18.637 20.819 53.565
M 0.709 0.337 5.919 6.965
COC 0.084 0.039 0.202 0.150

(d) Dual

Statistic A B C Total

L 13.400 18.300 14.900 46.600
a 22.999 28.260 48.741 100.0
Q 8.873 9.143 28.419 46.435
P 14.127 19.117 20.322 53.565
M 0.727 0.817 5.422 6.965
COC 0.082 0.089 0.191 0.150

(e) TVaR

Statistic A B C Total

L 13.400 18.300 14.900 46.600
a 22.817 29.659 47.525 100.000
Q 9.034 9.247 28.154 46.435
P 13.783 20.412 19.371 53.565
M 0.383 2.112 4.471 6.965
COC 0.042 0.228 0.159 0.150

9.4.3. Reinsurance analysis

Chapter 5 analyzes a possible 35 xs 65 aggregate stop loss reinsurance contract. The setup
to analyze this contract, using a separate Portfolio object, is shown next. The first two
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lines apply reinsurance; [1, 35, 65] specifies 100% of the 35 xs 65 layer, and c and n
are functions mapping gross to ceded and net. The last line creates a new Portfolio

object from the net and ceded aggregate losses.

loss_sample_re = loss_sample.copy()
c, n = make_ceder_netter([(1, 35, 65)])
loss_sample_re['Net'] = n(loss_sample_re.total)
loss_sample_re['Ceded'] = c(loss_sample_re.total)
loss_sample_re = loss_sample_re[['Net', 'Ceded', 'p_total']]

# build Portfolio object with Net, Ceded units
wport_re = Portfolio.create_from_sample('WGS3',

loss_sample_re[['Net', 'Ceded', 'p_total']], bs=1, log2=8)

Table 9.9 shows the standard summary statistics. It should be compared toTable 5.1.
Table 9.10 shows the allocated pricing to the reinsurance and net across the five standard
distortions; compare with the last row of Table 5.1 and discussion in Section 5.2.

Table 9.9. Summary statistics created by the reinsurance Portfolio object.

Unit 𝛸 𝛦[𝛸] 𝛦𝑠𝑡𝛦[𝛸] 𝐶𝑉(𝛸) 𝛦𝑠𝑡𝐶𝑉(𝛸) 𝑆𝑘𝑒𝑤(𝛸) 𝛦𝑠𝑡𝑆𝑘𝑒𝑤(𝛸)
Net Freq 1 0

Sev 43.1 43.100 0.317 0.317 0.369 0.369
Agg 43.1 43.100 0.317 0.317 0.369 0.369

Ceded Freq 1 0
Sev 3.5 3.500 3 3.000 2.667 2.667
Agg 3.5 3.500 3 3.000 2.667 2.667

Total Freq 2 0
Sev 23.3 23.300 0.998 0.340
Agg 46.6 46.600 0.370 0.370 0.788 0.788

9.5. A more realistic example

In this section, we create a series of exhibits analogous to those in Section 9.4 for an ex-
ample with more realistic assumptions. It is included to show how aggregate can be
used to solve real-world problems, hopefully motivating you to explore it further. The
analysis steps are:

1. Create realistic by-unit frequency and severity distributions using Fast Fourier Trans-
forms with independent units.

2. Sample theunit distributionswith correlation inducedby Iman-Conover (Section8.2).
3. Build a Portfolio from the correlated sample.
4. Calibrate distortions and compute unit pricing for each distortion.
5. Apply by-unit, per-occurrence reinsurance and examine pricing impact.
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Table 9.10. Pricing by distortion for ceded, net, and total (gross).

(a) CCoC

Statistic Ceded Net Total

L 3.500 43.100 46.600
a 30.013 69.987 100.0
Q 22.405 24.030 46.435
P 7.609 45.957 53.565
M 4.109 2.857 6.965
COC 0.183 0.119 0.150

(b) PH

Statistic Ceded Net Total

L 3.500 43.100 46.600
a 23.383 76.617 100.000
Q 16.721 29.714 46.435
P 6.662 46.903 53.565
M 3.162 3.803 6.965
COC 0.189 0.128 0.150

(c)Wang

Statistic Ceded Net Total

L 3.500 43.100 46.600
a 20.237 79.763 100.000
Q 14.150 32.284 46.435
P 6.087 47.478 53.565
M 2.587 4.378 6.965
COC 0.183 0.136 0.150

(d) Dual

Statistic Ceded Net Total

L 3.500 43.100 46.600
a 18.539 81.461 100.0
Q 13.125 33.310 46.435
P 5.415 48.151 53.565
M 1.915 5.051 6.965
COC 0.146 0.152 0.150

(e) TVaR

Statistic Ceded Net Total

L 3.500 43.100 46.600
a 17.679 82.321 100.000
Q 12.876 33.559 46.435
P 4.803 48.762 53.565
M 1.303 5.662 6.965
COC 0.101 0.169 0.150

The aggregate DecL programming language makes it easy to specify frequency-
severity compound distributions. In the code chunk below, the four lines inside the
build statement are the DecL program. The triple quotes are Python shorthand for
entering a multiline string. The first program line, beginning agg Auto, creates a distri-
bution with an expected loss of 5,000 (think: losses in 000s), severity from the 5,000 xs 0
layer of a lognormal variable with amean of 50 and aCVof 2, and gammamixed-Poisson
frequency with a mixing parameter (CV) of 0.2. The other two lines are analogous. The
build statement runs the DecL program and creates a Portfolio object with relevant
compound distributions by unit. It also sums the unit distributions as though they were
independent—we will introduce some correlation later.

from aggregate import build
port = build("""
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port Units
agg Auto 5000 loss 5000 xs 0 sev lognorm 50 cv 2 mixed gamma 0.2
agg GL 3000 loss 2500 xs 0 sev lognorm 75 cv 3 mixed gamma 0.3
agg WC 7000 loss 25000 xs 0 sev lognorm 5 cv 10 mixed gamma 0.25

""")

Table 9.11 shows the by-unit frequency and severity statistics and the total statistics
assuming the units are independent. The deviation between the Fast Fourier Transform-
generated compound distributions and the requested specifications are negligible. Fig-
ure 9.2 plots the unit and total densities on a nominal and log scale. The effect of WC
driving the tail, via thicker severity and higher occurrence limit, is clear on the log plot.

Table 9.11. Unit frequency, severity and compound assumptions, and portfolio total,
showing requested and model achieved and key statistics.

Unit 𝛸 𝛦[𝛸] 𝛦𝑠𝑡𝛦[𝛸] 𝐶𝑉(𝛸) 𝛦𝑠𝑡𝐶𝑉(𝛸) 𝑆𝑘𝑒𝑤(𝛸) 𝛦𝑠𝑡𝑆𝑘𝑒𝑤(𝛸)
Auto Freq 100.0 0 0.224 0 0.402 0

Sev 49.982 49.982 1.973 1.973 10.678 10.678
Agg 5,000 5,000.0 0.298 0.298 0.699 0.699

GL Freq 41.008 0 0.338 0 0.604 0
Sev 73.156 73.156 2.377 2.378 7.385 7.385
Agg 3,000 3,000.0 0.502 0.502 1.024 1.024

WC Freq 1,401.1 0 0.251 0 0.500 0
Sev 4.996 4.945 9.103 9.198 147.9 147.9
Agg 7,000 7,000.0 0.350 0.350 1.776 1.775

Total Freq 1,542.1 0 0.229 0 0.496 0
Sev 9.727 9.681 6.123 0 68.886 0
Agg 15,000 15,000.0 0.216 0.216 0.939 0.938

Figure 9.2. By-unit loss densities (left) and logdensities (right).
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Next, we sample from the unit distributions and shuffle using Iman-Conover to
achieve the desired correlation shown in Table 9.12. This matrix comes from a separate
analysis. The revised statistics (note higher total CV), quantiles, and achieved correlation
are shown in Table 9.13 and Table 9.14.

Table 9.12. Desired correlation matrix, as input to Iman-Conover.

Index Auto GL WC

Auto 1 0.5 0.4
GL 0.5 1 0.1
WC 0.4 0.1 1

Table 9.13. Key statistics from sample with Iman-Conover induced correlation.

Index Auto GL WC Total

Count 1,000 1,000 1,000 1,000
Mean 4,996.5 2,989.2 7,017.9 15,003.6
SD 1,514.1 1,532.9 2,522.4 4,087.7
Min 1,118 133 3,148 6,576
25% 3,886.8 1,844.8 5,285.2 12,127.8
50% 4,884 2,691 6,459 14,573.5
75% 5,914.2 3,932.2 8,024.5 17,285
Max 11,957 10,184 22,877 34,617
CV 0.303 0.513 0.359 0.272

Table 9.14. Achived between-unit correlation.

Index Auto GL WC Total

Auto 1 0.494 0.376 0.788
GL 0.480 1 0.070 0.601
WC 0.373 0.090 1 0.783
Total 0.788 0.625 0.732 1

Table 9.15 shows the output of using the correlated sample to build a Portfolio
object. This uses the samples directly, proxying the aggregate loss as a compound with
degenerate frequency distribution identically equal to one and severity equal to the de-
sired distribution. Hence the frequency rows show expectation one with zero CV.

Table 9.16 shows the parameters for distortions calibrated to achieve an overall 15%
return at a 99.5% capital standard. Figure 9.3 plots the distortions and probability ad-
justment functions; compare this with Figure 9.1. These distortions are slightly more
risk averse (higher parameters except PH, driving higher indicated prices).

Casualty Actuarial Society 117



Introduction to Capital Modeling and Portfolio Management

Table 9.15. Portfolio statistics reflecting the correlation achieved by the Iman-Conover
sample.

Unit 𝛸 𝛦[𝛸] 𝛦𝑠𝑡𝛦[𝛸] 𝐶𝑉(𝛸) 𝛦𝑠𝑡𝐶𝑉(𝛸) 𝑆𝑘𝑒𝑤(𝛸) 𝛦𝑠𝑡𝑆𝑘𝑒𝑤(𝛸)
Auto Freq 1 0

Sev 4,996.5 4,996.5 0.303 0.303 0.625 0.625
Agg 4,996.5 4,996.5 0.303 0.303 0.625 0.625

GL Freq 1 0
Sev 2,989.2 2,989.2 0.513 0.513 0.905 0.905
Agg 2,989.2 2,989.2 0.513 0.513 0.905 0.905

WC Freq 1 0
Sev 7,017.9 7,017.9 0.359 0.359 1.766 1.766
Agg 7,017.9 7,017.9 0.359 0.359 1.766 1.766

total Freq 3 0
Sev 5,001.2 5,001.2 0.505 1.203
Agg 15,003.6 15,003.6 0.221 0.221 0.925 0.925

Table 9.16. Distortion parameters for target total return at the regulatory capital stan-
dard.

Method 𝛲 Parameter Error

CCoC 16,800.3 0.150 0
PH 16,800.3 0.654 0
Wang 16,800.3 0.437 0.000
Dual 16,800.3 1.756 −0.000
TVaR 16,800.3 0.299 0.000

Figure 9.3. Distortion functions and distortion probability adjustment functions.
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Table 9.17. Pricing by distortion.

(a) CCoC

Statistic Auto GL WC Total

L 4,991.9 2,986.7 7,007.1 14,985.7
a 7,483.3 3,225.2 18,189.5 28,898.0
Q 2,222.6 269.8 9,605.3 12,097.7
P 5,260.7 2,955.5 8,584.1 16,800.3
M 268.9 -31.227 1,577.0 1,814.7
COC 0.121 -0.116 0.164 0.150

(b) PH

Statistic Auto GL WC Total

L 4,991.9 2,986.7 7,007.1 14,985.7
a 8,950.3 5,489.7 14,458.0 28,898.0
Q 3,473.1 2,159.2 6,465.4 12,097.7
P 5,477.2 3,330.6 7,992.6 16,800.3
M 485.3 343.9 985.5 1,814.7
COC 0.140 0.159 0.152 0.150

(c)Wang

Statistic Auto GL WC Total

L 4,991.9 2,986.7 7,007.1 14,985.7
a 9,171.0 5,651.9 14,075.0 28,898.0
Q 3,656.4 2,263.5 6,177.8 12,097.7
P 5,514.7 3,388.4 7,897.3 16,800.3
M 522.8 401.7 890.2 1,814.7
COC 0.143 0.177 0.144 0.150

(d) Dual

Statistic Auto GL WC Total

L 4,991.9 2,986.7 7,007.1 14,985.7
a 9,264.8 5,753.9 13,879.3 28,898.0
Q 3,719.5 2,319.4 6,058.8 12,097.7
P 5,545.3 3,434.5 7,820.5 16,800.3
M 553.4 447.8 813.4 1,814.7
COC 0.149 0.193 0.134 0.150

(e) TVaR

Statistic Auto GL WC Total

L 4,991.9 2,986.7 7,007.1 14,985.7
a 9,303.8 5,791.6 13,802.6 28,898.0
Q 3,727.5 2,321.0 6,049.3 12,097.7
P 5,576.3 3,470.7 7,753.3 16,800.3
M 584.5 484.0 746.2 1,814.7
COC 0.157 0.209 0.123 0.150

Table 9.17 compares the indicated pricing by unit and distortion. It is computed us-
ing exactly the same method described for the simple discrete example. The calculations
are easy enough that they canbeperformed in a spreadsheet, but that is not recommended
unless you are very patient. Table 9.18 shows just the implied loss ratios. The total loss
ratios are all the same because the distortions are all calibrated to the same overall total
premium. SinceWChas the heaviest tail, it gets the lowest target loss ratio under CCoC,
which is themost tail-risk averse. In fact, CCoC is so tail-risk averse thatGL (which offers
some diversification because of the correlation structure) gets a target over 100%. This is
typical CCoC behavior—cat is really expensive; everything else is cheaper. The reason is
clear when you remember CCoC pricing is just a weighted average of the mean and the
max. The other distortions are more reasonable. TVaR and dual are quite similar and
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Table 9.18. Implied loss ratio by unit, by pricing, and by distortion (extract from previ-
ous tables).

Method Auto GL WC Total

Dist CCoC 94.9% 101.1% 81.6% 0.892
Dist PH 91.1% 89.7% 87.7% 0.892
Dist Wang 90.5% 88.1% 88.7% 0.892
Dist Dual 90.0% 87.0% 89.6% 0.892
Dist TVaR 89.5% 86.1% 90.4% 0.892

focus more on volatility risk. Since all three lines are similarly volatile, it is no surprise
their target loss ratios are also similar under this view.

This analysis—and indeed the whole monograph—has ignored several important el-
ements: expenses, taxes, and the time value of money. Expenses are relatively easy to
incorporate: acquisition expenses are typically amortized over the policy term, adminis-
tration expenses span the policy term and claim payout period, and claim expenses can
be bundled with losses. Taxes, however, are a Byzantine labyrinth requiring careful mod-
eling at the level of legal entity and country. Their treatment is up to each insurer, and
it’s hard to offer even vague general guidance. Finally, time value of money brings real
conceptual and computational difficulty (as opposed to the man-made complexity of
taxes). It is the quantum gravity of insurance pricing. For some early thoughts, see the
forthcoming monograph Pricing Multi-Period Insurance Risk by your intrepid second
author.
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Appendices
A.1. Table of symbols

Table A.1. Symbols used in this monograph.

Symbol Interpretation Reference

𝛼𝑖𝑘 unit 𝑖 share of layer 𝑘 expected loss Section 8.3
𝛽𝑖𝑘 unit 𝑖 share of layer 𝑘 premium Section 8.3
𝛿 rate of discount, 𝛿 = 𝜄/(1 + 𝜄) Section 4.1
Δ𝛸𝑘 layer 𝑘 limit,Δ𝛸𝑘 = 𝛸𝑘+1 − 𝛸𝑘 Section 4.4
𝜖 scaling parameter Section 3.3, Section 5.5
𝜖− minimum scale Section 5.5.2
𝜖+ maximum scale Section 5.5.2
𝜄 expected return, cost of capital, 𝜄 = 𝛭/𝑄 Section 4.1
𝜄𝑖 unit 𝑖 cost of capital Section 8.3
𝜄𝑘 layer 𝑘 cost of capital Section 8.3
𝜅𝑖(𝑥) unit 𝑖 conditional expected loss, 𝜅𝑖(𝑥) ∶= E[𝛸𝑖|𝛸 = 𝑥] Section 4.3
∇𝑖𝜙(𝛸) partial derivative with respect to scaling Section 3.3
𝜈 discount factor, 𝜈 = 1/(1 + 𝜄) Section 4.1
Φ(𝑧) standard Gaussian cumulative distribution function Section 4.6
𝜌() pricing risk measure Section 1.6
𝜃 weight parameter for bi-TVaR Section 6.1
𝑎 assets Section 1.6
𝑎() capital risk measure Section 1.6
𝑎𝑖 allocation of assets to unit 𝑖 (industry standard) Section 4.7
𝑔(𝑠) distortion function Section 4.4
𝑖 index to portfolio unit Section 2.2
𝑗 event index, 𝑗 = 1, … , 𝑛 Section 2.2
𝑘 layer index, 𝑘 = 0, … , 𝑛 − 1 Section 4.4
𝐿 expected loss Section 4.1
𝐿𝑖 unit 𝑖 expected loss Section 4.7, Section 4.5
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Symbol Interpretation Reference

𝛭 margin, 𝛲 = 𝐿 +𝛭 Equation 4.1, Section 4.1
𝛭𝑖 unit 𝑖margin𝛭𝑖 = 𝛲𝑖 − 𝐿𝑖 Section 4.5
𝑚 number of units Section 2.2
𝑛 number of events Section 2.2
𝑝𝑗 event probability 𝑝𝑗 = P(𝛸 = 𝛸𝑗) Section 2.2
𝛲 premium 𝛲 = 𝜌(𝛸) Section 1.6
𝛲𝑘 layer 𝑘 premium, 𝛲𝑘 = 𝑔(𝑆𝑘)Δ𝛸𝑘 Section 4.4
𝛲𝛲 plan premium Section 5.5.2
𝛲𝑅 required premium Section 5.5.2
𝛲𝑖 unit 𝑖 premium Section 4.7, Section 4.5
𝑞𝑘 distorted probability, 𝑞𝑘 = 𝑔(𝑆𝑘−1) − 𝑔(𝑆𝑘) Section 4.4
𝑄 capital𝑄 = 𝑎 − 𝛲 Section 1.6
𝑄𝑖 unit 𝑖 capital Section 8.3
𝑄𝑖
𝑘 unit 𝑖 capital in layer 𝑘 Section 8.3

𝑄𝛲 plan capital,𝑄𝛲 = 𝑎 − 𝛲𝛲 Section 5.5.2
𝑟 EVA/capital ratio, 𝑟 = 𝑉/𝑄𝛲 Section 5.5.2
𝑆𝑘 layer 𝑘 attachment probability, 𝑆𝑘 = 𝛲𝑟(𝛸 > 𝛸𝑘) Section 4.4
TVaR0.99 InsCo example capital standard Section 3.3
𝑉 EVA, economic value added,𝑉 = 𝛲𝛲 − 𝛲𝑅 Section 5.5.2
VaR0.85 example alternative risk measure Section 3.3
𝛸 portfolio liability random variable Section 1.6
𝛸0 phantom portfolio loss𝛸0 = 0with probability 𝑝0 = 0 Section 4.3
𝛸𝑖
𝑗 loss to unit 𝑖 in event 𝑗 Section 2.2

𝛸𝑗 portfolio loss in event 𝑗 Section 2.2
𝛸𝑘 layer payout threshold (attachment) Section 4.4
𝛸 ∧ 𝑎 portfolio payout to policyholders Section 1.6
𝛸𝑖(𝑎) unit 𝑖 capped losses Section 4.3
𝛸𝑖 loss to unit 𝑖 (random variable) Section 2.2
𝛧𝑘 event weight, likelihood ratio, 𝛧𝑘 = 𝑞𝑘/𝑝𝑘 Section 4.4
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A.2. Actuarial Standards of Practice

“The Actuarial Standards Board (ASB) sets standards for appropriate actuarial practice
in the United States through the development and promulgation of Actuarial Standards
of Practice (ASOPs). These ASOPs describe the procedures an actuary should follow
when performing actuarial services and identify what the actuary should disclose when
communicating the results of those services.”9 ASOPs can be found at
https://www.actuarialstandardsboard.org/standards-of-practice/.

Table A.2. ASOPs that are relevant to capital modeling.

Number Title Reference

7 Analysis of Life, Health, or Property/Casualty Insurer Cash Flows Chapter 2
23 Data Quality Chapter 2
30 Treatment of Profit and Contingency Provisions and the Cost of

Capital in Property/Casualty Insurance Ratemaking
Chapter 4

46 Risk Evaluation in Enterprise Risk Management Chapter 2, Chapter 3
47 Risk Treatment in Enterprise Risk Management Section 1.3, Section 3.3
55 Capital Adequacy Assessment Chapter 3
56 Modeling Chapter 2
58 Enterprise Risk Management Chapter 2, Chapter 3

TheASB repealed ASOPNos. 46 and 47 inDecember 2024 and replaced themwith
ASOP No. 58, Enterprise Risk Management, to reflect the developments since 2012, to
better reflect today’s ERM practices and terminology, and to align with ASOPNo. 55.

Table A.3. ASOPs that are potentially relevant to capital modeling.

Number Title

12 Risk Classification (for All Practice Areas)
13 Trending Procedures in Property/Casualty Insurance
19 Appraisals of Casualty, Health, and Life Insurance Businesses
20 Discounting of Property/Casualty Claim Estimates
25 Credibility Procedures
29 Expense Provisions for Prospective Property/Casualty Risk Transfer and Risk Retention
36 Statements of Actuarial Opinion Regarding Property/Casualty Loss, Loss Adjustment Expense, or

Other Reserves
38 CatastropheModeling (for All Practice Areas)
39 Treatment of Catastrophe Losses in Property/Casualty Insurance Ratemaking
41 Actuarial Communications
43 Property/Casualty Unpaid Claim Estimates
53 Estimating Future Costs for Prospective Property/Casualty Risk Transfer and Risk Retention

9 https://www.actuarialstandardsboard.org/about-asb/.
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A.3. Glossary

Term Description Reference

Accounting module that produces financial statements Section 1.5

Allocation module that distributes portfolio premium to units Section 1.5

BCAR Best’s Capital Adequacy Ratio Section 1.5

bi-TVaR convex combination of TVaRs Chapter 6

Business Operations module that deals with loss experience Section 1.5

capital owner-provided funds Section 1.1

Capital Adequacy module dealing with risk and capital sufficiency Section 1.5

capital risk measure rule relating liabilities to required assets Section 1.6

capital structure mix of liabilities funding total assets Section 1.5, Section 2.5

charter formal document setting out the rationale Section 1.2

coTVaR conditional TVaR, Natural Allocation of TVaR Section 3.3

comonotonic random variables𝛸 and 𝑌 are comonotonic if they are
nondecreasing functions of a third r.v.

Chapter 4

comonotonic
additive

property of a risk measure 𝜌: if𝛸 and 𝑌 are
comonotonic, then 𝜌(𝛸 + 𝑌) = 𝜌(𝛸) + 𝜌(𝑌)

Chapter 4

constant cost of
capital (CCoC)

assumption that all layers require the same return Section 4.4

distortion function translates attachment probability to rate on line Section 4.4

distorted
expectation

expectation calculated with distorted probabilities 𝑞 Section 4.5, Section 4.8

distorted expected
loss share

a unit’s share of a layer’s distorted expected loss, 𝛽𝑖𝑘 Section 8.3

distorted probability after applying a distortion function, 𝑞 replaces 𝑝 Section 4.4

Economic Scenario
Generator

module to generate socioeconomic outcomes Section 1.5, Section 2.4

economic value
added (EVA)

profits beyond what is necessary for investors Section 4.1
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Term Description Reference

equal priority rule for distributing funds among claimants Section 4.3

expected loss share a unit’s share of a layer expected loss, 𝛼𝑖𝑘 Section 8.3

funding equation states that assets are the sum of premiums and investor
capital, 𝑎 = 𝛲 + 𝑄

Equation 1.1, Section 1.6

gradient derivative with respect to several variables Section 3.3

InsCo hypothetical insurer used as a simple example Section 1.6

insureds customers of InsCo, who pay premiums Section 1.6

investors owners of InsCo, who supply capital Section 1.6

law invariance risk measure depends only on distribution Section 4.4

layer segment of assets between two levels of portfolio loss Section 4.4

layer funding
equation

states that layer assets are the sum of premiums and
investor capital,Δ𝛸𝑘 = 𝛲𝑘 + 𝑄𝑘

Equation 4.4, Section 4.4

likelihood ratio ratio of distorted to original probabilities Section 4.4

margin difference between premium and expected loss,
𝛭 = 𝛲 − 𝐿

Equation 4.1, Section 4.1

marginal approach examine the effect of a small change; look at first
derivative

Section 3.3

model simplified representation of reality, usually mathematical Section 1.1, Section 1.5

Natural Allocation
(NA)

decomposition of portfolio premium into distorted
expectation of unit losses

Section 4.5

Natural Allocation
of capital

allocation of capital consistent with allocation of
premium,𝑄𝑖

𝑘

Section 8.3

normal copula multivariate uniform distribution based on the normal Section 8.2.5

objectivity synonym for law invariance Section 4.4

parameter
uncertainty

lack of knowledge about parameters of a process,
sometimes modeled as a distribution

Section 8.1

Pricing module that assigns technical premium to the portfolio Section 1.5

Pricing & Allocation module that assigns technical premiums to units Section 1.5

pricing risk measure rule that relates liabilities to technical premiums Section 1.6
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Term Description Reference

pro forma hypothetical financial statement Section 1.5, Section 2.7

proxy model simpler model of another model Section 5.5

probabilistic
database

stored sample of random outcomes Section 2.2

process risk randomness in outcomes from a well-defined and
parameterized stochastic process

Section 8.1

Reinsurance module that deals with risk transfer Section 1.5

risk appetite compensation/price limit for taking on risk Section 1.5

risk tolerance limit of risk the firm is willing to take on Section 1.5

RVaR Range Value at Risk, window version of VaR Section 3.3

quantities of interest
(QoI)

target metric, statistic, etc. of a simulation exercise Section 8.1

Spectral Risk
Measure (SRM)

risk measure determined by a distortion function Section 4.4

state price a contract that pays $1 in a particular state of the world Section 4.8

Tail Value at Risk
(TVaR)

average of losses in a specified tail probability; also CVaR,
TCE

Section 3.2

tranche synonym for layer Section 4.4

unit portion of portfolio, e.g., line of business Section 1.5

Value at Risk (VaR) risk measure, quantile of a distribution Section 1.5

XTVaR excess TVaR, TVaRminus expected losses Section 4.7
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