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A scalable toolbox for exposing indirect discrimination in insurance rates

Executive Summary
According to actuarial standards of practice, insurance pricing relies on grouping policy-
holders by risk to set adequate premiums. Modern predictive models, especially machine
learning, excel at detecting statistical associations to differentiate risks, but they can learn
spurious or undesired correlations. This raises concerns when socioeconomic or demo-
graphic factors may (intentionally or inadvertently) affect the fairness of insurance pricing.

Fairness in insurance is difficult to operationalize due to its ambiguity. Fairness metrics
from the machine learning literature lack the segment-specific relevance actuaries require
and are expressed in abstract units that obscure real-world consequences. For actuar-
ies to intervene, proxy effects and unfair biases must be quantified in insurance-relevant
terms: dollars and people.

In this paper, we focus on fairness in actuarial pricing. We study the situation where insur-
ance rates should be fair with respect to a categorical (or discretized) sensitive variable,
such as race or economic status, and the latter is fully observed (despite the possible
privacy challenges). Our main contributions are listed below.

• We argue that actuarial fairness, solidarity, and causality form the three core dimen-
sions of fairness in insurance pricing:

– Actuarial fairness aligns premiums with expected losses, mitigating cross-
subsidies,

– Solidarity aligns premiums across protected groups, mitigating disparities,

– Causality ensures models capture only true risk factors, mitigating proxy ef-
fects.

• We translate these dimensions into a five-point spectrum of premiums:

– The best-estimate premium is the most accurate predictor of losses using all
available information, including the sensitive variable,

– The unaware premium is the most accurate predictor of losses using all infor-
mation except the sensitive variable,

– The aware premium is the most accurate predictor of losses when controlling
for the sensitive variable,

– The corrective premium is the most accurate predictor that enforces similar
premium distributions across levels of the sensitive variable,

– The hyperaware premium is the most accurate approximation of the corrective
premium that does not directly discriminate on the sensitive variable.

• We define actuarially relevant local metrics that quantify the potential monetary im-
pact of unfairness at the policyholder level. Proxy vulnerability is the difference be-
tween unaware and aware premiums. It locally measures how much the allowed
variables pick up the signal of a missing sensitive variable.
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• We define post pricing local metrics to evaluate the fairness of any pricing structure
relative to the estimated spectrum.

• We partition policyholders to expose the segments in which unfair discrimination is
most severe.

• We integrate these components into a fairness assessment framework that partitions
the policyholders, pinpoints segments most affected by unfairness, and evaluates
local metrics to diagnose unfairness and guide intervention.

• We illustrate our approach with a large case study inspired by industry practice. The
analysis relies a real dataset of approximately 768,000 vehicles insured in Québec
(2016–2017), covering at-fault material damage claims. We examine the fairness
of a pseudo commercial price with respect to discretized credit score: low (vulner-
able group) vs high. This sensitive variable measures the policyholder’s economic
precariousness.

– Proxy vulnerability is both material and skewed: while most policyholders may
receive a modest rebate, a vulnerable minority of them could face 15–30%
overpricing if the regulation only requires that the sensitive variable be omitted,

– Our integrated framework (Fig. 14) illustrates that fairness in insurance pricing
can be assessed efficiently, with minimal analyst effort. The framework pro-
vides simultaneous diagnostics from the three fairness dimensions, translates
unfairness into dollar terms at the individual level, and highlights disparities
across population segments.

• We provide additional information and the complete code illustrated on a compre-
hensive simulated data example in the online supplementary material.

Designed for routine portfolio monitoring, our toolbox delivers valuable insights whether
or not the sensitive attribute is included in pricing, provided it is available for assessment.
The toolbox’s scalability, across large datasets and rich covariate sets, makes fairness
operationalizable for actuaries: intuitive, practical, and encompassing the three fairness
dimensions.
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Section 1. Introduction
Machine learning is now central to actuarial science for its predictive power (Embrechts
andWüthrich, 2022). It scales to large datasets, captures complex interactions, and excels
at finding associations helpful to the predictive task (Frees et al., 2016). However, some
associations are spurious; others reflect sensitive, though predictive, features. This raises
ongoing debates over the legitimacy and fairness of relying on such associations in pricing.

Ratemaking datasets tend to subtly encode sensitive traits: geographic location may hint
at ethnicity, and occupation often reflects gender (Bender et al., 2022a). Combined with
inequalities, e.g., racial wealth gaps or credit access disparities (Bender et al., 2022b),
non-sensitive variables associated with sensitive attributes can act as proxies, indirectly
targeting protected subpopulations. Even without explicit use of protected features in
ratemaking models, such proxy effects can perpetuate disparities.

The abundance of data amplifies the likelihood that combinations of input covariates inform
on protected traits. This can be problematic when socioeconomic or demographic factors
may (intentionally or inadvertently) affect insurance pricing.

Following ASOP No. 12 and 53 (ASB, 2005, 2017), insurance pricing requires grouping
policyholders by risk to set adequate and financially sound premiums. Actuarial fairness
ensures solvency; in contrast, other types of fairness may erode competitiveness, deter-
ring their adoption without regulatory pressure.

Still, actuaries are expected to test for proxy effects in their models. A recent survey
(Cavanaugh et al., 2024) indicates that U.S. regulators broadly agree that “insurers should
test to ensure that their models do not use data and information that act as proxies for
disallowed rating variables”. The result is a tension: actuaries must balance risk-based
pricing with ill-defined fairness notions. Even the Actuarial Standards Board acknowledges
in ASOP No. 12 that there is “no general agreement on what constitutes an ‘equitable’
classification system or ‘fair’ discrimination” (ASB, 2005).

Fairness in insurance lacks an operationalizable definition and meaningful metrics. Its
meaning is ambiguous, and debates hinge on speculation about variable behavior in black-
box models. Standard group fairness metrics offer little segment-level insight and are diffi-
cult to translate in dollars or impacted policyholders. Fairness is discussed in theory (Lind-
holm et al., 2024b), but unfairness unfolds in practice. Empirical studies remain scarce,
and Fahrenwaldt et al. (2024) call for high-quality datasets to move the field forward.

To address these challenges, we develop a framework that maps fairness debates onto
actuarially meaningful benchmarks. We focus on fairness in actuarial pricing, acknowl-
edging its unique challenges. Our contributions are both conceptual and applied: our
methodology enables detection and quantification of unfairness using industry data. We
illustrate on a large-scale industry dataset how potential unfairness manifest in practice.

The remainder of this paper is structured as follows. We first set the notation and scope
in §2. In §3, we present the three dimensions of fairness in insurance pricing: actuarial
fairness, solidarity, and causality. We then translate these dimensions as five ratemaking
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benchmarks in §4 covering the spectrum of fairness viewpoints. From the estimated spec-
trum, we define in §5 actuarially relevant local metrics prior to pricing (risk spread, proxy
vulnerability, fairness range, and parity cost) and post pricing (commercial loading, com-
mercial burden, implied propensity and excess lift). In §6, we propose a method to detect
systematic disparities by partitioning the portfolio to reveal vulnerable subpopulations. We
then present two use cases: pre-pricing detection of proxy-vulnerable individuals (§6.1)
and post-pricing monitoring of commercial loadings (§6.2). We illustrate the tools practi-
cality with a case study focused on protecting individuals in precarious economic situation
using a large-scale Canadian auto insurance dataset and provide the code illustrated on
a simulated data example in the online supplementary material.

Section 2. Scope, notation, and setup
In this article, we focus on a one-period fairness goal, independently of the notion of in-
tent. Fairness is assessed from an output-based perspective. We assume the absence of
unobserved confounders and selection bias, though these issues warrant discussion (see
Côté et al., 2024, 2025).

The random variable Y represents the loss cost in a property and casualty insurance cov-
erage. Variables available for pricing this coverage are denoted by the random vector X,
assumed measured without error.

Fairness is always relative to some pre-specified prohibited (or sensitive) variableD, which
is here taken to be a single, categorical and fully observed random variable. Examples
of sensitive attributes include gender in Europe, race in Texas, religion in California, or
credit score in Ontario. Even though this might create privacy concerns, we assume that
the insurer collects D, so that this variable is fully observed in our dataset. We further
refer to “protected groups” as the subpopulations formed by the different levels of D and
to “vulnerable groups” as those historically disadvantaged among the protected groups.

Suppose we have a portfolio of n policyholders (xi, di, ei, Yi)i=1,...,n, where ei is exposure
to risk, measured in vehicle-years. Let π(x, d) be the yearly commercial price for a policy
with characteristics x and d, including all loads, adjustments, and profit margins.

We introduce below the setup of the real data case study used for illustrating our method.
Case study. We study fairness regarding policyholder’s economic precariousness in auto
insurance premiums for material damage in at-fault accidents (Chapter B2) in the province
of Québec, Canada. The data, obtained through a partnership with an insurer, includes
over 768 000 vehicles insured from 2016 to 2017. The vector X comprises 16 explanatory
variables1, including driver information, vehicle characteristics, and territorial information.

The response variable Y is the claim amount for at-fault accidents. It is highly zero-inflated,
with approximately 97% of observations not filing any claim. The annual average claim is
around

∑
Yi/

∑
ei ≈ $190, where exposure ei ∈ (0, 1] is measured in vehicle-years.

1Strict anonymization and confidentiality measures were applied. A pre-selection, performed under se-
nior actuarial oversight, reduced the size of the dataset from more than 30 candidate variables to just 16,
balancing multicollinearity control with the inclusion of essential risk factors for the models.
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We take credit score as D, given its link to economic precariousness (Bank of Canada,
2024). Furthermore, Prince and Schwarcz (2019) argue in favor of considering credit
score as sensitive. They explain that insurers’ reliance on credit data disproportionately
impacts low-income and ethnic minority policyholders, characteristics generally protected
against discrimination. We construct a binary variable D, where D = 1 indicates high
credit risk (economic precariousness) and represents about 40% of the sample.

We analyze a modified version of the insurer’s pricing function. The modifications include:

1. Retrofitting the prices from available covariates (X, D),

2. Integrating observations unavailable at the time of developing the prices,

3. Rescaling to match average loss to preserve premium scale confidentiality,

4. Making additional adjustments to protect segmentation confidentiality.

We refer to this adjusted tariff as the pseudoprice, denoted PseudoPrice(x, d), which
serves as the focal point for our fairness analysis throughout the paper2. ▲

Section 3. The dimensions of fairness in actuarial pricing
In our framework, three dimensions are needed to evaluate fairness relative to a sen-
sitive D in actuarial pricing: actuarial fairness (alignment with expected loss), solidarity
(redistribution across protected groups beyond pure risk), and causality (justifiable use of
information). Together, the dimensions aim to cover all facets of fairness in actuarial pric-
ing, each representing a distinct angle. Any fairness-related critique reduces to a breach
of one dimension or to an explicit trade-off among them. The three dimensions of fairness
are summarized in Fig. 1 and presented in §§3.1–3.3.

3.1. Actuarial fairness
Actuarial fairness underpins viable insurance pricing. Originating in economic theory (Ar-
row, 1963), it requires policyholders to contribute to the insurance pool in proportion to
their own risk. Specifically, a premium is actuarially fair if “it represents an unbiased esti-
mate of the expected value of all future costs associated with the risk transfer” (Casualty
Actuarial Society, 1988).

A model is actuarially fair if it captures all risk differences and is locally balanced, keeping
risk estimates unbiased and aligned with observed losses at all portfolio scales (Denuit
et al., 2024). Each group, including protected ones, must have self-sustaining loss ra-
tios. This avoids cross-subsidies and aims at a constant expected profit margin across
policyholders. Actuarial fairness is about aligning premiums with expected losses.

Actuarial fairness reflects the predictive performance of the pure premium model and the
lack of non-risk based commercial adjustments. The criteria of loss ratio parity (see, e.g.,
Bender et al., 2025) and sufficiency (see, e.g., Mosley and Wenman, 2022) align with this
dimension.

2While the pseudoprice is constructed to maintain realism within the case study, its non-equivalence to
the actual pricing function precludes any conclusion regarding the fairness of the partner insurer’s pricing.

Pre-print submitted to: Casualty Actuarial Society 7



A scalable toolbox for exposing indirect discrimination in insurance rates
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Figure 1. The three dimensions of fairness in actuarial pricing: their ideal, corresponding
criterion and benefit. We clarify what they aim at mitigating, and which policyholder group
might face affordability issues if this dimension is prioritized.

3.2. Solidarity
Solidarity is the foundation of insurance. In actuarial modeling with variables (X, D), the
solidarity dimension of fairness pertains to prohibited variables D, allowing risk differenti-
ation based on X as long as premium distributions are similar across D. We intentionally
create cross-subsidies if risk differs across groups of D, with the intent to promote soci-
etal welfare. Solidarity aligns with premium parity explained in Bender et al. (2025) and
with demographic parity3 of premiums: equal average premiums (weak parity) or identical
premium distributions (strong parity) across protected groups. This is also referred to as
the independence fairness criterion in Mosley and Wenman (2022).

Complement 1 – The shrinking homogeneous pool

Initially, all policyholders were pooled in a collective fight against risk. By relying
on data, insurers were able to create smaller, “homogeneous” pools, segmenting
the original solidarity to better capture risk heterogeneity. With big data, the pools
shrank further, and Barry (2020) discusses a shift toward fairness rooted in indi-
vidualized pricing. In an unrealistic extreme, oracle insurers – capable of perfectly
predicting both the amount and timing of individual claims – might charge each
policyholder precisely their discounted future claim amount, questioning the very
concept of insurance risk transfer. Increasingly granular risk factors widen the sep-
aration between actuarial fairness and solidarity.

3See definition in Chapter 8 of Charpentier (2024) (Def. 8.5, Def. 8.6, Prop. 8.1).
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3.3. Causality
Causal inference is the art and science of reflecting the true impact of some variable on
a given target, stripped of proxy effects. In a causal pricing model, each rating variable’s
influence corresponds to its causal effect on the claim risk Y , and does not include any
indirect link through sensitive attributes D.

For causal pricing, only true and allowed risk factors, causally linked to Y , belong in the
model, and their premium influence must match their actual risk contribution. While con-
trollable risk factors are valuable for prevention, non-controllable ones, such as age, are
also admissible when their causal link to risk is well supported.

Proxy and causality are about effects, not specific variables. A variable’s use in a model
– not the variable itself – determines its role as a proxy. Talking about proxy effects rather
than “proxies” emphasizes this distinction. Even valid risk factors may induce proxy ef-
fects. Causal inference tools can isolate the “true risk component” of a rating factor.

Common causal inference strategies include using control variables to mitigate bias during
training, ensuring the model is uncontaminated by D. The causality dimension of fairness
aligns with the proxy-free fairness in Charpentier (2024), the proxy parity fairness criterion
of Côté et al. (2024), and the proxy discrimination metric of Lindholm et al. (2024a).

Complement 2 – Aligned tools: causal thinking and actuarial judgment

Statistical models capture associations—how claims vary with age or vehicle type.
Causal models ask what happens when a variable changes. All causal models are
statistical, but not all statistical models support causal claims.

Credit history

Vehicle model Claim cost

Income

Figure 2. Illustrative
causal graph for insur-
ance pricing.

A variable “causes” another if intervening on it shifts the
distribution of what follows. Causation reflects a conse-
quential distributional shift, not deterministic outcome.

Causal modeling depends on assumptions—some
testable, some not—often made explicit in a causal
graph. These diagrams clarify which variables influence
others (see, e.g., Moodie and Stephens, 2022).

Figure 2 encodes one such structure: vehicle model di-
rectly affects claim cost; credit history correlates with claim cost through income, an
unobserved common cause. Estimating the effect of vehicle model requires con-
trolling for income or credit history, the latter being feasible via credit score data.

Causal graphs reveal valid signals and potential biases. Actuaries know: rating
factor choice is never solely about fit. Causal thinking formalizes that intuition.
Many causal assumptions mirror those already made, explicitly or not, in practice.

Causality matters for fairness. Proxy effects hide in variables that appear overly
predictive but reflect something sensitive. Discrimination lies in data, not models
(Charpentier, 2024). Causal reasoning helps separate valid from spurious signals,
which is key to detecting unfairness along the causality dimension: proxy effects.
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Complement 3 – Revisiting the history of risk classification

Figure 3. The dimensions of
fairness with increasing seg-
mentation capacity.

Flat-rated pricing (first private auto in 1887, Insur-
ance Information Institute, 2023) maximized soli-
darity but ignored risk heterogeneity and causal-
ity. Manual pricing tables (Kormes, 1935) added
experience-based risk tables, improving actuarial
fairness and likely causality. Multivariate analy-
sis, such as minimum bias procedure of (Bailey
and Simon, 1960), refined segmentation and risk
factor use based on insurer-specific experience.

Usage-based insurance (first policy sold in 1998
by Progressive, Brobeck and Hunter, 2021)
aligned premiums with behavior. Although it di-
lutes the predictive power of protected attributes
(Boucher and Pigeon, 2024), behavioral data may
still encode disparities, undermining solidarity as
pictured in Fig. 3.

Risk differences across protected groups may exist due to historical and socioe-
conomic factors. As data granularity increases, so does the potential for actuarial
justification in perpetuating these disparities.

Section 4. The spectrum of fairness
Côté et al. (2025) describe disparate impact as the association between premiums and
sensitive attributes, lying between two extremes: solidarity, which aligns premiums across
protected groups, and actuarial fairness, which aligns premiums with risk. Solidarity lev-
els premiums; actuarial fairness levels profits. This tension is the core of fairness debates.

Nuances exist. Premium disparities relative to D are not uniformly problematic. They
range from no association (solidarity), to justified association (causality), to association
inflicted by proxy effects, and up to direct exploitation ofD for maximal predictive accuracy
(actuarial fairness). The challenge is in pinpointing where the disparate impact falls along
this spectrum, and whether it crosses the blurry line between fair and unfair.

The five premium families of Côté et al. (2025) span this spectrum: best-estimate, un-
aware, aware, hyperaware, and corrective. These families represent how fairness con-
siderations regardingD influence a pricing structure, and how permissible variables X are
leveraged in relation toD. Each family offers distinct trade-offs between actuarial fairness,
causality, and solidarity. We use this spectrum to investigate potential unfairness.

This section is structured as follows: we present the five benchmark premiums, one for
each family, in §4.1 and we explain how we estimate them in §4.2. In §4.3, we reveal
trade-offs between fairness dimensions in our Case study.

10 Pre-print submitted to: Casualty Actuarial Society
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4.1. The five families as five benchmarks
We present one model per family to obtain five benchmarks. We focus on the expectation,
in line with the “expected value of all future costs” of Casualty Actuarial Society (1988).

First, the best-estimate premium µB(x, d) aligns with actuarial fairness, grouping risks
following X and D to set premiums. One example is µB(x, d) = E(Y |X = x, D = d).

The corrective premium µC(x, d) leverages both X and D to satisfy solidarity, that is,
equal premium distribution per protected group. One example is µC(x, d) = T d{µB(x, d)},
where T d is a transport function detailed in Complement 4 and the online material.

Complement 4 – From best-estimate to corrective: optimal transport

Optimal transport shifts one distribution onto another. The Wasserstein distance
measures how far the D = 1 premium distribution is from that of D = 0. Solidarity
holds when this distance is zero (Charpentier et al., 2023). Transport functions T d

push best-estimate premiums to a barycenter, yielding corrective premiums (Fig. 4).

Figure 4. Density of best-estimate and corrective premiums per D. Annotation illus-
trates how best-estimate premiums are transported to corrective premiums.

The unaware premium µU(x) is the best non-directly discriminatory approximation of the
best-estimate premium, an example of unaware premium being µU(x) = E(Y |X = x).

The hyperaware premium µH(x) is the best non-directly discriminatory approximation of
the corrective premium. One example is µH(x) = E{µC(X, D)|X = x}.

Finally, the aware premium µA(x) captures the effect of X on Y when controlling forD. An
example is µA(x) = ED{µB(x, D)}, a discrimination-free price of Lindholm et al. (2022).

The best-estimate premium sets the baseline with both X and D in a “paying for your
own risk” approach. The unaware, aware, and hyperaware premiums omit D but handle
proxies differently: the first reflects proxy effects, the second resists them, and the third
uses them toward premium parity. The hyperaware and corrective explicitly pursue soli-
darity. The best-estimate and unaware are solely risk-focused. The aware permits parity
shifts when causally justified by X. Together, these benchmarks reveal the trade-offs in
fair pricing regarding D across fairness dimensions. We summarize them in Table 1.
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Table 1. Properties of the five fair premiums from §4.1.

Premium Best-estimate Unaware Aware Hyperaware Corrective

Notation µB(x, d) µU(x) µA(x) µH(x) µC(x, d)
Formula E(Y |X = x, D = d) E(Y |X = x) ED{µB(x, D)} E{µC(x, D)|X = x} T d{µB(x, d)}
Direct

discrimination
Proxy

discrimination – –
Demographic

disparities

Dimension
prioritized

Actuarial
fairness

Actuarial
fairness Causality Solidarity Solidarity

4.2. Estimation of the five premiums
We give an example of procedure to estimate the spectrum of fairness. For additional
details and examples, see the online supplement.

1. Best-estimate: Fit a lightgbm (Ke et al., 2017) that includes (X, D) to predict Y
using an appropriate distribution (e.g., Tweedie):

µ̂B(x, d) = Ê(Y | X = x, D = d).

Alternatively, one can rely on a (directly discriminating) technical price.

Complement 5 – Technical or data-driven best-estimate premium?

Insurers typically start pricing by estimating indicated rates, the actuary’s best es-
timate of risk-based prices. As discussed in §4.1, the last four fairness families are
derived from µ̂B. The choice of anchor for µ̂B shapes the fairness assessment:

a) Indicated rates as µ̂B: Indicated rates can be used as µ̂B if the sensitive vari-
able D is included as a rating variable. This approach benefits from actuarial
oversight, but ties fairness benchmarking to actuarial choices. Consequently,
biases within technical pricing may remain undetected.

b) Data-driven µ̂B: To guard against institutional or analyst-induced bias, actuar-
ies may estimate µ̂B directly from data using flexible algorithms like lightgbm
(Ke et al., 2017), detached from technical or commercial pricing.

2. Unaware: Train a second lightgbm to approximate µ̂B(X, D) using only X:

µ̂U(x) = Ê{µ̂B(X, D) | X = x}.

12 Pre-print submitted to: Casualty Actuarial Society
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3. Aware: Compute the empirical proportions of D in the training set. For each x,
average group-specific best-estimate premiums weighted by empirical frequencies:

µ̂A(x) =
∑
d

µ̂B(x, d) P̂r(D = d).

4. Corrective: Train the optimal transport function T̂ d of best-estimate premiums using
Equipy (Fernandes Machado et al., 2025). The corrective premium is then:

µ̂C(x, d) = T̂ d{µ̂B(x, d)}.

5. Hyperaware: Train a last lightGBM model to regress µ̂C on X only:

µ̂H(x) = Ê{µ̂C(X, D) | X = x},

removing any direct discrimination on D while partly preserving parity corrections.

Complement 6 – Implementation tips

• If D was discretized, store bin definitions for future use.

• Scale each of the five premiums by a constant to align with revenue targets.

All models are estimated on the same data, with the same features and overall target
profit. Aside from natural estimation variability, differences reflect only the fairness goal.

4.3. Deviations within the spectrum
Deviations of a commercial price from a fairness benchmark suggest either misalignment
with its intent or potential for predictive gain without fairness sacrifice. The meaning of the
spectrum emerges only through the lens of the three fairness dimensions (§3), explored
next.

Case study (Cont’d). We estimate the spectrum of fairness following the methodology
recommended in §4.2. We obtain our best-estimate premium µ̂B purely from data.

Table 2. Partial description of six profiles for the analysis in the Case study.
id GenderMainDriver DrivExp

(year)
DriverAge
(year)

YearlyMileage
(km)

Location
(from ZipCode) OccType hasPropertyIns Economic

precariousness (D)

1 Female 19 35 10 000 Island of Montreal Full time Yes 1
2 Male 25 42 10 000 Capitale-Nationale None Yes 0
3 Female 56 80 5 000 Laurentians None Yes 0
4 Male 8 24 20 000 Island of Montreal Full time Yes 1
5 Male 0 42 15 000 Island of Montreal Full time No 1
6 Male 3 19 15 000 Centre-du-Québec Full time No 0
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In the left panel of Fig. 5, we display the lightgbm estimated propensity P̂r(D = 1|X = x)
with dashed line indicating an observed high credit risk D = 1 for individuals 1, 4, and 5.
In the right panel of Fig. 5, we show the estimated spectrum and the pseudoprice for six
individuals, partly described in Tab. 2. These graphs offer initial intuition on fairness:

• For individual 5, the pseudoprice lies outside the fairness spectrum. While methodol-
ogy and commercial strategy (e.g., marketing or customer experience) may explain
this, any deviation from the spectrum warrants close attention.

• For individuals with D = 1, the best-estimate premium (red) is the highest of the
spectrum. The corrective premium µ̂C(x, d) (blue) exceeds µ̂B(x, d) only if D = 0.

• Fair premium ranges vary. For individual 2, all premiums closely align, suggesting
fairness adjustments have little matter for some policyholders. The intuition that
higher risk appears linked to wider premium range will be exemplified in Fig. 14.

• Individual i = 5 shows higher P̂r(D = 1|X = xi) than individual i = 4, pulling the un-
aware premium (orange cross) closer to the best-estimate (red triangle), illustrating
proxy discrimination. For outlier cases like i = 6, with D = 0 despite high propensity
P̂r(D = 1|X = x6), the unaware premium is far from the best-estimate.

• Higher propensity for D = 1 in individuals {4, 5, 6} versus {1, 2, 3}, aligns with higher
risk estimates, reinforcing the core motivation for fairness. Vulnerable individuals
(high credit risk D = 1) tend to present allowed covariates X associated with higher
claim propensity, driving up premiums via both protected and allowed variables4.
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Figure 5. Propensity to observe D = 1 (left) and estimated spectrum of premiums along
with the pseudoprice (right) for six individuals in the Case study.

4In practice, biased covariates (e.g., uneven law enforcement of traffic violations) may further inflate
premiums for vulnerable groups (Leong et al., 2024).
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To formalize these observations, we assess each premium’s alignment with the fairness
dimensions introduced in §3. With a binary sensitive variable, Wasserstein distance mea-
sures distributional differences between the two protected groups (D = 0 and D = 1).

1. For actuarial fairness, we assess loss ratio parity via the distance between its dis-
tributions across groups. Because every value of D yields a single loss ratio, we
partition the data into 100 random subsamples to allow estimation of distributional
differences. This sampling is only used for this dimension.

2. For causality, we assess proxy parity. Following Lindholm et al. (2024a); Côté et al.
(2024), we treat deviations from the aware premium as proxy effects and compare
their distributions across groups.

3. For solidarity, we compare premium distributions between protected groups.

These metrics are illustrative, they can be adapted or refined depending on the context.

Table 3 presents the Wasserstein distances for all premiums and the pseudoprice for at-
fault material damage (Chapter B2) coverage. A Wassertein distance of zero implies the
corresponding fairness criterion is satisfied. This provides context for the pseudoprice’s
position within the fairness spectrum.

Fig. 6 displays a radar plot ranking premiums by their alignment with each fairness dimen-
sion. The closer a premium is to a triangle’s vertex, the stronger its adherence to that prin-
ciple. As expected, the best-estimate, aware, and corrective premiums strongly adhere to
actuarial fairness, causality, and solidarity, respectively. The three non-directly discrimina-
tory premiums (unaware, aware, hyperaware) cluster together, with the unaware leaning
toward actuarial fairness and the hyperaware tilting toward solidarity, as expected.

Table 3. Wasserstein distance between distributions
forD = 0 andD = 1 of loss ratios (actuarial fairness),
deviations from the aware family (causality), and pre-
miums (solidarity) in the Case study.

Actuarial
Fairness Causality Solidarity

Best-estimate 0.036 67.054 116.938
Unaware 0.282 12.800 62.684

Aware 0.343 0 49.884
Hyperaware 0.392 10.071 49.840
Corrective 0.604 50.167 0.877

PseudoPrice 0.175 35.773 85.654
Figure 6. Alignment of premi-
ums with fairness dimensions
in the Case study.

The pseudoprice aligns with a best-estimate strategy, which is unsurprising given the sen-
sitive variable’s inclusion in industry-wide rates during the study period. When a variable
is not deemed sensitive, insurers legitimately prioritize actuarial fairness.
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Figure 7. Evolution of the mean premium for D = 0 (solid) or 1 (dashed) by family as a
function of how many covariates are allowed in the vector X in the Case study. The best-
estimate, corrective, and pseudoprice directly discriminate on D.

We illustrate in Fig. 7 how average premiums per protected group evolve when covariates
are sequentially introduced. The covariates in X are added in order of variable importance
in the best-estimate lightgbm; the first is the main driver’s experience in years DrivExp
which is strongly correlated with credit score. Both the best-estimate and corrective pre-
miums directly discriminate on D but with opposing intents: the best-estimate reflects all
risk differences in D, while the corrective offsets group disparities through corrective di-
rect discrimination. Even with abundant proxy effects, the unaware premium’s ability to
capture risk differences from the prohibited variable D is limited, as evidenced by the per-
sistent gap between its average (orange) and that from the best-estimate premium (red).
The ordering of premium families aligns with intuition.

Fig. 6 reminds us that fairness dimensions cannot be satisfied simultaneously. Classical
fairness criteria (e.g., independence, proxy parity, and sufficiency), each tied to a distinct
fairness dimension in §3, are fundamentally incompatible: extensive results, for example,
by Kleinberg et al. (2016); Charpentier (2024); Lindholm et al. (2024b) demonstrate that
satisfying one typically violates another. In insurance setups, Bender et al. (2025) illustrate
this impossibility with actuarial examples.

Universal fairness breaks on one truth: disparities do exist to begin with as seen, for
example, in Fig. 7. No premium can be deemed universally fair; fairness is – and will
remain – an elusive ideal, requiring ongoing governance of trade-offs across the three
dimensions. All dimensions align only in the trivial case where the sensitive variable is
entirely unrelated to the rest of the dataset (see, for example, Côté et al., 2025). ▲

16 Pre-print submitted to: Casualty Actuarial Society



A scalable toolbox for exposing indirect discrimination in insurance rates

Section 5. Actuarially relevant local fairness metrics
The Case study suggests that deviations from the fair premium spectrum provide mean-
ingful insights at the individual level. In this section, we first interpret key deviations within
the spectrum (pre-pricing) and then examine deviations from a given tariff π(x, d) to the
benchmarks (post-pricing).

5.1. Pre-pricing local metrics
First, the risk spreadmeasures the range of best-estimates for different sensitive attribute
values. Building on proxy effects of Lindholm et al. (2024a), we interpret the proxy vul-
nerability as the deviation between the unaware and aware benchmark premiums. Next,
the fairness range reflects the overall range of the spectrum. Lastly, we define the parity
cost, the overcharge experienced when going from loss ratio parity to premium parity.

5.1.1. Risk spread
For a segment x, the risk spread, denoted ∆risk(x), measures the range of data-driven
risk estimates across different values of the sensitive attribute D:

∆risk(x) = max
{
µB(x, 1), µB(x, 0)

}
−min

{
µB(x, 1), µB(x, 0)

}
=

∣∣µB(x, 1)− µB(x, 0)
∣∣ ,

the within-segment premium gap between D = 1 and D = 0. It captures how much the
best-estimate premium attributes risk differences to D within a given segment x.

The risk spread represents the model’s incentive to capture risk differences driven by D
for the segment x. The risk spread is positive; a larger value indicates a greater potential
for disparate treatment across protected groups should pricing differentiate on D.

5.1.2. Proxy vulnerability
For a segment x, proxy vulnerability quantifies the unintended price shift between a
model that ignores D and one that controls for it. We define it as:

∆proxy(x) = µU(x)− µA(x). (1)

A large proxy vulnerability indicates that a segment x is prone to proxy effects, where
seemingly neutral variables in x serve as proxies for D. This occurs when a significant
risk spread exists and X informs on D. A positive value means the unawareness model
overcharges the segment, while a negative value results from underpricing due to proxy.
Studying proxy vulnerability highlight segments that are most exposed to potential proxy
discrimination, providing a best guess regarding its monetary magnitude and direction.

Because the proxy phenomenon captures risk differences across groups of D indirectly, it
is bounded by the distance between the aware premium and surrounding best-estimates:

min{µB(x, 1), µB(x, 0)} − µA(x) ≤ ∆proxy(x) ≤ max{µB(x, 1), µB(x, 0)} − µA(x).

Proxy vulnerability arises from the interplay between risk spread (potential direct discrim-
ination on D) and propensity (ability to exploit it when using only x).
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Case study (Cont’d). The top left panel of Fig. 8 plots proxy vulnerability ∆̂proxy(xi) against
the estimated propensity P̂r(D = 1|X = xi) for individuals i in the test set. Black triangles
relate to observed low credit score (di = 1) and purple circles to high credit score (di = 0).
The upward spline trend indicates that proxy vulnerability increases with the likelihood of
belonging to the D = 1 group. Colors suggest that the model for D|X (horizontal axis) is
good, with more black triangles (true d = 1) on the right.

The top right panel of Fig. 8 shows boxplots of the proxy vulnerability, expressed as a per-
centage of the aware premium. Proxy vulnerability is higher for the D = 1 subpopulation,
and often exceeds 10%. Low credit score individuals (di = 1) are riskier, and the un-
aware premium µU captures this even when D is unobserved or excluded. This outcome
is unavoidable when predictive covariates correlate with protected traits.

The middle row of Fig. 8 plots the relationship between propensity and aware premium,
using both original (left) and normalized rank (right) scales. Though the aware premium is
constructed to be invariant to the propensity to observe D = 1 (§4.1), a dependence per-
sists: individuals with higher propensity forD = 1 tend to have higher aware premiums. In
this case study, vulnerable individuals (D = 1) are riskier and more likely to exhibit values
of allowed covariates x linked to higher claim risk. The normalized rank plot confirms this:
the upper tail is mainly populated by D = 1 individuals.

The bottom line of Fig. 8 depicts proxy vulnerability (color scale, low in purple, high in
black) as a function of risk spread (x-axis) and propensity for D = 1 (y-axis). Patterns
reveal that proxy vulnerability arise when risk differs by protected group (large risk spread)
and when x allows indirect inference of D (propensity near 0 or 1).

We depict in Fig. 9 a map of Québec aggregated by forward sortation area, our chosen
geographic unit. Each area is colored by the Tail Value-at-Risk TV aR0.95 of proxy vulner-
ability ∆̂proxy(x), computed as the average of the top 5% of values within that unit. This
highlights regions where the most vulnerable individuals are concentrated, with zooms
around Québec City and Montréal. We see that some regions, such as Alma, Montréal-
Nord or St-Georges, exhibit high proxy vulnerability (darker purple). Representing proxy
vulnerability on the map and supporting the analysis with census data may help to pinpoint
sensitive demographics in these specific regions, for example the large proportion (42%)
of immigrants in Montréal-Nord5.

This is a compelling illustration of the materiality of proxy effects and why they warrant
scrutiny. Even without explicit use of a prohibited attribute, its statistical imprint propagates
through associated covariates, sustaining disparities in ways that evade direct detection.
Proxy effects are material and their potential impact is not evenly distributed. ▲

5Montréal en statistiques (2018) Profil sociodémographique, Recensement 2016: Arrondissement de
Montréal-Nord.
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Figure 8. Dashboard of proxy vulnerability for the Case study: proxy vulnerability (in CAN$)
as a function of the propensity to observeD = 1 (top left); proxy vulnerability in percentage
of aware premium per protected group (top right); propensity as a function of aware premi-
ums on their original scale (middle left) and on the scale of their normalized ranks (middle
right); and estimated propensity to observe D = 1 in terms of risk spread and colored by
proxy vulnerability interval (bottom).
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United States 

Figure 9. Geographic distribution of the empirical 95% TVaR of proxy vulnerability, as-
sessed at the forward sortation area level, in the Case study. The top-left panel shows the
entire province, the right panel zooms in on its central region, and the bottom panel pro-
vides a detailed view of the island of Montréal.
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5.1.3. Fairness range
For a specific segment (x, d), the fairness range, denoted ∆fair(x, d), is defined as

∆fair(x, d) = max{µB(x, d), µU(x), µA(x), µH(x), µC(x, d)}−
min{µB(x, d), µU(x), µA(x), µH(x), µC(x, d)}.

The fairness range measures how much prices vary across fairness methods. A large
value indicates that pricing is sensitive to fairness considerations for the segment.

5.1.4. Parity cost
The parity cost is the (monetary) cost for a policyholder of enforcing demographic parity
compared to a “pay for your own risk” approach. For a segment (x, d), it is defined as:

∆parity(x, d) = µC(x, d)− µB(x, d).

A higher parity cost signals that larger adjustments are needed to enforce demographic
parity. It quantifies how solidarity objectives conflict with actuarial fairness for an individual.

Case study (Cont’d). Fig. 10 shows fairness range and parity cost. On the left, fairness
range tracks risk spread, revealing that sensitivity to fairness adjustments follows poten-
tial for disparate treatment. Conditional on risk spread, the D = 1 group shows greater
sensitivity to fairness adjustments. On the right, parity cost reflects discounts for high-
risk (D = 1) and surcharges for low-risk (D = 0) individuals. Point size reflects sample
density. The distribution for D = 1 centers on large discounts; for D = 0, on small sur-
charges. Thus, achieving demographic parity in involves imposing modest levies on the
non-vulnerable group (D = 0) to fund substantial rebates for the vulnerable group (D = 1).

This captures the redistributive effect of the corrective premium relative to its risk-based
counterpart. Critics of demographic parity often highlight cross-subsidies as problematic;
the parity cost explicitly quantifies them. ▲
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Complement 7 – Subsidizing fairness without cross-subsidies

A public scheme could fund fairness by reimbursing insurers the parity cost: the
gap between corrective and best-estimate premiums. Vulnerable individuals (D = 1)
pay the reduced corrective rate; others (D = 0) retain their actuarially fair price.
This lowers prices for protected groups without burdening others, enabling fairness
without cross-subsidies or insurer loss.

5.2. Post pricing local metrics
Commercial pricing includes adjustments unrelated to risk or fairness. Bender et al. (2025)
advise assessing final prices by their “actual impact on policyholders”. We introduce local
fairness metrics to evaluate a given commercial price π(X, D) relative to the spectrum.

5.2.1. Commercial loading and commercial burden
For a segments (x, d), the commercial loading is defined as

∆load(x, d; π;µ) = π(x, d)− µ(x, d),

where µ denotes a reference premium intended to best represent indicated rates. If direct
use ofD is allowed, set µ = µB to assess actuarial fairness, aligning, e.g., with the “devia-
tion from indicated rates” metric of the Financial Services Regulatory Authority of Ontario
(2024). If not, or to monitor proxy effects, use µ = µA to examine causality.

The commercial burden, denoted ρburden(x, d; π, µ), is the commercial loading as a per-
centage of µ. High burdens may raise affordability concerns for low-income policyholders:

ρburden(x, d; π, µ) =
π(x, d)
µ(x, d) − 1 =

∆load(x, d; π;µ)
µ(x, d) .

If the reference premium is the best-estimate µB, the commercial burden equals themarkup
over the claim costs, i.e., the inverse expected loss ratio.

5.2.2. Implied propensity
The implied propensity, denoted P̃D(x; π), is the implicit weight of D = 1 for segment x
when expressing a (non-directly discriminatory) π as a linear combination of best-estimate
premiums across values of D:

π(x) = µB(x, 1)P̃D(x; π) + {1− P̃D(x; π)}µB(x, 0).

Because π is unconstrained, P̃D(x; π) may lie outside [0, 1]. Solving for P̃D yields:

P̃D(x; π) =
π(x)− µB(x, 0)

µB(x, 1)− µB(x, 0) .

It is well-defined when µB(x, 1) ̸= µB(x, 0). Values outside [0, 1] reveal targeting of a
protected group. Naturally, P̃D(x;µU) = Pr(D = 1|X = x). An implied propensity aligned
with Pr(D = 1|x) or 1− Pr(D = 1|x) reflects proxy effects or solidarity, respectively.
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5.2.3. Excess lift
For directly discriminatory pricing function, we define the excess lift for segment x as

∆excess(x; π) = |π(x, 1)− π(x, 0)| −
∣∣µB(x, 1)− µB(x, 0)

∣∣ = |π(x, 1)− π(x, 0)| −∆risk(x).

The excess lift quantifies how “excessively” a pricing function π differentiate onD for a seg-
ment relative to the “pure risk” best-estimate premium. By construction, ∆excess(x;µB) = 0
for every segment x. Strictly positive values signal over-differentiation on D; negative
values signal under-differentiation between D = 0 and D = 1 (e.g., from smoothing, reg-
ulatory caps, or solidarity efforts) and imply cross-subsidization within that segment.
Case study (Cont’d). Fig. 11 shows commercial burden ρ̂(x, d;PseudoPrice, µ̂A) (top) and
excess lift ∆̂excess(x;PseudoPrice) (bottom), plotted against the aware premium. Though µB

reflects industry norms during the study period, we use µA as the reference premium to
assess targeting of D, whether directly or via proxy effects.

In the top panel, both groups show high variability. Commercial burden is on average
higher for vulnerable population than for others. In the bottom panel, excess lift declines
with µ̂A. Excess lift on D is positive for low µ̂A, but negative for large premiums, possibly
due to fixed costs, solidarity efforts, or rigid model (e.g., models without interactions). ▲

Figure 11. Commercial burden ρ̂(x, d;PseudoPrice, µ̂A) by protected group (top) and excess
lift ∆̂excess(x;PseudoPrice) (bottom) plotted against aware premiums for the Case study.
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Section 6. Exposing systematic disparities through parti-
tioning

Fairnessmetrics on broad groups canmislead. Amodel may seem fair with respect to gen-
der while masking disparities for smaller vulnerable groups, like single mothers. Tailored
fairness assessment for specific subpopulations helps to target corrections. To detect sys-
tematic fairness disparities, we propose in this section a simple methodology to partition
policyholders following a relevant fairness metric.

To create these supervised partitions, we use decision trees (see, e.g., Loh, 2014) for
simplicity and interpretability. Five essential components guide this process: data, feature
space, response variable, loss function, and algorithm, further detailed in the online
supplement. The complexity of partitioning should align with the analyst’s need for fairness
granularity rather than be dictated by loss minimization alone.

We leverage the partitioning algorithmwith relevant local fairness quantities to differentiate
segments depending on a given fairness quantity: we identify segments with high proxy
vulnerability upfront in §6.1, and we detect commercial loading in rates in §6.2.

6.1. Pre-pricing policyholder partitioning by proxy vulnerability
We identify segments most exposed to potential proxy discrimination by partitioning poli-
cyholders based on proxy vulnerability (defined in §5.1.2).

Case study (Cont’d). We apply a regression tree to predicted proxy vulnerability ∆̂proxy(x),
using all allowed variables X for partitioning. The resulting regularized tree6, depicted in
Fig. 12, reveals the following:

• The highest proxy vulnerability leaves (numbered 1–5) are split by hasPropertyIns
(property insurance indicator), DrivExp (driving experience), NbTraffViolation (count
of traffic violations), and OccType (type of occupation).

• The indicator hasPropertyIns likely captures property ownership (clearly associated
with credit score), DrivExp correlates with age or financial constraints, and a high
value of NbTraffViolation may reflect low risk aversion.

• Inexperienced drivers, such as DrivExp < 5 and hasPropertyIns == 'N' for nodes
1 and 2, stand out as a group that is vulnerable to high proxy effects. Their true
(causal) risk may be inflated by implicit inference of their credit score.

• Proxy vulnerability averages to zero but hides wide disparities. In leaf node 1, the
median overcharge is $70 on $540 losses (13%). Elsewhere, the proxy rebate is at
most $23. Proxy effects are both material and asymmetric.

Leaves with high predictions highlight segments where proxy effects are most likely to be
exploited by a model. ▲

6Our partitioning with evtree uses a subsample of 50,000 observations and evaluates a population of
150 candidate evolutionary trees; the final model is the single best tree (no ensemble). See Grubinger et al.
(2014) for more details.
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Figure 13. Optimal partitioning of ∆̂load(x) for the Case study.
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6.2. Post-pricing policyholder partitioning by commercial loading
Constructing a regression tree on commercial loading (§5.2.1) reveals rating patterns.
Case study (Cont’d). We fit a regression tree to ∆̂load(x; µ̂A) and depict it in Fig. 13. The
leaves with highest commercial loading (numbered 1–6) are split by DrivExp (driving ex-
perience of the main driver), MaritalStatus (marital status), GenderMainDriver (gender
of the main driver), DriverAge (age of the main driver), and OccType (type of occupation).
Highest loadings occur among inexperienced married drivers (leaves 1, 2, 4, and 5) and
single males with little driving experience (leaves 3 and 6).

Unlike proxy vulnerability, commercial loading stems frommore than just proxy effects: dif-
ferences in technical pricing methodology, lag in historical loss modeling for Y , commercial
strategies, new business discounts, capping, and, most importantly, direct discrimination
on D. Pricing decisions, when compounded, may produce unintended disparities, disad-
vantaging groups beyond the insurer’s intent and/or awareness.

Combined with the pre-pricing partition on proxy vulnerabilty (§6.1), the two partitions may
help track model behavior across flagged subgroups. We integrate these components into
a structured fairness assessment framework depicted in Fig. 14, combining the partitions
illustrated in Figs. 12 and 13 with the actuarial metrics defined in Section 5. Our tool-
box guides actuaries in pinpointing which segments (partitioning columns) may warrant
premium adjustment and which fairness indicators (rows) should be evaluated.

The tool assembles key actuarial components for each subgroup:
• Demographic summaries on selected covariates;
• Classical pricing diagnostics: expected losses, premiums, predictive performance;
• Basic fairness assessment: group disparities in premiums and losses;
• Pre- and post-pricing local fairness indicators;
• The partitioning rule identifying the subgroup at the bottom;
• Optional enrichment from external data (e.g., census).

Analysis reveals a high proxy vulnerability among groups with elevated commercial load-
ing. The alignment between pre-pricing proxy vulnerability and post-pricing commercial
loading suggests that proxy vulnerability is captured by the pseudoprice – a predictable
outcome given the sensitive attribute’s acceptability during the study period. Both parti-
tions point to inexperienced drivers (low DrivExp) as a critical group, offering a clear path
to intervene in the pseudoprice ratemaking algorithm or to apply post-processing adjust-
ments for mitigating unfairness with respect to credit score.

Integrating the three dimensions of fairness in model assessment may form part of future
actuarial standards. See the online supplement for code applied to simulated data. ▲
Bender et al. (2025) groups biases as systemic, statistical, and human. AssumingD is not
a true risk driver, risk spread flags segment-level systemic bias (measurement, sampling,
label), and parity cost is the dollar cost to undo it. Proxy vulnerability estimates statistical
bias from omitting D. With a data-driven spectrum7, pre-pricing metrics capture systemic
and (potential) statistical bias; prior-pricing metrics can reflect all three to guide mitigation.

7A spectrum anchored on a data-driven best-estimate premium (Option 1 of Complement 5).
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Section Variable Statistic Subpop All Data 1 2 3 4-13 14 15 16 1 2 3 4-13 14 15 16
Exposure Sum All 164,064 2,405 3,882 2,295 79,797 9,694 46,763 19,227 852 419 2,964 149,637 3,877 3,114 3,201

Credrisk (lvl %) Level % Credrisk = 1 37.5% 81.6% 74.8% 70.1% 48.1% 33.6% 21.3% 18.3% 76.7% 73.3% 76.1% 35.9% 59.1% 36.2% 38.0%
Mean All ####### 1.44 3.53 6.82 ##### 42.46 42.29 42.24 4.40 1.31 4.23 ##### 3.70 30.87 31.18
Mean All ####### 5.22 4.93 4.31 ##### 5.99 7.57 1.79 4.31 4.71 4.62 ##### 5.52 2.33 2.33
Mean All ####### 21.89 22.30 24.36 ##### 62.33 62.65 62.16 24.23 30.69 22.57 ##### 20.52 50.08 51.42
Level % J ####### #### #### #### ##### #### #### #### #### #### #### ##### #### #### ####
Level % G ####### #### #### #### ##### #### #### #### #### #### #### ##### #### #### ####
Level % H ####### #### #### #### ##### #### #### #### #### #### #### ##### #### #### ####
Level % Employed 60.6% ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### #####
Level % Retired 18.7% ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### #####
Level % None 10.3% 58.2% 50.7% 26.1% 11.8% 5.3% 4.9% 3.4% 14.9% 25.0% 0.0% 8.4% 100.0% 2.8% 4.2%
Level % Other 10.5% ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### #####
Level % Y ####### ##### 100% 100% 59% 56% 22% ##### 24% 83% 83%
Level % lvl % : N ####### 100% 100% 100% ##### 100% 41% 44% 78% ##### 76% 17% 17%

% of 0 All 97.2% 94.1% 95.1% 96.2% 97.1% 97.5% 97.8% 96.8% 96.1% 94.8% 94.9% 97.4% 95.8% 96.1% 94.2%
Mean All 189.25 539.7 414.4 322.3 202.52 134 108.2 187.6 198.6 315.9 74.84 177.73 256.4 404 441.8
Mean All 3743 4686 4544 4351 3948 3289 3046 3593 4126 4233 5441 3689 3809 2973 3672
TVaR 0.95 All 19093 ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### #####
VaR 0.05 All 68.40 ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### #####
Mean All 191.25 509.87 416.36 355.28 210.82 151.21 125.10 186.18 362.93 399.29 470.30 176.60 347.86 257.60 290.33
VaR 0.95 All 401.59 ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### #####
MAE All 272.15 712.19 586.57 483.54 296.82 214.04 175.85 267.70 466.07 545.53 666.83 251.25 469.10 334.85 433.41
Avg. Dev. Twee. All 137.20 226.26 200.34 192.22 150.27 117.06 106.12 138.29 221.77 233.75 233.01 132.23 174.53 157.82 180.45

Mean D=0 152.74 416.44 325.45 290.66 171.48 135.32 114.67 175.43 301.75 326.45 369.51 145.13 274.23 221.33 252.51
Mean D=1 255.31 530.92 447.06 382.84 253.27 182.59 163.65 234.15 381.53 425.76 502.00 232.75 398.71 321.53 351.98
VaR 0.95 D=0 288.64 ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### #####
VaR 0.95 D=1 497.85 ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### #####

- D=0 87.4% 86.1% 95.4% 102.4% 88.6% 84.7% 80.5% 93.9% 76.3% 113.6% 84.9% 86.5% 102.1% 74.6% 111.6%

- D=1 102.3% 109.4% 100.5% 86.9% 101.5% 94.3% 101.9% 123.9% 87.6% 110.6% 117.3% 102.3% 77.3% 84.2% 137.8%

Est. P(D=1|X) Mean All 0.49 0.82 0.76 0.73 0.54 0.38 0.26 0.21 0.77 0.80 0.77 0.47 0.65 0.45 0.47

Wass. Dist. 103.99 113.22 122.78 94.74 82.14 48.01 49.88 59.27 82.84 99.28 136.92 88.42 123.19 101.78 101.34

Best-est. Mean All 191.16 537.97 437.34 399.48 213.28 147.83 116.51 184.78 300.44 347.84 454.87 174.57 392.08 277.52 345.69

Unaware Mean All 191.16 535.91 435.05 401.29 213.52 147.58 116.52 184.57 300.39 350.52 454.15 174.58 392.45 277.18 346.05

Aware Mean All 191.16 468.35 389.01 366.31 209.20 153.09 125.43 200.63 271.32 317.39 400.77 176.35 368.23 283.84 351.65

Hyperaware Mean All 191.16 429.22 360.74 339.62 204.61 157.22 132.10 216.09 247.98 288.18 370.75 177.49 350.26 290.47 357.14

Corrective Mean All 191.16 426.82 359.46 341.01 204.73 157.32 131.99 215.51 247.65 290.23 370.30 177.40 349.98 290.57 357.76

Mean All -0.08 67.56 46.03 34.98 4.32 -5.51 -8.91 -16.07 29.07 33.13 53.38 -1.77 24.23 -6.66 -5.59
Mean D=1 7.85 68.59 48.37 36.34 7.66 -3.54 -8.02 -14.82 30.13 35.67 56.35 4.59 32.08 0.84 4.04
Mean D=0 -4.84 63.01 39.13 31.81 1.23 -6.51 -9.15 -16.35 25.59 26.14 43.94 -5.33 12.86 -10.92 -11.51
TVaR 0.95 All 57.97 ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### #####
TVaR 0.95 D=1 76.71 ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### #####
TVaR 0.95 D=0 34.31 ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### #####

Risk spread Mean All 65.90 178.05 150.62 130.62 71.93 51.53 42.80 65.42 87.67 101.95 157.52 60.30 138.71 91.90 118.66

Fairness spread Mean All 55.38 161.03 131.06 118.66 61.22 42.49 33.43 54.97 86.73 101.53 137.47 50.23 116.34 83.26 104.59

Parity cost Mean All 0.12 -111.15 -77.88 -58.47 -8.55 9.48 15.48 30.73 -52.79 -57.62 -84.57 2.83 -42.10 13.05 12.07

Mean All 0.09 -28.10 -20.99 -44.20 -2.46 3.37 8.59 1.39 62.50 51.45 15.43 2.03 -44.22 -19.92 -55.36
Mean D=1 -8.66 -42.25 -34.20 -56.53 -9.62 3.02 10.49 -1.60 57.83 43.62 1.80 -5.88 -68.30 -23.91 -73.51
Mean D=0 5.35 34.74 18.12 -15.30 4.17 3.55 8.08 2.06 77.86 72.99 58.74 6.47 -9.37 -17.66 -44.23
TVaR 0.95 All 72.32 ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### #####
TVaR 0.95 D=1 77.57 ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### #####
TVaR 0.95 D=0 68.71 ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### #####

Comm. burden Mean All 10.7% 0.0% -1.4% -7.8% 5.3% 16.3% 24.0% 4.1% 24.5% 17.6% 9.3% 12.0% -9.0% -5.9% -14.6%

Excess lift Mean All -11.53 -76.78 -57.63 -43.98 -14.43 -4.43 -0.16 -9.38 -19.51 -26.73 -56.78 -8.98 -51.46 -14.26 -33.75

Prop > 0% All 56.5% 36.5% 37.0% 24.4% 50.8% 61.1% 68.8% 58.6% 93.8% 86.0% 64.6% 58.6% 19.8% 29.6% 8.7%
Prop > 0% D=1 48.3% 29.2% 28.5% 18.6% 44.8% 60.8% 69.9% 54.1% 92.0% 81.4% 55.3% 50.3% 8.4% 29.5% 5.9%
Prop > 0% D=0 61.5% 69.0% 62.1% 37.9% 56.3% 61.2% 68.5% 59.7% 99.6% 98.4% 94.1% 63.3% 36.4% 29.7% 10.5%
Prop > 9.2% All 38.2% ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### #####
Prop > 9.2% D=1 30.3% ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### #####
Prop > 9.2% D=0 43.0% ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### #####
Prop > 16.9% All 25.9% ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### #####
Prop > 16.9% D=1 19.2% ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### #####
Prop > 16.9% D=0 29.9% ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### #####

ha
sP

ro
pe

rt
yI

ns
 i

s 
N 

AN
D 

Dr
iv

Ex
p 

< 
3

ha
sP

ro
pe

rt
yI

ns
 i

s 
N 

AN
D 

3 
<=

 
Dr

iv
Ex

p 
< 

5

ha
sP

ro
pe

rt
yI

ns
 i

s 
N 

AN
D 

5 
<=

 
Dr

iv
Ex

p 
< 

10
 A

ND
 

Nb
Tr

af
fV

io
la

ti
on

 >
= 

1

ha
sP

ro
pe

rt
yI

ns
 i

s 
N 

AN
D 

32
 <

= 
Dr

iv
Ex

p

ha
sP

ro
pe

rt
yI

ns
 i

s 
Y 

AN
D 

30
 <

= 
Dr

iv
Ex

p 
AN

D 
ne

wV
al

ue
Co

ve
ra

ge
 

is
 N

ha
sP

ro
pe

rt
yI

ns
 i

s 
Y 

AN
D 

30
 <

= 
Dr

iv
Ex

p 
AN

D 
ne

wV
al

ue
Co

ve
ra

ge
 

is
 Y

Dr
iv

er
Ex

p 
< 

7 
AN

D 
Ma

ri
ta

lS
ta

tu
s 

is
 

Ma
rr

ie
d/

Wi
do

we
d 

AN
D 

Dr
iv

er
Ex

p 
< 

7 
AN

D 
Ma

ri
ta

lS
ta

tu
s 

is
 

Ma
rr

ie
d/

Wi
do

we
d 

AN
D 

Dr
iv

er
Ex

p 
< 

7 
AN

D 
Ma

ri
ta

lS
ta

tu
s 

is
 

Si
ng

le
/D

iv
or

ce
d 

AN
D 

Dr
iv

er
Ex

p 
< 

7 
AN

D 
Ma

ri
ta

lS
ta

tu
s 

is
 

Si
ng

le
/D

iv
or

ce
d 

AN
D 

Dr
iv

er
Ex

p 
>=

 7
 A

ND
 V

eh
Ag

e 
< 

6 
AN

D 
Cl

ai
ms

Hi
st

or
y 

>=
 4

 A
ND

 Z
IP

 
Co

de
 i

s 
[C

on
fi

de
nt

ia
l]

Dr
iv

er
Ex

p 
>=

 7
 A

ND
 V

eh
Ag

e 
< 

6 
AN

D 
Cl

ai
ms

Hi
st

or
y 

>=
 4

 A
ND

 Z
IP

 
Co

de
 i

s 
[C

on
fi

de
nt

ia
l]

Ex
tr

a 
su

m
m

ar
y 

st
at

is
ti

cs

Commercial 
burden

Prem(d = 0) vs Prem(d = 1)

Fa
ir

ne
ss

 
Sp

ec
tr

um
Pr

e-
pr

ic
in

g 
lo

ca
l m

et
ri

cs

Proxy 
vulnerability

Po
st

-p
ri

ci
ng

 lo
ca

l 
m

et
ri

cs

Commercial 
loading

Lo
ss

 a
nd

 p
ri

ce
 p

er
 

gr
ou

p

Price

Loss Ratio

Lo
ss

 a
nd

 p
se

ud
o 

pr
ic

e Loss

Severity

Pseudoprice

Performance 
metrics

Proxy vulnerable groups Commercially loaded groups

D
em

og
ra

ph
ic

s

DrivExp
VehAge
DrivAge

Zip Code (first 
character only)

OccType

HasPropertyIns

Raw decision
rule from 
partitioning

Figure 14. Fairness monitoring table summarizing demographic, pricing, and fairness met-
rics for partitioned subpopulations in the Case study. Masking symbols (“#”) preserve the
partner insurer’s confidentiality.
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Section 7. Discussion
Our Case study grounds fairness in a large-scale, realistic setting. The fairness spectrum
translates dimensions into pricing benchmarks. It provides context to judge any given
(commercial) price. It also supports intuitive metrics, like proxy vulnerability by group
or the share of policyholders facing high commercial burden, expressed in dollars and
policyholders. By making fairness practical, we hope actuaries engage. The collaboration
which made this Case study possible reflects insurer’s interest in understanding fairness:
its meaning, materiality, and actuarial relevance.

In our Case study, pre-pricing analysis shows proxy vulnerability is material and skewed:
while many receive small rebates, some face 15–30% overpricing. The pseudoprice bur-
dens the vulnerable group D = 1 more than the D = 0 group, but in a lesser extent than
risk alone would justify, suggesting efforts toward solidarity.

Partitioning before and after pricing (§6) extends fairness analysis beyond large protected
groups. Combined with local metrics (§5), it supports tools like Fig. 14 to surgically ad-
just for fairness within specific subgroups. In our Case study, the pseudoprice appears to
capture proxy vulnerability, because commercially loaded groups also exhibit high proxy
vulnerability. This surfaced fairness concerns in specific policyholder segments, like inex-
perienced drivers, that were not initially flagged.

In this article, we progress from fairness principles to detection, under assumptions that
warrant scrutiny. In the current state of research, the three dimensions of fairness pre-
sented in §3 are necessary, but their exhaustivity remains an open question. Also, fairness
dimensions are general – multiple premiums may reflect the same dimension. Both a cor-
rective and a flat-rate price satisfy solidarity, suggesting at a broader range of models. We
also ignored uncertainty in estimating benchmarks. How should we account for it?

This study had a specific scope. Advancing fairness requires expanding it:

1. Fairness often assumes access to protected attributes, which may be unavailable.
Can we assess fairness without them? Predicting D (for example, with BIFSG as in
Voicu, 2018) and Census data help, but are no substitute for direct access.

2. Market dynamics are ignored; portfolio fairness may conflict with market fairness
(Côté et al., 2024). Can insurers contribute to market fairness using their own data?

3. Fairness is typically studied as a one-year objective, but its long-term welfare ef-
fects remain unclear (Shimao et al., 2022). Which fairness approach perpetuate,
mitigate, or reverse disparities over time?

4. Seemingly neutral variables canmediate the link between protected traits and losses.
Behavioral data may attenuate the impact of protected attributes on premiums by
enriching X and detailing the causal risk chain (Boucher and Pigeon, 2024). This
offers actuarial justification for disparities, but does it resolve proxy issues?

5. Insurance operates between law and statistics: one demands fairness case by case;
the other defends differentiation at scale. Applying anti-discrimination regulations
meets resistance where actuarial justification holds authority. Can regulations rec-
oncile these perspectives to fairly serve insurers, regulators, and policyholders?
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Statement on the use of generative AI
We used generative AI tools to refine wording and syntax, draft or refactor small code
snippets, and accelerate literature discovery (query formulation and complementing other
bibliographic search tools). All AI outputs (text, code, and references) were indepen-
dently reviewed, verified, and edited before inclusion; no analysis, modeling choices, or
conclusions were delegated to these tools. We take full responsibility for the accuracy and
integrity of all content in this publication.
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Appendix A. Glossary
Let Y denote the claim cost for a property-casualty coverage. Let X denote the vector of
pricing covariates. Fairness is defined relative to a pre-specified (sensitive) variable D,
taken here to be a single, binary, fully observed random variable. See §2 for details.

Protected groups — Levels of the sensitive attribute D.
Vulnerable groups — Subset of protected groups showing historic disadvantage.
Fairness — An elusive, contested ideal; a three-dimensional trade-off to manage (§3):

Actuarial fairness aligns premiums with expected losses, mitigating cross-subsidies,
Solidarity aligns premiums across protected groups, mitigating disparities,
Causality ensures models capture only true risk factors, mitigating proxy effects.

Spectrum of fair premiums — The five fair premiums of the spectrum are (§4):
Premium Best-estimate Unaware Aware Hyperaware Corrective

Notation µB(x, d) µU(x) µA(x) µH(x) µC(x, d)
Direct discrimination

Dimension prioritized Actuarial fairness Actuarial fairness Causality Solidarity Solidarity

Pre-pricing local metrics reveal potential unfairness in the dataset (§5.1).
Risk spread — The spread of best-estimates across values of D:

∆risk(x) =
∣∣µB(x, 1)− µB(x, 0)

∣∣ .
Proxy vulnerability — The difference between ignoring D and controlling for it:

∆proxy(x) = µU(x)− µA(x).
Fairness range — The range of estimates across the spectrum of fair premiums:

∆fair(x, d) = max{µB(x, d), µU(x), µA(x), µH(x), µC(x, d)}−
min{µB(x, d), µU(x), µA(x), µH(x), µC(x, d)}.

Parity cost — The (monetary) cost of shifting from actuarial fairness to solidarity:
∆parity(x, d) = µC(x, d)− µB(x, d).

Post-pricing local metrics relate a given price π(X, D) to the spectrum (§5.2):
Commercial loading — The difference between π and a chosen reference premium

µ from the spectrum:
∆load(x, d; π;µ) = π(x, d)− µ(x, d).

Commercial burden — The commercial loading as a percentage of µ:

ρburden(x, d; π, µ) =
π(x, d)
µ(x, d) − 1 =

∆load(x, d; π;µ)
µ(x, d) .

Implied propensity (Non-directly discr. π) — The implicit weight on D = 1:

P̃D(x; π) =
π(x)− µB(x, 0)

µB(x, 1)− µB(x, 0) .

Excess lift (Directly discr. π) — The excess differentiation on D compared to µB:
∆excess(x; π) = |π(x, 1)− π(x, 0)| −

∣∣µB(x, 1)− µB(x, 0)
∣∣ .
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