

ENHANCING ACTUARIAL INSIGHTS THROUGH DATA MODERNISATION

Adrien de Nazelle

October 10, 2025

A business of Marsh McLennan

CONFIDENTIALITY

Our clients' industries are extremely competitive, and the maintenance of confidentiality with respect to our clients' plans and data is critical. Oliver Wyman rigorously applies internal confidentiality practices to protect the confidentiality of all client information.

Similarly, our industry is very competitive. We view our approaches and insights as proprietary and therefore look to our clients to protect our interests in our proposals, presentations, methodologies, and analytical techniques. Under no circumstances should this material be shared with any third party without the prior written consent of Oliver Wyman.

© Oliver Wyman

AGENDA

Welcome, context & presentation objectives

How can we move from fragmented models to connected actuarial insight?

What does a modern data platform mean for actuarial teams?

How do we bridge the gap between actuarial and data disciplines?

• Our intention is to guide you through four key areas:

Current State and Vision

The way we work now: silos, manual effort, and reporting pain points and how we should address those

Unified Data Platforms

Unified environment that brings all our data, models, and people together

Practical Applications

Examples of use cases across nonlife actuarial workflows

Bridging the Actuarial Gap

Empowering actuaries to collaborate, experiment, and innovate with modern tools

The aim of today's session is to give you an introduction to how Unified Data Platforms can enhance actuarial insight through better data, stronger governance, and smarter collaboration

© Oliver Wyman 3

MODELLING ECOSYSTEM AND PAIN POINTS

Addressing current state's data and process challenges is key to enabling faster, more controlled actuarial cycles

Legacy systems limit integration and scalability

- Limited integration capabilities
- Unable to handle granular data processing and real-time analytics

Fragmented systems

- Data silos
- Manual data processing

Challenges with data governance and ownership

- Poor data quality
- Lack of data contracts and ownership

Collaboration barriers with other teams

- Cultural and operational barriers
- Technology limitations

Current State and Vision

Unified Data
Platforms

Practical Applications

Bridging the Gap

FUTURE PROOFING WITH MODERNIZATION

By addressing current challenges, modernisation enables faster insights, cost efficiency, and the flexibility to adapt to future business needs

Faster Insights

- Integration of sophisticated data visualisation tools allows stakeholders to comprehend complex actuarial data
- Real time access to data allowing for more proactive strategies rather than reactive responses

Enhanced Collaboration

- Centralised data repositories enables teams to access a single source of truth
- Cross departmental access can ensure that teams and functions can collaborate more effectively

Laying the Groundwork for AI and ML

- Modern data management practices ensures data used for AI and ML is clean and relevant
- Built-in integration pathways to AI and ML platforms seamlessly
- Investment in human capital ensures team are upskilled for future challenges

Enhanced Decision-Making

 Fast and easy access to data enhances the modelling and decision-making process

Operational Agility

- Routine tasks can be automated, freeing up human resources for more strategic activities
- Improves efficiency and reduces likelihood of errors

Cost Efficiency and Scalability

- Unified ecosystems reduce costs associated with multiple systems
- Cloud solutions provide flexibility to scale as business grows

Current State and Vision

Unified Data Platforms

Practical Applications

ridging the Gap

MODERNIZING THE ACTUARIAL TECHNOLOGY STACK

Unified data platforms integrate with the tools modern actuarial teams already use – connecting data, modelling, collaboration, and reporting in one unified environment

Centralize, clean, and manage data from multiple sources

nanage data

Build analytics, custom models, and urces

data pipelines

Manage workflows, code versioning, and team collaboration

Data Integration & Warehousing

Collaboration & Workflow Tools

Apache
Airflow Confluence

Jira Github

Actuarial Solutions

dynamo hyperexponential PTALITIX

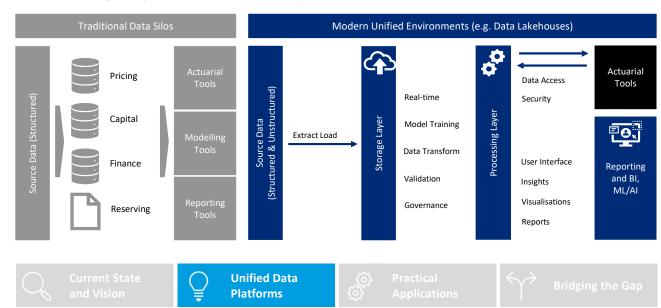
Willis Towers Watson Nextuarial Quantee

AKUR8 MOODY'S

Run detailed actuarial projections

Democratize access to insights for actuaries, finance, and executives

- Unified data platforms are the glue that can tie it all together:
 - Ingest and prepare data at scale
 - Work natively in Python, SQL, or R
 - Integrate seamlessly with GitHub for collaboration
 - Feed clean and trusted data to actuarial engines
- Serve consistent, governed datasets directly to BI tools
- Or perhaps even host actuarial models directly for future flexibility



INTRODUCING UNIFIED DATA PLATFORMS

- 1 What is it?
- 2 Data Governance
- **3** Medallion Architecture
- 4 Analytical Workspaces
- 5 Insurance: Use Cases

OliverWyman

- Unified data platforms are cloud-based platforms that brings together data engineering, analytics, and machine learning in a secure environment
- The platforms are built on the Lakehouse architecture, meaning teams can store all their data in one environment, while still running fast, reliable analytics and reporting
- They act as a central hub, allowing actuaries, data engineers, and business users to collaborate on the same data without silos
- Teams can ingest, process, validate, model, and analyze data at scale using familiar languages like Python, SQL, and R
- For actuarial teams, these complement existing actuarial tools, simplifying data preparation and governance while offering the option to run models natively

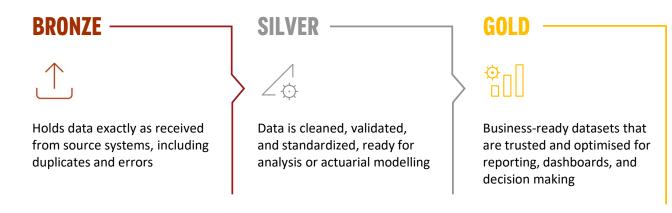
INTRODUCING UNIFIED DATA PLATFORMS

- What is it?
- **2** Data Governance
- **3** Medallion Architecture
- 4 Analytical Workspaces
- Insurance: Use Cases

• Effective data governance means having the right structure, control, and transparency around how actuarial data is managed and used

Ownership	Every dataset has a clear owner and purpose
Traceability	Track data from source systems through transformations to financial actuarial outputs
Standards & Structure	Common data definitions, naming conventions, and organization
Access & Compliance	Role-based permissions and audit logs

• Strong governance builds confidence as every dataset is reliable, every result is explainable, every change is reproducible



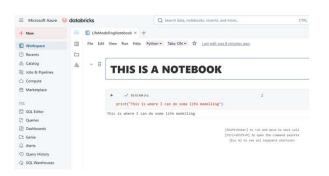
INTRODUCING UNIFIED DATA PLATFORMS

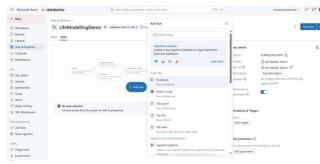
- What is it?
- 2 Data Governance
- **3** Medallion Architecture
- 4 Analytical Workspaces
- 5 Insurance: Use Cases

OliverWyman

- The Medallion Architecture describes data quality and processing stages, showing how clean and trusted the data is
- The Medallion layers are implemented as schemas inside the data hierarchy and the purpose is to organizes data into three logical layers:

- This layered approach ensures there is always a single source of truth, while preserving traceability back to the original raw data
- It prevents messy data from contaminating final actuarial outputs and allows for incremental improvements without disrupting downstream reporting
- Schema enforcement on write strengthens this by adding technical guardrails, ensuring that only well-structured, valid data progresses through each stage.


Bridging the Gap


INTRODUCING UNIFIED DATA PLATFORMS

- What is it?
- 2 Data Governance
- **3** Medallion Architecture
- 4 Analytical Workspaces
- 5 Insurance: Use Cases

OliverWyman

- Notebooks are interactive workspaces where actuaries, data scientists, and engineers can write Python, SQL, or R code and see results instantly
- They allow real-time collaboration, similar to Google Docs or SharePoint, so teams can co-develop models or data pipelines
- Notebooks are version-controlled via GitHub, ensuring transparency and rollback if changes are needed
- Jobs take these notebooks and turn them into automated, repeatable workflows that can run on a schedule or be triggered by events
- This combination allows actuarial processes like assumption updates or monthly reserve
 calculations to run consistently and automatically, reducing manual effort and operational risk
- Best practice is to use jobs for production processes, while using notebooks for exploration, development, and testing

INTRODUCING UNIFIED DATA PLATFORMS

- What is it?
- **2** Data Governance
- **3** Medallion Architecture
- 4 Analytical Workspaces
- **5** Insurance: Use Cases

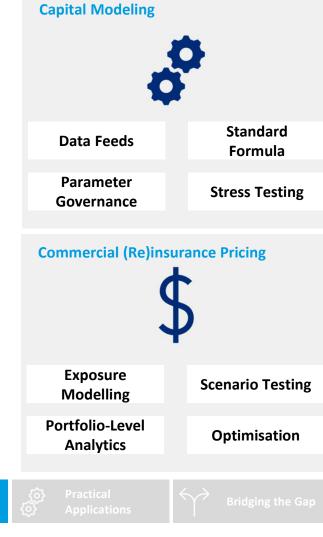
Actual vs

Expected

Cashflows

Model

Development

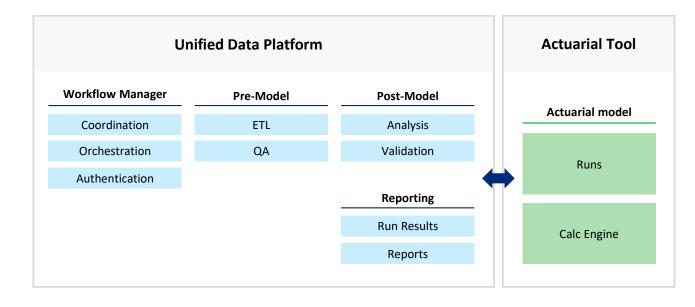

Rate Change

Analytics

Unified Data

Platforms

Reserving

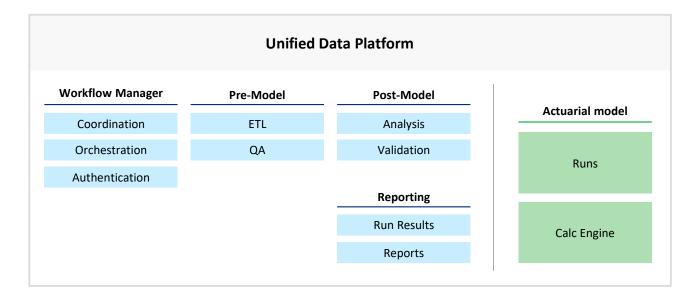


APPROACHES TO USING THE PLATFORM FOR MODELLING

Actuarial tools combined with a unified data platform delivers rapid benefits through better data, controls, and reporting

- Integrate with Actuarial Software
- **2** Self-Build Solutions in Platform
- OliverWyman

- The actuarial model is executed in a dedicated actuarial modelling solution
- Pre- and post-model activities, plus reporting and workflow management, are implemented in the unified data platform
- Managed services within unified data platforms lower engineering barriers and accelerate delivery



APPROACHES TO USING THE PLATFORM FOR MODELLING

Full platform approach offers longterm flexibility and scale but requires more time, skills, and validation to implement

- Integrate with Actuarial Software
- 2 Self-Build Solutions in Platform
- OliverWyman

- The actuarial model is implemented within the unified data platform (for example, in Python).
- Offers full flexibility (open languages), cloud-scale parallelism, and unified lineage.
- Requires new skills, an updated model validation approach, and revised operating procedures.
- Huge effort for migration and implementation including the development of an efficient model architecture

BRIDGING THE GAP: TECHNOLOGY GETS US HALFWAY

Unified data platforms can solve some of the challenges currently related to developing in-house actuarial tools or integrating a vendor solution within a data ecosystem

Unified data platforms provide benefits for self-built actuarial solutions and processes:

Deploying a model or process in-house or embedding a vendor-solution within a data ecosystem often introduces challenges around governance, dependency management, and scaling. Unified data platforms can help eliminate some of these issues.

Unified data platforms solves some of the key concerns:

Governance

Centralized access controls, audit logging, and model lineage

Hosting and scaling

Managed clusters, autoscaling, and built-in reliability

Dependency management & reproducibility

Consistent environments, versioning, and packaging

Remaining challenges to manage:

Model software architecture

Design decisions (packaging, apis, CI/CD) remain critical

Coding proficiency

Teams need coding proficiency to develop production-grade models

Change management & testing

Deploying model changes safely, regression testing, UAT sign-off

Current State and Vision

Unified Data Platforms

Practical Applications

Bridging the Gap

BRIDGING THE GAP: ACTUARIES

Technology takes us halfway, but it's collaboration, curiosity, innovation, and shared ownership that will drive modernisation and change

OliverWyman

Building stronger cross-department relationships

- Proactively working with IT, underwriting, claims, and data science to gain access to the data they need
- Joining agile squads and sitting in cross-functional meetings to pilot projects integrating data modernisation and Al

Developing hybrid skillsets

- Increasingly learning basic data engineering, SQL, and tools like Python or R
- Using self-service tools to help bypass delays and empower actuaries to automate their own data pipelines

Championing data governance improvements

- Advocating for better data ownership structures and pushing for company-wide standards (e.g. consistent definitions of claim severity or exposure)
- Getting involved in data strategy initiatives and how data should be shared across departments

Building actuarial-specific data marts

- Creating their own centralised repositories of the specific data they need, where enterprise-wide integration is not available
- May not solve the root silo problem, but can encourage collaboration and data sharing across actuarial functions

QUESTIONS & ANSWERS

QUALIFICATIONS, ASSUMPTIONS, AND LIMITING CONDITIONS

This report is for the exclusive use of the Oliver Wyman client named herein. This report is not intended for general circulation or publication, nor is it to be reproduced, quoted, or distributed for any purpose without the prior written permission of Oliver Wyman. There are no third-party beneficiaries with respect to this report, and Oliver Wyman does not accept any liability to any third party.

Information furnished by others, upon which all or portions of this report are based, is believed to be reliable but has not been independently verified, unless otherwise expressly indicated. Public information and industry and statistical data are from sources we deem to be reliable; however, we make no representation as to the accuracy or completeness of such information. The findings contained in this report may contain predictions based on current data and historical trends. Any such predictions are subject to inherent risks and uncertainties. Oliver Wyman accepts no responsibility for actual results or future events.

The opinions expressed in this report are valid only for the purpose stated herein and as of the date of this report. No obligation is assumed to revise this report to reflect changes, events, or conditions, which occur subsequent to the date hereof.

All decisions in connection with the implementation or use of advice or recommendations contained in this report are the sole responsibility of the client. This report does not represent investment advice nor does it provide an opinion regarding the fairness of any transaction to any and all parties. In addition, this report does not represent legal, medical, accounting, safety, or other specialized advice. For any such advice, Oliver Wyman recommends seeking and obtaining advice from a qualified professional.