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1. Context

Why a Law on Nat Cat Insurance is Essential (1/3)

Nat Cat insurance contracts 2018-2022

€160 K average mortgages loan

Low insurance Nat Cat coverages 2008-2022 Climate-related disasters
for high-risk properties (peaks over €10 Bn) Flood & Landslide

Next 10 Yrs

E) Milliman s



1. Context

Why a Law on Nat Cat Insurance is Essential (2/3)

» Qver the past 15 years ltaly
has experienced a critical
increase in heatwaves and
wildfires, as well as a rise in
extreme precipitation events.
In general, also in other
European countries very
similar trends are observed
for various extreme events.

= The charts illustrate the
trends of selected extreme
natural events in the lItalian
and European areas.

= A probability greater than 5%
indicates an intensification in
the frequency of extreme
events compared to the
reference period 1981-2010.

) Milliman 5



1. Context

Why a Law on Nat Cat Insurance is Essential (3/3)

= |talian territory is highly exposed to a wide range of natural hazards, including hydrogeological, seismic and extreme weather events;

in particular, more than

of cities are

= Moreover, climate change has made floods and landslides more frequent, creating growing risks for the business sector.

T

\e

Business Impact

in firms located in cities hit

An average of and
in the three years after the Nat Cat event
among firms that survived.

by floods or landslides.

The negative impacts were concentrated among

and /

@m

Insurance Gap

[ H 97% of large companies insured (~0.1% of the )

overall companies in the territory).

72% of medium companies insured (~0.6% of the
overall companies in the territory).

5% of small and micro companies insured (~99.3%,
of the overall companies in the territory). /

= For the reasons above, accurate pricing of Nat Cat risks is essential to ensure financial stability and market sustainability.
Inadequate or imprecise pricing approaches may expose insurers to severe economic losses and undermine long-term resilience.

L) Milliman



1. Context

» Why a Law on Nat Cat Insurance is Essential

G

@ Law Highlights
» Key impacts for Insurers

» Developing a Pricing Model

) Milliman



1. Context

Law Highlights

= The 2024 Italian Budget Law introduced the obligation for all companies in Italy to protect themselves against natural catastrophes
through specific insurance coverage. The obligation to insure is bilateral — it applies both to companies, which must obtain coverage,
and to insurance undertakings, which are required to provide it. In particular, the law requires companies to purchase insurance
policies covering:

— Floods.
— Landslides.
— Earthquakes.
» The law introduces the obligation gradually, with different deadlines depending on company size:

By the end of March 2025 By the end of September 2025 By the end of December 2025
» SACE, the Italian state-owned export credit agency, plays a key role in the framework. It acts as a reinsurer and guarantor of last

resort, supporting private insurance companies in managing catastrophic risk exposure. This ensures sufficient market capacity,
stabilizes premiums, and fosters a more resilient national insurance system.

L) Milliman
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1. Context
Key impacts for Insurers

*= The introduction of the mandatory law on Nat Cat insurance represents a structural shift for the insurance industry. The decree not

only broadens the scope of coverage and redefines the allocation of risk, but also requires insurers to adapt their internal
processes, governance, and technical capabilities across multiple business functions.

Underwriting & Product Development

Insurers must design and issue Nat Cat coverage as
mandated by law, with limited discretion in risk selection and
the need to adapt existing product portfolios.

Pricing & Actuarial

Premium calculation requires robust actuarial models and
frequent updates to ensure alignment with regulatory
expectations and market sustainability.

Key
Functions
Impacted

Reinsurance & Risk Management

Companies will need to rely more heavily on reinsurance to
manage catastrophic accumulations, while defining and
reviewing annual risk tolerance limits.

Claims Management

Processes and resources must be strengthened to handle
potentially large volumes of claims arising from catastrophic
events, ensuring timely settlement and customer trust.

= Beyond these four core areas, other functions will also be impacted, such as Compliance & Legal, Finance & Capital Management
(e.g. for Solvency Il implications), and Distribution & Client Relations in explaining new obligations to clients.

L) Milliman
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1. Context
Developing a Pricing Model (1/2)

= Current models used by insurers are often black-box solutions relying on reinsurer-provided rates. As a result, portfolio optimization
using own data is limited, highlighting the added value of an in-house model.

Outsourced tariffs provided by reinsurers or Direct control over models and

other geographic/sectoral customization of pricing
CAT models with low transparency §| ﬁ Ability to perform scenario analysis and
on risk drivers El sensitivity testing on key parameters

IN-HOUSE
PRICING
MODEL

Enhanced negotiation with reinsurers and
development of internal capabilities

and/or
for the company’s own portfolio

Alignment with regulatory expectations and risk
management guidelines

and
limited ability to actively challenge

E) Milliman 12



1. Context
Developing a Pricing Model (2/2)

FREQUENCY EXPECTED LOSS IMPACT ANALYSIS

= Extreme distribution calibration on = Portfolio geolocalisation and = Stress test and multiple scenarios.
historical data. average loss estimation. = Backtesting and comparison with

= Return periods estimation. actual tariff.

| | |

M RS
DATA COLLECTION HAZARD MODELS CONVOLUTION
= Sources: national and global data = Definition of event intensity clusters * Frequency - Severity models convolution.
= Target: flood height using empirical based on the generalized frequency = AAL (Average Annual Loss) estimation and
formula and downscaling data. model. tariff implementation.

= Development of a GIS data model.

E) Milliman 13
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2. Next-Generation Actuarial Approach for Flood Modeling
Spatial Data - Introducing spatial data

» Modern technologies provide access to remote sensing data
with a resolution up to 5 meters.

» Trade off between detail (resolution), extension (global or
local) and spatio-temporal detail (better low resolution and
higher spatio-temporal or higher resolution and lower spatio-
temporal?).

= How can we get high spatio-temporal detail at least in the
region we are modeling?

L) Milliman

15



2. Next-Generation Actuarial Approach for Flood Modeling
Spatial Data - Sources and distortions (1/3)

= Distortion refers to the alteration
of the true shape, area, distance,

or direction of features in remote *??@7: ‘l\{ b
sensing images due to various a\\
factors such as sensor geometry, Y 4
Earth’s curvature, and "
topography. .

= Due to distortion, tall structures
B like the Eiffel Tower appear
‘ shifted or skewed from their
actual geographic location.

A = The base is at the correct
‘;j,% P location, but the top point appears

: ; . o further out, creating a "shadow" or
e s N o .\ "plate" effect that does not
: : correspond to the true footprint.

E) Milliman 16



2. Next-Generation Actuarial Approach for Flood Modeling

Spatial Data - Sources and distortions (2/3)

Relief Displacement

= Relief displacement refers to the apparent shift of elevated
objects (like the top of the Eiffel Tower) from their true ground
position in aerial or satellite images.

» The formula for relief displacement (d) is:
h-r

d=H

Where:

= d: radial displacement of the elevated point (in mm or pixels
on the image).

» h: height of the object above the reference plane (e.g., above
ground level).

= r: radial distance from the center of the image to the base of
the object (on the photo, in mm or pixels).

= H: flying height of the sensor/platform above the reference
plane.

L) Milliman

Radial Distortion
» Radial distortion is a geometric distortion that causes points

to be shifted radially with respect to the optical center of the
image.

= A common formula for radial distortion (4,) is:

Ar = Kkir3 +kor® +kgr’+...

Where:

= A radial shift due to distortion.

= r: distance from the optical center.

= K4, Ky, K3: distortion coefficients (calibrated for the sensor).

17



2. Next-Generation Actuarial Approach for Flood Modeling

Spatial Data - Sources and distortions (3/3)

Practical Example (Eiffel Tower)
= Suppose:
— Eiffel Tower height (h): 330 m.
— Flying height (H): 2000 m.

— Radial distance from image
center to base (r): 50 mm (on
the photo negative).

= Displacement of the top:
— d=330%50/2000=8.25 mm.

= So, the top of the Eiffel Tower will
appear shifted by 8.25 mm from
its base on the image.

L) Milliman

. Altitude R Displacement Pixel Size Displacement
SELC ] .
(m) (mm) (mm) (mm) (pixels)

WV-3 617,000 10 0.00535 0.005 1.07
WV-3 617,000 50 0.02675 0.005 5.35
WV-3 617,000 50 0.02675 0.03 0.89
Landsat 8 705,000 50 0.0234 0.005 4.68
Landsat 8 705,000 50 0.0234 0.03 0.78

18



2. Next-Generation Actuarial Approach for Flood Modeling

Spatial Data - Mapping rivers and streams

Mapping rivers and streams

= Get high quality spatial data (which however require
processing steps).

= Breach data: remove errors that block natural flow.

= Fill data: correct depressions and sinks that do not
represent actual terrain features.

= Measure flow accumulation: amount of water that would
flow into each cell (identify drainage patterns and potential

flooded areas).

= Extract rivers: setting a threshold for flow accumulation,

we can delineate rivers and streams within the landscape.

L) Milliman
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Flood Modeling
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2. Next-Generation Actuarial Approach for Flood Modeling

Downscaling - A method to rule them all

= Even with modern technologies, spatial data can show some
limitations due to sensors or budget: -.- n

— Usually, we only have some points in space, however, the
risk influences total space, how can we estimate risk in
missing points?

— Spatial data can show holes or missing values or errors,
which need to be estimated to correctly extract information
(remember breaching and filling data before extracting
rivers).

— We are interested in augmenting spatial resolution > )
because initial resolution is too coarse to provide the "~
information we need with the needed detail.

— All of above can be made using downscaling methods.

L) Milliman
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2. Next-Generation Actuarial Approach for Flood Modeling

Downscaling - Geostatistical techniques (1/2)

= Spatial autocorrelation describes the extent to which a
variable is correlated with itself through space.

= Tobler’s First Law of Geography:

“Everything is related to everything else but near things are
more related than distant things”.

* In order to progress towards spatial predictions, we need a
variogram model for (potentially) all distances. If we would
connect these estimates with straight lines, it would lead to
statistical models with non-positive definite covariance
matrices, which would block using them in prediction.

= To avoid this, we fit parametric models to the estimates ,
where we take as the mean value of all the values involved
in estimating.

L) Milliman

= Assuming

isotropy

(same

direction), the variogram becomes:

> (@60 -26p)°

27(h)

1
IN(R)]

N(h)

relationship across

= Where |N(h)| denotes the number of distinct pairs in.

Semivariance y(h)
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2. Next-Generation Actuarial Approach for Flood Modeling

Downscaling - Geostatistical techniques (2/2)

» |n geostatistics and spatial analysis, variograms describe how spatial correlation changes with distance.

Spherical Model

Exponential Model

y(h) = {Co +C [1 - <_ 2)]

Gaussian Model
h2
y(h) = {CO + C |1 — exp <— a—2>]

L) Milliman

C,: nugget (variance at zero distance).
C: sill (total variance minus nugget).
a: range (distance where the model flattens).

Approaches the sill asymptotically, never truly reaches it.
a: practical range (distance at which y(h) reaches about 95% of the sill).

Smoother near the origin than the exponential model.
a: range parameter.

23



2. Next-Generation Actuarial Approach for Flood Modeling

Downscaling - Nonparametric methods

» No prior assumptions about the relationship between x and y.

= Better solutions (in case the parametric function is wrong)
than parametric models (which could be the case, often
parametric shapes are far from the true one).

= We are interested in high detailed risk prevision (of course if
we could explain risk parametrization that would be better
but the main objective is to be precise).

= Be careful with extrapolation (model choice in downscaling
must take in consideration if we want to extrapolate or not).

L) Milliman

1.0

0.5

-1.0

—-1.5

Parametric vs Nonparametric Fit

—== True (nonparametric) relationship

—— Parametric Fit (Linear)

—— Nonparametric Fit (KNN)
Noisy Data
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2. Next-Generation Actuarial Approach for Flood Modeling
Downscaling - Neural Network

Universal Approximation Theorem

» A feedforward neural network with a single hidden layer containing a sufficient number of neurons and a suitable non-linear activation
function (such as the sigmoid) can approximate any continuous function on a compact subset of R" to any desired degree of
accuracy.

= The formula expressing this theorem (in its classical form, Cybenko, 1989) is:

— For every continuous function f : R" — R defined on a compact set K c R", and for every ¢ > 0, there exist coefficients a;,
weights w;, and biases b, ( fori = 1,...,N), such that:

n

FG) = ) aw(wx + b)

i=1

< € Vx€eK

Where:

* 0 is a non-constant, continuous function (such as the sigmoid).

» N is a sufficiently large number of neurons in the hidden layer.

» a, b, and w; are real parameters (output weights, weight vectors, and biases, respectively).

L) Milliman
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2. Next-Generation Actuarial Approach for Flood Modeling
Downscaling - Gradient Boosting (1/2)

» Extreme Gradient Boosting (XGBoost) is a highly efficient and scalable implementation of gradient boosting for decision trees. It
builds an ensemble of trees sequentially, each one correcting errors from the previous ones.

t
/\t_
yi = kaxi
K=1

» Gradient boosting builds an additive model in the form:

Where:

= pt: prediction for sample i after t trees.
» f.: the k-th tree (decision function).

» x;: feature vector of sample i.

» XGBoost optimizes a regularized objective at each iteration:

n
2= > ey TP + R0 + Q6]

i=1

L) Milliman
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2. Next-Generation Actuarial Approach for Flood Modeling
Downscaling - Gradient Boosting (2/2)

» To efficiently optimize, XGBoost uses a second-order Taylor expansion of the loss for the new tree:

n
1
Lt~ Z [gift(xi) + 3 hifé (%) + Q (f)

i=1

= Summary of XGBoost steps:

— Initialize predictions (e.g., mean for regression).

— For each iteration:
« Compute gradients (g;) and Hessians (h;) for all data points.
« Build a new tree f, to fit the gradients.
« Compute optimal weights and split points.
« Update predictions: §;(t) = §;(t — 1) + f(x;)

— Repeat until desired number of trees is reached or loss stops improving.

L) Milliman
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2. Next-Generation Actuarial Approach for Flood Modeling
Downscaling - Results

» Using downscaling, we can improve spatial detail about the information we are interested in. Improved accuracy leads to better
decision making and more accurate tariff.

10 km grid over Emilia-Romagna 5 km grid over Emilia-Romagna 1 km grid over Emilia-Romagna

L) Milliman 28
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2. Next-Generation Actuarial Approach for Flood Modeling

Stage-Discharge Rating curve - Obtaining a Stage-Discharge rating curve

Stage - Discharge curve

= The purpose of continuous collection of stage data and 14
discharge measurements is to establish a relationship
between water level and volumetric flow over a wide range of
conditions.

12

10

» Stage-Discharge Relationship:

— Essential for design to assess flow characteristics like
depth and discharge.

height

— Allows evaluation of various flow conditions beyond a 4
single design flow rate.

— Measuring river discharge continuously is costly, time-
consuming, and impractical, especially during floods. 0

(0] 20 40 60
Discharge

L) Milliman
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2. Next-Generation Actuarial Approach for Flood Modeling
Stage-Discharge Rating curve - Empirical equations

Manning formula

Q — EAR2/351/2
n

Where:
= Q: flow rate (m?/s or cfs).

* n: manning’s roughness coefficient (unitless).

A: cross-sectional area of flow (m? or ft?).
R: hydraulic radius (m or ft) = A/ P.
P: wetted perimeter (m or ft).

S: channel slope (m/m or ft/ft).

» This equation gives engineers the ability to predict how fast and how much water will move through a particular section of a channel,
pipe, or stream under steady, uniform flow conditions.

= Once we have observed discharge and height values, finding a and  becomes an optimization problem.

L) Milliman 31
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2. Next-Generation Actuarial Approach for Flood Modeling

Extreme Modeling - Extreme modeling approaches

Annual Block Maxima

» Extreme value analysis plays a crucial role in understanding
the behavior of rare, high-impact natural hazards such as
floods and storms.

wn
&

w
=3

s
w

= In this context, extreme events are typically defined as those
observations which exceed a high threshold value. The
choice of this threshold is central to the analysis and is often
determined indirectly by specifying a desired return period—

i
o

Annual Maximum Precipitation [mm]
w
&

[
=1

the average time between occurrences of events of a certain 2s
magnitude. For instance, a "centennial storm" refers to an
event expected to occur, on average, once every 100 years, Peaks Over Threshold (POT)

40

while a "millennial flood" is one expected every 1,000 years.

e R & ECLEETTEEEE PR ey

= The second approach is the Peaks Over Threshold (POT)
method, which utilizes all data points exceeding a chosen £
threshold rather than only the maximum per block. Under
appropriate conditions, the exceedances above the threshold
are well described by the Generalized Pareto Distribution s

(GPD).

Month

L) Milliman
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2. Next-Generation Actuarial Approach for Flood Modeling

Extreme Modeling - What does extreme mean for natural hazard

* In extreme value analysis, we often focus on the annual » Extreme value theory shows that, under certain conditions,

maxima of a stationary process X, typically recorded during
specific seasons when extreme events are most likely to
occur (such as summer for heatwaves or winter for floods).
For each year, the maximum value observed is denoted
by Mn, and the collection of these maxima over multiple
years forms the basis for statistical modeling.

GEV Distributions

—— Gumbel (c=0)

0.4 Fréchet (c<0)

—— Weibull (c>0}
0.0 J

-5.0 =25 0.0 25 5.0 7.5 10.0 125 15.0
Value

o
w

=
[N}

Probability Density

o
H
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the distribution of maxima converges to a Generalized
Extreme Value (GEV) distribution. The GEV family has three
types, depending on the shape parameter ¢: Gumbel (¢=0),
Fréchet (¢>0), and Weibull (¢<0). In many practical cases,
especially for environmental data, the Gumbel distribution is
an appropriate model.

(x -

GEV: Given x such that1 + ¢ b o

o

1 (x — p)] /-1 x - W] %
f(x)=;[1+f ] exp—[1+f ]

() o

If ¢ - 0 then GEV reduces to Gumbel and we have:

0 = L (255) oo (252

o

Kz



2. Next-Generation Actuarial Approach for Flood Modeling

Extreme Modeling - Estimating extreme distribution’s parameters

= To estimate the parameters p and o of the Gumbel distribution from a sample of annual maxima yj, ..., y,, the method of maximum
likelihood is commonly used.

= The likelihood function is constructed from the probability density function of the Gumbel distribution:

[ = L (L8 e - (252

o

» The log-likelihood function for a sample of maxima is:

P16) = |- log(e) — yla—u_exp (_Y1;~u>]+,,,+[_ log(o) — Yma—#_exp (_Ymg—u>]

» To find the maximum likelihood estimates of y and o, we maximize this log-likelihood function with respect to both parameters.
= Accurate estimation of the Gumbel parameters using MLE allows for robust modeling of extreme events and reliable calculation of

return levels, which are vital for forecasting and risk management in environmental and engineering applications.
» As a closed-form solution does not exist for both parameters simultaneously, optimization can be done using optimization algorithms.

L) Milliman



2. Next-Generation Actuarial Approach for Flood Modeling

Extreme Modeling - Model selection and limitations

= Model selection is based on two criteria: AIC and BIC. Limitations and Recommendations
= Both are based on the maximized log-likelihood (f) of the = Extrapolation assumes a monotonic (often linear) trend
model and penalize the inclusion of additional parameters to which may not reflect the true evolution of the phenomenon.
avoid overfitting. = Not advisable to extrapolate far into the future (conditions
= For a model with p parameters and a sample size n, these may differ from past observations).
criteria are defined as: = Add meteorological variables as covariates: represent future
AIC = =20+ 2p BIC = — 2% + plog(n) evolution but add uncertainties related to climate modeling.

— AIC is designed to minimize the information loss and is
effective in selecting the "least bad" model from a set that
may not contain the true model. It achieves a balance
between bias and variance.

Extrapolation: Linear Trend Does Mot Fit Reality

— BIC tends to favor simpler, more parsimonious models and
is consistent in the sense that it will select the true model
(if it is among the candidates and unique) as the sample i fal s
size grows. BIC often chooses models with fewer :
parameters than AIC.

L) Milliman 36



Thank you for your attention and participation.

Should you have any questions or require further information on any of the topics discussed,
please do not hesitate to contact us.

We remain at your disposal and would be pleased to provide any additional details or clarification
you may need.

Nicola Biscaglia Francesco Pugassi

nicola.biscaglia@milliman.com francesco.pugassi@milliman.com
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