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1. Context
Why a Law on Nat Cat Insurance is Essential (1/3)

90% of calamities
Climate-related disasters

Flood & Landslide

2.7 Mn
Nat Cat insurance contracts 2018-2022

5% in high-risk areas
€160 K average mortgages loan

AAL = €3.4 Bn
2008-2022 

(peaks over €10 Bn)

EAAL = €5+ Bn
Next 10 Yrs

43%
Low insurance Nat Cat coverages

for high-risk properties

Default rates

       Property values
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1. Context
Why a Law on Nat Cat Insurance is Essential (2/3)

▪ Over the past 15 years Italy 

has experienced a critical 

increase in heatwaves and 

wildfires, as well as a rise in 

extreme precipitation events. 

In general, also in other 

European countries very 

similar trends are observed 

for various extreme events.

▪ The charts illustrate the 

trends of selected extreme 

natural events in the Italian 

and European areas.

▪ A probability greater than 5% 

indicates an intensification in 

the frequency of extreme 

events compared to the 

reference period 1981–2010.
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1. Context
Why a Law on Nat Cat Insurance is Essential (3/3)

▪ Italian territory is highly exposed to a wide range of natural hazards, including hydrogeological, seismic and extreme weather events; 

in particular, more than 90% of cities are exposed to landslides, floods, and/or coastal erosion.

▪ Moreover, climate change has made floods and landslides more frequent, creating growing risks for the business sector.

+7.3% of exit probability in firms located in cities hit 

by floods or landslides.

An average of -4.9% in revenues and -2.2% in 

employment in the three years after the Nat Cat event 

among firms that survived.

The negative impacts were concentrated among 

small and micro companies and younger firms.

▪ For the reasons above, accurate pricing of Nat Cat risks is essential to ensure financial stability and market sustainability. 

Inadequate or imprecise pricing approaches may expose insurers to severe economic losses and undermine long-term resilience.

97% of large companies insured (~0.1% of the 

overall companies in the territory).

72% of medium companies insured (~0.6% of the 

overall companies in the territory).

5% of small and micro companies insured (~99.3%, 

of the overall companies in the territory).

Business Impact Insurance Gap
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1. Context
Law Highlights

▪ The 2024 Italian Budget Law introduced the obligation for all companies in Italy to protect themselves against natural catastrophes 

through specific insurance coverage. The obligation to insure is bilateral – it applies both to companies, which must obtain coverage, 

and to insurance undertakings, which are required to provide it. In particular, the law requires companies to purchase insurance 

policies covering:

– Floods.

– Landslides.

– Earthquakes.

▪ The law introduces the obligation gradually, with different deadlines depending on company size:

▪ SACE, the Italian state-owned export credit agency, plays a key role in the framework. It acts as a reinsurer and guarantor of last 

resort, supporting private insurance companies in managing catastrophic risk exposure. This ensures sufficient market capacity, 

stabilizes premiums, and fosters a more resilient national insurance system.

Large Companies

By the end of March 2025

Medium Companies

By the end of September 2025

Small and Micro Companies

By the end of December 2025
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1. Context
Key impacts for Insurers

▪ Beyond these four core areas, other functions will also be impacted, such as Compliance & Legal, Finance & Capital Management 

(e.g. for Solvency II implications), and Distribution & Client Relations in explaining new obligations to clients.

▪ The introduction of the mandatory law on Nat Cat insurance represents a structural shift for the insurance industry. The decree not 

only broadens the scope of coverage and redefines the allocation of risk, but also requires insurers to adapt their internal 

processes, governance, and technical capabilities across multiple business functions.

Insurers must design and issue Nat Cat coverage as 
mandated by law, with limited discretion in risk selection and 
the need to adapt existing product portfolios.

Underwriting & Product Development

Premium calculation requires robust actuarial models and 

frequent updates to ensure alignment with regulatory 

expectations and market sustainability.

Pricing & Actuarial

Companies will need to rely more heavily on reinsurance to 
manage catastrophic accumulations, while defining and 
reviewing annual risk tolerance limits.

Reinsurance & Risk Management

Processes and resources must be strengthened to handle 
potentially large volumes of claims arising from catastrophic 
events, ensuring timely settlement and customer trust.

Claims Management

Key 

Functions 

Impacted
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1. Context
Developing a Pricing Model (1/2)

EXISTING 
MODEL

Outsourced tariffs provided by reinsurers or 
other external providers

Black-box CAT models with low transparency 
on risk drivers

Lack of customization and/or optimization 
for   e  o     ’  ow   or fo  o

Full dependence on external player and 
limited ability to actively challenge

Direct control over models and 
geographic/sectoral customization of pricing

Ability to perform scenario analysis and 
sensitivity testing on key parameters

Enhanced negotiation with reinsurers and 
development of internal capabilities

Alignment with regulatory expectations and risk 
management guidelines

▪ Current models used by insurers are often black-box solutions relying on reinsurer-provided rates. As a result, portfolio optimization 

using own data is limited, highlighting the added value of an in-house model.

IN-HOUSE 
PRICING 
MODEL
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1. Context

DATA COLLECTION

▪ Sources: national and global data

▪ Target: flood height using empirical

formula and downscaling data.

FREQUENCY

▪ Extreme distribution calibration on
historical data.

▪ Return periods estimation.

EXPECTED LOSS

▪ Portfolio geolocalisation and
average loss estimation.

IMPACT ANALYSIS

▪ Stress test and multiple scenarios.
▪ Backtesting and comparison with

actual tariff.

HAZARD

▪ Definition of event intensity clusters 
based on the generalized frequency 
model.

▪ Development of a GIS data model.

MODELS CONVOLUTION

▪ Frequency - Severity models convolution.
▪ AAL (Average Annual Loss) estimation and

tariff implementation.

0%

50%

100%

150%

200%

Developing a Pricing Model (2/2)
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2. Next-Generation Actuarial Approach for Flood Modeling
Spatial Data - Introducing spatial data

▪ Modern technologies provide access to remote sensing data 

with a resolution up to 5 meters.

▪ Trade off between detail (resolution), extension (global or 

local) and spatio-temporal detail (better low resolution and 

higher spatio-temporal or higher resolution and lower spatio-

temporal?).

▪ How can we get high spatio-temporal detail at least in the 

region we are modeling?
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2. Next-Generation Actuarial Approach for Flood Modeling
Spatial Data - Sources and distortions (1/3)

▪ Distortion refers to the alteration 

of the true shape, area, distance, 

or direction of features in remote 

sensing images due to various 

factors such as sensor geometry, 

  r  ’  curvature, and 

topography.

▪ Due to distortion, tall structures 

like the Eiffel Tower appear 

shifted or skewed from their 

actual geographic location.

▪ The base is at the correct 

location, but the top point appears 

further out, creating a "shadow" or 

"plate" effect that does not 

correspond to the true footprint. 
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d =
h ∙ r

H
Δr = k1r3 + k2r5 + k3r7+ . . .

Relief Displacement

▪ Relief displacement refers to the apparent shift of elevated 

objects (like the top of the Eiffel Tower) from their true ground 

position in aerial or satellite images.

▪ The formula for relief displacement (d) is:

Where:

▪ d: radial displacement of the elevated point (in mm or pixels 

on the image).

▪ h: height of the object above the reference plane (e.g., above 

ground level).

▪ r: radial distance from the center of the image to the base of 

the object (on the photo, in mm or pixels).

▪ H: flying height of the sensor/platform above the reference 

plane.

Radial Distortion

▪ Radial distortion is a geometric distortion that causes points 

to be shifted radially with respect to the optical center of the 

image.

▪ A common formula for radial distortion (Δr) is:

Where:

▪ Δr: radial shift due to distortion.

▪ r: distance from the optical center.

▪ k1, k2, k3: distortion coefficients (calibrated for the sensor).

2. Next-Generation Actuarial Approach for Flood Modeling
Spatial Data - Sources and distortions (2/3)
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Practical Example (Eiffel Tower)

▪ Suppose:

– Eiffel Tower height (h): 330 m.

– Flying height (H): 2000 m.

– Radial distance from image 

center to base (r): 50 mm (on 

the photo negative).

▪ Displacement of the top:

– d=330×50 / 2000​=8.25 mm.

▪ So, the top of the Eiffel Tower will 

appear shifted by 8.25 mm from 

its base on the image.

Satellite
Altitude

(m)

R

(mm)

Displacement

(mm)

Pixel Size

(mm)

Displacement

(pixels)

WV-3 617,000 10 0.00535 0.005 1.07

WV-3 617,000 50 0.02675 0.005 5.35

WV-3 617,000 50 0.02675 0.03 0.89

Landsat 8 705,000 50 0.0234 0.005 4.68

Landsat 8 705,000 50 0.0234 0.03 0.78

2. Next-Generation Actuarial Approach for Flood Modeling
Spatial Data - Sources and distortions (3/3)
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2. Next-Generation Actuarial Approach for Flood Modeling
Spatial Data - Mapping rivers and streams

Mapping rivers and streams

▪ Get high quality spatial data (which however require 

processing steps).

▪ Breach data: remove errors that block natural flow.

▪ Fill data: correct depressions and sinks that do not 

represent actual terrain features.

▪ Measure flow accumulation: amount of water that would 

flow into each cell (identify drainage patterns and potential 

flooded areas).

▪ Extract rivers: setting a threshold for flow accumulation, 

we can delineate rivers and streams within the landscape.
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2. Next-Generation Actuarial Approach for Flood Modeling
Downscaling - A method to rule them all

▪ Even with modern technologies, spatial data can show some 

limitations due to sensors or budget:

– Usually, we only have some points in space, however, the 

risk influences total space, how can we estimate risk in 

missing points?

– Spatial data can show holes or missing values or errors, 

which need to be estimated to correctly extract information 

(remember breaching and filling data before extracting 

rivers).

– We are interested in augmenting spatial resolution 

because initial resolution is too coarse to provide the 

information we need with the needed detail.

– All of above can be made using downscaling methods.
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2. Next-Generation Actuarial Approach for Flood Modeling
Downscaling - Geostatistical techniques (1/2)

▪ Spatial autocorrelation describes the extent to which a 

variable is correlated with itself through space. 

▪ To  er’  First Law of Geography:

“Everything is related to everything else but near things are 

more related than distant things”.

▪ In order to progress towards spatial predictions, we need a 

variogram model for (potentially) all distances. If we would 

connect these estimates with straight lines, it would lead to 

statistical models with non-positive definite covariance 

matrices, which would block using them in prediction.

▪ To avoid this, we fit parametric models to the estimates , 

where we take as the mean value of all the values involved 

in estimating.

2 ො𝛾(ℎ)  =
1

|𝑁(ℎ)|
෍

𝑁(ℎ)

(𝑍(𝑠𝑖) − 𝑍(𝑠𝑗)
2

▪ Where 𝑁 ℎ  denotes the number of distinct pairs in.

𝑁 ℎ = 𝑠𝑖 , 𝑠𝑗 : 𝑠𝑖 − 𝑠𝑗 = ℎ, 𝑖, 𝑗 = 1, … , 𝑛

▪ Assuming isotropy (same relationship across every

direction), the variogram becomes:
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2. Next-Generation Actuarial Approach for Flood Modeling
Downscaling - Geostatistical techniques (2/2)

▪ In geostatistics and spatial analysis, variograms describe how spatial correlation changes with distance.

Spherical Model

▪ C0: nugget (variance at zero distance).

▪ C: sill (total variance minus nugget).

▪ a: range (distance where the model flattens).

Gaussian Model

𝛾 h = ቊC0 + C 1 − exp −
h

a

▪ Approaches the sill asymptotically, never truly reaches it.

▪ a: practical range (distance at which γ( ) reaches about 95% of the sill).

Exponential Model

𝛾 h = ቊC0 + C 1 − exp −
h2

a2

▪ Smoother near the origin than the exponential model.

▪ a: range parameter.

𝛾 h = ൞
C0 + C

3h

2a
−

h3

2a3
, 0 < h ≤ a

C0 + C, h > a
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2. Next-Generation Actuarial Approach for Flood Modeling
Downscaling - Nonparametric methods

▪ No prior assumptions about the relationship between x and y.

▪ Better solutions (in case the parametric function is wrong)

than parametric models (which could be the case, often

parametric shapes are far from the true one).

▪ We are interested in high detailed risk prevision (of course if

we could explain risk parametrization that would be better

but the main objective is to be precise).

▪ Be careful with extrapolation (model choice in downscaling

must take in consideration if we want to extrapolate or not).
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2. Next-Generation Actuarial Approach for Flood Modeling
Downscaling - Neural Network

Universal Approximation Theorem

▪ A feedforward neural network with a single hidden layer containing a sufficient number of neurons and a suitable non-linear activation 

function (such as the sigmoid) can approximate any continuous function on a compact subset of ℝn to any desired degree of 

accuracy.

▪ The formula expressing this theorem (in its classical form, Cybenko, 1989) is:

– For every continuous function 𝑓 ∶ ℝn → ℝ defined on a compact set Κ ⊂ ℝn, and for every 𝜀 > 0, there exist coefficients ai, 

weights wi, and biases bi ( 𝑓𝑜𝑟 i = 1, … , N) , such that:

𝑓(𝑥) − ෍

i = 1

n

ai𝜎 𝑤𝑖
𝑇𝑥 + 𝑏𝑖 < 𝜀 ∀ x ∈ Κ

Where:

▪ σ is a non-constant, continuous function (such as the sigmoid).

▪ N is a sufficiently large number of neurons in the hidden layer.

▪ ai, bi and wi are real parameters (output weights, weight vectors, and biases, respectively).
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2. Next-Generation Actuarial Approach for Flood Modeling
Downscaling - Gradient Boosting (1/2)

▪ Extreme Gradient Boosting (XGBoost) is a highly efficient and scalable implementation of gradient boosting for decision trees. It 

builds an ensemble of trees sequentially, each one correcting errors from the previous ones.

▪ Gradient boosting builds an additive model in the form:

ො𝑦𝑖
𝑡 = ෍

k = 1

t

𝑓𝑘 𝑥𝑖

Where:

▪ ො𝑦𝑖
𝑡: prediction for sample i after t trees.

▪ 𝑓𝑘: the k-th tree (decision function).

▪ 𝑥𝑖: feature vector of sample i.

▪ XGBoost optimizes a regularized objective at each iteration:

ℒt = ෍

i = 1

n

ℓ yi, yi
t − 1

+ ft xi + Ω ft
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2. Next-Generation Actuarial Approach for Flood Modeling
Downscaling - Gradient Boosting (2/2)

▪ To efficiently optimize, XGBoost uses a second-order Taylor expansion of the loss for the new tree:

ℒt ≈ ෍

i = 1

n

gift xi +
1

2
hift

2 xi + Ω ft

▪ Summary of XGBoost steps:

– Initialize predictions (e.g., mean for regression).

– For each iteration:

• Compute gradients (gi) and Hessians (hi) for all data points.

• Build a new tree ft to fit the gradients.

• Compute optimal weights and split points.

• Update predictions:

– Repeat until desired number of trees is reached or loss stops improving.

ොyi t = ොyi t − 1 + ft xi
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2. Next-Generation Actuarial Approach for Flood Modeling
Downscaling - Results

▪ Using downscaling, we can improve spatial detail about the information we are interested in. Improved accuracy leads to better 

decision making and more accurate tariff.
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2. Next-Generation Actuarial Approach for Flood Modeling
Stage-Discharge Rating curve - Obtaining a Stage-Discharge rating curve

▪ The purpose of continuous collection of stage data and 

discharge measurements is to establish a relationship 

between water level and volumetric flow over a wide range of 

conditions.

▪ Stage-Discharge Relationship: 

– Essential for design to assess flow characteristics like 

depth and discharge.

– Allows evaluation of various flow conditions beyond a 

single design flow rate.

– Measuring river discharge continuously is costly, time-

consuming, and impractical, especially during floods.
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Where:

▪ Q: flow rate (m³/s or cfs).

▪ n:        ’  roughness coefficient (unitless).

▪ A: cross-sectional area of flow (m² or ft²).

▪ R: hydraulic radius (m or ft) = A / P.

▪ P: wetted perimeter (m or ft).

▪ S: channel slope (m/m or ft/ft).

▪ This equation gives engineers the ability to predict how fast and how much water will move through a particular section of a channel, 

pipe, or stream under steady, uniform flow conditions.

▪ Once we have observed discharge and height values, finding α and β becomes an optimization problem.

2. Next-Generation Actuarial Approach for Flood Modeling
Stage-Discharge Rating curve - Empirical equations

Manning formula

Q =
1

n
AR Τ2 3S Τ1 2
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2. Next-Generation Actuarial Approach for Flood Modeling
Extreme Modeling - Extreme modeling approaches

▪ Extreme value analysis plays a crucial role in understanding 

the behavior of rare, high-impact natural hazards such as 

floods and storms. 

▪ In this context, extreme events are typically defined as those 

observations which exceed a high threshold value. The 

choice of this threshold is central to the analysis and is often 

determined indirectly by specifying a desired return period—

the average time between occurrences of events of a certain 

magnitude. For instance, a "centennial storm" refers to an 

event expected to occur, on average, once every 100 years, 

while a "millennial flood" is one expected every 1,000 years.

▪ The second approach is the Peaks Over Threshold (POT) 

method, which utilizes all data points exceeding a chosen 

threshold rather than only the maximum per block. Under 

appropriate conditions, the exceedances above the threshold 

are well described by the Generalized Pareto Distribution 

(GPD). 
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2. Next-Generation Actuarial Approach for Flood Modeling
Extreme Modeling - What does extreme mean for natural hazard

▪ In extreme value analysis, we often focus on the annual 

maxima of a stationary process X, typically recorded during 

specific seasons when extreme events are most likely to 

occur (such as summer for heatwaves or winter for floods). 

For each year, the maximum value observed is denoted 

by Mn, and the collection of these maxima over multiple 

years forms the basis for statistical modeling.

▪ Extreme value theory shows that, under certain conditions, 

the distribution of maxima converges to a Generalized 

Extreme Value (GEV) distribution. The GEV family has three 

types, depending on the shape parameter ξ: Gumbel (ξ=0), 

Fréchet (ξ>0), and Weibull (ξ<0). In many practical cases, 

especially for environmental data, the Gumbel distribution is 

an appropriate model.

GEV: Given 𝑥 such that 1 + 𝜉
x − 𝜇

𝜎
> 0:

𝑓(𝑥) =
1

𝜎
1 + 𝜉

x − 𝜇

𝜎

ൗ−1
𝜉−1

exp − 1 + 𝜉
x − 𝜇

𝜎

ൗ−1
𝜉

𝑓(𝑥) =
1

𝜎
𝑒𝑥𝑝 −

x − 𝜇

𝜎
𝑒𝑥𝑝 − 𝑒𝑥𝑝 −

x − 𝜇

𝜎

If 𝜉 → 0 then GEV reduces to Gumbel and we have:
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2. Next-Generation Actuarial Approach for Flood Modeling
Extreme Modeling - Estimating extreme d   r     o ’ parameters

▪ To estimate the parameters μ and σ of the Gumbel distribution from a sample of annual maxima y1, … , ym, the method of maximum 

likelihood is commonly used. 

▪ The likelihood function is constructed from the probability density function of the Gumbel distribution:

▪ Accurate estimation of the Gumbel parameters using MLE allows for robust modeling of extreme events and reliable calculation of 

return levels, which are vital for forecasting and risk management in environmental and engineering applications.

▪ As a closed-form solution does not exist for both parameters simultaneously, optimization can be done using optimization algorithms.

𝑓(𝑥) =
1

𝜎
𝑒𝑥𝑝 −

y − 𝜇

𝜎
𝑒𝑥𝑝 − 𝑒𝑥𝑝 −

y − 𝜇

𝜎

▪ The log-likelihood function for a sample of maxima is:

ℓ 𝜇, 𝜎 = − 𝑙𝑜𝑔 𝜎 −
y1 − 𝜇

𝜎
− 𝑒𝑥𝑝 −

y1 − 𝜇

𝜎
+ ⋯ + − 𝑙𝑜𝑔 𝜎 −

ym − 𝜇

𝜎
− 𝑒𝑥𝑝 −

ym − 𝜇

𝜎

▪ To find the maximum likelihood estimates of μ and σ, we maximize this log-likelihood function with respect to both parameters. 
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2. Next-Generation Actuarial Approach for Flood Modeling
Extreme Modeling - Model selection and limitations

▪ Model selection is based on two criteria: AIC and BIC.

▪ Both are based on the maximized log-likelihood (መℓ) of the 

model and penalize the inclusion of additional parameters to 

avoid overfitting.

▪ For a model with p parameters and a sample size n, these 

criteria are defined as:

– AIC is designed to minimize the information loss and is 

effective in selecting the "least bad" model from a set that 

may not contain the true model. It achieves a balance 

between bias and variance.

– BIC tends to favor simpler, more parsimonious models and 

is consistent in the sense that it will select the true model 

(if it is among the candidates and unique) as the sample 

size grows. BIC often chooses models with fewer 

parameters than AIC.

Limitations and Recommendations

▪ Extrapolation assumes a monotonic (often linear) trend 

which may not reflect the true evolution of the phenomenon.

▪ Not advisable to extrapolate far into the future (conditions 

may differ from past observations).

▪ Add meteorological variables as covariates: represent future 

evolution but add uncertainties related to climate modeling.AIC = − 2 መℓ + 2 p BIC = − 2 መℓ + p log(n)



Thank you for your attention and participation.

Should you have any questions or require further information on any of the topics discussed, 

please do not hesitate to contact us.

We remain at your disposal and would be pleased to provide any additional details or clarification 

you may need.

Nicola Biscaglia

nicola.biscaglia@milliman.com 

Francesco Pugassi

francesco.pugassi@milliman.com 
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