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This monograph provides a practical introduction to an area of actuarial practice that is at the intersection 
of the theories of credibility and mixed models. Several credibility models are shown to be special cases of  
the linear mixed model, and thus we may apply all the statistical machinery to assess, refine, and expand 
them. The text then introduces generalized linear mixed models, removing some of the constraints  
of the linear mixed model, and thus allowing for applications in the insurance industry. The focus is on the 
practical application of the theory rather than its development. Therefore, text and computer code are 
integrated as we discuss examples from property/casualty and health.
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We all learn better if we engage with the material and connect new ideas or concepts 
with things we already know; therefore, we encourage readers to replicate the results 
presented in the text:

•	 exploratory graphs and tables,
•	 model fitting, and
•	 diagnostic graphs and tables.

Readers should attempt to write the code necessary to accomplish the various tasks 
before consulting the source code for this monograph.

We used the Quarto (Allaire et al. 2024) publishing system to integrate text, compu
tations, tables, and graphs. The source code for this monograph is on GitHub in the 
repository pmmfa. All computations are done in R (R Core Team 2024), and nearly 
all datasets used are in various R packages that the reader can easily install from the 
Comprehensive R Archive Network (CRAN).

We made use of several packages, and readers wishing to replicate the work should 
install them. Tables 1, 2, and 3 list the packages, available on CRAN, that we used for 
computations, graphics/tables, and datasets, respectively.

Preface

Table 1.    R packages used in computations.

Package Name Citation

actuar Dutang et al. (2008)

dhglm Lee and Noh (2018)

gamlss Rigby and Stasinopoulos (2005)

hglm Rönnegård et al. (2010)

lme4 Bates et al. (2015)

MASS Venables and Ripley (2002)

mvtnorm Genz and Bretz (2009)

statmod Dunn and Smyth (1996)

tidyverse Wickham et al. (2019)
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The CASdatasets package, from which we used a couple of datasets, is not 
available on CRAN due to its size. Please visit the CASdatasets page on GitHub for 
further information and instructions on how to install it.

The datasets bus-case.csv and medpar are not available from CRAN. Both can 
be found from the websites of their corresponding books:

•	 Non-Life Insurance Pricing with Generalized Linear Models (Ohlsson and Johansson 
2010) is the source of the dataset bus-case.csv.

•	 Negative Binomial Regression (Hilbe 2007) provides the medpar dataset.

Table 3.    R packages with datasets used in the text.

Package Name Citation

GLMsData Dunn and Smyth (2022)

insuranceData Wolny–Dominiak and Trzesiok (2014)

lars Hastie and Efron (2022)

mdhglm Lee et al. (2018)

Table 2.    R packages used for graphs 
and tables.

Package Name Citation

GGally Schloerke et al. (2024)

kableExtra Zhu (2024)

patchwork Pedersen (2024)
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Generalized linear models (GLMs) made their appearance in 1972 with the publication 
of Nelder and Wedderburn’s paper “Generalized Linear Models,” and software imple-
menting these models, known as GLIM (Generalized Linear Interactive Modelling), 
developed by the Working Party on Statistical Computing of the Royal Statistical Society 
(Nelder 1975) appeared three years later. Nearly 10 years after Nelder and Wedderburn’s 
paper, McCullagh and Nelder published their monograph Generalized Linear Models, 
and a second edition followed in 1989 (McCullagh and Nelder 1989). That publication 
has been the go-to reference for the subject.

In the second half of the ’70s and early ’80s, several publications applied GLMs to 
the premium calculation in motor insurance (Coutts 1975, 1983; Baxter and Coutts 
1977; Baxter et al. 1980). But despite these early contributions, there was no widespread 
adoption within the insurance industry.

Three years after the publication of the second edition of McCullagh and Nelder’s 
book, Brockman and Wright (1992) published a paper that launched the adoption of 
GLMs in the UK motor insurance market, and 10 years thereafter American actuaries 
embraced GLMs in the ratemaking process for auto insurance.

Given the events just described, one might think that statisticians developed the 
theory and computational procedures and then actuaries, slowly, adopted the tools and 
techniques and put them to practical use. But such a sequence of events is not quite right.

In 1963, Robert A. Bailey published a paper in Proceedings of the Casualty Actuarial 
Society with the title “Insurance Rates with Minimum Bias” (Bailey 1963). In the intro-
duction he writes that the techniques he is about to describe are “methods for obtaining 
insurance rates that are as accurate as possible for each class and territory and so on.” 
Moreover, he mentions that “many of the techniques presented in the paper are already 
in use by the various bureaus and other ratemakers in one form or another.”

The minimum bias techniques that Bailey described are now known to be special 
cases of a GLM as shown by Mildenhall (1999). These techniques were not developed 
within a statistical framework backing them, and thus they do not come with some 
of the standard diagnostic measures, such as residuals and deviance, that are used to 
check the model development process. Rather, they were created to solve the practical 
problems that actuaries were facing in managing their books of business.

Note that Bailey’s paper predates Nelder and Wedderburn’s introduction of GLMs 
by about 10 years, and thus one might argue that actuaries had developed the proto-idea 
of GLMs before statisticians. I wonder what might have happened if actuaries in the 

1.  Introduction
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’60s and ’70s had been in closer contact with their fellow statisticians as they developed 
the techniques, tools, and computational procedures needed for their jobs. Would the 
insurance industry have embraced GLMs much earlier?

I believe that a close working relationship between actuaries and statisticians can be 
fruitful for both parties. In this monograph, we want to bring together two seemingly 
unrelated areas, credibility and mixed models, at a level accessible to practicing actuaries. 
Therefore, we will not fully develop the theory, but rather present enough that the main 
concepts can be grasped and focus on showing how one would implement the ideas 
through some examples.

The story of the development of credibility theory and mixed models has some 
parallels to the events described above for GLMs.

Credibility theory is a cornerstone of actuarial science (Hickman and Heacox 1999), 
and it comes in several flavors—limited fluctuation, greatest accuracy, hierarchical, 
and multidimensional, to name a few (Bühlmann and Gisler 2005). Greatest accuracy 
credibility is also known as Bühlmann credibility and was developed in the late 1960s 
(Bühlmann 1967) and further extended by Bühlmann and Straub (1970). Simply put, 
credibility is the combination of different estimates to come up with a single estimate 
(Venter 1996), and though it seems somewhat trivial to combine two estimates by 
linear interpolation, the method has far-reaching consequences and applications.

One application of credibility theory is concerned with the estimation of a policy-
holder’s next year’s premium in a book of business where we have some historical loss 
information for each insured. Whereas some policyholders may have a large volume of 
data, others may have very little. Credibility theory allows us to combine each policy-
holder’s own experience and the experience of the whole portfolio.

About 15 years after Bühlmann credibility and 10 years after GLMs were intro-
duced, Laird and Ware (1982) published their seminal paper on the linear mixed-
effects model (also called the linear mixed model, or LMM). Up until that point, the 
linear model and the GLM were used to analyze a sample of data where the observa-
tions were independent and identically distributed. Researchers and practitioners were 
keenly aware that not all of the samples they wanted to analyze obeyed that restric-
tion. In fact, in many situations statistical and actuarial practitioners had a sample of 
samples—that is, observations came in clusters and the number of clusters could be 
quite large.

One can view the LMM and the generalized linear mixed model as the next step 
in the evolution of the linear and generalized linear models, respectively. These models 
can handle data where some of the observations are no longer independent of each other.

It seems that credibility and mixed models do not have much in common, and for 
many years statisticians worked on mixed models and actuaries worked on credibility  
and they did not talk to each other very much. Both areas flourished and both extended 
their tools and techniques significantly. Then, Frees et al. (1999) made the connection 
that some credibility models can seen as special cases of the longitudinal data model that 
can be analyzed with LMMs. This connection allows actuaries to use the full power of 
mixed models in developing, fitting, and assessing some credibility models.
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We begin our exploration in Chapter 2 with a review of GLMs. As most practicing 
actuaries are acquainted with the theory, we will base our review on working through 
a non-insurance example. This choice of dataset is deliberate and meant to break any 
preconceived relationships the reader might have from prior work with insurance appli-
cations. The data analyzed relates to the pulmonary function of children and teenagers 
exposed to cigarette smoke.

Chapter 3 introduces credibility theory, and we focus on the work of Bühlmann 
(1967) and Bühlmann and Straub (1970). This area is also known as greatest accuracy 
credibility. The expected value of the process variance (EVPV) and the variance of the 
hypothetical means (VHM) are important concepts that we will later see, under dif-
ferent names, in connection with mixed models. We end this chapter with the work of 
Hachemeister (1975), who applied the ideas of credibility theory to the linear regres-
sion model. His formulation gives us a random intercept and random slope regression 
model. Hachemeister applied his model to a set of insurance data and noticed that 
some of the credibility estimates obtained did not line up with some sensible practical  
considerations. Perhaps these initial counterintuitive results stifled the adoption of these 
ideas by other actuaries. We will retrace the steps Hachemeister took, see the counter-
intuitive results, and then apply some insight gained along the way to resolve the issue.

Next, in Chapter 4, we jump onto the statistical bandwagon and explore the 
ways in which statisticians evolved the standard linear model into the LMM. Instead 
of starting with the theory, we begin by reformulating the balanced Bühlmann and 
the Bühlmann–Straub models in the language of the LMM and note that we get the 
same estimates for the balanced Bühlmann model and nearly the same estimates for the 
Bühlmann–Straub model. Then, we present the very basics of the theory of the mixed 
model and apply them to a previous example to show a concrete application. We 
conclude the chapter by revisiting Hachemeister’s data and applying these new tools.

In Chapter 5 we take the LMM and transform it into the generalized linear mixed 
model (GLMM), where we introduce link functions and expand the distribution of 
the response variable from a normal distribution to the family of linear exponential 
distributions. With these models we can not only model the response variable but also 
include explanatory variables for the dispersion parameter. Modeling the dispersion 
parameter does not require “mixed model” theory. We can achieve this by interlocking 
two GLMs (Nelder et al. 1998). But that joint model fits well with the approach we 
undertake in this chapter.

Mixed models, either the linear or the generalized version, are more complex 
and more difficult to estimate. We require more information from our data, and the 
computational procedures to estimate the parameters have more potential points of  
failure. The standard approach to compute the parameters of such models is to use 
maximum likelihood estimation. Maximizing the likelihood is a nontrivial task often 
involving analytically intractable integrals. Thus we must resort to numerical optimization 
techniques. One such technique is Monte Carlo simulation, which depending on the 
complexity of our model, may require a significant amount of time and the assessment 
that convergence has been achieved.
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We will not use Monte Carlo simulation but rather focus on a different develop-
ment, namely, the use of the theory of h-likelihood, which sits somewhere between the 
Bayesian and the frequentist approaches. The computational resources needed for this 
approach, while not small, are reasonable.

In the final chapter, the discussion is focused on the application of the GLMM to 
three datasets: automobile bodily injury, hospital length of stay, and fleet insurance. 
For all three datasets, we present an analysis starting with data exploration, moving to 
model building, and ending with diagnostics.
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2.1.  Introduction
Actuaries are well acquainted with GLMs, and in this chapter we provide a quick 

review of the main ideas and concepts as we work through a non-insurance example.
In the late 1970s and early 1980s, researchers in Boston were interested in under-

standing the effects of maternal smoking on the pulmonary function of children through 
a seven-year longitudinal study (Tager et al. 1979, 1983). The study subjects and their 
families were interviewed multiple times. For children 10 years or younger, the parents 
answered all questions except those regarding their smoking history. All other children 
answered all questions on their own. During pulmonary testing—a time when parents 
were not present—researchers asked children about their smoking history.

The longitudinal analysis showed that after adjusting for explanatory variables, such 
as age, height, change in height, and the smoking status of the child, maternal smoking 
hurts the development of the child’s pulmonary function. A cross-sectional dataset from 
that investigation is available in the GLMsData package under the name lungcap.

2.  Generalized Linear Models

data(lungcap, package = “GLMsData”)

The dataset has 654 observations and five variables. The pulmonary function of the 
subjects was assessed through their lung capacity, which was measured via their forced 
expiratory volume. The forced expiratory volume is the amount of air a subject can expel 
from their lungs in the first second of a forceful exhalation. A larger volume of exhaled 
air signals better pulmonary function.

Table 2.1 shows the name, type, and description of each variable in the dataset. 
Forced expiratory volume, FEV, is our response variable, and the indicator variable for 
smoking, Smoke, is the principal variable of interest. The age (Age), gender (Gender), 
and height (Ht) of each child are variables that may be related to the response, and we 
want to control for them.

2.2.  Exploratory Data Analysis
To work effectively with data we first need to understand what we have available to 

work with. Exploratory data analysis employs a set of techniques to help us understand 
and uncover what the data we have may be saying. It is not about confirming that a 
perceived pattern is true. For that there are other techniques. It is about looking closely 
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at the data to find out what we can do with it. It is about learning and finding insights 
from the data and being able to describe them as easily as possible. In this section, 
we explore the lung capacity data. The response variable is forced expiratory volume, 
FEV, and the remaining variables may help us explain it.

The Age variable ranges from 3 to 19 years old, and the height variable is between 
46 and 74 inches. Thus we have a broad spectrum of body sizes, and we should expect 
FEV to vary significantly as age and height varies. Table 2.2 shows summary statistics 
for the numeric variables. Note that the difference from the median (Q2) down to the 
first quartile (Q1) and up to the third quartile (Q3) is similar for each variable. This 
shows us that the bulk of the data, in each case, is fairly symmetric.

During these ages, children grow significantly, and Age and Ht should be strongly 
related to each other; in fact, their linear correlation coefficient is equal to 0.79. Thus, 
including both of these variables in a linear model may pose some estimation problems 
(multicollinearity).

The remaining predictor variables are smoking status (Smoke) and gender 
(Gender). Both are binary variables. Smoke is an indicator variable where a value of 
1 tells us that the child smokes and a value of zero says they do not smoke. There are 
65 children who smoke in our dataset (about 10%). For the variable Gender, the split 
between female and male is 49% and 51%, respectively.

In Figure 2.1 we see that both Age (left-hand panel) and Ht (right-hand panel) 
have a strong nonlinear relationship with the response variable FEV. The nonlinear 
smooth curves ignore the information about which subjects smoke and which do not.

Table 2.1.    Names, types, and descriptions of the variables available  
in the dataset.

Item Variable Type Description

1 FEV Continuous The forced expiratory volume in liters.

2 Age Integer Age of subject in completed years.

3 Ht Continuous Height of the subject in inches.

4 Gender Binary The gender of the subject.

5 Smoke Binary The smoking status of the subject: Nonsmokers are coded 
with 0 and smokers are coded with 1.

Table 2.2.    Summary statistics for the numeric variables in the lung capacity 
dataset. Q1 is the first quartile, Q2 is the median, and Q3 is the third quartile.

Min Q1 Q2 Mean Q3 Max

FEV (in liters) 0.79 1.98 2.55 2.64 3.12 5.79

Age (in years) 3.00 8.00 10.00 9.93 12.00 19.00

Height (in inches) 46.00 57.00 61.50 61.14 65.50 74.00
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The left-hand panel shows that the relationship between Age and FEV resembles 
an elongated S curve. Also, we can see that as age increases, the cloud of points shows 
more dispersion as we move from the lower-left corner to the upper-right corner.

Switching to the right-hand panel, we see that the relationship between height (Ht) 
and FEV is also nonlinear, but the nonlinear pattern is simpler. In this case, it resembles 
part of a quadratic or exponential curve where increases in height lead to larger lung 
volumes. The cloud of points in this case is also more compact than the one, based on 
age, in the left-hand panel. These observations lead us to favor a model that uses height 
over one that uses age.

Also note that as the mean value of FEV increases in both scatterplots, the variability 
in FEV also increases. In other words, both plots show a fanning out of FEV as FEV 
increases. This relationship between the mean of the response and its variance, known 
as the mean–variance relationship, is extremely important in GLMs, as it determines 
the member of the exponential family of distributions that we should use for our 
response variable.

The relationship between the mean and the variance of the response variable for 
many members of the exponential family is given by

	
Var y8 B = zn b,	 (2.1)

where ϕ is the dispersion parameter, µ is the mean of the distribution, and b is a 
non-negative number. Well-known distributions correspond to different values of the 
exponent b.
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Figure 2.1.    Age and height versus FEV. The red circles denote 
smoking subjects and the plus signs represent nonsmoking 
subjects. The smooth trend curves, which ignore smoking status, 
suggest nonlinear relationships with the response variable.
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For example, if b = 0, then we have the normal, or Gaussian, distribution. If b = 1 
and ϕ = 1, then the response variable is Poisson distributed, and if b = 2, then it is  
gamma distributed. Other values of b are possible, and not all members of the expo-
nential family have a mean–variance relationship given by Equation 2.1 (e.g., the binomial 
and negative binomial distributions).

Note that by applying a logarithm to both sides of Equation 2.1 we get the following 
equation:

	 ln Var y8 Bb l = ln z` j+ b ln n` j.	 (2.2)

Therefore, we can use our data and ordinary least squares (OLS) to estimate the 
value of b.

For example, we can proceed as follows. First, create seven bins of approximately 
equal size for the height variable.

lungcap$Ht.bin <- cut_number(lungcap$Ht, n = 7)

Using the height bins, summarize the value of FEV for each bin by calculating the size 
of the bin, the mean, and the variance. Store the values in the object mv (mean–variance).

mv <- lungcap |>
  group_by(Ht.bin) |>
  summarize(sz = n(),
	 mn = mean(FEV),
	 vr = var(FEV))

Now estimate a linear regression equation where the response variable is the logarithm 
of the variance and the predictor variable is the logarithm of the mean.

fm <- lm(log(vr) ~ log(mn),
	 data = mv,
	 weights = sz)
sfm <- summary(fm)
round(sfm$coef[,1:2], 3)

	 Estimate	 Std. Error
(Intercept)	 –3.740	 0.253
log(mn)	 2.015	 0.260

The coefficient of the logarithm of the mean is our estimate of the value of b. In this 
case, b = 2.02, and since it is close to 2 in value, this suggests that we should model FEV 
as a gamma-distributed random variable. An approximate 95% confidence interval for  
the value of b is equal to 2.015 ± 2 × 0.260 = (1.495, 2.535). Clearly, this confidence 
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interval does not include zero, and therefore using a normal distribution for the response 
variable would not be a reasonable choice—that is, the normal distribution is not sup-
ported by the data.

But what about other choices? Perhaps a Poisson distribution (b = 1) or an inverse 
Gaussian distribution (b = 3) would be an appropriate choice. Well, the endpoints of 
the confidence interval are closer to these distributions, and so one could try them out.

Exercise 2.1    Redo the mean–variance analysis with a different number of bins. Try various 
choices, maybe n = 3, 5, 10, 20. Would you arrive at a similar conclusion?

Solution 2.1    Let n = 20 and create this many bins for the height variable

lungcap$Ht.bin <- cut_number(lungcap$Ht, n = 20)

Next, we group the data by each bin and compute the mean ‘mn’ and the variance ‘vr’ for 
each group. We also add the number of observations in each group ‘sz’.

mv <- lungcap |>

  group_by(Ht.bin) |>

  summarize(sz = n(),

	 mn = mean(FEV),

	 vr = var(FEV))

Finally, we estimate a OLS regression line

fm <- lm(log(vr) ~ log(mn),

	 data = mv,

	 weights = sz)

round(summary(fm)$coef[,1:2], 3)

	 Estimate	 Std. Error

(Intercept)	 –3.955	 0.226

log(mn)	 2.110	 0.232

The estimated value of b in this case is 2.110, and so we arrive at the same conclusion.

We also could have anticipated that our response variable FEV is not normally 
distributed by carefully inspecting the scatterplots shown in Figure 2.1. Looking at 
FEV versus Age (left panel) we see that as we move from the lower-left corner, where 
the response variable is small, to the upper-right corner, the variability in FEV values 
increases. A similar phenomenon appears in the right-hand panel in the scatterplot of 
FEV versus height (Ht). Figure 2.2 shows the increase in variability as the mean of FEV 
increases.
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If our response variable FEV was normally distributed, then all the arrows in 
Figure 2.2 would have the same length regardless of their position along the horizontal 
axis. In other words, we would have seen constant variance for the response variable.
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Figure 2.2.    Age and height versus FEV. The data has been 
rendered in muted gray and pink. The arrows on both panels 
depict the variability of FEV for small, medium, and large values 
of FEV. The increase in variability is evident.

Exercise 2.2    Looking at Figure 2.1, we can see that the left-hand panel shows a cloud of 
points centered around the blue trend line that are not as compactly arranged as the points 
shown in the right-hand panel.

The left panel shows FEV vs. Age and the right panel is FEV vs. Ht.

Why do you think we see this phenomenon?

Solution 2.2    The response variable is FEV, and so it measures size of the lungs. The relationship 
between the size of the lungs and height is much better defined than the size of lungs and age.

We all know children of the same age but who have very different heights. Some are shorter, 
and others are taller. The taller ones have more space for larger lungs.

We also know that most children of the same height have similar builds and thus the variability 
in their lung size is smaller.

We have not yet explored how gender and smoking status may be related to the 
response variable. We can summarize our data by gender and smoker status and com-
pute mean age, height, and FEV. Table 2.3 shows the results. Note that lung capacity 
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Table 2.3.    Mean age, height, and FEV by gender and smoker status.  
The number of observations (Obs.) in each cell is also given.

Nonsmoker Smoker

Mean Mean

Gender Obs. Age Height FEV Obs. Age Height FEV

Female 279 9.4 59.6 2.38 39 13.3 64.6 2.97

Male 310 9.7 61.5 2.73 26 13.9 68.1 3.74

ols.fit <- glm(FEV ~ Ht,
	 data = lungcap,
	 family = gaussian(link = “identity”))
lungcap <- lungcap |>
  mutate(olsfit.mu = predict(ols.fit, type = “response”),
	 olsfit.rD = resid(ols.fit, type = “deviance”))

(FEV) for both genders is higher for smokers than for nonsmokers. Based on this alone, 
one might conclude that smoking would lead to higher lung capacity. But this would 
be an erroneous conclusion. The difference arises because the smoker and nonsmoker 
subjects have different age and height characteristics. We can see that gender does play 
a role in lung capacity. For both gender groups, female participants have a smaller 
height and a smaller lung capacity.

From our exploratory analysis we have learned that both age and height are strongly 
related to our response variable FEV. As FEV increases in mean value, its variability also 
increases, and thus using a normal distribution would not be supported by the data. 
In fact, the data suggests that a gamma distribution is appropriate. Also, gender and 
smoker status seem to play a role in influencing the response.

2.3.  Modeling and Diagnostics
From our exploratory data analysis, we propose an initial model with the following 

specification: the response variable is FEV, and we will model it as a gamma distribu-
tion. The explanatory variable height (Ht) should be included in the linear predictor, 
perhaps entering as a linear term. But the right-hand panel of Figure 2.1 shows that 
the relationship is not perfectly linear, and thus we may need to use a transformation to 
obtain a better model. Gender and smoker status should also be included in the model, 
but we will build the model in stages, adding one variable at a time.

Before embarking on our gamma model we will illustrate how using OLS regression 
(that is, assuming that our response variable is normally distributed) would not be optimal.

Let us fit an OLS regression model to FEV and Ht and display a plot of residuals 
versus fitted values.

Notice how, in the left panel of Figure 2.3, as the fitted values increase the vertical 
spread of the residuals also increases. This indicates that the constant variance assumption 
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of the residuals is not met. The right-hand panel is a modification of the left-hand panel 
where we plot the absolute value of the residuals and include a smoothing trend line. 
This small alteration gives us a more nuanced view into the changes of spread as fitted 
values increase. For this plot, we see that the spread of residuals first decreases and 
then increases substantially.

Having seen that the normal distribution does not capture the true nature of our 
data, let us use what we learned during our exploratory data analysis and switch over 
to using a gamma distribution. We will fit several models and encode the key charac-
teristics in the name. For example, a gamma model with an identity link function and 
having as main effects height and gender would be written as gi.HG.fit.

The general scheme is as follows:

•	 The first letter identifies the distribution: (n: normal, p: Poisson, g: gamma, i: inverse 
Gaussian, b: binomial, v: negative binomial, t: Tweedie).

•	 The second letter stands for the link function: (i: identity g(x) = x, l: logarithmic 
g(x) = log(x), r: reciprocal or inverse g(x) = 1/x, s: square root g(x) = x , o: logit 
g(x) = log(x/(1 – x))).1

•	 The next group of letters indicates which variables are in the linear predictor: 
(A: age, H: height, G: gender, S: smoking).

For a numeric variable we may add a number, like 2, to show that we have a poly-
nomial of second degree in that variable as part of the linear predictor. And, finally, 
we add the word fit to signal that we have a fitted GLM.
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Figure 2.3.    Fitted values versus deviance residuals for an  
OLS model for FEV that includes height as an explanatory 
variable. Note the strong pattern in both panels telling us that 
our model is not adequate.

1	 Other link functions are possible, such as probit, complementary log-log, and inverse squared.
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To illustrate, the OLS model that we fitted above, ols.fit, would be named 
ni.H.fit using the proposed scheme (normal distribution, identity link, and main 
effect height).

Next, we will fit a gamma GLM to FEV using height as an explanatory variable 
and keeping the link function as the identity. The model name is gi.H.fit. Before 
performing this fit, we should develop an idea of what the sign and size of the estimated 
coefficient should be.

Based on Figure 2.1, we expect the coefficient for height, Ht, to be positive and 
roughly equal to 4/30 ≈ 0.13 (the line connecting the points (45, 1) and (75, 5) seems 
a reasonable approximation).

gi.H.fit <- glm(FEV ~ Ht,
	 data = lungcap,
	 family = Gamma(link = “identity”))
(sgi.H.fit <- summary(gi.H.fit))

Call:
glm(formula = FEV ~ Ht, family = Gamma(link = “identity”), 
	 data = lungcap)

Coefficients:
	 Estimate	 Std. Error	 t value	 Pr(>|t|)
(Intercept)	–4.530471	 0.132547	 –34.18	 <2e-16	 ***
Ht	 0.117013	 0.002296	 50.95	 <2e-16	 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for Gamma family taken to be 0.02452508)

    Null deviance: 70.791 on 653 degrees of freedom
Residual deviance: 16.159 on 652 degrees of freedom
AIC: 641.83

Number of Fisher Scoring iterations: 5

The coefficient for Ht is roughly in line with our expectations, and note that the 
standard errors for both estimates are quite small compared to the size of the estimate.

Is our model a reasonable representation of the data? One way to try to answer this 
question is to use a technique known as predictive simulation (Gelman and Hill 2007). 
The basic idea is to fit a model to the data, then replicate the data from that fitted 
model, and finally compare the actual data with the replicates. If we can distinguish the 
actual data from the replicates, then our fitted model is not a very good representation 
of the actual data. And, if the actual data and the replicates are indistinguishable, then 
we have a good model.

Using our gamma, identity link, with variable height as a main effect—that is, model 
gi.H.fit—we can simulate new datasets and compare them against our actual data. 
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Using the heights in our dataset, the following code simulates three sets of the response 
variable, FEV, from the appropriate gamma distribution.

set.seed(19390349)
n <- nrow(lungcap)
disp <- sgi.H.fit$dispersion
lungcap <- lungcap |>
  mutate(giHfit.mu = predict(gi.H.fit, type = “response”),
	 giHfit.rp1 = rgamma(n,
		  shape = 1/disp,
		  scale = giHfit.mu * disp),
	 giHfit.rp2 = rgamma(n,
		  shape = 1/disp,
		  scale = giHfit.mu * disp),
	 giHfit.rp3 = rgamma(n,
		  shape = 1/disp,
		  scale = giHfit.mu * disp))

In Figure 2.4 we have four panels showing FEV versus height. Three of the panels 
have the simulated data from our model, and one panel has the actual data. Can you 
tell which panel has the actual data?
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Figure 2.4.    One panel contains the actual data, and the other 
panels have simulated data from a fitted model. Can you identify 
the panel with the actual data?
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Exercise 2.3    Recreate the four graphs but include a smoothing trend line for each graph to 
help you see the underlying relationship between FEV and Ht.

Solution 2.3    Adding a smooth trend line to a scatterplot can be done with a locally weighted 
regression procedure such as loess or lowess (Cleveland 1979). These methods are implemented 
in the geom_smooth(), which we add to each of the plots.
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Note that the panel on the upper right is the only panel where the trend line is convex. All other 
trend lines are essentially straight lines.

Therefore, model gi.H.fit does not capture the convexity between the response variable 
FEV and the predictor variable height Ht.

When comparing simulated data against actual data we should leverage every-
thing we learned during our exploratory data analysis. We saw the following two key 
characteristics in the previous section:

1.	 the variability in FEV increases as height increases, and
2.	 the relationship between FEV and height is convex.

Which panel in Figure 2.4 corresponds to the actual data?
In all four panels, we see that the variability in the response variable FEV increases 

as height increases. Thus, characteristic 1 above holds for all four panels. Can you see 
which panel violates characteristic 2?
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The curvature that we observe between FEV and Ht could be modeled via a quadratic 
polynomial in Ht or by using a log-link function. Let us fit both models and apply 
some diagnostics. The quadratic model in height will be named gi.H2.fit (gamma 
distribution, identity link function, height and height squared as predictors), and the 
log-link model with height is gl.H.fit (gamma distribution, log-link function, 
and height as main effect).

lungcap$Ht.sq <- lungcap$Ht^2
gi.H2.fit <- glm(FEV ~ Ht + Ht.sq,
	 data = lungcap,
	 family = Gamma(link = “identity”))
gl.H.fit <- glm(FEV ~ Ht,
	 data = lungcap,
	 family = Gamma(link = “log”))

The coefficients for the quadratic model gi.H2.fit are

round(coef(gi.H2.fit), 5)

	(Intercept)	 Ht	 Ht.sq 
	 5.34181	 –0.22664	 0.00296

and so we can calculate that the minimum value for the curve of predictions from this 
model occurs at a subject’s height equal to

2 0.00296
0.22664

. 38.28
•

inches. This value is outside the range of our data but is reasonably close and very 
plausible by continuing the smooth trend shown in the right-hand panel of Figure 2.1.

The coefficients for the log-link model gl.H.fit are

round(coef(gl.H.fit), 5)

	(Intercept)	 Ht 
	 –2.26794	 0.05224

Thus we can infer that as the height for a child increases by 1 inch, the child’s FEV 
will increase by approximately 5.4% (e0.0522 – 1).

The left-hand panels of Figure 2.5 show the fitted values versus quantile residuals 
and the linear predictor versus working residuals for the quadratic model in height Ht. 
The right-hand panels show the same plots for the log-link model.
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Quantile residuals were introduced in Dunn and Smyth (1996), and an excellent 
overview of them appears in Dunn and Smyth (2018). Pearson and deviance residuals  
are the standard choices when analyzing the adequacy of fits for GLMs. Both are 
approximately normal with deviance residuals being a bit more so, but for discrete dis-
tributions the approximation to normality can be particularly bad. Quantile residuals 
overcome these issues and are strongly recommended for discrete models, and we can 
use them just as we would use deviance or Pearson residuals for diagnostic purposes.

The top panels of Figure 2.5 display fitted values versus quantile residuals, and 
we can see in both plots a nice random cloud of points centered about the line y = 0. 
There appear to be two outlying points in both plots below the line y = –4. The bottom 
panels are an informal diagnostic on the link function. The plot shows the linear pre-
dictor η̂i on the y-axis and the working response

z i = ht i + eti

on the x-axis (Dunn and Smyth 2018, 308). Note that the working response zi is 
the sum of the linear predictor and the working residuals êi. The working residuals are 
the residuals from the last iteration of the Fisher scoring algorithm used to compute 
estimates for the coefficients of the model.
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Figure 2.5.    Fitted values versus quantile residuals and working 
response versus linear predictor for the quadratic as well as the 
log-link model. All four plots display the desired null pattern, 
and in the top panels we may have two outlying observations 
(residuals below the horizontal line at y 5 –4).
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If the link function is correct and we have the appropriate explanatory variables in 
our model and on the right scale, then we expect the points to cluster around the line 
y = x. Major deviations from this null pattern are a red flag that something is wrong 
with our model. In our example, both panels show the appropriate behavior, but the 
log-link model has a more cohesive cloud of points around the reference line compared 
to the identity-link quadratic polynomial in height, which shows a pattern deviating 
from the line y = x in the upper-right corner.

Exercise 2.4    Plot the quantile residuals versus height for both models. Are there any con-
cerning patterns in the plots?

Solution 2.4    The following figure shows the quantile residuals for both models:
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Both panels show a random cloud of points that are centered about the line y = 0. Near 60 inches 
in height we see an upward bump on the scatterplot smoother (blue line) indicating that our 
models tend to underpredict in that region. But the bump is fairly small.

Currently, our best model uses a gamma distribution and a log-link function. The 
quadratic polynomial in height with an identity-link function does not show a strong 
linear relationship between the linear predictor and the working residuals (check the 
upper-right corner). The model equation for the current best model is

log E FEV8 Bb l = b 0+b 1 Ht.

Next, we incorporate the Gender categorical variable and the indicator variable 
for Smoke. This indicator variable has a value of 1 for subjects who smoke and zero 
otherwise. We would expect the coefficient for Smoke to be negative because we think 
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that smoking would have a detrimental effect on our lungs and thus diminish lung 
capacity. The absolute value of the coefficient will tell us how much lung capacity 
will be affected by smoking. As for Gender, the size and direction of the effect is 
not clear.

gl.HGS.fit <- glm(FEV ~ Smoke + Gender + Ht,
	 data = lungcap, 
	 family = Gamma(link = “log”))
sgl.HGS.fit <- summary(gl.HGS.fit)
round(coef(sgl.HGS.fit), 4)

	 Estimate	 Std. Error	 t value	 Pr(>|t|)
(Intercept)	 –2.2615	 0.0639	 –35.3758	 0.0000
Smoke 	 0.0001	 0.0201	 0.0055	 0.9956
GenderM	 0.0187	 0.0117	 1.5994	 0.1102
Ht	 0.0520	 0.0011	 48.8380	 0.0000

Even though the coefficient for Smoke has a positive sign, there is no evidence in 
the data to suggest that it is different from zero. Similarly, the effect for Gender is not 
statistically significant.

These results do not show that children who smoke do not have impaired lung 
capacity.

Figure 2.6 shows some diagnostic plots for our final model gl.HGS.fit—gamma 
distribution, log-link, and main effects for height, gender, and smoking status. All six 

Figure 2.6.    Diagnostic plots for our final model. The two left-hand 
panels show a random cloud of points centered about the line y 5 0.  
The trend line exhibits a small positive bump in the center of the 
display. The upper-right panel shows that our model captures the 
increasing variability in the response variable well. The QQ plot in  
the lower-right panel shows that the lower tail of our data is thicker 
than it should be.
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plots show that our model fits the data well. In the bottom-right panel we can see that 
the bulk of the data follows the line y = x, but we also see a slight deviation from the 
null pattern in the lower tail of the distribution. In this case, our quantile residuals 
have a slightly thicker lower tail than a standard normal distribution, but the number 
of points exhibiting this behavior is very small.

Figure 2.6.    (Continued)
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Exercise 2.5    In Figure 2.6 we included diagnostic plots for the variables Smoke and 
Gender, but we did not include any commentary. Also the boxplots do not show the mean 
value.

Recreate these two boxplots, and add a point showing the mean value of the residuals for each 
category and comment on what information they contribute to the final model.

Solution 2.5    To add the mean value to the boxplot we use a stat_summary() function to 
compute the mean and add a point to the display.

For both variables, the means of the residuals are centered at zero, they have equal spread, and 
they have a few outlying points. There are no indications that our model is missing any infor-
mation from these variables.

Two points have quantile residuals whose absolute value is greater than 4. These points require 
further investigation. Perhaps the value of the response or predictor variables was recorded 
incorrectly.
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2.4.  Summary
This chapter focused on refreshing some of the main concepts for GLMs by 

working through a concrete example. GLMs provide a richer set of regression models 
for the analyst to draw on. Many GLMs exhibit a mean–variance relationship of the 
form Var[y] = ϕµb, where ϕ is the dispersion parameter, µ is the mean of the distribution, 
and the value of b determines the distribution. Specific values are as follows: b = 0 normal 
(that is, we are back to OLS), b = 1, ϕ = 1 Poisson, 1 < b < 2 Tweedie distribution with 
a probability mass at zero, b = 2 gamma, and b = 3 inverse Gaussian.

In many situations we can use the data to estimate the mean–variance relationship 
and select an appropriate distribution. We also showed several diagnostic plots, such 
as the standard residuals versus fitted values, absolute value of residuals against fitted 
values, an informal check on the link function by plotting the linear predictor against 
the working responses, and a QQ plot of residuals.
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3.1.  Introduction
Consider the following scenario: you are preparing the renewal offer for a policy-

holder who has been insured for a number of years. While there are many approaches 
to setting next year’s premium, consider the following two positions:

1.	 Base it entirely on the historical claims experience of this policyholder—that is, 
use their average claims experience.

2.	 Completely ignore this policyholder’s own claims experience and use the company’s 
average claims experience for all similar policyholders or the industry loss history.

Both positions are extreme. In the first one, you are in essence saying that your 
policyholder’s experience is completely trustworthy for setting next year’s premium. 
Maybe your policyholder is so large and their claims experience so stable that, barring 
any extraordinary events, next year’s claims will be spot on with their historical record. 
In adopting the second position, you acknowledge that this policyholder’s claims 
experience is not trustworthy (whether good, bad, or mixed), and therefore you’ll look 
for the overall average claims for the entire portfolio of policies to which this policy-
holder belongs or to industry loss experience.

These two extreme positions are not the only alternatives. There is some middle 
ground, where we can blend some of the policyholder’s historical experience together 
with the experience of the block of business to which the policyholder belongs. Cred-
ibility theory is the body of knowledge, tools, and techniques that allows us to blend 
the two extreme positions into a far better estimate for our policyholder’s next year’s 
premium.

Venter (1996) puts it as follows:

Credibility, simply put, is the weighting together of different estimates to come up 
with a combined estimate. For instance, an insured’s own experience might suggest 
a different premium from that in the manual. These are two different estimates of 
the needed premium, which can be combined using credibility concepts to yield an 
adjusted premium.

And we can summarize it in a formula as

	 AP = Z # EP + 1- Z` j#MP,	 (3.1)

3.  Credibility Theory
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where AP is the adjusted premium, EP is the policyholder’s own experience premium, 
MP is the manual premium (also known as the complement of credibility), and Z ∈ [0,1] 
is the credibility factor. The adjusted premium is also known as the credibility premium. 
Even though Equation 3.1 is a deceptively simple interpolation formula between EP 
and MP, it has far-reaching consequences and applications.

Note that as Z approaches 1, the adjusted premium gets closer to the policyholder’s 
own experience premium. And as Z approaches zero, the adjusted premium converges 
to the manual premium. Thus, if the insured’s own experience is highly credible  
(Z close to 1), we would assign an adjusted premium close to their own experience. 
If the experience is not credible, then we would assign a premium close to the premium 
suggested by the manual.

The key question is how to calculate the credibility factor based on observed data. 
An intuitive understanding is that the more extensive the observed data is and the less 
it fluctuates, then the closer the credibility factor will be to 1.

A. H. Mowbray (1914) introduced credibility theory a little over 100 years ago in 
his paper “How Extensive a Payroll Is Necessary to Give a Dependable Pure Premium?” 
The title succinctly encapsulated one of the main problems facing casualty actuaries at 
that time. In the intervening time, credibility theory has developed tremendously, and 
today there are many approaches and directions. Practicing actuaries are most familiar 
with two main methods of calculating credibility:

1.	 Limited fluctuation, or classical, credibility
2.	 Greatest accuracy, or Bühlmann, credibility

We will not present any results regarding limited fluctuation credibility as it is not 
connected with LMMs. Readers wanting a review of that branch of credibility can 
consult Chapter 5 of Herzog (2010). In the next section, we begin our exploration of 
Bühlmann credibility.

3.2.  Greatest Accuracy Credibility
Greatest accuracy credibility, also known as Bühlmann credibility, was developed 

by Bühlmann (1967), who derived the optimal credibility factors by minimizing a 
squared error in the context of a Bayesian statistical model.

We will start with a basic model and expand to a more complex treatment. While 
the basic model is too simple to be effectively used in practice, it is important for 
understanding how more complex models work. Our development closely follows the 
presentations in Straub (1997) and Kaas (2009).

To keep things concrete, consider the following example (a slightly modified version 
of Problem 5.84 from Klugman et al. [1998]). We have a portfolio of policyholders 
with three, J = 3, different risk classes, and we have observed their claims experience 
over the last four, T = 4, years. Let Xjt be the experience for risk class j = 1, 2, . . . , J 
in time period t = 1, 2, . . . , T. Table 3.1 shows the data, and Figure 3.1 provides a 
graphical representation. We would like to estimate the experience each risk class will 
have during the next time period T = 5.
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Looking closely at Figure 3.1 and focusing on each risk class at a time, we could say 
the following: if we continue observing these risk classes for many periods (and assum-
ing that these risks are stable over time), each one of them would fluctuate around a 
mean claim cost, say, X-j = (∑T

t=1Xjt)/T. For example, looking at risk class j = 3 (square 
symbol), which starts in period 1 with a value of 900, it seems plausible that its long-
term average cost might be around X-3 = 850. For risk class j = 2 (triangle symbol) with 
claim cost X21 = 750 at time t = 1, its long-term average might be close to X-2 = 750; 
and for risk class  j = 1 (circle symbol), starting with X21 = 625, that long-term average 
may equal X-1 = 650. The portfolio as a whole (ignoring risk class information) also has 
a long-term average claim cost that, in this case, would be around X- = 750.

From the experience that we see in Figure 3.1, we might be inclined to say that 
these three risk classes have different long-term claim averages. Is there evidence in this 
data that this is the case? How might we quantify such evidence?

Table 3.1.    Claims experience for a 
portfolio of three risk classes that have 
been observed over four time periods.

Time Period

Class 1 2 3 4

1 625 675 600 700

2 750 800 650 800

3 900 700 850 950
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Figure 3.1.    Claims experience for a portfolio of three risk classes 
that have been observed over four time periods. What should the 
estimate, for each risk class, be in time period five?
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One way to quantify the evidence for or against different long-term averages 
would be to use a statistical model for this data. To that end, the experience Xjt for risk 
class j = 1, 2, . . . , J in time period t = 1, 2, . . . , T could be decomposed as

X jt = m j + e jt,

where mj is the mean for risk class j and ejt represents an error term. We assume that 
the error terms are independent and identically distributed with ejt ∈ N(0, σ2). Hence, 
all the Xjt are independent and N(mj, σ2) distributed, with possibly unequal means mj, 
but all with equal variance σ2, across all risk classes. We can test for the equality of all 
group means via an analysis of variance.

The analysis of variance entails computing two statistics that will be relevant for 
credibility calculations. The first is the sum of squares between,

SSB = T Xr j - Xra k2
j=1

J

/ .

This statistic has J − 1 degrees of freedom. The second statistic is the sum of squares 
within,

SSW = X jt - Xr ja k2
t=1

T

/
j=1

J

/ ,

and it has J(T − 1) degrees of freedom.
Under the assumption that the group means mj are equal (this is the null hypothesis), 

the random variable SSB has a mean equal to ( J − 1)σ2 and the random variable SSW 
has a mean equal to J(T − 1)σ2. The ratio of these means follows a Fisher distribution 
with J − 1 and J(T − 1) degrees of freedom:

F =
MSW
MSB

=
SSW J T -1` jb l

SSB J -1` j
.

For our example, we can calculate the sum of squares between (SSB) and the mean 
sum of squares between (MSB) as follows:

J <- length(levels(dta$class))
Tm <- length(unique(dta$time))
X.jt <- dta$value

Xj.bar <- tapply(X.jt, dta$class, mean)
X.bar <- mean(X.jt)
SSB <- Tm * sum((Xj.bar – X.bar)^2)
MSB <- SSB/(J – 1)
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The sum of squares within (SSW) and the mean sum of squares within (MSW) are 
calculated as follows:

SSW <- sum((X.jt – rep(Xj.bar, each = Tm))^2)
MSW <- SSW / (J * (Tm – 1))

Their values are as follows:

c(“SSB” = SSB, “MSB” = MSB, “SSW” = SSW, “MSW” = MSW)

	 SSB	 MSB	 SSW	 MSW 
	80000	 40000	 56250	 6250

And so we have that the F-statistic, F.value, its critical value at 5%, z.star, 
and its p-value are as follows:

round(c(“F.value” = MSB / MSW,
	 “z.star” = qf(0.95, J – 1, J * (Tm – 1)),
	 “p-value” = pf(MSB/MSW, J – 1, J * (Tm – 1),
	 lower.tail = FALSE)), 4)

	F.value	 z.star	 p-value 
	6.4000	 4.2565	 0.0187

Therefore, in this case, we have evidence that at least two of the means m1, m2, m3 
are not equal (we are able to reject the null hypothesis of equal means), and thus we 
would consider our portfolio to be heterogeneous.

Had the F-statistic been below the critical value, then we would not have been 
able to reject the null hypothesis that all the means are equal. Our data would not have 
strong evidence of being heterogeneous.

The calculations we just did for the sum of squares between, the sum of squares 
within, and the F-statistic can be done easily by fitting a linear model to the data and 
creating an analysis of variance table.

fm <- lm(value ~ class, data = dta)
anova(fm)

Analysis of Variance Table

Response: value
	 Df	 Sum Sq	 Mean Sq	 F value	 Pr(>F) 
class	 2	 80000	 40000	 6.4	 0.01867	 *
Residuals	 9	 56250	 6250 
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Exercise 3.1    Consider the claims experience for class 3, which has values equal to

dta$value[dta$class == 3]

[1] 900 700 850 950

Suppose we subtract the same amount m from each of these values to bring them closer to the 
values for classes 1 and 2.

What is the smallest value of m such that we would no longer consider our portfolio hetero-
geneous? In other words, what value of m would yield an F-statistic equal to its critical value 
at the 5% level?

Solution 3.1    We are looking for the smallest value of m such that the F-statistic for our 
portfolio is equal to 4.256. To search for the value of m, we can construct a function of one 
argument, m, so that its minimum value is achieved at the value of m that we are looking for.

For a given value of m, we would need to perform the following steps:

1.	 Decrease all the values for class 3 by m.
2.	 Fit a linear model to the data.
3.	 Compute the F-statistic for this data, F.value.
4.	 Return the square of the difference between F.value and the given critical value.

The following function implements these steps. The argument z.star is the target critical 
value we want to achieve, dt is the data frame containing our portfolio, and cls is the class 
we want to modify.

f <- function(m, z.star, dt, cls) {

  idx <- dt$class == cls

  dt$value[idx] <- dt$value[idx] – m

  fm <- lm(value ~ class, data = dt)

  F.value <- anova(fm)[1,4]

  ans <- (F.value – z.star)^2

  return(ans)

}

Now that we have our function, we can search for its minimum value via optimize(). The 
first argument is the function we want to minimize, and the second argument provides an 
interval to conduct the search. The remaining named arguments are needed by our function f 
to do its calculations. Based on Figure 3.1, it seems reasonable to assume that m should be in 
the interval from zero to 100.

optimize(f, c(0, 100),

	 z.star = qf(0.95, 2, 9),

	 dt = dta,

	 cls = 3)
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$minimum

[1] 38.41004

$objective

[1] 4.28568e-16

Therefore, when we reduce the experience for class 3 by m = 38.41 we obtain a portfolio that 
we would consider homogeneous.

Note that in the analysis of variance table shown before the exercise, it is the residual sum of 
squares, namely, the sum of squares within, that remains constant regardless of the value of m. 
It is the sum of squares between, that is, the class sum of squares, that gets smaller as  
m increases. Thus, the denominator of the F-statistic is fixed while the numerator gets smaller.

In the preceding analysis, we have treated the risk class means mj as fixed but 
unknown. If our portfolio is heterogeneous, we may try to find a way to relate these 
means to other information we may have about the risk classes. In a practical applica-
tion, we may have thousands of risk classes. Think about a classification system for 
automobile insurance with variables such as age, gender, socioeconomic status, years 
licensed, prior claims, garage location, make and model of car, safety features, engine 
size, and so forth. Many of these cells would be common and have plenty of data, but 
many would also be rare and have little data. Our linear model would have to estimate 
parameters for all these risk categories, and that would present a significant estima-
tion problem. Moreover, as the number of risk classes increases, so does the number  
of parameters that we need to estimate.

Another way to look at our portfolio would be to assume that the risk class mean mj 
is a random draw from a distribution. Thus, we would decompose our data as follows:

	 X jt = n+Nj + e jt, j = 1, 2, . . . , J, t = 1, 2, . . . ,T,	 (3.2)

where Ξj (the capital version of the letter ξ) and ejt are independent random variables 
with mean zero and

Var Nj8 B = x 2, Var e jt8 B = v 2 .

Note that from Equation 3.2 we have

E X jt8 B = n and Var X jt8 B = x 2+v 2;

that is, the variance of each cell is equal to the sum of the variance for each component 
in Equation 3.2.

In terms of our portfolio we can interpret the above model as follows: the overall 
mean is given by μ, and it is the expected value of claim costs for a contract picked at 
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random from our portfolio. The term Ξj is a random variable, and it represents a devia-
tion from the grand mean μ specific to risk class j. The conditional mean of Xjt given 
that Ξj = ξ is equal to μ + ξ. This would be the long-term average for risk class j. The 
variance of Ξj is equal to τ2, and so this parameter controls how spread out individual 
risk classes are from the overall mean. A large value of τ2 would lead to a heterogeneous 
portfolio. A small value of τ2 suggests a homogeneous portfolio where all risk classes 
have similar long-term means. The last component, ejt, gives us a deviation for risk 
class j from its long-term mean μ + ξ in year t. It represents the fluctuation of the 
experience around its long-term average.

It is important to note that this model has three parameters: the overall mean μ, 
the variance component τ2, and another variance component σ2. These three parameters 
are independent of the number of risk classes in our portfolio. We may have just three 
risk classes, as in the example above, but we could also have hundreds or thousands 
of risk classes and we would still need to estimate only three parameters.

As Figure 3.1 depicts with the question marks at time t = 5, we are interested in 
estimating the expected value of the unobserved random variables Xj,T+1. While there 
may be many ways of estimating that value, we will require it to be a linear combi-
nation of the observed data that we have, namely, X11, X12, . . . , XJT. We also want our 
linear combination to have the same expected value as Xj,T+1 (we want our estimator 
to be unbiased) and its squared error to be the smallest among all possible linear 
combinations.

The following theorem (Kaas 2009, Theorem 8.2.2) tells us that the best estimate 
for the next period is a credibility-weighted average between X−j and X−, where the weight 
depends on the number of observed periods T and the variance components τ2 and σ2.

Theorem 3.1 (Balanced Bühlmann; homogeneous estimator).  Assume that the claim 
figures Xjt for contract j in period t can be written as the sum of stochastically independent 
components, as follows: 

	 X jt = n+Nj + e jt, j = 1, 2, . . . , J, t = 1, 2, . . . ,T + 1,	 (3.3)

where the random variables Ξj are independent and identically distributed with mean 
E[Ξj] = 0 and Var[Ξj] = τ2 and the random variables ejt are also independent and identi-
cally distributed with E[ejt] = 0 and Var[ejt] = σ2 for all j and t. Furthermore, assume that 
the variables Ξj are independent of the variables ejt.

Under these conditions, the homogeneous linear combination g11X11 + . . . + gJTXJT that 
is the best unbiased predictor of XJ,T+1 in the sense of minimal mean squared error 

	 E X J,T+1 - g 11X 11- - g JT X JT` j2
R

T
SS

V

X
WW. . . 	 (3.4)

equals the credibility premium 

	 z j + 1- z` jXr,Xr 	 (3.5)
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where

z =
x 2T +v 2

x 2T
=
T +v 2 x 2

T

is the resulting best credibility factor (which in this case is the same for all j);

	
Xr =

JT
1

X jt
t=1

T

/
j=1

J

/ 	 (3.6)

is the collective estimator of μ; and

	
Xr j = T

1
X jt

t=1

T

/ 	 (3.7)

is the individual estimator of mj.

Nonparametric estimators of τ2, σ2, and μ are developed in Section 5.5.1 of 
Klugman et al. (1998). The overall mean μ can be estimated via X−. To estimate σ2, 
also known as the expected value of the process variance (EVPV), consider first the 
following estimate of the variance for risk class j:

	
vt j

2 =
T - 1

1
X jt - Xr ja k2 .

t=1

T

/ 	 (3.8)

We can take the average of these estimates,

	
vt 2 =

J
1
vt j

2 =
J T - 1` j

1
X jt - Xr ja k2,

t=1

T

/
j=1

J

/
j=1

J

/ 	 (3.9)

to obtain the EVPV (see Equation 5.75 in Klugman et al. [1998]).
To estimate the variance of the hypothetical means (VHM), we use the relationship 

(Klugman et al. 1998, 465)

	
Var Xr j9 C = x 2+

T
v 2

.	 (3.10)

The left-hand side is equal to the mean sum of squares between (MSB), and thus 
our estimator for τ2 is (Equation 5.76 in Klugman et al. [1998])

	
xt 2 =

J- 1
1

Xr j - Xra k2
j=1

J

/ -
TJ T - 1` j

1
X jt - Xr ja k2

T= 1

T

/
j=1

J

/ .	 (3.11)

All three estimators μ̂, τ̂2, σ̂2 are unbiased. Note that the estimator for τ̂2 is the 
difference between two expressions, and so in practice it may yield a negative answer. 
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This is clearly nonsense as we are estimating a variance component. In such cases, it is 
common to set its value equal to zero and to take the credibility factor as z = 0. Intui-
tively, this makes sense. If the variance of the hypothetical means is zero (or close to 
zero), then all risk classes have very similar individual means that do not differ from 
the overall mean.

Using the data for the example, we can implement the preceding formulas. There 
are many ways to organize the data necessary for these calculations, and we will take an 
approach that closely corresponds to the preceding formulas even though it may not be 
the best approach for a large-scale project. Thus, our first step will be to set some key 
variables, such as J, T, and Xjt, and sort the data Xjt by class and time period.

J <- length(levels(dta$class))
Tm <- length(unique(dta$time))
cls <- dta$class

o <- order(dta$class, dta$time)
Xjt <- dta$value[o]

First, we calculate the overall mean, X−, and the mean for each risk class, X−j, using 
Equation 3.6 and Equation 3.7.

X.bar <- mean(Xjt)
Xj.bar <- tapply(Xjt, cls, mean)

Next we calculate σ̂2
j (Equation 3.8) and the EVPV, σ̂2, using Equation 3.9.

sigmaj.sq <- tapply(
  (Xjt – rep(Xj.bar, each = Tm))^2, cls, sum) / (Tm – 1)
sigma.sq <- mean(sigmaj.sq)

Next comes the calculation of Var[X−j] via Equation 3.10.

Var.Xj.bar <- sum((Xj.bar – X.bar)^2) / (J – 1)

And, finally, the calculation of the variance of the hypothetical means (Equation 3.11):

tau.sq <- Var.Xj.bar – sigma.sq / Tm

With all of these values, we have that our credibility factor is equal to

	
Z =

T +vt 2 xt 2

T
=

4+ 6250 8437.5
4

= 0.84375,	 (3.12)
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and the credibility premiums will be equal to

ZXr j + 1- Z` jXr,

yielding the following credibility-weighted premiums:

Z <- Tm / (Tm + sigma.sq / tau.sq)
Z * Xj.bar + (1 – Z) * X.bar

	 1	 2	 3 
	665.625	 750.000	 834.375

Adding these forecasts to our earlier graph gives us Figure 3.2.
The above calculations for the balanced Bühlmann model and other credibility 

models have been coded into the cm() function of the actuar R package. We illus-
trate its use next.

The data is required to be in a different format where the time variable is expressed 
through different columns in the dataset and the rows represent the different contracts 
or classes.

dtb <- pivot_wider(dta,
	 names_from = time,
	 values_from = value)
dtb
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Figure 3.2.    Claims experience for a portfolio of three risk classes 
that have been observed over four years. The credibility-weighted 
estimate for the next year is shown with a colored line segment.
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# A tibble: 3 x 5
	 class	 `1´	 `2´	 `3´	 `4´
	 <fct>	 <dbl>	 <dbl>	 <dbl>	 <dbl>
1	 1	 625	 675	 600	 700
2	 2	 750	 800	 650	 800
3	 3	 900	 700	 850	 950

In this case, columns 2 through 5 represent our data. The balanced Bühlmann model, 
BB, can be fit as follows, and here is a summary of the fitted object:

BB <- cm( ~ class,
	 data = dtb,
	 ratios = 2:5)
summary(BB)

Call:
cm(formula = ~class, data = dtb, ratios = 2:5)

Structure Parameters Estimators

  Collective premium: 750 

  Between class variance: 8437.5 
  Within class variance: 6250 

Detailed premiums

class	 Indiv. mean	 Weight	 Cred. factor	 Cred. premium
1	 650	 4	 0.84375	 665.625 
2	 750	 4	 0.84375	 750.000 
3	 850	 4	 0.84375	 834.375

Here the collective premium is X−; the variance of the hypothetical means τ2 is 
labeled “Between class variance”; and the expected value of the process variance σ2 is 
the “Within class variance.” In the section “Detailed premiums,” we see that the indi-
vidual means X−j are in the second column; the next column, “Weight,” has the number 
of observed time periods T; and the credibility factor and the credibility premiums (the 
last two columns) also match our previous calculations.

The form of the credibility factor may not look particularly nice,

Z =
T +v 2 x 2

T
,

but it has some very appealing and intuitive properties:

1.	 Since all elements involved are positive, the credibility factor is also positive. More
over, regardless of the values of T, σ2, or τ2, its value is always between zero and 1.
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2.	 As the number of periods of observation T increases, the credibility factor increases 
toward 1.

3.	 As the EVPV, σ2, decreases, the credibility factor increases toward 1.
4.	 As the VHM, τ2, increases, the credibility factor increases toward 1.

All these make sense. The more observations you have about your insureds, all else 
the same, the more confident you should be about their experience. If the process 
variance is very small, then you should also be more confident about their experience.  
A small process variance means that the insured’s claims experience does not fluctuate 
too much. And, finally, if the VHM is large, then you know that your insureds have 
different means, and so you should be more confident about using their own experi-
ence versus imposing the overall average experience.

The Bühlmann credibility model has another extremely important property. To 
calculate the next period’s premiums we only need to estimate two parameters: the EVPV, 
also known as the within-class variance, σ2, and the VHM, also known as the between-
class variance, τ2. This is always the case regardless of the number of levels the class 
variable might have.

Unfortunately, the balanced Bühlmann model is not always applicable in practice. 
One shortcoming is that in the decomposition of the experience Xjt,

X jt = m+Nj + e jt,

we have assumed that the deviation Ξj from the overall mean m for each risk class j has 
the same variance, namely, Var[Ξj] = σ2. In other words, all risk classes have, in essence, 
been measured with the same precision. In practice, this may not be a good assumption.

Imagine that the experience Xjt is actually the average over individual policyholders 
that belong in the jth risk class. In this case, the variance across risk classes will not be 
the same since risk classes will, most likely, have different numbers of policyholders. 
Another reason for not having equal variances, even if we did have the same number 
of policyholders, comes about by having policyholders of different sizes within the 
same risk class. Consider a small supermarket versus a large one.

In these cases, we would want to consider the experience Xjt along with a weight wjt 
such that the bigger the weight, the smaller the variance and vice versa. In the next 
section, we present the Bühlmann–Straub model, which takes care of these two issues.

3.3. The Bühlmann–Straub Model
In the last section, we saw that the balanced Bühlmann credibility model assumes 

that each observation in risk class j and time t, Xjt, has the same variance, and this may 
not always reflect reality.

Here, we introduce the Bühlmann–Straub model, which incorporates different 
weights into the balanced Bühlmann model. We start with the same decomposition of 
the observations Xjt as in the previous section:

	 X jt = m+Nj + e jt, j = 1, 2, . . . , J, t = 1, 2, . . . ,T + 1,	 (3.13)
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where the unobservable risk components Ξj (deviations from the overall mean m 
for risk class j) are independent and identically distributed with mean zero, and the 
components ejt (deviations across time from the long-term average of risk class j) are also 
independent and identically distributed with mean zero. Plus, we assume that Ξj and ejt 
are independent of each other.

Next, we keep the variance of Ξj the same as in the previous section,

Var Nj8 B = x 2,

but we change the assumption for the variance of the components ejt to include the 
weights wjt to

	
Var e jt8 B = wjt

v 2

.	 (3.14)

Note that if we set each of the weights wjt equal to 1—that is, let wjt = 1 for all 
j and t—then we are back to the balanced Bühlmann model.

Just as in the balanced Bühlmann model, we would like to find the best homogeneous 
unbiased linear predictor ∑gjtXjt of the risk premium m + Ξj. The following theorem 
from Kaas (2009, Theorem 8.4.1, 215) provides the answer using the following quanti-
ties and notation. A filled circle, •, in an index location means we are summing across 
that index. An open circle, °, in an index location means we are creating a weighted 
average over that index with weights provided by the appropriate wjt.

The first expression below sums across all time periods, and so we put a filled circle 
on the time index. The second expression sums across both indices, time and risk class, 
and so two filled circles are used.

	
wj = wjt

t=1

T

/ and w = wjt
t=1

T

/
j=1

J

/• •• 	 (3.15)

Also note that the first expression above has a value for each value of the index j—
therefore we can think of it as a vector of length J. In contrast, the second expression is 
a single number since we have collapsed along both indices.

The next expression shows us how to compute the J credibility factors. Note that 
the formula is the same as in the balanced Bühlmann model with T replaced by the sum 
of the weights across time—that is, wj•. Therefore, if all the weights are set equal to 1, 
then we have that wj• = T for all j, and so this model becomes the balanced Bühlmann 
model and all J credibility factors Zj are identical.

	
Z j = x 2wj +v 2

x 2wj
=
wj +v 2 x 2

wj and Z = Z j
j=1

J

/
•

•

•

•
• 	 (3.16)

Finally, the experience Xjt can be first summarized by taking a weighted average 
along the time dimension, leaving us with one average for each risk class. The second 



36	 Casualty Actuarial Society

Practical Mixed Models for Actuaries

expression then takes the average of the J averages to compute an overall weighted 
average. The last expression is the weighted average of the individual risk class averages, 
but using the credibility factors as weights. Keep in mind that the overall average X°° is, 
in general, not equal to the credibility-weighted average Xz.

	
X j = wj

wjt

t=1

T

/ X jt and X =
w
wj

j=1

J

/ X j and Xz = Z
Z j

j=1

J

/ X j%
•

%%
••

•
%

•
%	 (3.17)

Theorem 3.2 (Bühlmann–Straub model).  The mean squared error best homogeneous 
unbiased predictor ∑itgitXjt of the risk premium m + Ξj in model Equation 3.13, that is, 
the solution to the following restricted minimization problem,

	
min
g it

E m+Nj - g it X it
it
/c m

2
R

T

S
S

V

X

W
W
	 (3.18)

	
subject to E m+Nj8 B = g it E Xit8 B,

it
/ 	 (3.19)

is the following credibility estimator: 

	 Z jX j + 1- Z j` jXz .% 	 (3.20)

Theorem 3.2 has the same structure as the balanced Bühlmann theorem. Both 
results tell us that the next period’s pure premium can be estimated as the weighted 
average of a risk class’s average experience Xj° and the overall average experience for the 
whole portfolio Xz.

Whereas in the balanced Bühlmann model, the overall average experience is equal 
to the simple average across all observations, namely,

Xr =
J T

X jt
jt
/

,
•

in the Bühlmann–Straub model, the overall experience should be taken as the credibility-
weighted risk class experience Xz, that is,

Xz = Z
Z j

j=1

J

/ X j .
•
%

Exercise 3.2    In the Bühlmann–Straub model, set all weights wjt equal to 1 and show that 
you reproduce the results for the balanced Bühlmann model.

Solution 3.2    By letting wjt = 1 for all j = 1, 2, . . . , J and t = 1, 2, . . . , T, we have that

wj = w jt = T
t=1

T

/ , and X j = wj

wjt

t=1

T

/ X jt = T
1

X jt,
t=1

T

/• %
•
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and the credibility factors become

Z j = x2wj +v
2

x2wj
=
wj + v

2 x2

wj
=
T + v 2 x2

T

•

•

•

•

for all j. Therefore,

Z = Z j = T + v 2 x2

JT
.

j=1

J

/•

Finally, substituting all the different pieces into Xz gives us

Xz = Z
Z j

j=1

J

/ X j =

T + v 2 x2

JT
T + v 2 x2

T

j=1

J

/ X j = J
1
T
1

X jt
t=1

T

/
J

L
KK

N

P
OO= JT

1
X jt = Xr,

t=1

T

/
j=1

J

/
j=1

J

/
•
% %

showing that when the weights in the Bühlmann–Straub model are all equal to 1, we revert 
back to the balanced Bühlmann model.

For the Bühlmann–Straub model we also need estimators for the model parameters 
m, σ2, and τ2. These estimators are also based on the sum of squared errors within and 
sum of squared errors between we have seen before, but incorporating the weights for 
each observation, namely,

SSW = wjt X jt - X j` j
jt
/ 2,%

and

SSB = wj X j - X` j
jt
/ 2 .• % %%

Figure 3.3 shows one way to think about the between- and within-risk variances. 
The blue circles represent the actual observations Xjt we have available. The large circles 
on the axis labeled X1°, X2°, and X3° represent an estimate of the hypothetical means for 
groups 1, 2, and 3, respectively. For each group, we have the deviations, shown as blue 
arrows, between the estimated hypothetical mean Xj° and its actual observations Xjt. The 
magnitude of those differences squared results in the within sum of squared errors, SSW.

From the estimated hypothetical means Xj° we compute an overall mean, shown as 
a filled red circle, X°°. This represents the collective average for the entire portfolio of 
risks. The square of the deviations between the overall mean and the hypothetical means, 
shown in the upper section of Figure 3.3, forms the between sum of squared errors, SSB.

Theorem 3.3 (Kaas 2009, Theorem 8.4.2, 218) tells us how to calculate unbiased 
estimators for m, σ2, and τ2.
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Theorem 3.3 (Unbiased parameter estimates).  In the Bühlmann–Straub model, the 
following statistics are unbiased estimators of the corresponding model parameters:

	 mt = X %%	 (3.21)

	
vt 2 =

J T - 1` j
1

wjt X jt - X j` j2
jt
/ % 	 (3.22)

	
xt 2 =

w - j w j
2 w/

j w j X j - X` j2 - J - 1` jvt 2/
•• • ••

• % %% 	 (3.23)

Note that the estimator for τ2 is the difference between two expressions, and so it 
is possible that in applying the model the computed value will be negative. In this case, 
most practitioners will set the value of this parameter to zero.

To illustrate the Bühlmann–Straub model we will generate a synthetic portfolio and 
compute predictions for the next period. Our discussion follows the development in 
Kaas (2009, Example 8.4.5, 220).

Let’s set up our portfolio with J = 100 risk classes and T = 5 years of observations 
that follow the model in Equation 3.13 with the following parameters: m = 80, τ2 = 64, 
and σ2 = 100. We will set up weights ranging from 0.5 to 1.5 and simulate the obser-
vations Xjt = m + Ξj + ejt with both Ξj and ejt as normal random variables with mean 

XX 3° X 1° X 2°

X jt
Within-risk
deviations

Between-risk
deviations

°°

Figure 3.3.    Graphical representation of the within-risk  
and between-risk deviations. The small open circles 
represent the actual observations available. The large  
circles on the horizontal axis are the estimated hypothetical 
means, and the filled red circle is the overall average.  
The blue arrows represent the within-risk deviations, and 
the red arrows are the between-risk deviations.
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zero and variance τ2 and σ2/wjt, respectively. The code to generate the portfolio appears 
in Listing 3.1.

Before embarking on credibility calculations we should check whether our portfolio 
is homogeneous. If it is homogeneous, then we do not need to apply credibility and 
we could estimate the next year’s experience by the overall weighted average. To check, 
we do an analysis of variance.

(s2.hat <- av[2,3])

[1] 104.6239

(av <- anova(lm(X.jt ~ j, weights = w.jt)))

Analysis of Variance Table

Response: X.jt
	 Df	 Sum Sq	 Mean Sq	 F value	 Pr(>F) 
j	 99	 40395	 408.03	 3.9	 < 2.2e-16	 ***
Residuals	 400	 41850	 104.62 
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

From the above output we can immediately tell that our portfolio is heterogeneous; 
the risk classes differ from each other. The F-value statistic is too large given the 99 and 
400 degrees of freedom (the 5% critical value would be 1.2842).

We can also see immediately from the analysis of variance output that the estimated 
value of σ2 is equal to

Listing 3.1    Simulation of the Bühlmann–Straub model.

J <- 100; Tm <- 5
j <- as.factor(rep(1:J, each = Tm))

m <- 80
t2 <- 64
s2 <- 100

set.seed(12094851)
w.jt <- 0.5 + runif(J * Tm)
X.jt <- m + rep(rnorm(J, 0, sqrt(t2)), each = Tm) +
	 rnorm(J * Tm, 0, sqrt(s2/w.jt))

dta <- tibble(risk = j,
	 X.jt = X.jt,
	 W.jt = w.jt)
write_csv(dta, “BS-simulated-data.csv”)
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Hence, the estimator for τ2 is given by

num <- sum(w.jb * (X.jc – X.cc)^2) – (J – 1) * s2.hat
den <- w.bb – sum(w.jb^2 / w.bb)
(t2.hat <- num / den)

[1] 60.9652

Finally, the credibility factors are

Zj.hat <- w.jb / (w.jb + s2.hat / t2.hat)

(X.z <- sum(Zj.hat * X.jc) / sum(Zj.hat))

P.hat <- Zj.hat * X.jc + (1 – Zj.hat) * X.z

and the collective premium is

[1] 78.53833

and putting them together we obtain the following credibility premiums

(m.hat <- X.cc <- sum(w.jt * X.jt) / sum(w.jt))

[1] 78.43628

Finally, we need to implement the calculation for the estimator of τ2. We start with 
some preliminary setup where the sum of the weights across time wj• corresponds to 
w.jb, the sum of all weights w•• is w.bb, and the weighted average of the experience 
across time for each risk class Xj° is given by X.jc.

w.jb <- tapply(w.jt, j, sum)
w.bb <- sum(w.jb)
X.jc <- tapply(w.jt * X.jt / w.jb[j], j, sum)

The estimator for the overall mean m is the overall weighted average for the data.
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(BS <- cm(~ risk.class,

The first 20 estimated credibility premiums are

P.hat[1:20]

1 2 3 4 5 6
67.41990 74.65462 82.37383 81.77987 75.53623 84.26384

7 8 9 10 11 12
80.16259 71.72899 95.02067 71.41841 86.42743 80.35881

13 14 15 16 17 18
90.36646 73.34605 74.71319 78.70976 71.75083 92.52850

19 20
72.31943 69.29793

And as we did for the Bühlmann model, we can use the function cm() from 
package actuar to do the calculations necessary for the Bühlmann–Straub model. 
We first create a data frame with both the observations Xjt and the weights wjt along 
with a column telling us which row of data belongs to which risk class.

First, we create a data frame with the data we have
D <- cbind(risk.class = 1:J,

	 as.data.frame(matrix(X.jt,
		  nrow = J,
		  ncol = Tm,
		  byrow = TRUE)),
	 as.data.frame(matrix(w.jt,
		  nrow = J,
		  ncol = Tm,
		  byrow = TRUE)))
and then we estimate the model via

	 data = D,
	 ratios = 2:6,
	 weights = 7:11))
Call:

cm(formula = ~risk.class, data = D, ratios = 2:6, weights = 7:11)

Structure Parameters Estimators

  Collective premium: 78.53833 

  Between risk.class variance: 60.9652 
  Within risk.class variance: 104.6239

For the first five risk classes, our by-hand calculations match those from the cm() 
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function.
rbind(“	 cm():” =	predict(BS)[1:5],

	 “by-hand:” = P.hat[1:5])
		  1	 2	 3	 4	 5

	 cm():	 67.4199	 74.65462	 82.37383	 81.77987	 75.53623
by-hand:	 67.4199	 74.65462	 82.37383	 81.77987	 75.53623

And they match across all risk classes:
all(round(abs(predict(BS) – P.hat), 10) == 0)

[1] TRUE

3.4.  Hachemeister Regression
In this chapter we have been working with the basic model

X jt = m +Nj + e jt,

where j indexes a risk class and t represents time. Both Ξj and ejt are random variables, 
and m is a fixed parameter.

We can extend the basic model in many ways. For example, consider a tree-like 
structure of an insurance line of business where at the top level we have the entire 
business. This can be divided into different sectors, and then each sector can again 
be divided into risk classes. Finally, each risk class has the observed experience. This 
model is known as Jewell’s hierarchical model (Jewell 1975), and the statistical model 
can be written as

Xsjt = m +Ns +Nsj + esjt,

where s = 1, 2, . . . , S represents the different sectors, j = 1, 2, . . . , J corresponds to the 
different risk classes, and t = 1, 2, . . . , T + 1 indexes the time periods. Extensions to 
more levels follow the same pattern.

In this case, Ξs is the deviation from the overall mean m for sector s, Ξsj is then 
the deviation from the sector mean for risk class j, and esjt represents the fluctuations 
through time.

In this section, we are interested in a different extension of the basic model that will 
take us in the direction of the classical linear regression model. This model, known by 
actuaries as a credibility regression model, was first introduced to the actuarial literature 
by Hachemeister (1975).
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Inspired by the high inflation rates starting in the late 1960s and continuing into 
the early 1970s, Hachemeister became interested in understanding loss severity trends 
and used data from private passenger automobile insurance (bodily injury coverage) for 
five different states to illustrate his ideas. The data is on a quarterly basis from Q3 1970 
through Q2 1973 (12 quarters of observations).

Table 3.2 shows the claim severity and the number of claims by state. Note that 
state 1 has a very large number of claims in each quarter, and state 4 has the least 
number of claims of all states. The ratio of the number of claims, in each quarter, for 
state 1 to state 4 is almost always in excess of 20. Figure 3.4 displays a multiple time 
series plot for severity. The data for each state has been connected with a light gray line, 
and each state has been labeled on the right-hand side. State 4 has been highlighted 
with thick connecting segments to illustrate the data for a single state.

Notice that the variability in severity from quarter to quarter for state 4 is much 
greater than for other states, and state 1 appears to be the most stable. This feature arises 
because the volume of claims underlying the severity is quite different between state 1 
and state 4.

The severity trend for each state is positive, and we could measure its magnitude 
by fitting a weighted least squares regression line to each state. Doing so yields the five 
light purple straight lines shown in Figure 3.5. We have also included a “countrywide” 
(data combined for all five states) weighted regression line shown in red.

Table 3.2.   The Hachemeister data. Number of claims and severity  
for five different states from private passenger automobile insurance  
(bodily injury coverage).

Claim Severity by State Number of Claims by State

Period 1 2 3 4 5 1 2 3 4 5

3Q’70 1,738 1,364 1,759 1,223 1,456 7,861 1,622 1,147 407 2,902

4Q’70 1,642 1,408 1,685 1,146 1,499 9,251 1,742 1,357 396 3,172

1Q’71 1,794 1,597 1,479 1,010 1,609 8,706 1,523 1,329 348 3,046

2Q’71 2,051 1,444 1,763 1,257 1,741 8,575 1,515 1,204 341 3,068

3Q’71 2,079 1,342 1,674 1,426 1,482 7,917 1,622 998 315 2,693

4Q’71 2,234 1,675 2,103 1,532 1,572 8,263 1,602 1,077 328 2,910

1Q’72 2,032 1,470 1,502 1,953 1,606 9,456 1,964 1,277 352 3,275

2Q’72 2,035 1,448 1,622 1,123 1,735 8,003 1,515 1,218 331 2,697

3Q’72 2,115 1,464 1,828 1,343 1,607 7,365 1,527 896 287 2,663

4Q’72 2,262 1,831 2,155 1,243 1,573 7,832 1,748 1,003 384 3,017

1Q’73 2,267 1,612 2,233 1,762 1,613 7,849 1,654 1,108 321 3,242

2Q’73 2,517 1,471 2,059 1,306 1,690 9,077 1,861 1,121 342 3,425
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Looking at the trend lines for each state shown in Figure 3.5 we can see that each 
one has a different level of severity and each one has a different positive slope. State 1 
has the largest slope, and state 5 has the smallest.

The basic credibility model that we have been working with cannot accommodate 
this setup, but we can extend it as follows:

	
X jt = m 1` j +N j

1` j& 0 + m 2` j +N j
2` j& 0q jt + e jt .	 (3.24)

where m(1) and m(2) are unknown fixed parameters, Ξ j
(1) and Ξ j

(2) are random variables 
with mean zero, and qjt is, in this particular case, the explanatory variable time but in 
general could be any explanatory variable.

If the random variables Ξ j
(1) and Ξ j

(2) are identically zero (that is, their variance is 
zero), then the model becomes a classical regression. If only Ξ j

(2) is identically zero, then 
we have a random intercept model. In our example, every state would have its own 
intercept, but all states would share the same slope. That is, we would have parallel 
regression lines. We can estimate such a model via least squares by including an indi
cator variable for each state (and omitting the intercept). If only Ξ j

(1) is identically zero, 
then all states have the same intercept but each one has a different slope. This would 
be a random slope model.

State 1
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State 4

State 5

1000
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Figure 3.4.    Hachemeister data showing quarterly experience  
for private passenger auto (bodily injury coverage) severity for 
five different states from 3Q 1970 to 2Q 1973 (12 observations). 
Light gray lines connect the observations for each state to 
emphasize the state individual trends. State 4 is highlighted 
with thicker line segments.
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The regression lines shown in light purple in Figure 3.5 have been estimated using 
only the information contained in each state. If we think the information in each state 
is fully credible, these estimated regression lines are appropriate. If, on the other hand, 
the information in each state is not credible, we would ignore the state grouping 
variable by using all the data together to estimate the collective regression line.

As we have seen with the Bühlmann and the Bühlmann–Straub models, these 
are two extreme positions, and we can search for a compromise between the two.  
So Hachemeister set out to develop a credibility regression model. We will follow 
the discussion in Chapter 8 of Bühlmann and Gisler (2005) closely and focus on the 
example presented above of linear regression (intercept and slope) even though the 
ideas clearly apply to more general regression models. Also, we will change our notation 
slightly and use vectors and matrices to make the connection to linear regression more 
apparent. To this end, we can restate Equation 3.24 as follows

	 X j = Q jb H j` j+ e j,	 (3.25)

where Xj is a T × 1 column vector of responses for risk j = 1, 2, . . . , J and T is the number 
of time periods we have observed. In Hachemeister’s example, this corresponds to the 
observed severities for state j = 1, 2, . . . , 5 during time periods t = 1, 2, . . . , 12, and 
therefore we have

State 1
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3Q'70 4Q'70 1Q'71 2Q'71 3Q'71 4Q'71 1Q'72 2Q'72 3Q'72 4Q'72 1Q'73 2Q'73
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Figure 3.5.    Hachemeister data including individual regression 
lines for each state (shown in light purple) and a “countrywide” 
regression line (shown in red) for the combined data of all five 
states. The data for state 4 is connected with thick gray lines,  
and its corresponding individual regression line is also shown 
with a thick purple line.
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X j =

X j1

X j2

h

X jT
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.

The matrix Q j is our regression design matrix for state j with dimensions T × 2:

Q j =

1 t j1

1 t j2

h h

1 t jN

R

T

S
S
S
S
S
S
S
SS

V

X

W
W
W
W
W
W
W
WW

.

The first column of Qj corresponds to the intercept, and the second column is 
the time variable. For our example, we have Tj1 = 1, tj2 = 2, . . . , for all states j. The  
2 × 1 vector β(Θj) is our regression coefficient. The reason for having the β’s depend 
on Θj is that we are thinking of these regression coefficients as dependent on a random 
variable for each state. Thus, we have

B H j` j=
b 0 H j` j
b 1 H j` j

R

T

S
S
SS

V

X

W
W
WW
,

where β0(Θj) is our intercept and β1(Θj) is our slope for state j. Finally, the T × 1 vector ej 
of error terms is

e j =

e j1

e j2

h

e jT

R

T

S
S
S
S
S
S
S
SS

V

X

W
W
W
W
W
W
W
WW

.

The following definition and theorem come from Chapter 8 of Bühlmann and Gisler 
(2005, 205, 207).

Definition 3.1 (Hachemeister model assumptions).  The risk j is characterized by an 
individual risk profile ϑj, which is itself the realization of a random variable Θj. We make 
the following assumptions:

Conditionally, given Θj, the entries Xjt, j = 1, . . . , J are independent, and we have
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E X j H j

R

T
SS

V

X
WW=Q jb H j` j,

where β(Θj) is the regression vector and Q j is the known design matrix, and

Cov X j, X lj H j

R

T
SS

V

X
WW = Rj H j` j

is the covariance matrix conditional on Θj. The pairs (Θ1, X1), (Θ2, X2), . . . are indepen-
dent, and also Θ1, Θ2, . . . are independent and identically distributed.

Theorem 3.4 (Hachemeister formula).  Under the Hachemeister model assumptions 
we get that the credibility estimator for β(Θj) satisfies

	 b H j` j%
= A jB j + I - A j` jb,	 (3.26)

where

A j =U U + Q lj S j
-1Q j` j-1b l-1

,

B j = Q lj S j
-1Q j` j-1Q lj S j

-1X j ,

S j =E Rj H j` j
R

T
SS

V

X
WW=E Cov X j, X lj H j

R

T
SS

V

X
WW

R

T

SS
V

X

WW,

U =Cov b H j` j,b H j` jl
R

T
SS

V

X
WW,

b =E b H j` j
R

T
SS

V

X
WW.

The credibility matrices Aj are for the example we are considering of dimension  
2 × 2. The 2 × 1 vector Bj is the intercept and slope for each state j. The matrices Sj have 
dimension T × T and are of the form

S j = v 2

wj1 0 g 0

0 wj2 g 0

h h j h

0 0 g wjT

R

T

S
S
S
S
S
S
S
SS

V

X

W
W
W
W
W
W
W
WW

- 1

,

where the diagonal entries wjt are known weights. We will use Wj as the diagonal matrix 
with entries wjt along the main diagonal and zeroes everywhere else. Thus, we can write 
Sj = σ2W j

–1. In our example, the wjt are the number of claims at time t in state j.
The matrix U, of dimension 2 × 2, is the variance-covariance matrix of the estimated 

coefficients. Because the matrix U is symmetric, there are at most three distinct entries. 
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And, finally, the 2 × 1 vector β is the collective intercept and slope.
Let us apply the Hachemeister formula (Theorem 3.4) to the data we have at hand. 

In several places we must calculate the product Q ′jS j
–1Qj, with Sj being the diagonal 

matrix in the earlier paragraph. This product is closely related to Q ′jWjQj, which comes 
up several times, so let us define

Vj =Q ljW jQ j,

which is a 2 × 2 matrix. Specializing for the Hachemeister data, we have

Vj =
1 1 g 1

1 2 g T

R

T

S
SS

V

X

W
WW

wj1 0 g 0

0 wj2 g 0

h h j h

0 0 g wjT

R

T

S
S
S
S
S
S
S
SS

V

X

W
W
W
W
W
W
W
WW

1 1

1 2
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1 T
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.

Doing the matrix multiplications gives us the following:

Vj =

wjt tw jtt=1

T/t=1
T/

tw jt t 2wjtt=1

T/t=1
T/

R

T

S
S
S
SS

V

X

W
W
W
WW
.

The entries in the matrix Vj almost look like weighted averages. They are missing  
a denominator equal to ∑T

t=1wjt. To keep the notation cleaner, we use the same con-
vention as before: a • symbol in an index position means that we sum all entries 
along that index. Hence, we have wj• = ∑T

t=1wjt. Therefore, we can rewrite the above 
matrix Vj as

Vj = wj

wj

wjt t
w j

wjt

t=1
T/t=1

T/

t
w j

wjt t 2

wj

wjt

t=1
T/t=1

T/

R

T

S
S
S
S
S
S
S

V

X

W
W
W
W
W
W
W

.•

• •

• •

To simplify the notation further, note that the off-diagonal entries look like the 
calculation of the expected value of t because the weights wjt/wj• sum to 1, and so we 
are thinking of them as a sampling distribution. Similarly, the entry in position (2, 2) 
looks like the calculation of the second moment.

In view of this, we define the following notations:
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E j
s` j t8 B =

wj

wjt

t=1

T

/ t and E j
s` j X j8 B = wj

wjt

t=1

T

/ X jt,
• •

where the superscript (s) signals that we are thinking of the weights wjt/wj• as a sampling 
distribution. With this notation, we can also write

Var j
s` j t8 B = E j

s` j t 28 B- E j
s` j t8 Bb l2 .

Using all of this, the matrix Vj is now

Vj = wj

1 E j
s` j t8 B

E j
s` j t8 B E j

s` j t 28 B

R

T

S
S
S
SS

V

X

W
W
W
WW
,•

and note that its determinant is equal to det(Vj) = w2
j•Var(s)[t].

Using Theorem 3.4 we can calculate Bj as follows:

B j = V j
-1Q ljW jX j

=
wj Var s` j t8 B
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•
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Let us implement these calculations using Hachemeister’s data. First, let’s define 
some quantities: the weights W.jt, the time points T.jt, the observed severities 
X.jt, and the vector S, which tells us which state these observations belong to.
W.jt <- db$claims
T.jt <- db$time
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correspondence between our programming variable names and the written notation 
used in the text.
W.jb <- tapply(W.jt, S, sum)

X.jt <- db$severity
S <- db$state
N <- length(unique(T.jt))
J <- length(unique(S))

Next, we calculate the summary statistics that we will need. Table 3.3 shows the 

Table 3.3.    Correspondence between programming variable 
and written notation in the text.

Variable Written Notation Variable Written Notation

W.jb wj• Ej.tX Ej
(s)[tXj]

W.bb ∑J
j=1wj• Vj.t Varj

(s)[t]

Ej.t Ej
(s)[t] Ws.jb Varj

(s)[t]wj•

Ej.t2 Ej
(s)[t2] Ws.bb ∑J

j=1Varj
(s)[t]wj•

Ej.X Ej
(s)[Xj]

W.bb <- sum(W.jb)
Ej.t <- tapply(W.jt * T.jt, S, sum) / W.jb
Ej.t2 <- tapply(W.jt * T.jt^2, S, sum) / W.jb
Ej.X <- tapply(W.jt * X.jt, S, sum) / W.jb
Ej.tX <- tapply(W.jt * T.jt * X.jt, S, sum) / W.jb
Vj.t <- Ej.t2 – Ej.t^2
Ws.jb <- Vj.t * W.jb
Ws.bb <- sum(Ws.jb)

With these definitions, we can calculate the intercept and slope for each state 

using

Bj <- rbind((Ej.t2 * Ej.X – Ej.t * Ej.tX) / Vj.t,
	 (Ej.tX – Ej.t * Ej.X) / Vj.t)
dimnames(Bj) <- list(c(“Intercept”, “Slope”),
	 1:5)
round(Bj, 2)

		  1	 2	 3	 4	 5
	Intercept	 1658.47	 1398.30	 1533.00	 1176.70	 1521.90
Slope		  62.39	 17.14	 43.31	 27.81	 11.87
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Exercise 3.3    Verify that the intercept and slope we calculated for each state are correct by 
doing it the easy way; that is, fit a weighted linear regression to the data for each state.

Solution 3.3    For state 4 we would compute as follows:

lm.st4 <- lm(severity ~ time,

	 data = db,

	 subset = state == 4,

	 weights = claims)

coef(lm.st4)

	(Intercept)	 time 

	1176.70407	 27.80702

And indeed these coefficients match those we computed earlier. We leave similar calculations, 
for the remaining states, to the reader.

Next, on page 209 of Bühlmann and Gisler (2005), they assume that the 2 × 2 
matrix U = Cov[β(Θj), β(Θj)′] is diagonal with entries τ0

2 and τ1
2, that is,

U =
x 0

2 0

0 x 1
2

R

T

S
S
SS

V

X

W
W
WW
.

This implies that the intercept and the slope are independent of each other.
The credibility matrices Aj are given in Theorem 3.4 as

A j = U U + Q lj S j
-1Q j` j-1b l-1

,

and we can rewrite, by using Vj, as follows

A j = U U +v 2V j
-1` j-1 .

We could substitute expressions for U and Vj and compute, but that requires a lot 
of calculations. It is best to rewrite as follows:

A j = U U +v 2V j
-1` j-1

= I +v 2V j
-1U- 1` j-1

= Vj +v 2U- 1` j-1Vj .
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The inverse of U is easy because U is a 2 × 2 diagonal matrix. We have

U -1 =
x 0

2x 1
2

1 x 1
2 0

0 x 0
2

R

T

S
S
SS

V

X

W
W
WW
,

and noting that we need to multiply by σ2, we can make the following substitutions. 
Let κ0 = σ2/τ0

2 and κ1 = σ2/τ1
2, then we have

U -1 =
v 2

1 l 0 0

0 l 1

R

T

S
S
S

V

X

W
W
W
,

and so

Vj +v 2U -1 =

wj + l 0 wj E j
s` j t8 B

wj E j
s` j t8 B wj E j

s` j t 28 B+ l 1

R

T

S
S
S
SS

V

X

W
W
W
WW
.

• •

• •

The inverse of the above matrix is

Vj +v 2U -1` j-1
=
D
1

wj E j
s` j t 28 B+ l 1 -wj E j

s` j t8 B

-wj E j
s` j t8 B wj + l 0

R

T

S
S
S
SS

V

X

W
W
W
WW
,

• •

• •

where D is the determinant given by

D = wj + l 0` j wj E j
s` j t 28 B+ l 1b l- wj E j

s` j t8 Bb l2 .• • •

Finally, multiplying the above expression by Vj and recalling that Var j
(s)[t] =  

E j
(s)[t 2] – (E j

(s)[t ])2, we obtain the credibility matrix Aj as

	

A j = D
wj

wj Var j
s` j t8 B+ l 1 l 1E j

s` j t8 B

l 0E j
s` j t8 B wj Var j

s` j t8 B+ l 0E j
s` j t 28 B

R

T

S
S
S
SS

V

X

W
W
W
WW
.•

•

•

	 (3.27)

To compute the credibility matrices Aj for the Hachemeister data, we will need to 
find estimators (Bühlmann and Gisler 2005, 216–217) for the three parameters σ2, 
τ0

2, and τ1
2. They are as follows. Consider an estimator of the variance across time for a 

single state j:

	
vt j

2 =
n- 2

1
wjt X jt -nt jta k2,

t=1

T

/ 	 (3.28)
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where μ̂jt are the fitted values from the regression equation for state j. These we can 
compute via

Ys <- cbind(rep(1, 12), 1:12)
mu.jt <- as.vector(Ys %*% Bj)
sigmaj.sq <- tapply(W.jt * (X.jt – mu.jt)^2, S, sum) / (N - 2)

Then, take as an estimator for σ2 the average of the individual state estimators, 
that is,

	
v 2 =

J
1
vt j

2 .
j=1

J

/ 	 (3.29)

sigma.sq <- mean(sigmaj.sq)

For the estimators of the variances of the intercept τ0
2 and slope τ1

2, we use estimators 
that are analogous to those in the Bühlmann–Straub model. That is,

	

xt 0
2 = c0 J - 1

J
w
wj B 0j - Br 0a k2 -

w
Jvt 2

j=1

J

/* 4,
••

•

••
	 (3.30)

where

	

c0 = J
J- 1

w
wj 1-

w
wjJ

L
KK

N

P
OO

j=1

J

/* 4
-1

,
••

•

••

• 	 (3.31)

and

Br 0 = w
wj B 0j .

j=1

J

/
••

•

We can compute these quantities by starting with B̄0.

B0.bar <- sum(W.jb / W.bb * Bj[1,])

Then we will need c0 (Equation 3.31), which we will break up into smaller terms,

term 1 = J
J - 1

, term 2 = w
wj , term 3 = 1-

w
wj , term 4 = w

wj 1-
w
wj

J

L
KK

N

P
OO,

j=1

J

/
••

•

••

•

••

•

••

•
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and finally calculating c0 as

c0 = term 4

term 1 .

term.1 <- (J – 1) / J
term.2 <- W.jb / W.bb
term.3 <- 1 – term.2
term.4 <- sum(term.2 * term.3)
c0 <- term.1 / term.4

And for the calculation of τ0
2 (Equation 3.30), we also break it up into more 

manageable pieces:

term 1 = J - 1
J

, term 2 = w
wj , term 3 = B 0j - Br 0a k2, term 4 = w

Jv 2

••

•

••

term.1 <- J / (J – 1)
term.2 <- W.jb / W.bb
term.3 <- (Bj[1,] – B0.bar)^2
term.4 <- J * sigma.sq / W.bb
tau0.sq <- c0 * (term.1 * sum(term.2 * term.3) – term.4)

And similarly for τ1
2. The formulas are the same with a small change. Instead of 

using wj•, we use w*j•, where

w j = Var j
s` j t8 B wj .•* •

•

Therefore, we have

	

xt 1
2 = c1 J - 1

J

w

w j B 1j - Br 1a k2-
w

Jvt 2

j=1

J

/* 4,
••*
•*

••*
	 (3.32)

where

c1 = J
J -1* 4 ,

w

w j 1-
w

w j
J

L

K
KK

N

P

O
OOj=1

J

/
••*
•*

••*
•*
-1

and

Br 1 =
w

w j B 1j
j=1

J

/ .
••*
•*
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The values of B0j and B1j are the intercept and slope, respectively, for each individual 
state j, and so we have that B̄0 and B̄1 are the weighted averages of the estimated state 
parameters.

The calculation for τ1
2 (Equation 3.32) is analogous to τ0

2. The code to accomplish 
this follows:

B1.bar <- sum(Ws.jb / Ws.bb * Bj[2,])

term.1 <- (J – 1) / J
term.2 <- Ws.jb / Ws.bb
term.3 <- 1 – term.2
term.4 <- sum(term.2 * term.3)
c1 <- term.1 / term.4

term.1 <- J / (J – 1)
term.2 <- Ws.jb / Ws.bb
term.3 <- (Bj[2,] – B1.bar)^2
term.4 <- J * sigma.sq / Ws.bb
tau1.sq <- c1 * (term.1 * sum(term.2 * term.3) – term.4)

These calculations yield

vt 2 = 4.9870187# 10 7, xt 0
2 = 1.8029435# 10 4, xt 0

2 = 665.5618.

With these parameter estimates we can now calculate the credibility matrices Aj, 
the collective intercept and slope, and the credibility-weighted estimates for each state. 
Note that the Hachemeister data had five states, but even if it had data for all 50 states, 
we would still need to estimate only three parameters. Moreover, these parameters are 
not specific to these five states. We have treated these states as coming from a population 
of states, and these parameters estimate features of the population.

Now that we have estimates for σ2, τ0
2, and τ1

2, we can calculate the credibility-
weighted estimates of the intercept and slope for our states. The following code sets up 
the necessary quantities:

k0 <- sigma.sq / tau0.sq
k1 <- sigma.sq / tau1.sq

Determ <- (W.jb + k0) * (W.jb * Ej.t2 + k1) – (W.jb * Ej.t)^2
term.11 <- W.jb * Vj.t + k1
term.12 <- k1 * Ej.t
term.21 <- k0 * Ej.t
term.22 <- W.jb * Vj.t + k0 * Ej.t2
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Using Equation 3.27 we can define a function that will return the credibility 
matrix Aj as

A <- function(j) {
  M <- matrix(c(term.11[j], term.12[j],
	 term.21[j], term.22[j]),
	 nrow = 2, ncol = 2, byrow = TRUE)
  ans <- W.jb[j] / Determ[j] * M
  dimnames(ans) <- list(c(“”, “”),
	 c(“”, “”))
  return(ans)
}

We will also need the collective’s estimate of the intercept and slope. This estimate 
is equal to the weighted average of the individual state estimates where the weights are 
given by the credibility matrices as follows:

BGLS = A j
j=1

J

/
J

L

K
K

N

P

O
O

-1

A jB j
j=1

J

/ ,

where Bj is the estimate of the intercept and slope for state j. We have labeled the 
estimate with the subscript “GLS” because it turns out that this estimate is equal to 
the generalized least squares (GLS) estimate.

B.gls <- solve(A(1) + A(2) + A(3) + A(4) + A(5)) %*%
	 (A(1) %*% Bj[,1] + A(2) %*% Bj[,2] + A(3) %*% Bj[,3] +
	 A(4) %*% Bj[,4] + A(5) %*% Bj[,5])

The credibility-weighted estimate for state j, which we label as CWj, is equal to

CW j = A jB j + I - A j` jBGLS ,

where I is a 2 × 2 identity matrix.

CW <- function(j){
  I <- diag(1, nrow = 2, ncol = 2)
  ans <- A(j) %*% Bj[,j] + (I - A(j)) %*% B.gls
  dimnames(ans) <- list(c(“Intercept”, “Slope”),
	 paste(“State”, j, sep = “ ”))
  return(ans)
}
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For state 1, the credibility matrix A1 is

round(A(1), 4)

round(CW(1), 2)

0.8946  0.3389
0.0125  0.9460

and the credibility-weighted estimate of the intercept and slope for state 1 are

	 State 1
Intercept	 1652.61
Slope	 62.63

Table  3.4 assembles the credibility matrices and the standalone, credibility-
weighted, and collective estimates.

The last column, labeled “Collective,” repeats its entries for every state because 
we have only a single estimate for the entire portfolio of states. For the “Standalone,” 
“Credibility,” and “Collective” columns, we have listed the estimate of the intercept 
first and of the slope second.

Table 3.4.    Hachemeister’s credibility matrices and regression estimates. 
Each pair of rows corresponds to a state. Columns two and three provide 
the 2 3 2 credibility matrix. The remaining columns give us the intercept 
(first row) and the slope (second row) for each state.

Credibility Matrix Intercept and Slope Estimates

State Col. 1 Col. 2 Stand-Alone Credibility Collective

1 0.8946 0.3389 1,658.47 1,652.61 1,495.75

1 0.0125 0.9460 62.39 62.63 29.09

2 0.6583 1.0286 1,398.30 1,419.30 1,495.75

2 0.0380 0.8222 17.14 15.57 29.09

3 0.6029 1.1851 1,533.00 1,535.05 1,495.75

3 0.0437 0.7740 43.31 41.73 29.09

4 0.3930 1.4753 1,176.70 1,368.48 1,495.75

4 0.0545 0.6122 27.81 10.93 29.09

5 0.7658 0.7245 1,521.90 1,503.30 1,495.75

5 0.0267 0.8812 11.87 14.62 29.09



58	 Casualty Actuarial Society

Practical Mixed Models for Actuaries

Carefully inspecting the credibility estimates for each state reveals some peculiarities 
that Hachemeister (1975, 153) noted in his work as follows:

State #4 trend lines clearly point out a distressing aspect of the credibility adjusted 
trend line. The credibility adjusted trend line has a lower trend than both the country 
wide and the state trend line.

This is clearly seen in Figure 3.6, where we have one panel for each state and have 
included the collective estimate of the trend line (dark green line), the stand-alone state 
estimate (light purple line), and the credibility-weighted trend estimate (dark purple line).

state: 4 state: 5

state: 1 state: 2 state: 3

2 4 6 8 10 12 2 4 6 8 10 12

2 4 6 8 10 12

1500

2000

2500

1500

2000

2500

Time (in Qs)
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Estimates Stand−Alone Credibility Collective

Figure 3.6.    Credibility estimates for Hachemeister data.  
The green line corresponds to the collective estimate. The light 
purple line is the stand-alone estimate for the state, and the 
dark purple line is the credibility-weighted estimate. For all the  
states, except state 4, the stand-alone (light purple) and credibility 
lines (dark purple) are nearly one on top of the other.

Exercise 3.4    By carefully inspecting the table of estimates, for both intercept and slope, deter-
mine which of the credibility estimates are not between the collective and stand-alone figures.

Solution 3.4    For state 1, both the credibility slope and intercept are outside the intervals 
defined by the stand-alone and collective estimates, and for state 2, only the slope is not between 
the stand-alone and collective estimates. State 3 has its intercept outside the collective and the 
stand-alone figures. The slope for state 4, as we have seen, is outside. Only state 5 has both its 
intercept and slope within the intervals defined by the stand-alone and collective estimates.
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Several authors (De Vylder 1981, 1985; Bühlmann and Gisler 1997) have noted 
the strange credibility estimates Hachemeister arrived at, and many actuaries would 
not apply these methods in practice. Some authors (De Vylder 1981, 1985) tried to 
impose constraints to resolve the issues, and others (Danneburg 1996) have pointed out 
that those constraints have drawbacks. In 1997, Bühlmann and Gisler (1997) found a 
simple solution. Recall that the credibility matrix Aj in Equation 3.27 is equal to

A j = D
wj

wj Var j
s` j t8 B+ l 1 l 1E j

s` j t8 B

l 0E j
s` j t8 B wj Var j

s` j t8 B+ l 0E j
s` j t 28 B

R

T

S
S
S
SS

V

X

W
W
W
WW
,•

•

•

and looking at the off-diagonal elements, namely, κ1E j
(s)[t ] and κ0E j

(s)[t ], we might want 
to make them equal to zero. If our credibility matrix Aj is diagonal, then the credibility-
weighted estimates of the intercept and slope would be split into two individual cred-
ibility calculations: one for the intercept and one for the slope. Currently with the 
credibility matrix we have, the estimate for the intercept involves combining both the 
intercepts and slopes of the stand-alone and collective estimates. Similarly, the credibility 
estimate of the slope is a combination of both the intercept and slope estimates of the 
state and the collective.

So how could those off-diagonal elements be zero? That is, how could we make 
E j

(s)[t ] be zero? Remembering that

E j
s` j t8 B =

wj

wjt

t=1

T

/ t,
•

we could shift our time variable t so that the above expression is equal to zero. In other 
words, we would like to replace t with t − t0 such that E j

(s)[t − t0]. Namely, we would let

t0 = wj

wjt

t=1

T

/ t.
•

Note that t0 is the weighted average of the time variable for state j. We could also call 
t0 the “center of gravity” for state j. With this translation of the time axis we are putting 
the intercept of our model at time t = t0 instead of at the traditional origin of time t = 0.

In this case, the new credibility matrix A′j becomes

Alj = Dl
wj

wj Var j
s` j t - t08 B+ l 1 l 1E j

s` j t - t08 B

l 0E j
s` j t - t08 B wj Var j

s` j t - t08 B+ l 0E j
s` j t - t0` j2
R

T
SS
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X
WW

R
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S
S
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SS
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W
W
WW

=
Dl
wj

wj Var j
s` j t8 B+ l 1 0

0 wj + l 0` jVar j
s` j t8 B
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SS
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•

•

•
•

•
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where

Dl = wj + l 0` j wj Var j
s` j t8 B+ l 1b l,• •

and noting that variances are not affected by a linear translation and E j
(s)[(t − t0)2] = 

Var j
(s)[t]. We can simplify to obtain the following credibility matrix:

Alj =
wj + v 2 x 0

2

wj 0

0
wj Var j

s` j t8 B+ v 2 x 1
2

wj Var j
s` j t8 B

R

T

S
S
S
S
S
S
SS

V

X

W
W
W
W
W
W
WW

.
•

•

•

•

The diagonal entries are of the form of the Bühlmann–Straub credibility factors. 
Hence, the credibility-weighted intercept and slope will be strictly between the stand-
alone and collective estimates, respectively.

We were able to transform the original credibility matrix Aj into a diagonal credibility 
matrix A′j by translating the origin of time to the center of gravity. We did all this for 
a particular state j, and there is no guarantee that the centers of gravity for the states 
will all coincide with one another. For the Hachemeister data, the individual centers of 
gravity are

CG <- tapply(W.jt * T.jt, S, sum) / W.jb
round(CG, 3)

	 1	 2	 3	 4	 5
6.450	 6.588	 6.300	 6.339	 6.563

and notice that they are all close to each other. The largest difference between any two 
states is 0.288. The global center of gravity is

j0 <- sum(W.jb * CG) / W.bb
round(j0, 3)

[1]  6.475

Bühlmann and Gisler (2005, 214) have noted that in practice the centers of gravity 
are usually close to each other and that by translating the time variable to the overall 
center of gravity, the credibility matrices would be nearly diagonal. Table 3.5 shows 
the credibility estimates when we translate the origin of time to the global center of 
gravity of 6.475. Note that the credibility matrices are nearly diagonal and the estimated 
slope for state 4 is now between the stand-alone and collective values. Also, all other 
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credibility estimates are between the stand-alone and collective values. The credibility 
calculations we have just completed have been encapsulated in the function HBG() 
(see Appendix 10).

Table 3.5.    Credibility matrices and estimated stand-alone, credibility,  
and collective intercept and slope for the Hachemeister data when the  
time variable has been centered at the global center of gravity. Note that 
the off-diagonal elements of the credibility matrices are nearly zero. For the 
stand-alone, credibility, and collective estimates, the intercept is listed first 
and the slope second.

Credibility Matrix Intercept and Slope Estimates

State Col.1 Col.2 Stand-Alone Credibility Collective

1 0.9731 –0.0014 2,062.46 2,052.54 1,694.98

1 –0.0001 0.9413 62.39 60.69 33.72

2 0.8779 0.0236 1,509.28 1,531.57 1,694.98

2 0.0009 0.7629 17.14 20.91 33.72

3 0.8321 –0.0454 1,813.41 1,793.09 1,694.98

3 –0.0017 0.6881 43.31 40.12 33.72

4 0.6000 –0.0483 1,356.75 1,492.32 1,694.98

4 –0.0018 0.4079 27.81 31.91 33.72

5 0.9288 0.0118 1,598.79 1,605.38 1,694.98

5 0.0004 0.8559 11.87 14.98 33.72

sg <- sig.sq(X.jt, T.jt – j0, W.jt, db$state)$sigma.sq
D <- tau(sg, X.jt, T.jt, W.jt, db$state)$D
CW.one.center <- HBG(sg, D, X.jt, T.jt – j0, W.jt,
	 db$state, use.B.gls = TRUE)

Just as we translated the origin of time to the global center of gravity, we could 
do the time translation on a state-by-state basis. That would yield diagonal credibility 
matrices for each state. In Table 3.6 we have done just that, and comparing all the 
estimates to those in Table 3.5 we can see that, in this example, the differences are 
quite small.

j0 <- rep(CG, each = 12)
sg <- sig.sq(X.jt, T.jt – j0, W.jt, db$state)$sigma.sq
D <- tau(sg, X.jt, T.jt, W.jt, db$state)$D
CW.many.centers <- HBG(sg, D, X.jt, T.jt – j0, W.jt,
	 db$state, use.B.gls = TRUE)
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Table 3.6.    Credibility matrices and estimated stand-alone, credibility,  
and collective intercept and slope for the Hachemeister data when the  
time variable for each state has been centered at its own center of gravity. 
Note that the off-diagonal elements of the credibility matrices are exactly 
zero. For the stand-alone, credibility, and collective estimates, the intercept 
is listed first and the slope second.

Credibility Matrix Intercept and Slope Estimates

State Col.1 Col.2 Stand-Alone Credibility Collective

1 0.9731 0.0000 2,060.92 2,051.04 1,693.42

1 0.0000 0.9413 62.39 60.71 33.67

2 0.8779 0.0000 1,511.22 1,533.46 1,693.42

2 0.0000 0.7628 17.14 21.06 33.67

3 0.8324 0.0000 1,805.84 1,787.00 1,693.42

3 0.0000 0.6880 43.31 40.30 33.67

4 0.6002 0.0000 1,352.98 1,489.09 1,693.42

4 0.0000 0.4077 27.81 31.28 33.67

5 0.9288 0.0000 1,599.83 1,606.49 1,693.42

5 0.0000 0.8559 11.87 15.02 33.67

Figure 3.7 shows the credibility regression lines when we translate the time variable 
to the center of gravity (shown as a vertical gray line) for each state. Note how each  
intercept, at the center of gravity, is strictly between the state stand-alone estimate and 
the collective estimate. Also, the credibility-adjusted slopes are between the stand-alone 
and the collective estimates. In particular, state 4 now has a very plausible regression 
line. Compare its panel here (Figure 3.7) with its panel in Figure 3.6.

3.5.  Summary
In this chapter we discussed the idea that the data we have collected on some risks 

is more credible than the data on other risks. For those risks whose data is credible, we 
can use it with confidence to predict next year. But for those risks whose data is not 
fully credible, we can combine their own data with the data for all risks to come up 
with a better prediction for next year. Credibility theory tells us how we should put 
together the collective’s data and the own risk data in an optimal way by weighting the 
two sources together.

We devoted the second section to the balanced Bühlmann model and established that 
next year’s premium should be a weighted average of a risk’s own experience and the 
experience of the collective of all risks. Namely, the credibility premium has the form

ZXr j + 1- Z` jXr with Z =
T + v 2 x 2

T
,
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where σ2 and τ2 are known, in the actuarial world, as the expected value of the process 
variance (EVPV) and as the variance of the hypothetical means (VHM), respectively. 
In the statistical literature, these are known as the within variance and the between 
variance, respectively. Note that as the EVPV (within variance), σ2, increases, the 
credibility factor Z decreases. Similarly, as the VHM (between variance), τ2, decreases 
toward zero, the credibility factor, Z, decreases.

The balanced Bühlmann model is critical to our understanding of credibility pro-
cedures, but it is not a very useful model in practice as it assumes that all risks have the 
same exposure and are observed over the same number of periods.

The third section focused on extending the balanced Bühlmann model to a practi-
cally useful model known as the Bühlmann–Straub model. In this model, each risk 
comes with its own exposure weight, and not all risks need to be observed over the 
same time period. With these extensions, the credibility premium is of the same form 
as in the balanced Bühlmann model, namely,

Z jX + 1- Z j` jXz with Z j = wj + v 2 x 2

wj .j•
•

•
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Figure 3.7.    Credibility estimates for Hachemeister’s data with 
time translation to the center of gravity for each state. Each state 
center of gravity is shown as a gray vertical line. Note that all 
the credibility-weighted intercepts (at the center of gravity) and 
slopes (dark purple) are now strictly between the stand-alone 
estimates (light purple) and the collective estimates (dark green).
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Again, we see that the credibility premium has the same weighted average form as 
in the balanced Bühlmann model, as do the credibility factors.

In the last section, we explored a credibility regression model first proposed by 
Hachemeister. Here the basic idea is that we have data on several risks and we would 
like to estimate a regression line on this data. We could ignore that data came from 
individual risk classes and fit one regression line to all of the data. But that approach 
discards important information. We could also fit individual regression lines on each 
risk class. For some risk classes the volume of information would be large enough to 
give us a “robust” regression line, but for some of them the volume would be small and 
we might get some spurious results.

In this situation credibility theory can be applied to estimate the regression coeffi
cients as weighted averages of the individual regression coefficients and the collective 
regression coefficients. Unfortunately, a naive application of credibility to Hachemeister’s 
data led to implausible results for state 4, where the credibility-weighted trend for that 
state was both lower than its stand-alone and collective estimates.

This implausible result arises from the fact that in this case the credibility factors 
are 2 × 2 matrices with nonzero entries in all four positions, and thus the credibility-
weighted intercept and slope are a complex combination of both stand-alone and 
collective intercepts and slopes.

Obtaining plausible estimates required two key insights (Bühlmann and Gisler 1997):

•	 assume that the variance-covariance matrix of the intercept and slope random 
coefficients is diagonal, and

•	 center the time variable at each risk class time center of gravity.

With those insights, the credibility factors are 2 × 2 diagonal matrices, and so the 
credibility-weighted intercept and slope are each calculated separately, yielding esti-
mates that are always between the individual risk and the collective values.
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4.1.  Introduction
In Chapter 3 we looked at the balanced Bühlmann, the Bühlmann–Straub, and 

Hachemeister’s credibility regression models. Those and similar models have also been 
studied by statisticians under various names—linear mixed models (LMMs), hierar-
chical models, longitudinal models, and panel models, to name a few. The statistical 
literature on such models is extensive, and the models are well developed. Actuaries 
can benefit significantly by using the underlying theory and the tools available to assess 
such models.

We will introduce LMMs by reframing the credibility models in the standard 
statistical notation and exploring the tools that have been developed to fit and assess 
them. This should illustrate how we can apply the LMM theory to practical problems 
in credibility.

4.2.  Balanced Bühlmann Model Revisited
One way to write the balanced Bühlmann model (see Equation 3.2) is

X jt = n+Nj + e jt, j = 1, 2, . . . , J, t = 1, 2, . . . ,T,

where Xjt is the observation for group j at time t, µ is the overall mean, Ξj is a random 
deviation from the overall mean for group j, and ejt is an error term for the j, t obser-
vation. This conforms to the actuarial notation but not to the statistician’s. So we will 
switch the notation to what is commonly used in statistics.

The response variable is typically named Y, and the explanatory variables are usually 
denoted by X. We can express the balanced Bühlmann model as

y jt = b+ bj + e jt,

where β is the overall mean, bj is a random variable representing the deviation from the 
overall mean for the jth group, and ejt is the deviation for the j,t observation. Both bj 
and ejt are deviations, and therefore we know their means are zero.

Since bj and ejt are random variables, we need to specify their distributions and 
how they might be related to each other. For this model, we will have them both be 
independent, with constant variance, and normally distributed. The variance of bj will 

4.  Linear Mixed Models
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be denoted by σb
2 and denotes the between-group variability. Actuaries call this the 

variance of the hypothetical means, or VHM. The hypothetical means are β + bj. The 
variance of ejt is known as within-group variability and is denoted by σ2. In actuarial 
groups this is known as the expected value of the process variance, or EVPV. We can write 
these specifications as

bj + N 0,v b
2` j and e jt + N 0,v 2` j,

where N(0, σ2) represents the normal distribution with mean equal to zero and variance 
equal to σ2.

For the balanced Bühlmann model, we did not make the assumption that our 
random variables were normally distributed. We assumed only that they had finite 
first and second moments, and we used the method of moments to derive estimates 
for variances. It turns out that the maximum likelihood estimates of these variances 
coincide with the method of moments for this simple model. Hence, the balanced 
Bühlmann model is equivalent to this LMM.

Statisticians would call β a fixed effect and bi a random effect, and because this 
model has both fixed and random effects it is called a mixed-effects model. The naming 
of coefficients as either fixed or random is not without controversy. Gelman and Hill 
(2007, Section 11.4) outline five definitions for these terms, and in their work they 
avoid using the terms.

Using the same data as in Table 3.1, namely (showing the first few rows of the 
data frame),

# A tibble: 6 x 3
	 class	 time	 value
	 <fct>	 <int>	 <dbl>
1	 1	 1	 625
2	 1	 2	 675
3	 1	 3	 600
4	 1	 4	 700
5	 2	 1	 750
6	 2	 2	 800

we will illustrate the fitting of an LMM and show that we arrive at the same estimates. 
But rather than jumping straight into that mixed model, we want to describe one process 
of fitting and exploring models to reach that mixed model.

We can start simply by fitting an OLS model that includes only an intercept term. 
Such a model is usually called a null model. It is the most basic model we can have.

BB.null.lm <- lm(value ~ 1,
	 data = dta)
(sBB.null.lm <- summary(BB.null.lm))
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Call:
lm(formula = value ~ 1, data = dta)

Residuals:
	 Min	 1Q	 Median	 3Q	 Max 
	–150.00	 –81.25	 –25.00	 62.50	 200.00 

Coefficients:
		  Estimate	 Std. Error	 t value	 Pr(>|t|) 
	(Intercept)	 750.00	 32.13	 23.34	 1.01e-10	 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 111.3 on 11 degrees of freedom

From the output, we can see that the overall mean is 750 and the residual standard 
error is 111.29. Thus, we know that β̂0 = 750 and σ̂2 = 12,386.36.

The residuals from this model (see Figure 4.1) show some unsettling patterns. 
All residuals for class #1 are negative and clustered around –100. Similarly, nearly all the 
residuals for class #3 are positive and also seem to be clustered around 150. Clearly, 
an intercept-only model does not fit the data well, and we have an effect from the 
class variable that needs to be incorporated into the model. We can add class as 
a categorical variable to estimate the model.
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Figure 4.1.    OLS residuals for the balanced Bühlmann example 
data. Note that the residuals for class #1 all have the same 
sign, and nearly all points for class #3 also have the same sign. 
We introduced a slight amount of horizontal jittering to avoid 
overplotting a pair of residuals.
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Call:
lm(formula = value ~ class – 1, data = dta)

Residuals:
	 Min	 1Q	 Median	 3Q	 Max 
	–150.00	 –31.25	 12.50	 50.00	 100.00 

Coefficients:
	 Estimate	 Std. Error	 t value	 Pr(>|t|) 
class1	 650.00	 39.53	 16.44	 5.07e-08	 ***
class2	 750.00	 39.53	 18.97	 1.44e-08	 ***
class3	 850.00	 39.53	 21.50	 4.79e-09	 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 79.06 on 9 degrees of freedom
Multiple R-squared: 0.9918, Adjusted R-squared: 0.9891 
F-statistic: 364.3 on 3 and 9 DF, p-value: 1.037e-09

In the above model we removed the intercept so that we would estimate a mean 
value for each class (instead of using one of the classes as an intercept and then esti-
mating deviations from this mean for the other two classes). Note that the residual  
standard error is now much smaller: 79.06 versus 111.29. This model fits our data 
more closely.

Figure 4.2 shows residuals that are much better behaved. They are all centered 
around zero with both positive and negative values for each class. We might be quite 
happy with this model if we were interested in just these three classes. But consider 
that these three might have been just a sample from hundreds of classes (say, workers  
compensation occupational classes). If we were to include all possible classes in a model, 
we may not be able to estimate all of the parameters accurately. Some classes may have 
lots of data, but others may have very little. More troublesome is the fact that as we 
add classes, the number of parameters that need to be estimated increases.

So we want to think of the three classes we have as being a sample from a population 
of classes. Thus, we want to estimate the following mixed model:

y jt =b + bj + e jt,

where j = 1, 2, 3 and t = 1, 2, 3, 4. This model has a fixed effect β, which is constant 
across classes, and a random deviation from the overall mean bj for each class. We can 
fit this model with the lmer() function from the lme4 package as follows:

BB.class.lm <- lm(value ~ class – 1,
	 data = dta)
(sBB.class.lm <- summary(BB.class.lm))
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BB.mx <- lmer(value ~ 1 + (1 | class),
	 data = dta)
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Figure 4.2.    OLS residuals for the balanced Bühlmann example 
data with a mean estimate for each class. Note that now all the 
residuals are centered around zero. We introduced a slight amount 
of horizontal jittering to avoid overplotting a pair of residuals.

The response variable is value, and the first 1 after the “∼” says we want a fixed-
effect intercept. We can specify other fixed effects in this part of the formula as we 
would in fitting a regular regression model. The component in parentheses after the plus 
sign is for the random effects. Here we have 1 │ class because we want a random 
intercept for each level of the class variable.

The parameters to be estimated for this model are β, the fixed effect; σb
2, the between-

class variance (VHM); and σ2 the within-class variance (EVPV), also known as the 
residual variance.

(sBB.mx <- summary(BB.mx))

Linear mixed model fit by REML [‘lmerMod’]
	Formula:	value ~ 1 + (1 | class)
	 Data:	dta

REML criterion at convergence: 133.6

Scaled residuals: 
	 Min	 1Q	 Median	 3Q	 Max 
	–1.6997	 –0.5929	 0.1581	 0.6325	 1.4626 
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Random effects:
 Groups	 Name	 Variance	 Std.Dev.
 class	 (Intercept)	 8438	 91.86 
 Residual		  6250	 79.06 
Number of obs: 12, groups: class, 3

Fixed effects:
		  Estimate	 Std. Error	 t value
	(Intercept)	 750.00	 57.74	 12.99

From the output we have β̂ = 750, σ̂b
2 = 8,438, and σ̂2 = 6,250. Thus, we can see 

that the variance between classes is bigger than the variance within a class. The random 
effects are

round(ranef(BB.mx)$class, 3)

		 (Intercept)
	1	 –84.375
	2	 0.000
	3	 84.375

which tells us that our estimated mean is 750 – 84.375 = 665.625 for class #1,  
750 + 0 = 750 for class #2, and 750 + 84.375 = 834.375 for class #3. These are the 
hypothetical means for each class. Note that they are exactly the same estimates as 
the credibility estimates we calculated in Chapter 3, Equation 3.12. The credibility 
factor can also be easily derived from the above output:

Z =
T + vt 2 vt b

2

T
=

4 + 6,250 8,437.5
4

= 0.84375.

The value of T represents the number of observations in each group, and because 
we are in the balanced Bühlmann model, we know that each group has the same number 
of observations. The above output tells us that there were 12 observations and three 
groups; hence, T = 12/3 = 4.

In the mixed model we have assumed that the residual variance σ2 is constant. By 
plotting the fitted values against the standardized residuals we can check this assump-
tion. Figure 4.3 shows these residuals, and even though we have a small sample size the 
residuals are well behaved.

4.3.  Bühlmann–Straub Model Revisited
The Bühlmann–Straub model is nearly the same as the balanced Bühlmann model. 

There are two key differences:

•	 we do not assume that all risks have been observed for the same number of periods 
(we no longer have a balanced dataset), and
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•	 we introduce weights so that the residual variance is proportional to the inverse of 
the weights.

Therefore, the Bühlmann–Straub model can be written as

y jt = b+ bj + e jt with bj +N 0,v b
2` j and e jt +N 0,

wjt

v 2J

L

K
K

N

P

O
O,

where wjt are the weights associated with the observation from risk j and time t.
In Section 3.3, we illustrated the standard actuarial calculations for this model on 

a simulated dataset (see Listing 3.1) that had 100 different risk classes and five time 
periods of observations. The parameters used in the simulation were

b = 80, v b
2 = 64, v 2 =100.

Note that in the Bühlmann–Straub model we denoted the between-risk variance 
(variance of the hypothetical means) by the symbol τ2, but here we use σb

2.
We will use the same simulated data to illustrate how to estimate these parameters 

via an LMM, and so we load the dataset we created in the previous chapter.
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Figure 4.3.    Standardized residuals for the balanced Bühlmann 
data fitted with the mixed model. Note that all residuals are 
within 1.5 standard deviations from zero. We added a bit of 
horizontal jittering to avoid overplotting a pair of residuals.

bs.dta <- read_csv(“BS-simulated-data.csv”,
	 col_types = “fdd”)
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We estimate the Bühlmann–Straub model using the linear mixed-effects regression 
function lmer() from the R package lme4 as follows:

BS.mx <- lmer(X.jt ~ 1 + (1 | risk),
	 data = bs.dta,
	 weights = W.jt)

Note that the dataset uses the actuarial notation X.jt for the response variable 
and risk for the name of the class variable, where the formula in the first argument, 
X.jt ∼ 1 + (1 | risk), says that we have a fixed-effects intercept, the first 1, and the 
expression inside parentheses denotes the random component of the model. In this 
case, the random component is just an intercept that varies by the classification variable 
risk. We can obtain summary information about the fit via the summary(), and 
we have saved the information in an object, sBS.mx, to be able to extract some of that 
information later on.

(sBS.mx <- summary(BS.mx))

Linear mixed model fit by REML [‘lmerMod’]
Formula: X.jt ~ 1 + (1 | risk)
   Data: bs.dta
Weights: W.jt

REML criterion at convergence: 3901.4

Scaled residuals: 
	 Min	 1Q	 Median	 3Q	 Max 
	–2.37735	 –0.67636	 –0.01581	 0.64974	 2.76651 

Random effects:
 Groups	 Name	 Variance	 Std.Dev.
 risk	 (Intercept)	 61.14	 7.819 
 Residual		  104.64	 10.229 
Number of obs: 500, groups: risk, 100

Fixed effects:
	 Estimate	 Std. Error	 t value
(Intercept)	 78.5384	 0.9083	 86.46

Table 4.1 shows the true value of the model parameters, their estimated values 
from the mixed model, and the credibility estimates from Section 3.3. Note that the 
mixed model estimates and the credibility estimates are very close to each other, and 
both are not far away from true values we used to simulate the data.
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For the Bühlmann–Straub model, the credibility factors differ by risk group j, and 
from the above model output they would be equal to

Zt j = wj + vt 2 vt b
2

wj
=
wj + 104.64 61.14

wj ,
•

•

•

•

where wj• is the sum of all the weights across time for risk j.
From the LMM BS.mx, we can also obtain values for the deviations bj from the 

overall mean β. These values are b̂1, b̂2, . . . , b̂100. The first 20 of them are

Table 4.1.    Comparison of actual and estimated model parameters  
for the Bühlmann–Straub simulated data.

Parameter True Values Mixed Model Estimates Credibility Estimates

β   80 78.5384 78.4363

σb
2   64 61.1411 60.9652

σ2 100 104.6386 104.5239

round(ranef(BS.mx)$risk[1:20,1], 3)

round(fixef(BS.mx) + ranef(BS.mx)$risk[1:20, 1], 3)

 [1]	 –11.126	 –3.886	 3.838	 3.244	 –3.004	 5.729	 1.625
 [8]	 –6.815	 16.494	 –7.125	 7.894	 1.822	 11.837	 –5.196	
[15]	 –3.828	 0.172	 –6.792	 14.001	 –6.224	 –9.247

These values together with the estimate of the fixed effect β̂ yields the credibility-
weighted estimate for each risk—that is, β̂ + b̂j is our estimate for risk j. For the first 
20 risks we have

 [1]	 67.412	 74.652	 82.376	 81.782	 75.534	 84.268	 80.164
 [8]	 71.724	 95.032	 71.414	 86.433	 80.360	 90.375	 73.343	
[15]	 74.710	 78.710	 71.746	 92.539	 72.314	 69.291

We add fitted values to our dataset and compute the standardized residuals from 
our model.

bs.dta$mu.mx <- fitted(BS.mx)
bs.dta$sres.mx <- resid(BS.mx, type = “pearson”, scaled = TRUE)
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Figure 4.4 displays the fitted values versus the standardized residuals. The scatter-
plot of points appears like a random cloud of points centered about the line y = 0. 
But if you look closely you might be able to discern an upward-sloping pattern.
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Figure 4.4.    Diagnostic plot for the LMM with random intercepts 
fitted to the simulated Bühlmann–Straub data. All the standardized 
residuals are within 2.5 standard deviations from the origin.  
The overall impression is that of a random cloud of points.

Exercise 4.1    Fit a linear regression line to the points shown in Figure 4.4 to show that there 
is an upward-sloping pattern in the residuals.

Solution 4.1    We fit a linear model to the points shown in Figure 4.4 as follows:

BS.lm <- lm(sres.mx ~ mu.mx,
	 data = bs.dta)
(sBS.lm <- summary(BS.lm))

Call:
lm(formula = sres.mx ~ mu.mx, data = bs.dta)

Residuals:
	 Min	 1Q	 Median	 3Q	 Max 
	–2.27282	 –0.66309	 –0.05755	 0.62719	 2.63522 

Coefficients:
		  Estimate	 Std. Error	 t value	 Pr(>|t|) 
	(Intercept)	 –2.683488	 0.471425	 –5.692	 2.14e–08	 ***
mu.mx		  0.034135	 0.005981	 5.707	 1.97e–08	 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Residual standard error: 0.8957 on 498 degrees of freedom
Multiple R-squared: 0.0614, Adjusted R-squared: 0.05951 
F-statistic: 32.58 on 1 and 498 DF, p-value: 1.971e-08

The value of the coefficient of mu.mx is 0.0341, and from the summary information we can 
see that it is significant.

We can also show the diagnostic plot with the linear regression line.

ggplot(data = bs.dta,
	 mapping = aes(x = mu.mx,
	 y = sres.mx)) +
  geom_point() + 
  geom_smooth(method = “lm”) +
  labs(x = “Fitted Values”, 
	 y = “Standardized Residuals”)
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A pattern in the residuals would normally suggest that our model does not fit the 
data well. In an OLS situation, that would be correct and we would conclude that our 
model does not capture the underlying pattern in the data. But our situation is more 
complex than OLS, and the upward-sloping pattern we are seeing in Figure 4.4 is what 
we should expect.

The pattern we see is the result of shrinking our estimates toward the overall mean. 
To illustrate the effect, Figure 4.5 shows four panels. The top-left panel displays the 
response variable on the y-axis and the risk group on the x-axis. The risk groups have 
been ordered from the smallest fitted value based on the LMM to the largest. The fitted 
values from the mixed model are the credibility-weighted values given by

yt jt = Z j yr j + 1- Z j` jyr,
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where y-j is the average response value for group j, y- is the collective average, and Zj is 
the credibility factor given by

Z j = wj + vt 2 vt b
2

wj .
•

•

For this simulated data, each risk group has five observations, and from the plot 
you can see that the average for each risk group ranges from below 60 to a bit more 
than 100. The top-right panel includes this average y-j for each risk group (light blue 
circles).

The bottom-left panel shows the fitted values from the mixed model (pink circles). 
These values increase steadily from left to right. Finally, in the bottom-right panel we 
have superimposed all three panels, and we can clearly see that on both ends of the 
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Figure 4.5.   The top-left panel shows the simulated Bühlmann–
Straub data where the risk groups have been ordered from  
the smallest fitted value to the largest. The fitted values come 
from the LMM and coincide with the credibility-weighted 
values. The top-right panel shows the average response values 
(light blue circles) and the bottom-left panel shows the fitted 
values (pink circles) for each risk group. The bottom-right 
panel combines all three panels. Note that the fitted values 
(pink circles) have been shrunk toward the overall mean value 
of approximately 80.
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graph the fitted values are closer to the collective mean. These fitted values have been 
shrunk from the individual group average y-j to the collective average y-.

When we compute the response residuals from this model, we are taking the 
difference between actual values (shown as light gray circles) and the risk group’s fitted 
values (shown in pink). These differences are not centered at the mean value for each 
risk group (shown in light blue), and as we approach both extremes the discrepancy 
increases. On the left-hand side the differences are more negative, and on the right-
hand side they are more positive. Therefore, a residuals-versus-fitted values plot shows 
a positive trend line.

Exercise 4.2    There are three quantities that affect the amount of shrinkage that will 
occur—the weights wjt, the between-risk variance σb

2 (VHM), and the within-risk variance σ2 
(EVPV).

Take each one in turn, and using the credibility factors Zj, determine the effect on shrinkage 
that increasing or decreasing each quantity will have.

Solution 4.2    The amount of shrinkage is controlled by the size of the credibility factor, 
and for the Bühlmann–Straub model we know that it is given by

Z j = wj + v
2 v b

2

wj .
•

•

If the value of Zj is close to 1, there will be very little shrinkage and the fitted values (credibility 
estimates) will be close to the average of the group y-j.

If we increase the weights wjt, then Zj will approach 1. If the within-group variance σ2 decreases 
toward zero, then the credibility factor Zj will approach 1. Also, if the between-group variance 
σb

2 increases toward infinity, then again Zj will approach 1 and the amount of shrinkage will 
decrease.

In Appendix A, we write a function to simulate datasets that conform to the 
Bühlmann–Straub model. We can use that function to explore how different values 
for the number of risks per group and within-/between-group variances affect the 
amount of shrinkage.

4.4.  Some Linear Mixed-Model Theory
In the previous section, we estimated the LMMs corresponding to the balanced 

Bühlmann and the Bühlmann–Straub models. We could go straight into Hachemeister’s 
regression model to illustrate that, too, but it would be better to understand some 
of the key constructions needed for these models to appreciate more complex situations. 
Therefore, let’s start by laying down some standard notation and constructions for 
the LMM.
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For a single level of grouping, we follow the discussion in Frees et al. (1999) closely, 
and we can write down the LMM as

y j = X jb+ Z j b j + e j, j = 1, 2, . . . , J

b j + N 0, D` j, e j + N 0, R j` j,

where index j denotes the grouping factor, J is the total number of groups, yj is a vector of 
response values for group j with dimension nj × 1, Xj is the fixed-effects design matrix 
with dimensions nj × p, and Zj is the random-effects design matrix with dimensions 
nj × q. The fixed-effects linear predictor consists of p explanatory variables, and so we 
have β = (β1, β2, . . . , βp) as fixed-effects coefficients. We also have q random-effects 
explanatory variables.

We assume that the responses between groups are independent, but we allow for 
serial correlation and weighting by assuming that the variance-covariance matrix for 
the error terms ej is an nj × nj matrix, which we write as Rj. We also assume that the 
expected value of the error terms is zero, that is, E[ej] = 0. Moreover, we assume that 
the group-specific effects bj are independent and identically distributed with E[bj] = 0  
and variance-covariance matrix D with dimensions q × q. Note that the variance- 
covariance matrix D does not depend on the group. And we assume that the group- 
specific effects and the error terms are independent—that is, we have that their covariance 
Cov(bju, ekv) is zero for all combinations of j, u, k, and v. Hence, the variance-covariance 
matrix for response vector yj is

Var y j` j = Var X jb + Z j b j + e ja k
= Var Z j b j + e j` j
= Var Z j b j` j+ Var e j` j+ 2Cov Z j b j, e j` j
= Z jDZ j

t + R j

= Vj,

where a superscript “t” denotes the transpose operation. So we have that the  
variance-covariance matrix Vj has dimension nj × nj and assume that this matrix is 
invertible. We also know that this matrix is symmetric, and if we let N = max(n1,  
n2, . . . , nJ) be the maximum number of observations we have across all groups, 
then the matrix Vj has at most N(N + 1)/2 unknown values. So let τ be the vector of 
unknown values, and we can denote the dependence of Vj on this vector via Vj(τ).

For the balanced Bühlmann example we discussed in Section 3.2, we have J = 3 
groups observed over N = 4 periods, and each group had the same number of observa-
tions, that is, nj = 4 for all j = 1, 2, 3. The vectors of observations were
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y 1
t = 625, 675, 600, 700` j
y 2
t = 750, 800, 650, 800` j
y 3
t = 900, 700, 850, 950` j.

The design matrices Xj and Zj are all of dimension 4 × 1 and have only an intercept 
as an explanatory variable, namely p = q = 1—thus

X j = Z j =

1

1

1

1

R

T

S
S
S
S
S
S
S

V

X

W
W
W
W
W
W
W

.

The variance-covariance matrix of the group effects D is of dimension 1 × 1, and 
we labeled it as σb

2 in this chapter and as τ2 in Section 3.2. We also assumed that error 
terms ej were independent of each other, and so we have

R j =v 2

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

R

T

S
S
S
S
S
S
S

V

X

W
W
W
W
W
W
W

.

And the variance-covariance matrix of the responses for group j, Var(yj) = Vj, is equal to

Vj x` j = Z jDZ j
t + R j

=

1

1

1

1

R

T

S
S
S
S
S
S
S

V

X

W
W
W
W
W
W
W

D 1 1 1 18 B+v 2

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

R

T

S
S
S
S
S
S
S

V

X

W
W
W
W
W
W
W

=

v b
2 +v 2 v b

2 v b
2 v b

2

v b
2 v b

2 +v 2 v b
2 v b

2

v b
2 v b

2 v b
2 +v 2 v b

2

v b
2 v b

2 v b
2 v b

2 +v 2

R

T

S
S
S
S
S
S
SS

V

X

W
W
W
W
W
W
WW

;

therefore, the vector of variance components is τ = (σb
2, σ2).
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The entire model for all observations would be assembled by stacking the response 
vectors y1, y2, and y3 into a single 12 × 1 column vector. The grand design matrices X 
and Z are of dimension 12 × 3, where the first column has four 1s and zeroes after; the 
second column has four zeroes, then four 1s, and then zeroes; and the final column 
starts with zeroes and ends with four 1s:

625

675

600

700

750

800

650

800

900

700

850

950

R

T

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
SS

V

X

W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
WW

=

1 0 0

1 0 0

1 0 0

1 0 0

0 1 0

0 1 0

0 1 0

0 1 0

0 1 0

0 0 1

0 0 1

0 0 1

0 0 1

R

T

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
SS

V

X

W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
WW

b 1

b 2

b 3

R

T

S
S
S
S
S
S

V

X

W
W
W
W
W
W

+

1 0 0

1 0 0

1 0 0

1 0 0

0 1 0

0 1 0

0 1 0

0 1 0

0 1 0

0 0 1

0 0 1

0 0 1

0 0 1
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,

with the variance of the response vector equal to a block diagonal matrix of dimension 
12 × 12 where the first 4 × 4 block is V1, the second 4 × 4 diagonal block is V2, and the 
final 4 × 4 diagonal block is V3. All other entries are zero.

V =

V1

V2

V3

R

T

S
S
S
S
SS

V

X

W
W
W
W
WW

.

The GLS estimator of the fixed-effects β assumes that the variance components τ 
are known and is given by

	
bGLS = X j

t V j
-1X j

j=1

J

/
J

L

K
K

N

P

O
O

- 1

X j
t V j

-1 y j
j=1

J

/
J

L

K
K

N

P

O
O.	 (4.1)
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In the balanced Bühlmann model we have βGLS = y-, where y- is the average of all 
the response values. To see this, first note that the variance-covariance matrix Vj has 
dimension nj × nj and is of the form (4 × 4 example)

Vj =

a b b b

b a b b

b b a b

b b b a

R

T

S
S
S
S
S
S
S
SS

V

X

W
W
W
W
W
W
W
WW

,

where a = σb
2 + σ2 and b = σb

2. Because this matrix has a lot of structure, its inverse is 
relatively easy to figure it out by looking at small cases. In our example, we have

V j
-1 =

a a+ 2b` j- 3b 2

1

a + 2b -b -b -b

-b a + 2b -b -b

-b -b a + 2b -b

-b -b -b a + 2b

R

T

S
S
S
S
S
S
S
SS

V

X

W
W
W
W
W
W
W
WW

,

which we can quickly verify by calculating a couple of entries for the matrix product 
Vj

–1Vj. For an n × n matrix, the diagonal in the inverse matrix has the form a + (n – 2)b  
and the off-diagonal elements are all –b. The multiplicative constant in front of the 
matrix is equal to [a(a + (n – 2)b) – (n – 1)b2]–1.

Exercise 4.3    Verify that the matrix product V j
–1Vj is the identity matrix by calculating 

the (1, 1) and (2, 1) entries of this matrix and noting that all other entries would be equal to 
one of these two calculations.

Solution 4.3    For the (1, 1) entry we need to take the dot product of the first row of Vj
–1 and 

the first column of Vj. Ignoring the scalar multiplier in front of V j
–1, we have

a + 2b -b -b -b8 B

a

b

b

b

R

T

S
S
S
S
S
S
S
SS

V

X

W
W
W
W
W
W
W
WW

= a a + 2b` j- 3b2 .

This is equal to the scalar multiplier in front of V j
–1, and so the (1, 1) entry of the product V j

–1Vj 
is equal to 1.
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For the (2, 1) entry we need to calculate the dot product of the second row of V j
–1 and the first 

column of Vj:

-b a + 2b -b -b8 B

a

b

b

b

R

T

S
S
S
S
S
S
S
SS

V

X

W
W
W
W
W
W
W
WW

= -ab + ab + 2b2 - 2b2 = 0.

Hence, the (2, 1) entry is zero.

Since the design matrix Xj is just a column of 1s in the balanced Bühlmann model, 
the matrix product Xt

jVj
–1 is equal to the 1 × N matrix, where each entry is the sum of 

a column of Vj
–1—that is, we have

X j
t V j

-1 =
a a+ N - 2` jbb l- N - 1` jb 2

a- b a- b g a- b8 B
,

where the numerator is a vector of length N and the denominator is a scalar. Multiplying 
the above vector by Xj on the right, that is, summing up all the entries in the vector, 
we obtain the 1 × 1 matrix

X j
t V j

-1X j =
a a+ N - 2` jbb l- N - 1` jb 2

N a - b` j
.

Similarly, for the second term in Equation 4.1, we have the 1 × 1 matrix

X j
t V j

-1 y j =
a a+ N - 2` jbb l- N - 1` jb 2

a - b` j y j1 + y j2 +g+ y jN` j
.

Finally, noting that the denominators are all the same, we can sum these expressions 
across j = 1, 2, . . . , J, resulting in

X j
t V j

-1X j
j=1

J

/
J

L

K
K

N

P

O
O

-1

X j
t V j

-1 y j
j=1

J

/
J

L

K
K

N

P

O
O = JN a - b` j

a a + N - 2` jbb l- N -1` jb 2

a a + N - 2` jbb l- N -1` jb 2

a - b` j y11 + y12 +g+ yJN` j

=
JN

y11 + y12 +g+ yJN
= yr.

•
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Therefore, we have that the GLS estimator of β in the balanced Bühlmann model is 
equal to the sample mean.

For the Bühlmann–Straub model, we only have to make some minor changes to 
the specification in the LMM we used in the balanced Bühlmann case. We allow an 
unequal number of observations nj for each group, and we need to incorporate weights 
wjt for each observation so that larger weights result in a smaller within-group variance; 
hence, we will set the nj × nj variance-covariance matrix Rj to be equal to

R j =

wjt

v 2

0 g 0

0
wjt

v 2

g 0

h h j h

0 0 g
wjt

v 2

R

T

S
S
S
S
S
S
S
S
S
S
S
S
S
S

V

X

W
W
W
W
W
W
W
W
W
W
W
W
W
W

.

This is the same construction we would use when specifying a weighted least squares 
regression.

The design matrices Xj and Zj both have dimension nj × 1, and all entries are 
equal to 1. The variance-covariance matrix D has dimension 1 × 1, and we write its 
single entry as σb

2. The parameters to be estimated are β and τ = (σb
2, σ2).

To summarize, the LMM with one level of grouping can be written as

Y j = X jb + Z j b j + e j, j =1, 2, . . . , J,

where j is the grouping variable and nj is the number of observations for the jth group. 
The fixed-effects vector β has p components because the design matrices Xj have p columns 
representing the explanatory variables. The matrices Zj have dimension nj × q as we 
have q explanatory variables for the random effects. The random vectors bj and ej 
have dimension nj and follow normal distributions N(0, D) and N(0, Rj), where the 
matrices D and Rj are the variance-covariance matrices with dimensions q × q and nj × nj, 
respectively. These matrices must be symmetric and positive definite (otherwise they 
are not valid variance-covariance matrices).

4.5.  Hachemeister’s Regression Model Revisited
For the Hachemeister data, we have the severity of claims over 12 quarters from a 

sample of five states. We have seen from Figure 3.4 that different intercepts and slopes 
for these states are a reasonable starting point, and we would like to make inferences 
from the larger population of states that the five came from. Therefore, we will specify 
an LMM where the linear predictor for the fixed effects has an intercept and the variable 
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time, and we use the same linear predictor for the random effects. This way we will get a 
random intercept and a random slope for each state.

hm.dta <- read_csv(“hachemeister-data.csv”,
	 col_types = “fidd”)

summary(hm.mixed.1)

hm.mixed.1 <- lmer(severity ~ time + (time | state),
	 data = hm.dta,
	 weights = claims/1000)

A natural way to specify the LMM in the lmer() function is as follows:

boundary (singular) fit: see help(‘isSingular’)

We’ll discuss the message displayed regarding the boundary fit after we present the 
results of the fit.

The first part of the right-hand side of the formula, in this case just time, represents 
the fixed effects, and the second part, within parentheses, that is, (time | state),  
is the random component. For both components we did not specify an intercept because 
R includes one by default. The vertical bar within the random component separates 
the specification for the linear predictor and the grouping variable, for this example, 
state. For the weights, we have divided the number of claims by 1,000 to keep the 
numbers in the calculations from getting too large and causing numerical difficulties 
in the estimation algorithm.

Notice that we have not provided any instructions on what kind of variance-
covariance matrices D or Rj we want to use. The matrix D is of dimension 2 × 2 
(the Zj matrices have two columns: intercept and time), and the matrices Rj are  
of dimension 12 × 12 because for each state we have 12 quarterly observations. The 
default behavior for lmer() is to have Rj be a diagonal matrix with entries equal 
to σ2/wjt, since we specified a weights argument in the call. The matrix D will be 
a general 2 × 2 variance-covariance matrix. The (1, 1) position is the variance of the 
intercept, the (2, 2) position is the variance of the slope, and the (2, 1) or (1, 2) posi-
tions are the covariance between intercept and slope. Thus for this model we will be 
estimating two fixed effects, β0 and β1, three entries for the matrix D, and the residual 
variance σ2.

The summary of the above fitted model is provided below, where you will see two 
sections—one labeled “Random effects” and the other “Fixed effects.”

Linear mixed model fit by REML [‘lmerMod’]
Formula: severity ~ time + (time | state)
   Data: hm.dta
Weights: claims/1000
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REML criterion at convergence: 782.4

Scaled residuals: 
	 Min	 1Q	 Median	 3Q	 Max 
	–1.9751	 –0.6266	 –0.2336	 0.6918	 2.6742 

Random effects:
 Groups 	 Name	 Variance	 Std.Dev.	 Corr
 state	 (Intercept)	 11990.2	 109.50 
	 time	 553.2	 23.52	 1.00
 Residual		  47599.0	 218.17 
Number of obs: 60, groups: state, 5

Fixed effects:
		  Estimate	 Std. Error	 t value
	(Intercept)	 1501.29	 60.76	 24.707
time		  27.75	 11.69	 2.374

Correlation of Fixed Effects:
		  (Intr)
	time	 0.541 
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help(‘isSingular’)

The fixed-effects section tells us, for this example, that the population average 
severity at time t = 0 is $1,501.29 and that, for each additional quarter, average sever-
ity will increase by $27.75. Also we have the standard errors of these coefficients and 
their t-values, that is, the estimate divided by its standard error. We have evidence in 
our data that the fixed effects are different from zero.

From the random effects section, we have almost all the information for the remain-
ing parameters. The column labeled Variance has the variances for the intercept and 
for the variable time, as well as the residual variance σ̂2 = 4.7599 × 104. Note that the 
column labeled Std.Dev. is not the standard error of the estimated variances. This column 
is just the square root of the entries in the Variance column. We do not have the 
estimated covariance between the intercept and time, but we can get that information 
by extracting the entire variance-covariance matrix D and the residual variance too.

print(VarCorr(hm.mixed.1), comp = “Variance”)

Groups	 Name	 Variance	 Cov 
state	 (Intercept)	 11990.16 
	 time	 553.16	 2575.368
Residual		  47598.96

The very last line of the summary output shows the message boundary  
(singular) fit: see help(‘isSingular’). This tells us that during the opti-
mization one of our parameters has reached its boundary.
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We can compute the eigenvalues of the variance-covariance matrix D via

eigen(VarCorr(hm.mixed.1)$state)$value

[1]  1.254332e+04  1.136868e–13

and see that the second eigenvalue is essentially zero; hence, our matrix D is super close 
to not being positive definite. A positive definite matrix must have all of its eigenvalues 
positive. If at least one of them is zero, then the matrix is positive semidefinite.

This is an indication that the default choice of matrix D with three free parameters 
is not ideal. Therefore, for our next mixed model we will restrict the variance-covariance 
matrix D to be diagonal. To specify such a model, we need to tell the lmer() function 
that we want independent random components for the intercept and the slope param-
eters even though both use the same grouping variable. We do this by specifying two 
random effects in the formula for lmer(). The first one gives us the random intercept 
and the second, the random slope. Note that we need to tell R explicitly not to include 
an intercept in the second random effect by using 0 + time.

hm.mixed.2 <- lmer(severity ~ time + (1 | state) +  
  (0 + time | state),
	 data = hm.dta,
	 weights = claims/1000)
summary(hm.mixed.2)

Linear mixed model fit by REML [‘lmerMod’]
Formula: severity ~ time + (1 | state) + (0 + time | state)
   Data: hm.dta
Weights: claims/1000

REML criterion at convergence: 785.5

Scaled residuals: 
	 Min	 1Q	 Median	 3Q	 Max 
	–1.8951	 –0.6462	 –0.2441	 0.5449	 2.6713 

Random effects:
 Groups	 Name	 Variance	 Std.Dev.
 state	 (Intercept)	 19909.0	 141.1 
 state.1	 time	 605.1	 24.6 
 Residual		  48723.8	 220.7 
Number of obs: 60, groups: state, 5

Fixed effects:
		  Estimate 	Std. Error	 t value
(Intercept)	 1491.99	 78.46	 19.015
time		  29.55	 12.76	 2.315
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Correlation of Fixed Effects:
		  (Intr)
	time	 –0.248

From the random-effects section of the summary output, we see only estimates for the 
diagonal elements of D and the residual variance σ2. Note that the fixed effects are slightly 
different than those in our previous model, but for all practical purposes they are the same. 
The estimated random effects, deviations from the fixed effects, for each state are

ranef(hm.mixed.2)$state

round(fixef(hm.mixed.2) + 
  t(as.matrix(ranef(hm.mixed.2)$state)), 2)

		 (Intercept)	 time
	1	 162.868302	 32.78440
	2	 –78.554481	 –13.24185
	3	 44.108233	 12.01649
	4	 –137.982018	 –16.88416
	5	 9.559964	 –14.67488

and putting these together with the fixed effects we obtain the following credibility-
weighted values:

	 1	 2	 3	 4	 5
(Intercept)	 1654.86	 1413.44	 1536.10	 1354.01	 1501.55
time	 62.34	 16.31	 41.57	 12.67	 14.88

These are not very different from the estimates we got in Chapter 3 (Table 3.4), 
and they suffer from the same issues that we noted there. Many of the intercepts and 
slopes are not between the individual states and collective estimates.

We cannot easily extract the credibility matrices from the fitted model, but Table 1 
of Frees et al. (1999) provides an explicit formula by which to calculate these matrices 
from information we do readily have from the model. The formula is

	
A j = det DW j` j+vt 2 trace DW j` j+vt 4

det DW j` jI2 +vt 2DW j
,	 (4.2)

where I2 is a 2 × 2 identity matrix, Wj is given by

W j =
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“det” is the determinant of a matrix, and “trace” is the sum of the diagonal elements 
of a square matrix. This formula for the credibility matrix Aj matches the formula we 
developed in Chapter 3, Equation 3.27. And as we saw in that chapter, the reason for 
credibility-weighted estimates not to lie between the stand-alone and collective estimates 
is that the matrix Aj is not diagonal.

Exercise 4.4    Show that Equation 4.2 matches Equation 3.27 in the case where the variance-
covariance matrix D is diagonal with entries τ0

2 and τ1
2.

Solution 4.4    Before looking at Appendix B for a derivation, try it yourself. Start with the 
denominator in Equation 4.2 and then work on the numerator. The denominator is just a 
number, and the numerator is a 2 × 2 matrix. The calculations are straightforward but tedious.

We also saw in Chapter 3 that to achieve a diagonal credibility matrix we can center 
the time variable at each group’s center of gravity. We can add a centered time variable, 
ctime, to our dataset via

CG <- with(hm.dta,
	 tapply(time * claims, state, sum) /
	   tapply(claims, state, sum))
hm.dta$ctime <- hm.dta$time – CG[hm.dta$state]
rm(CG)

hm.mixed.3 <- lmer(severity ~ ctime + (1|state) + 
  (0 + ctime|state),
	 data = hm.dta,
	 weights = claims/1000)
summary(hm.mixed.3)

and fit the same LMM by replacing time with ctime.

Linear mixed model fit by REML [‘lmerMod’]
Formula: severity ~ ctime + (1 | state) + (0 + ctime | state)
   Data: hm.dta
Weights: claims/1000

REML criterion at convergence: 788.6

Scaled residuals: 
	 Min	 1Q	 Median	 3Q	 Max 
–2.0491	 –0.7028	 –0.1559	 0.5252	 2.6324 
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Random effects:
 Groups	 Name	 Variance	 Std.Dev.
 state	 (Intercept)	 70838.8	 266.16 
 state.1	 ctime	 446.4	 21.13 
 Residual		  49019.8	 221.40 
Number of obs: 60, groups: state, 5

Fixed effects:
	 Estimate	 Std. Error	 t value
(Intercept)	 1674.96	 122.12	 13.715
ctime	 34.09	 11.59	 2.942

Correlation of Fixed Effects:
	 (Intr)
ctime	 0.000

Note that the fixed effect for the intercept has changed significantly because now 
we are measuring the mean severity at time approximately t = 6.5 instead of at time  
t = 0. Also worth noting is the correlation of the fixed effects shown at the very bottom of 
the summary output. Now the intercept and the slope have a zero correlation, whereas 
in our previous model it was –0.248. We expected this result because by centering the 
time variable we have made the intercept and the centered time variable orthogonal to 
each other.

The credibility-weighted estimates from this model are

round(fixef(hm.mixed.3) + 
  t(as.matrix(ranef(hm.mixed.3)$state)), 2)

	 1	 2	 3	 4	 5
(Intercept) 	2058.27	 1516.73	 1799.56	 1398.97	 1601.24
ctime	 60.02	 22.45	 39.63	 32.08	 16.27

and they now lie between the stand-alone and the collective estimates.
Now that we have an initial model, hm.mixed.3, we should check whether our 

distributional assumptions are valid for the data. There are two basic assumptions:

1.	 the within-group errors are independent and identically normally distributed with 
mean zero and variance σ2/wjt and are independent of the random effects, and

2.	 the random effects are normally distributed with mean zero and variance-covariance 
matrix D that does not depend on the group and are independent for different groups.

Checking Within-Group Errors Assumptions
To assess the within-group residuals we can use a boxplot of standardized residuals 

by state. Figure 4.6 shows such a plot for the hm.mixed.3 model where we have also 
included the residual points and a larger blue circle at the mean value of the residuals. 
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The states have been arranged in order of the size of their interquartile range, and we 
can see that there is an increasing spread. Even though all five groups of residuals are 
centered about zero, their spread is not constant. This suggests that a single within-group 
variance, σ2, parameter may not be correct, and we might need to select a more general 
model where each group has its own parameter.

Figure 4.7 shows other diagnostic plots to assess the assumptions about the within-
group residuals for the hm.mixed.3 model. The top-row panels confirm that the 
residuals do not have constant variability by state. The top-left plot shows a fanning 
out of the residuals as the fitted values increase in size. The top-right panel displays the 
absolute value of the residuals against the fitted values, and we have superimposed a 
least squares estimated trend line that clearly shows our residuals spreading out as the 
fitted values increase.

The bottom-left panel is an actual-versus-expected plot together with the line y = x. 
It looks like we have most points scattered around the line y = x. There is one possible 
outlier: the point with coordinates close to (1400, 2000). On the bottom right, we have 
displayed a QQ plot. We would like the points to be on the line y = x, and most of 
them do follow this pattern. But in the lower-left corner, as the theoretical quantiles 
increase toward negative infinity, all the points are above the line y = x. This tells us that 
our data has a thinner left-hand tail compared with the normal distribution.

Checking Random Effects Assumptions
The second assumption we need to check is the one about the random effects. They 

should be normally distributed with a mean of zero and variance-covariance matrix D. 
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Figure 4.6.    Boxplots and underlying data of standardized residuals 
for the hm.mixed.3 model. The large blue circle is the average 
value of the residuals. The states have been ordered by the size  
of the interquartile range of their residuals.
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For Hachemeister’s data we have only five observations, and so it will be difficult to 
draw definitive conclusions.

Figure 4.8 displays the QQ plots for the random effects from model hm.mixed.3. 
We expect the points in these plots to lie along a straight line. In this case the assump-
tion of normality seems reasonable. While the points in both panels are not perfectly 
on a line, their departure is not excessive.

We should also check that the random effects follow a multivariate normal distri-
bution with mean µ = (0, 0) and variance-covariance matrix D. The probability density 
function for our two-dimensional example is
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Note that the value of the density function f depends on x1 and x2 only through the 
value of the expression inside the exponential function, namely, through what is called 
the squared Mahalanobis distance:

d 2 = x1 x28 BD -1
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2 ,

if D –1 has diagonal entries equal to a and c and off-diagonal entries equal to b. The 
set of points (x1, x2) with Mahalanobis distance d 2 all have the same value of the 
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Figure 4.7.    Diagnostic plots for the hm.mixed.3 model.
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density function f ; that is, these points create a contour line in the three-dimensional 
(x1, x2, f ([x1, x2]t)) surface of the density function.

In our example, the matrix D has been estimated as

D =
70,838.77 0

0 446.39

R

T

S
S
S

V

X

W
W
W
.

Its inverse, D–1, is also diagonal; hence, b = 0, and so we can see that the set of 
points (x1, x2) that have constant Mahalanobis distance form an ellipse whose major 
and minor axes fall along the x and y axes.

Figure 4.9 shows a scatterplot of the random effects for model hm.mixed.3 
along with ellipses at a Mahalanobis distance of 1 and 2 standard deviations away 
from the origin. Note that the five points we have available are all within two standard 
deviations.

If the variance-covariance matrix D had not been diagonal, we would still have 
elliptical contours, but they would have been rotated around the origin (the mean of 
our bivariate normal distribution is (0, 0)).

Note that in Figure 4.9 we chose to display the set of points that are a Mahalanobis 
distance of 1 and 2 away from the origin because we are all very familiar that, in the 
one-dimensional standard normal distribution, within these distances we have about 
68% and 95% of the total density. For a two-dimensional normal distribution these 
values do not give us the same proportion of the total density. To find the appropriate 
values we need to know that the squared Mahalanobis distance d 2 has a chi-squared 
distribution with p degrees of freedom, where p is the dimension of the multivariate 
normal distribution.
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Figure 4.8.    QQ plots of the random effects for the Hachemeister 
hm.mixed.3 model.
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In our case, p = 2, and if we are looking to obtain the same 68% and 95% coverage, 
we must choose the Mahalanobis distance equal to the following values:
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Figure 4.9.    Scatterplot of estimated random effects for 
model hm.mixed.3 along with contour lines that are  
1 and 2 standard deviations away from the origin.

crit.points <- sqrt(qchisq(c(0.68, 0.95), df = 2))
names(crit.points) <- c(“68%”, “95%”)
crit.points

N <- 2000
mu <- c(0,0)
D <- matrix(c(70838, 0, 0, 446),
	 nrow = 2, ncol = 2)

	 68%	 95% 
	1.509592	 2.447747

Exercise 4.5    Using the mvtnorm package, generate 2,000 multivariate random points with 
mean µ = (0, 0) and variance-covariance matrix

D =
70,838 0

0 446

R

T

S
S
S

V

X

W
W
W
.

Plot the points using three different colors depending on whether the points are within 
Mahalanobis distance 1, between 1 and 2, or beyond 2. Check the proportion of points to 
discern whether 68% or 95% are within Mahalanobis distance 1 or 2 of the origin.

Solution 4.5    Let us set up the mean vector µ = (0, 0) and the variance-covariance matrix D.
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Using the rmvnorm() function we can simulate the points via

set.seed(12837)
z <- rmvnorm(N, mean = mu, sigma = D)

The object z will be a 2,000 × 2 matrix where each row is one simulated point. Next we want 
to compute the Mahalanobis distance for each row zi using the formula

zi -n` jt D-1 zi -n` j .

We can do this by using the apply() function, and we also need to create a categorical 
variable to distinguish which points are at different Mahalanobis distances. We will put all of 
this into a data frame

tb <- as.data.frame(z)
names(tb) <- c(“x”, “y”)
tb$md <- apply(z, 1, function(z) sqrt(t(z – mu) %*%
	 solve(D) %*% (z – mu)))
tb$md.bin.1 <- cut(tb$md,
	 breaks = c(–Inf, 1, 2, Inf),
	 labels = c(“d < 1”, “1 <= d < 2”, “d >= 2”))
tb$md.bin.2 <- cut(tb$md,
	 breaks = c(–Inf, crit.points, Inf),
	 labels = c(“d < 1.509”,
	 “1.509 <= d < 2.448”,
	 “d >= 2.448”))

and create the scatterplot.

ggplot(data = tb,
	 mapping = aes(x = x,
	 y = y,
	 color = md.bin.1)) +
  geom_point(alpha = 0.4) +
  labs(x = “Simulated Intercept Deviations”,
	 y = “Simulated Slope Deviations”,
	 color = “Distance”)

The proportion of points in each colored region is given by

xtabs( ~ md.bin.1, data = tb) / N

md.bin.1
     d < 1	 1 <= d < 2	 d >= 2 
     0.395	 0.471	 0.134
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Note how we have only about 40% of the points within a Mahalanobis distance of 1 and 
about 86.6% within a distance of 2. If we use the correct thresholds given by the chi-squared 
distribution—namely, 1.509 and 2.448—then we would have the appropriate coverage, as 
shown next.

xtabs( ~ md.bin.2, data = tb) / N

md.bin.2
     d < 1.509	 1.509 <= d < 2.448	 d >= 2.448 
        0.6940	 0.2495	 0.0565

4.6.  Summary
In this chapter we revisited three classic credibility models,

•	 the balanced Bühlmann model,
•	 the Bühlmann–Straub model, and
•	 Hachemeister’s credibility regression model

and expressed them in terms of the well-developed branch of statistics known as 
linear mixed models. For the practicing actuary, embracing LMMs to implement 
credibility techniques brings substantial benefits. By using this theory, we can bring all 
the machinery that statisticians have developed to bear on our applications and apply 
standard software to carry out the necessary computations. We also have at our disposal 
inference techniques and model-checking procedures. More importantly, LMMs allow 
us to capture the correlation that exists in many of our datasets, and we have many 
models to choose from.

We looked closely at LMMs with one level of grouping and introduced the  
concepts of fixed effects and random effects. One way of thinking about these effects, 
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but perhaps not a very good one (as pointed out on page 245 of Gelman and Hill 
[2007]), is that fixed effects estimate features of the population from which our sample 
was taken and we use random effects for those variables whose values are just a sample 
of the possible values the population has.

One clear disadvantage of the LMM is that the random effects and the response 
variable must be normally distributed. This restriction is a serious one for actuarial 
work, but in the next chapter we will introduce generalized linear mixed models. That 
class of statistical models expands the well-known framework of GLMs that many 
actuaries use to include random effects with distributions from the exponential family. 
With such an expanded set of models, actuaries can significantly increase their modeling 
capabilities.
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5.1.  Introduction
In the previous chapter we introduced LMMs and saw how three classical credibility 

models are special cases of the linear mixed model theory. LMMs are characterized by 
having a response variable that is normally distributed and by having random effects 
that are also normally distributed. These models are an extension of the classical OLS 
model and applicable in many situations. But we know that real-world data is richer 
and more complex than the normal distribution can accommodate. The extension of 
the classical linear model to the generalized linear model, or GLM, where the response 
distribution is a member of the exponential family, has opened up a new area of tech-
niques and tools well suited to the data and problems that actuaries encounter in practice.

Over the past two decades, actuaries have made good use of GLMs. The next step 
in expanding such models to more complex data structures is to introduce random 
effects into the GLM framework and allow those random effects to have other distribu-
tions besides the normal.

Also, another important extension focuses on the dispersion parameter. GLM theory 
keeps the dispersion parameter fixed across all observations. From experience, we know 
that such a fixed parameter is not always ideal. It would be helpful to link the dispersion 
parameter to some explanatory variables.

In this chapter we introduce an extension of GLMs known as hierarchical generalized 
linear models, or HGLMs, which will allow us to have random effects whose distributions 
come from a broader family and to model the dispersion parameter via explanatory 
variables. Such models are based on the theory of h-likelihood, which brings together 
both Bayesian and frequentist perspectives.

In the next section, we give a brief conceptual introduction to the HGLM without 
delving too much into the theory. Then, we present several examples of how to use 
these new models. Our discussion follows the work of Lee et al. (2021) and Lee et al. 
(2020) closely.

5.2.  Hierarchical Generalized Linear Models
HGLMs were introduced in Lee and Nelder (1996). These models use a generalization 

of the likelihood function called hierarchical likelihood, or h-likelihood. The maximi-
zation of this extended likelihood, under appropriate conditions, gives estimates of 
both fixed as well as random effects and the dispersion parameter.

5.  Generalized Linear Mixed Models



98	 Casualty Actuarial Society

Practical Mixed Models for Actuaries

Starting with the linear model, researchers worked in two directions to expand it.  
The first path created the linear mixed-effects model, or LMM, where the linear 
predictor can have random terms that are normally distributed. The second path worked 
on introducing an expanded list of response distributions, giving us the GLM. The 
combination of the two yields the generalized linear mixed model, or GLMM, with 
distributions for the response variable from the GLM and random effects in the linear 
predictor from the LMM.

Also from the GLM framework, practitioners and researchers worked at enhancing 
the capabilities in modeling the variance of the response variable. GLMs use a single 
multiplier, ϕ, the dispersion parameter to scale the variance function. In many situations, 
this single parameter is not adequate to capture the volatility of the response, so a link 
function and a linear predictor were introduced for the dispersion parameter, giving 
rise to joint GLMs.

Combining GLMMs and joint GLMs and expanding the distributional assumptions 
for the random effects brings us to the HGLM. This model has a response variable 
whose distribution comes from the exponential family. The linear predictor has fixed 
and random effects, and these random effects are not constrained to be normally dis-
tributed. The dispersion parameter can be modeled via a separate link function tied to 
a different linear predictor with fixed effects.

And, finally, we have the double hierarchical generalized linear model (DHGLM), 
where we take an HGLM and allow random effects in the dispersion model and can 
also introduce explanatory variables via a link function and a linear predictor into the 
variance of the random effects.

The following diagram is a crude representation of how the various models are 
interconnected (adapted from Lee et al. 2020, 3).

LM ---> LMM ---> GLMM ---------> HGLM ---> DHGLM
   \         /               /
    \       /               /
     \> GLM ---> Joint GLM /

To help us translate between the mathematical description of a model and the R code 
necessary to implement the model, consider the following mixed model:

g E y8 Bb l= Xb + Zv,

where y is the response variable, g( ) is the link function for the mean, β represents the 
fixed effects, and v are the random effects. The matrices X and Z are the design matrices 
for the fixed and random effects, respectively. We also need to specify the distribution 
of the response variable (a member of the exponential family) and the distribution of 
the random effects, that is, v ∼ F(λ), where F just stands for a distribution such as the 
Gaussian or gamma with parameter vector λ.
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So far we have only described a model for the mean. If we are also modeling the 
dispersion, ϕ, parameter, then we would have

h E z8 Bb l=W c + Mu,

where h( ) is a link function, γ are fixed effects, u are random effects, and W and M are 
design matrices. Because the u are random, we also have to specify their distribution, 
which will come with some parameters.

The full specification of a model can be complex, but using the notation introduced 
in Chapter 6 of Lee et al. (2020) makes things more manageable. A DHGLM is repre-
sented by a pair

model n` j, model z` j& 0,

where the first entry is the model for the mean and the second entry represents the 
model for the dispersion.

For example, the usual GLM would be written as {GLM(µ), ϕ}, where ϕ is a constant. 
A joint model would be written as {GLM(µ), GLM (ϕ)}, where we have two regular GLM 
models that are interlinked to form the joint model. If we want to include a random 
effect in the model for the mean, we can write it as {HGLM(µ), ϕ}, and if we also want 
to have the dispersion parameter modeled we would say {HGLM(µ), GLM(ϕ)}.

There are two R packages to fit these models: hglm and dhglm. We’ll use the first 
one briefly when we revisit the Hachemeister data because it allows us to use nearly the 
same calling code as we did in the previous chapter. But we will mostly use the dhglm 
package.

The dhglm package uses two functions to fit a model. The first, DHGLMMODELING(),  
creates the appropriate structures for the mean and dispersion models. The second, 
dhglmfit(), does the actual computations. As an example of their use, a stan-
dard log-link Poisson GLM model {GLM(µ), ϕ}, for frequency where the dataset is 
named accidents and the response variable is count, the predictor variables are 
age and gender, and the amount of exposure to risk is in the variable exposure 
would be specified and fitted as follows:

model.mu <- DHGLMMODELING(Model = “mean”,
	 Link = “log”,
	 LinPred = count ~ age + gender,
	 Offset = log(exposure))
model.phi <- DHGLMMODELING(Model = “dispersion”)

fit <- dhglmfit(RespDist = “poisson”,
	 DataMain = accidents,
	 MeanModel = model.mu,
	 DispersionModel = model.phi)
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5.3.  Examples
In this section we present four examples to familiarize the reader with specifying and 

fitting models with the hglm and dhglm packages:

1.	 Hachemeister
2.	 Fabric faults
3.	 Train accidents
4.	 Diabetes progression

Quick Revisit with the Hachemeister Data
In the last chapter we fitted several LMMs to the Hachemeister data. Here we 

will refit the last model, hm.mixed.3, using the machinery from HGLMs and 
compare results. The main function to fit HGLMs is hglm2() and can be found in the 
hglm package.

Model hm.mixed.3 used a centered version of time called ctime, that is, a weighted 
average of time where the weights are the number of claims. Let’s load our data and 
compute ctime.

hm.dta <- read_csv(“hachemeister-data.csv”,
	 col_types = “fidd”)
CG <- with(hm.dta,
	 tapply(time * claims, state, sum) /
	   tapply(claims, state, sum))
hm.dta$ctime <- hm.dta$time – CG[hm.dta$state]

Using hglm2() we specify the model in the same way as before. The response 
variable is severity, and we have fixed effects for the intercept and the time variable 
ctime. We also include uncorrelated random effects for the intercept via (1│state) 
and time (0 + ctime │ state). Both of the random effects vary by state. The 
response distribution is specified to be normally distributed with an identity link func-
tion through the family parameter. The random effects are also normally distributed 
with an identity link function via the rand.family parameter.

hm.hglm.3 <- hglm2(�severity ~ ctime + (1 | state) + 
  (0 + ctime | state),

	 data = hm.dta,
	 family = gaussian(link = "identity"),
	 rand.family = gaussian(link = "identity"),
	 weights = claims)

The summary output from the fitting process contains two major sections: one for 
the mean model and the other for the dispersion model. Our model did not specify any 
structure for the dispersion model, and so it is taken to be a single parameter.
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Call: 
hglm2.formula(meanmodel = severity ~ ctime + (1 | state) + 
  (0 + ctime|state), data = hm.dta, family = 
  gaussian(link = “identity”), rand.family = 
  gaussian(link = “identity”), weights = claims)

----------
MEAN MODEL
----------

Summary of the fixed effects estimates:

	 Estimate	 Std. Error	 t-value	 Pr(>|t|) 
(Intercept)	 1674.93	 122.28	 13.697	 < 2e-16	 ***
ctime	 34.09	 11.58	 2.944	 0.00484	 ** 
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Note: P-values are based on 52 degrees of freedom

Summary of the random effects estimates:

	 Estimate	 Std. Error
(Intercept)| state:1	 383.3472	 123.4313
(Intercept)| state:2	 –158.2215	 127.8617
(Intercept)| state:3	 124.6477	 130.2105
(Intercept)| state:4	 –276.0770	 145.3201
(Intercept)| state:5	 –73.6963	 125.4177

Summary of the random effects estimates:

	 Estimate	 Std. Error
ctime| state:1	 25.9279	 12.2453
ctime| state:2	 –11.6410	 14.2447
ctime| state:3	 5.5344	 15.0492
ctime| state:4	 –2.0069	 17.8084
ctime| state:5	 –17.8144	 13.2125

----------------
DISPERSION MODEL
----------------

NOTE: h-likelihood estimates through EQL can be biased.

Dispersion parameter for the mean model:
[1] 49017713

Model estimates for the dispersion term:

Link = log 

summary(hm.hglm.3)
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Effects:
 Estimate	 Std. Error 
  17.7077	 0.1969 

Dispersion = 1 is used in Gamma model on deviances to calculate  
the standard error(s).

Dispersion parameter for the random effects:
[1] 70873.4	 446.5

Dispersion model for the random effects:

Link = log

Effects:
.|Random1 
  Estimate	 Std. Error 
   11.1687	 0.7257 

.|Random2 
  Estimate	 Std. Error 
    6.1013	 0.8774 

Dispersion = 1 is used in Gamma model on deviances to calculate  
the standard error(s).

EQL estimation converged in 3 iterations.

The fixed-effects estimates are shown first, followed by the random effects for 
the intercept and then the random effects for the predictor variable ctime. Putting 
together the estimated intercepts and slopes (fixed effects plus random effects) from 
the model above, hm.hglm.3, we obtain

	 1	 2	 3	 4	 5
(Intercept)	 2058.280	 1516.712	 1799.581	 1398.856	 1601.237
ctime 	 60.019	 22.450	 39.625	 32.084	 16.277

The estimates we obtained in the previous chapter based on the GLMM 
hm.mixed.3 are

	 1	 2	 3	 4	 5
(Intercept)	 2058.273	 1516.728	 1799.565	 1398.973	 1601.241
ctime	 60.021	 22.445	 39.627	 32.082	 16.272

Comparing them, they are virtually identical. In addition, other estimated quan
tities such as the variances for the random effects are very close to each other. The 
residual variance for model hm.mixed.3 is equal to 49,019.8, and for our hierar-
chical model hm.hglm.3 it is 49,018.3. In model hm.mixed.3, the variance for 
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the intercept and ctime is 70,838.8 and 446.4, respectively, and for the hierarchical 
model hm.hglm.3, we have 70,873.4 and 446.5—again close to each other.

Textile Fabric Defects
In this example we consider the dataset fabric from Bissell (1972), where we 

will be investigating the number of faults in rolls of textile fabric. This dataset is avail-
able in the mdhglm package, and it has three variables (we have added the logarithm 
of x as the variable x.lg) and 32 observations. The variable x is the length of the roll, 
and y is the number of defects. The first few rows of the data are

data(fabric, package = “mdhglm”)
fabric$x.lg <- log(fabric$x)
head(fabric)

	 x	 y	 rf	 x.lg
1	 551	 6	 1	 6.311735
2	 651	 4	 2	 6.478510
3	 832	 17	 3	 6.723832
4	 375	 9	 4	 5.926926
5	 715	 14	 5	 6.572283
6	 868	 8	 6	 6.766192

This dataset has also been analyzed in Lee et al. (2020). The response variable is 
the number of faults, and so a natural choice would be to use the Poisson distribution. 
The only predictor variable is the length of the roll of fabric. Figure 5.1 shows that there 
is a relationship between the response variable and our predictor variable and that the 
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Figure 5.1.    Number of faults in a roll of fabric.
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relationship is not linear. As the length of a fabric roll increases, we see an increasing 
number of defects. If we transform both the response and predictor variables with a 
logarithmic function (not shown here), the relationship between them seems linear.

Exercise 5.1    Transform both the response and predictor variables by applying a logarithmic 
function, and plot them. Does the relationship seem linear?

Solution 5.1    While there are several points that do not fall close to a straight line pattern, the 
overall impression is that these points are indeed closer to a linear pattern than the original data.

ggplot(data = fabric,
	 mapping = aes(x = log(x),
		  y = log(y))) +
  geom_point() +
  labs(x = “Length of Roll (log-scale)”,
	 y = “Number of Faults (log-scale)”)
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Therefore, a reasonable starting point would be to use a Poisson GLM with a log-
link and the logarithm of the length of a roll (x.lg) as our predictor variable—that is, 
we want to fit the following model:

log E y i8 Bb l=b 0+b 1 log xi` j,

where yi is the number of faults and xi is the length of the roll of fabric. Fitting such a 
model yields the following summary:
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Call:
glm(formula = y ~ x.lg, family = poisson(link = “log”),  
  data = fabric)

Coefficients:
	 Estimate	 Std. Error	 z value	 Pr(>|z|) 
(Intercept)	 –4.1730	 1.1352	 –3.676	 0.000237	 ***
x.lg	 0.9969	 0.1759	 5.668	 1.45e-08	 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 103.714 on 31 degrees of freedom
Residual deviance:  64.537 on 30 degrees of freedom
AIC: 191.84

Number of Fisher Scoring iterations: 4

Even though both the intercept and the coefficient for the logarithm of the length 
of a roll of fabric are statistically significant, the model fits very poorly. The residual 
deviance of 64.5 is extremely large compared with residual degrees of freedom of 30, 
and we have a clear indication of overdispersion. Perhaps we have misspecified the 
linear predictor, but given that we have only one variable to work with, there is 
not much we can do about it. Another reason for the lack of fit could be that our 
choice of link function (logarithm) is not correct. But we do have some evidence that 
a log-link function is suitable. Hence, we conclude that the Poisson distribution  
is not adequate for this data, and we move on to considering the negative binomial 
distribution.

We know that a negative binomial distribution arises as a mixture of the Poisson 
and gamma distributions as follows: let u be an unobserved gamma random variable 
with mean equal to 1 and variance equal to 1/θ and, conditionally on u, let Y be a 
Poisson random variable with mean equal to λu. Then the marginal distribution of Y 
will be negative binomial. The standard glm() function does not fit negative binomial 
models, but package MASS has the function glm.nb() to fit these models. Fitting 
a negative binomial GLM to the fabric data yields the following summary fit 
information:

fab.nb.glm <- glm.nb(y ~ x.lg,
	 data = fabric)
summary(fab.nb.glm)

Call:
glm.nb(formula = y ~ x.lg, data = fabric,  
  init.theta = 8.667407437, link = log)
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Coefficients:
	 Estimate	 Std. Error	 z value	 Pr(>|z|) 
(Intercept)	 –3.7951	 1.4577	 –2.603	 0.00923	 ** 
x.lg	 0.9378	 0.2280	 4.114	 3.89e-05	 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for Negative Binomial(8.6674) family 
 taken to be 1)

    Null deviance: 50.28 on 31 degrees of freedom
Residual deviance: 30.67 on 30 degrees of freedom
AIC: 181.39

Number of Fisher Scoring iterations: 1

 	 Theta:	 8.67 
 	 Std. Err.:	 4.17 

 	2 x log-likelihood:	 –175.387

Note that the estimated coefficients of this model do not differ significantly from those 
in the Poisson model, and for this negative binomial model we do not have any evidence 
of lack of fit. The residual deviance is very close to the residual degrees of freedom. 
Of course, other diagnostics are needed to fully check the adequacy of this model.

fabric.res <- fabric |>
  mutate(eta = predict(fab.nb.glm, type = “link”),
	 mu = predict(fab.nb.glm, type = “response”),
	 rQ = qresid(fab.nb.glm),
	 rW = resid(fab.nb.glm, type = “working”),
	 wR = rW + eta)

Compute the individual plots.

Exercise 5.2    Use the following diagnostic plots to assess the adequacy of the negative 
binomial model:

1.	 Quantile residuals vs. fitted values
2.	 Absolute value of quantile residuals vs. fitted values
3.	 Quantile residuals vs. predictor variable
4.	 Linear predictor vs. working responses

Solution 5.2    Let us compute the quantities we need for the diagnostic plots:

p1 <- ggplot(data = fabric.res,
	 mapping = aes(x = mu,
	 y = rQ)) +
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  geom_point() +
  labs(x = “Fitted Values”,
	 y = “Quantile Residuals”)
p2 <- ggplot(data = fabric.res,
	 mapping = aes(x = mu,
	 y = abs(rQ))) +
  geom_point() +
  labs(x = “Fitted Values”,
	 y = “abs(Quantile Residuals)”)
p3 <- ggplot(data = fabric.res,
	 mapping = aes(x = x.lg,
	 y = rQ)) +
  geom_point() +
  labs(x = “Length of Fabric Roll (log-scale)”,
	 y = “Quantile Residuals”)
p4 <- ggplot(data = fabric.res,
	 mapping = aes(x = wR,
	 y = eta)) +
  geom_point() +
  labs(x = “Working Response”,
	 y = “Linear Predictor”)

And arrange them in a 2 × 2 grid.

(p1 + p2) / (p3 + p4)
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Both left-hand panels should display a random cloud of points. Existence of any patterns in 
these plots would be an indication that our model is not adequate. For the upper-right panel, 
we would like to see a constant, even spread of points across the y-axis. Any systematic increase 
or decrease would be an indication that our variance function is not correct. For the last panel 
in the bottom-right corner, the ideal pattern would be to have all points line up along the line 
y = x. Departures from that pattern would be an informal indication that the link function 
is not correct (or that we have misspecified the linear predictor).

Since the estimated value of θ in the negative binomial model is 8.67, we know 
that the variance of the gamma distribution is 1/8.67. Figure 5.2 displays what the 
estimated density function for the random effect looks like.

We can also view the above model as an LMM. The mean of the Poisson distribution 
is λu, and we would like to introduce explanatory variables. Hence, using a logarithmic 
link function we set

log mu` j= log m` j+ log u` j = Xb+ v,

where Xβ incorporates all of our fixed-effects explanatory variables and v = log (u) is the 
unobserved random effect.

For the fabric data we can fit such a model by specifying the structure of

1.	 the mean model, and
2.	 the dispersion model.

For now we will keep the dispersion model as a single constant (just like we always 
do when we fit a GLM).
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Figure 5.2.   The density function for the random effect u.
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The mean model is

model.mu <- DHGLMMODELING(Model = “mean”,
	 Link = “log”,
	 LinPred = y ~ x.lg + (1 | rf),
	 RandDist = “gamma”)

Note that we have chosen a gamma distribution for the random effect.
The dispersion model is just a constant, so we do not specify any components:

model.phi <- DHGLMMODELING(Model = “dispersion”)

fab.hglm.nb <- dhglmfit(RespDist = “poisson”,
	 DataMain = fabric,
	 MeanModel = model.mu,
	 DispersionModel = model.phi)

We fit this model via

Distribution of Main Response : 
	 “poisson” 
[1] “Estimates from the model(mu)”
y ~ x.lg + (1 | rf)
[1] “log”
	 Estimate	 Std. Error	 t-value
(Intercept)	 –3.9195	 1.4442	 –2.714
x.lg	 0.9624	 0.2259	 4.261
[1] “Estimates for logarithm of lambda=var(u_mu)”
[1] “gamma”
	 Estimate	 Std. Error	 t-value
rf	 –2.074	 0.3623	 –5.726
[1] “====== Likelihood Function Values and Condition AIC ======”
		  [,1]
–2ML (–2 p_v(mu) (h))	 :	 175.72501
–2RL (–2 p_beta(mu),v(mu) (h))	:	 179.88494
cAIC	 :	 172.77209
Scaled Deviance	 :	 14.28605
df	 :	 14.40607

Here the estimated fixed effects are close to those reported for the negative binomial 
model. The variance of the random effect, –2.074, is reported on a logarithmic scale, and 
exponentiating its value we obtain 0.125682, which is of similar magnitude compared 
with the variance of the negative binomial model (1/8.6674 = 0.1154).

Figure 5.3 reveals that whereas our model may be adequate, there are some areas 
of concern. The display shows the studentized deviance residuals. The top-left panel 
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shows that for fitted values greater than about 12.5, we have a group of observations 
with positive and increasing residuals only. And below 7.5 there seems to be a larger 
number of observations with negative residuals than positive ones. The top-right panel 
shows the absolute value of studentized residuals versus fitted values. Ideally, there 
would be no underlying trend in the residuals, but the graph shows that as fitted values 
increase, residuals first decrease and then increase. The QQ plot, in the bottom-left 
panel, shows the expected pattern, and the bottom-right panel also shows a reasonable 
histogram for the residuals.

Train Accident
In this example we analyze a dataset from Agresti (2002) regarding the number of 

collisions involving British Rail passenger trains and road vehicles between 1975 and 
2003. The available variables are the number of annual collisions (y) between trains and 
road vehicles, the distance traveled per year (t) in millions of kilometers, the number 
of years (x) since 1975, and an identification (id) label for each row of data. The data 
is available in the package mdhglm under the name train, and the first few rows are
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Figure 5.3.    Diagnostic plots from a Poisson-gamma HGLM fitted 
to the fabric data. The top panels show that the model has some 
deficiencies because there are discernible patterns. The bottom 
panels show the expected patterns.

data(train, package = “mdhglm”)
head(train)
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	 x	 y	 t	 id
1	 0	 2	 436	 1
2	 1	 12	 426	 2
3	 2	 8	 425	 3
4	 3	 4	 430	 4
5	 4	 3	 426	 5
6	 5	 2	 430	 6

Lee et al. (2020) also analyzed the data, and we follow their discussion closely.
We are interested in understanding the rate of accidents per million kilometers 

traveled. A scatterplot (not displayed here) shows a nonlinear decreasing trend for the rate 
of collisions as time increases, but a logarithmic transformation of the response variable 
shows (see Figure 5.4) a decreasing linear trend with substantial variability around it.

A Poisson GLM might be our first choice for modeling the rate, but again such a 
model does not fit the data adequately. Overdispersion is clearly present.
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Figure 5.4.   The rate of collisions, per million kilometers traveled 
(log-scale), between British passenger trains and road vehicles 
from 1975 to 2003.

Exercise 5.3    Fit a Poisson model to the rate of collisions and show that the fit is not adequate 
by plotting the absolute value of the quantile residuals against fitted values.

Solution 5.3    To fit a Poisson model with a logarithmic link function to the rate of colli-
sions, we would specify the following model:
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This model can be rewritten as

log E y8 Bb l= b 0 + b 1x + log t` j,

where the last term, log(t), is an offset term for the amount of exposure. The code to fit the 
above model is

train.poi <- glm(y ~ x + offset(log(t)),
	 data = train,
	 family = poisson(link = “log”))
summary(train.poi)

Call:
glm(formula = y ~ x + offset(log(t)), family = poisson(link = “log”), 
	 data = train)

Coefficients:
	 Estimate	 Std. Error	 z value	 Pr(>|z|) 
(Intercept)	 –4.21142	 0.15892	 –26.50	 < 2e-16	 ***
x	 –0.03292	 0.01076	 –3.06	 0.00222	 ** 
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 47.376 on 28 degrees of freedom
Residual deviance: 37.853 on 27 degrees of freedom
AIC: 133.52

Number of Fisher Scoring iterations: 5

Overdispersion is likely since the residual deviance is larger than the degrees of freedom (the 
mean deviance estimator of the dispersion parameter is equal to 37.853/27 = 1.402). The plot 
of absolute value quantile residuals shows a clear increasing trend as fitted values increase. This 
tells us that the variance function we have selected (in this case it is linear because we are using 
the Poisson distribution) is not increasing fast enough, and so our assumption that the number 
of collisions is Poisson distributed is not correct.

ggplot(data = tibble(mu = predict(train.poi, type = “response”),
	 rD = resid(train.poi, type = “deviance”)),
	 mapping = aes(x = (mu),
	 y = abs(rD))) +
  geom_point() +
  labs(x = “Fitted Values”,
	 y = “abs(Deviance Residuals)”)
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Fitting a Poisson-gamma HGLM should be our next choice. We will model the 
dispersion parameter as a constant. The mean will include a random effect with a gamma 
distribution, and because our response variable is a rate and we are using a log-link 
function, we will include an offset in our model.
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model.mu <- DHGLMMODELING(Model = “mean”,
	 Link = “log”,
	 LinPred = y ~ x + (1 | id),
	 Offset = log(train$t),
	 RandDist = “gamma”)
model.phi <- DHGLMMODELING(Model = “dispersion”)

train.hglm <- dhglmfit(RespDist = “poisson”,
	 DataMain = train,
	 MeanModel = model.mu,
	 DispersionModel = model.phi)

Distribution of Main Response : 
	 “poisson” 
[1] “Estimates from the model(mu)”
y ~ x + (1 | id)
[1] “log”
	 Estimate	 Std. Error	 t-value
(Intercept)	 –4.13359	 0.22304	 –18.533
x	 –0.03633	 0.01452	 –2.502
[1] “Estimates for logarithm of lambda=var(u_mu)”
[1] “gamma”
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	 Estimate	 Std. Error	 t-value
id	 –1.752	 0.4235	 –4.137
[1] “====== Likelihood Function Values and Condition AIC ======”
		  [,1]
–2ML (–2 p_v(mu) (h))	 :	 127.79514
–2RL (–2 p_beta(mu),v(mu) (h))	 :	 136.82822
cAIC	 :	 129.86560
Scaled Deviance	 :	 11.31993
df	 :	 15.56043

The fixed effects are both significant at the 5% level. The coefficient for year is 
negative and shows that as each year goes by we can expect the number of collisions to 
decrease by about 3.5%. The variance of the random effect (on a log-scale) is –1.752 
with a standard error equal to 0.423, and so the variance is statistically different from 
zero. The density for our random effect is shown in Figure 5.5.

Figure 5.6 displays QQ plots for the Poisson and the Poisson-gamma HGLM models. 
Note that the Poisson model shows that the distribution of the studentized deviance 
residuals has a fatter tail than the normal distribution. The two points in the upper-right 
corner are too large, whereas for the Poisson-gamma HGLM model those two points 
are much closer to the theoretical line.

Diabetes Progression
For this example, we use a dataset on diabetes patients to illustrate the fitting of a  

joint GLM. The data, on 442 diabetic patients, was analyzed in Efron et al. (2004) and 
Antoniadis et al. (2016). Ten baseline variables for the patients were recorded, and 
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Figure 5.5.    Estimated density function for train dataset along 
with the estimated random effects (points on the x-axis).
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a year later a measure of disease progression was also collected. A model was sought to 
predict disease progression based on the baseline variables of age, sex, body mass index, 
average blood pressure, and six blood serum measurements. Table 5.1 displays the 
first six rows of the data as shown in Table 1 from Efron et al. (2004). The data is avail-
able in the R package lars under the name diabetes. Note that the explanatory 
variables in the dataset diabetes have been scaled to have mean zero and unit variance, 
but Table 5.1 shows the unscaled values for the first six rows.

Figure  5.7 displays four exploratory graphs of the response variable, disease  
progression, versus some explanatory variables. Body mass index (BMI) and glucose 
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Figure 5.6.    QQ plot for the studentized deviance residuals 
from the Poisson and the Poisson-gamma (HGLM) models.

Table 5.1.    First six rows of the unscaled diabetes data.

Serum Measurements Response

Patient age sex bmi abp tc ldl hdl tch ltg glu y

1 59 2 32.1 101 157 93.2 38 4 4.9 87 151

2 48 1 21.6 87 183 103.2 70 3 3.9 69 75

3 72 2 30.5 93 156 93.6 41 4 4.7 85 141

4 24 1 25.3 84 198 131.4 40 5 4.9 89 206

5 50 1 23.0 101 192 125.4 52 4 4.3 80 135

6 23 1 22.6 89 139 64.8 61 2 4.2 68 97

Source:  Table 1 in Efron et al. (2004).
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level show a strong relationship to the response, whereas age and high density lipo-
protein cholesterol (HDL) show a weaker relationship. We can also see that the 
variability in the response is not constant across the range of values in the explanatory 
variables.

Some of the blood serum measurements (six variables) may be correlated to each 
other. Figure 5.8 displays a scatterplot matrix of these measurements where we can 
see that tc is highly positively linearly correlated with ldl (positions (2, 1) and (1, 2) 
in the plot matrix). And variable tch is highly negatively linearly correlated with hdl 
(positions (4, 3) and (3, 4) in the plot matrix). Variable ldl is also linearly correlated 
with tch, as is ltg with tch.

Based on the observations from Figure 5.7 and Figure 5.8, we suspect that some of 
the variables will not be significant in predicting the mean response and some will 
help us model the variance of the response. Hence, we would like to fit a joint GLM 
model—that is, we want to have a GLM for the response and also a GLM for the 
dispersion parameter. We specify such a structure as follows:
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Figure 5.7.    Exploratory graphs of disease progression versus 
explanatory variables age, body mass index (BMI), high density 
lipoprotein cholesterol (HDL), and glucose. Scatterplot smooth 
lines have been added to aid in detecting the overall pattern. 
Note that in several of the panels, the variance in disease 
progression is not constant across the values of the explanatory 
variables.
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model.mu <- DHGLMMODELING(Model = “mean”,
	 Link = “identity”,
	 �LinPred = y ~ age + sex + bmi +  

  abp + tc + ldl + hdl + tch +  
  ltg + glu)

model.phi <- DHGLMMODELING(Model = “dispersion”,
	 Link = “log”,
	� LinPred = y ~ age + sex + bmi +  

  abp + tc + ldl + hdl + tch +  
  ltg + glu)
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Figure 5.8.    Scatterplot matrix for the blood serum variables.  
The diagonal entries show nonparametric estimates of the 
density function for each variable. The upper triangular entries 
are the pairwise linear correlation coefficients, and the bottom 
triangular entries are the pairwise scatterplots for the variables.

Assuming that the response variable, disease progression, is adequately represented 
as a normal distribution we can fit the joint model via

diab.model <- dhglmfit(RespDist = “gaussian”,
	 DataMain = diab,
	 MeanModel = model.mu,
	 DispersionModel = model.phi)
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Distribution of Main Response : 
	 “gaussian” 
[1] “Estimates from the model(mu)”
y ~ age + sex + bmi + abp + tc + ldl + hdl + tch + ltg + glu
[1] “identity”

Std. 
Estimate Error t-value p_val LL UL

(Intercept) 151.721 2.583 58.732782 0.000e+00 146.66 156.8
age 12.249 54.655 0.224114 8.227e-01 –94.87 119.4
sex –241.175 56.167 –4.293894 1.756e-05 –351.26 –131.1
bmi 475.325 67.734 7.017552 2.258e-12 342.57 608.1
abp 344.574 62.717 5.494131 3.926e-08 221.65 467.5
tc –555.372 341.346 –1.627006 1.037e-01 –1224.41 113.7
ldl 277.509 276.958 1.001990 3.163e-01 –265.33 820.3
hdl 1.285 167.371 0.007678 9.939e-01 –326.76 329.3
tch 150.522 142.311 1.057694 2.902e-01 –128.41 429.5
ltg 651.564 135.923 4.793637 1.638e-06 385.16 918.0
glu 60.692 60.032 1.010989 3.120e-01 –56.97 178.4
[1] “Estimates from the model(phi)”
y ~ age + sex + bmi + abp + tc + ldl + hdl + tch + ltg + glu
[1] “log”
	 Estimate	 Std. Error	 t-value
(Intercept)	 7.905	 0.06813	 116.0213
age	 –2.710	 1.58187	 –1.7130
sex	 –4.613	 1.62120	 –2.8454
bmi	 1.861	 1.76060	 1.0571
abp	 4.357	 1.73308	 2.5142
tc	 –15.799	 11.28435	 –1.4001
ldl	 16.515	 9.20588	 1.7939
hdl	 –3.058	 5.73781	 –0.5329
tch	 –6.654	 4.31590	 –1.5417
ltg	 8.042	 4.62341	 1.7393
glu	 2.310	 1.74794	 1.3214
[1] “====== Likelihood Function Values and Condition AIC ======”
		  [,1]
–2ML (–2 h)	 :	4737.276
–2RL (–2 p_beta (h))	:	4629.960
cAIC	 :	4759.276
Scaled Deviance	 :	 431.000
df	 :	 431.000

The top section of the output gives the estimated coefficients for the model of 
the response variable, and we can see that variables sex, bmi, abp, and ltg are 
significant at the 5% level. The bottom section shows the estimated coefficients for 
the dispersion model. Here the coefficients for sex and average blood pressure abp 
are significant.
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Reestimating the model with only the significant variables gives us the following 
estimated coefficients:

Distribution of Main Response : 
	 “gaussian” 
[1] “Estimates from the model(mu)”
y ~ sex + bmi + abp + ltg
[1] “identity”
		  Std.  
	 Estimate	 Error	 t-value	 p_val	 LL	 UL
(Intercept)	 152.2	 2.641	 57.638	0.000e+00	 147.0	157.39
sex	 –157.0	56.783	 –2.765	5.699e-03	–268.3	–45.69
bmi	 585.8	64.444	 9.090	9.929e-20	 459.5	712.09
abp	 312.6	64.841	 4.821	1.426e-06	 185.5	439.71
ltg	 551.0	63.952	 8.616	6.930e-18	 425.7	676.36
[1] “Estimates from the model(phi)”
y ~ sex + abp
[1] “log”
	 Estimate	 Std. Error	 t-value
(Intercept)	 8.020	 0.06765	 118.543
sex	 –3.031	 1.46589	 –2.068
abp	 2.880	 1.46782	 1.962
[1] “====== Likelihood Function Values and Condition AIC ======”
		  [,1]
–2ML (–2 h)	 :	4793.995
–2RL (–2 p_beta (h))	:	4750.245
cAIC	 :	4803.995
Scaled Deviance	 :	 437.000
df	 :	 437.000

Figure 5.9 shows the studentized deviance residuals against the fitted values for 
both the mean and dispersion models. For the mean model, the overall shape of the 
points looks random with a slight increase on the lower end of the fitted values. For the 
dispersion model, we have slight curvature of the residuals, but it is minimal.

5.4.  Summary
In this chapter, we introduced a class of hierarchical generalized linear mixed models 

(Lee et al. 2021) that extend the GLM by allowing random effects with normal and 
non-normal distributions and modeling the dispersion parameter via explanatory 
variables with both fixed and random effects.

We can think of these models as a pair of {mean, dispersion}-models. The standard 
GLM would be specified as {GLM(µ), constant}, meaning that we have a GLM for the 
mean of the response variable and a constant dispersion model.
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Figure 5.9.    Fitted values versus residuals for the mean and 
dispersion models of the diabetes data.

LM ---> LMM ---> GLMM ---------> HGLM ---> DHGLM
   \         /               /
    \       /               /
     \> GLM ---> Joint GLM /

can be specified as follows:

1.	 Linear mixed model (LMM). The mean model would be a hierarchical GLM with 
normally distributed random effects and a Gaussian distribution for the response, 
together with the identity link function.

2.	 Joint GLM (JGLM). Both the mean model and the dispersion model are GLMs, 
and the models are interlinked.

3.	 Generalized linear mixed model (GLMM). The dispersion model is constant. The 
model for the mean response is a GLM with normally distributed random effects.

4.	 Hierarchical generalized linear model (HGLM). Both the mean and dispersion 
are modeled. The mean model is a model with random effects that are not restricted 
to being normally distributed. The dispersion parameter is modeled via a GLM with 
fixed effects only.

5.	 Double hierarchical generalized linear model (DHGLM). This extends the  
HGLM model by allowing random effects in the model for the dispersion parameter 
and allowing the modeling of the variance of the random effects via explanatory 
variables.

We revisited the Hachemeister dataset to show how the same model (essentially) 
can be fitted to the data based on the new class of HGLMs. We also presented two new 
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examples with gamma random effects: fabric fault data and train collisions with road 
vehicles. For both of those examples, the response variable was a count for which we used 
a Poisson distribution. But the Poisson model was not adequate for the data because of 
overdispersion. Hence, we introduced a gamma random effect yielding the negative 
binomial distribution.

In the final example, we analyzed a dataset quantifying the disease progression of 
diabetic patients. Here, after noticing that the variance of the response variable was 
not constant, we decided to introduce explanatory variables to model it. Therefore, we 
fitted a joint GLM to the data where we specified a linear predictor for the mean disease 
progression and also introduced another linear predictor for the dispersion model.

In the next chapter, we present several examples that make use of random effects 
for categorical variables that have a large number of levels. This will bring us back to 
incorporating credibility into our modeling.
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6.1.  Massachusetts Auto Bodily Injury Claims
For this example, we use a dataset of automobile bodily injury claims from the 

Commonwealth of Massachusetts. This data has been used to illustrate several different 
types of analyses, such as

•	 modeling hidden exposures (Rempala and Derrig 2005),
•	 credibility using copulas (Frees and Wang 2005), and
•	 multivariate credibility (Frees 2003).

The data—available in the R package CASdatasets (Dutang and Charpentier 
2020) under the name usmassBI2—is longitudinal and describes the claims experi-
ence for 29 randomly selected towns (out of more than 300) in Massachusetts for the 
years 1993 to 1998. The variables available are TOWNCODE, YEAR, AC (average claims 
per unit of exposure), PCI (per capita income of the town), and PPSM (population per 
square mile).

As described in Frees (2003) and Frees and Wang (2005), the average claim amounts 
have already been restated in 1991 dollars using the Consumer Price Index (CPI) in 
order to mitigate any time trends due to inflation. This data has also been analyzed in 
Chapter 15 of Charpentier (2015), and we follow that discussion.

Data Exploration
Table 6.1 displays the descriptive statistics for average claim size by calendar year. 

Note that the means and medians look reasonably stable across calendar years. In addition, 
the standard deviation seems to hover around 35, and the maximums and minimums 
do not seem to fluctuate heavily; therefore, it seems like the distributions are stable 
across years.

In Figure 6.1 we have a multiple time series plot (a.k.a. a spaghetti plot) where 
each line represents the observations, across time, for one town. Two towns have been 
highlighted: 35 and 53. Town code 35 has large average claims in the first couple 
of years, and town code 53 has some of the lowest claims across all years. Figure 6.2 
displays average claim cost against per capita income and population per square mile. 
Again, towns 35 and 53 are highlighted: note that town 53 is sparsely populated and 
has a high per capita income, whereas town 35 has the highest population density and 
fairly large average claim costs. Also, note that for each town the per capita income 
and population per square mile do not fluctuate much by year, but the average claims do. 

6.  Applications
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Based on this observation, when modeling the average claim cost, an intercept for each 
town would make sense.

Figure 6.3 displays the histogram of average claim size across all towns and years 
along with a nonparametric estimate of the density (solid line) and a normal distribu-
tion (dashed line) matching the first two moments. Overall, the normal distribution 
fits this data well.

Table 6.1.    Descriptive statistics for average claims per unit of exposure  
for a random sample of 29 towns in Massachusetts. Dollar amounts have 
been restated to 1991 using the CPI.

Average Claim Amount

1993 1994 1995 1996 1997 1998

Mean 133.00 129.03 143.38 141.17 142.94 134.37

Median 131.57 131.45 138.76 149.00 144.73 131.96

Std. deviation 31.59 32.63 38.28 39.28 36.22 32.85

Minimum 80.03 42.74 61.04 66.20 61.68 74.89

Maximum 212.46 209.52 238.22 201.99 248.75 191.05
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Figure 6.1.    Multiple time series plot of average claims per unit 
of exposure. Each time series corresponds to one of the 29 towns 
in the data. The red dots joined by pink lines correspond to town 
code 35, which has some of the highest average claims during 
the first couple of years. The blue points joined by light blue 
lines correspond to town code 53, which has some of the lowest 
average claims.
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Figure 6.2.   Average claim sizes by per capita income (in thousands 
of dollars) and population per square mile (in log base 10 scale). 
The red points correspond to town code 35, and the blue points 
correspond to town code 53.

Figure 6.3.    Histogram of average claim costs along with  
a nonparametric estimate of the density function (solid line) 
and a normal density function (dashed line) chosen to match 
the empirical mean and standard deviation across all towns  
and all years.
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Modeling Average Claim Size
From our exploratory analysis we can start our modeling of average claim cost 

by using a normal distribution for the response variable and applying the following 
transformations to the explanatory variables:

1.	 Shift the origin for YEAR to 1992 (that is, center this variable at 1992).
2.	 Scale the per capita income to measure it in thousands of dollars.
3.	 Compute the logarithm of population per square mile.

Also, we will take calendar years 1993 to 1997 to train our models and keep 1998 
for validation purposes.

usmassBI2 <- usmassBI2 |>
  mutate(YR = YEAR – 1992,
	 lnPPSM = log(PPSM),
	 PCI.k = PCI / 1000)

db.train <- usmassBI2 |>
  filter(YEAR < 1998)

db.test <- usmassBI2 |>
  filter(YEAR == 1998)

Complete Pooling
First, we fit a model ignoring the TOWNCODE variable—thus we are pooling all of our 

data together, implicitly assuming that all the towns in Massachusetts form a single homo-
geneous group. This is clearly not a reasonable assumption, but it is a good starting point.

bi.all <- lm(AC ~ PCI.k + lnPPSM + YR,
	 data = db.train)
summary(bi.all)

Call:
lm(formula = AC ~ PCI.k + lnPPSM + YR, data = db.train)

Residuals:
	 Min	 1Q	 Median	 3Q	 Max 
	–51.661	 –16.846	 –0.419	 12.680	 103.850 

Coefficients:
	 Estimate	 Std. Error	 t value	 Pr(>|t|) 
(Intercept)	 68.8695	 23.1298	 2.978	 0.00342	 ** 
PCI.k	 –4.2410	 0.5604	 –7.568	 4.47e-12	 ***
lnPPSM	 22.3442	 2.9603	 7.548	 5.00e-12	 ***
YR	 3.8353	 1.5324	 2.503	 0.01346	 * 
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Residual standard error: 25.99 on 141 degrees of freedom
Multiple R-squared: 0.4812, Adjusted R-squared: 0.4701 
F-statistic: 43.59 on 3 and 141 DF, p-value: < 2.2e-16

The estimated value of the intercept, 68.87, is the average claim cost in 1992 for a 
town that has a population density of one person per square mile and a per capita income 
of zero. Such a town does not exist in Massachusetts. The average per capita income (in 
thousands) and the logarithm of the population per square mile across all towns in our 
data are 20.06 and 6.38, respectively. Therefore, using our current model, we would 
estimate the expected claim costs in 1993 to be

68.87 - 4.24 20.06 + 22.34 6.38+ 3.84 1 =130.18,• • •

close to the middle of the data for 1993 shown in Figure 6.1.
The coefficient for calendar year of 3.84 tells us that as we move from one year 

to the next, the average claim cost will increase by this dollar amount. Keeping in 
mind that the data had already been adjusted to account for inflation, we must attribute 
this increase to other sources. As per capita income increases by $1,000, we see a decline 
in the average claim cost of 4.24. And if we had a 10% increase in population density, 
the average claim cost would increase by about 2.13.

Figure 6.4 and Figure 6.5 show diagnostic plots for the model bi.all. All five 
plots show that the model seems adequate. The left-hand panel of Figure 6.4 shows 
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Figure 6.4.    Diagnostic plots for model bi.all. Left-hand panel 
shows standardized residuals versus fitted values, and the 
right-hand panel is the absolute value of the standardized 
residuals against the fitted values. The blue line in each panel 
is a scatterplot smooth line showing the overall trend of  
the points.
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Figure 6.5.    Diagnostic plots for model bi.all. Each panel 
shows the standardized residuals against a predictor variable. 
The blue line in each panel shows the overall trend of points.

the expected pattern of a random cloud of points centered about y = 0. There are 
four observations with residuals greater than 2. Three of these observations come from 
TOWNCODE 45 and one from TOWNCODE 16. Figure 6.6 reproduces Figure 6.1 but 
highlights town codes 45 and 16. Looking at calendar year 1995 in Figure 6.6, town 
code 45 corresponds to the red-colored points connected by pink lines. Starting in 1995, 
this town has some of the highest average claim costs of all towns. Tracing the line for 
town code 16 (blue-colored points and connecting lines), we can see that whereas in 
1995 the town had a large average claim cost, in all other years the average claim cost 
remained stable.

The right-hand panel of Figure 6.4 shows a fairly uniform spread of points as 
the fitted values increase; thus, our assumption that the distribution of the response 
variable, average claim size, is normally distributed seems appropriate. Note that for 
the largest fitted values we see an upward trend, letting us know that for these values 
we have more variability in our data than our model provides.

In Figure 6.5, we have plotted the three explanatory variables against the standard-
ized residuals. For calendar year we see no meaningful patterns. For per capita income, 
we observe that in the range from 20,000 to 25,000, the model tends to overpredict, 
and above 25,000, the model systematically underpredicts. While the overall pattern 
is flat for the logarithm of population per square mile, there are a few isolated places 
where the model tends to overpredict (below 5) and underpredict (slightly above 5.5).
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No Pooling
In the previous section, we pooled all of our data, assuming that all 29 sampled towns 

in Massachusetts would create a homogeneous group, and fitted the linear model

E AC8 B=b 0+b 1 PCI.k +b 2 log PPSM` j+b 3 YR.• • •

We can take a diametrically opposite stance and assume that no two towns are 
similar in any way. With this view, we would fit the above linear model to each town 
separately, thus creating 29 linear models. Some of them fit well, while others do not. 
For example, we can collect for each model the R2 measure as an indicator of model fit 
(not advocating this is a good measure), yielding

	 50	 39	 42	 40	 31	 41	 45	 33	 44	
0.028	 0.073	 0.089	 0.424	 0.451	 0.534	 0.552	 0.580	 0.600	
	 14	 53	 30	 43	 17	 52	 13	 51	 12	
	0.645	 0.645	 0.720	 0.737	 0.742	 0.790	 0.811	 0.844	 0.857	
	 38	 16	 35	 37	 21	 10	 34	 15	 32	
	0.902	 0.915	 0.936	 0.952	 0.959	 0.979	 0.988	 0.993	 0.995	
	 11	 36
	0.998	 0.999
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Figure 6.6.    Multiple time series plot of average claim per unit of 
exposure. Each time series corresponds to one of the 29 towns in  
the data. Here we highlight the two towns (TOWNCODE 45 and 16)  
that have the four highest residuals. TOWNCODE 45 is in red 
with pink connecting lines, and TOWNCODE 16 is in blue with 
light blue connecting lines.
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For town codes 50, 39, and 42, the adjusted R2 measure is extremely low (less than 
9%), and for town codes 17, 52, and 13 (middle of the list), the R2 measure is 74.2%, 
79.0%, and 81.1%, respectively. For town codes 32, 11, and 36, the measure is above 
99.5%. Figure 6.7 shows an actual-versus-expected plot for these nine towns arranged 
from low R2 values to high. The gray line represents the line of perfect fit, that is,  
y = x in each panel.

Clearly for the top three panels in Figure 6.7 the models accurately predict the 
actual average claims, and we would feel confident in using them to predict the claims 
experience in the next calendar year. But do we feel similarly about the bottom three 
models? For town code 50, actual experience in the past five years ranged from about 
105 to 135—quite volatile. The model’s range of values is from about 119 to 124— 
a very small range. The probability that our prediction (whatever it might be) reflects 
actual experience would be quite low.

Thus we have that some towns are highly credible in their experience while others 
are not. Based on Figure 6.1, we should include a town-specific intercept in our model.
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Figure 6.7.   Actual versus predicted average claim costs from the 
regression lines fitted to each town individually. Towns 32, 11, and 36  
have the highest R2 values, and towns 50, 39, and 42 have the lowest 
values. Towns 17, 52, and 13 are in the middle when R 2 measures 
are sorted. The panels are arranged from the lowest R 2 in the 
bottom-left corner to the highest R2 value in the top-right corner. 
The gray line in each panel represents the line of perfect fit (y 5 x).
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Fixed-Effects Model
Consider incorporating a town-specific intercept into the regression model. Thus 

we want to fit the model

E AC8 B= a i +b 1 PCI.k +b 2 log PPSM` j+b 3 YR ,• • •

where αi represents the intercept for town i. We can accomplish this by treating 
TOWNCODE as a categorical variable in our model.

bi.fixed <- lm(AC ~ TOWNCODE + PCI.k + lnPPSM + YR,
	 data = db.train)
summary(bi.fixed)

Call:
lm(formula = AC ~ TOWNCODE + PCI.k + lnPPSM + YR, data = db.train)

Residuals:
	 Min	 1Q	 Median	 3Q	 Max 
	–55.621	 –8.911	 0.276	 9.058	 50.129 

Coefficients:
	 Estimate	 Std. Error	 t value	 Pr(>|t|) 
(Intercept)	 1457.753	 795.425	 1.833	 0.0695	 .
TOWNCODE11	 –101.240	 61.491	 –1.646	 0.1025 
TOWNCODE12	 –101.223	 92.990	 –1.089	 0.2787 
TOWNCODE13	 –299.086	 182.682	 –1.637	 0.1044 
TOWNCODE14	 –215.677	 117.945	 –1.829	 0.0701	 .
TOWNCODE15	 21.421	 19.879	 1.078	 0.2835 
TOWNCODE16	 –174.125	 112.682	 –1.545	 0.1251 
TOWNCODE17	 42.113	 32.229	 1.307	 0.1940 
TOWNCODE21	 –141.966	 76.612	 –1.853	 0.0665	 .
TOWNCODE30	 –307.519	 178.349	 –1.724	 0.0874	 .
TOWNCODE31	 –205.487	 117.761	 –1.745	 0.0837	 .
TOWNCODE32	 –123.095	 78.861	 –1.561	 0.1213 
TOWNCODE33	 –121.806	 65.728	 –1.853	 0.0665	 .
TOWNCODE34	 –175.532	 94.975	 –1.848	 0.0672	 .
TOWNCODE35	 223.190	 117.709	 1.896	 0.0605	 .
TOWNCODE36	 –234.455	 108.455	 –2.162	 0.0327	 *
TOWNCODE37	 –302.709	 172.261	 –1.757	 0.0816	 .
TOWNCODE38	 –283.961	 149.940	 –1.894	 0.0608	 .
TOWNCODE39	 –131.217	 72.121	 –1.819	 0.0715	 .
TOWNCODE40	 –313.326	 157.915	 –1.984	 0.0497	 *
TOWNCODE41	 –253.651	 137.237	 –1.848	 0.0672	 .
TOWNCODE42	 –131.500	 78.933	 –1.666	 0.0985	 .
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TOWNCODE43	 –498.092	 262.041	 –1.901	 0.0599	 .
TOWNCODE44	 –113.359	 66.123	 –1.714	 0.0892	 .
TOWNCODE45	 –190.694	 135.632	 –1.406	 0.1625 
TOWNCODE50	 –277.511	 142.634	 –1.946	 0.0542	 .
TOWNCODE51	 –293.370	 135.513	 –2.165	 0.0325	 *
TOWNCODE52	 –186.622	 84.174	 –2.217	 0.0286	 *
TOWNCODE53	 –518.904	 261.780	 –1.982	 0.0499	 *
PCI.k	 –1.374	 7.595	 –0.181	 0.8568 
lnPPSM	 –176.078	 106.343	 –1.656	 0.1005 
YR	 5.990	 2.602	 2.302	 0.0231	 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 18.88 on 113 degrees of freedom
Multiple R-squared: 0.7808, Adjusted R-squared: 0.7206 
F-statistic: 12.98 on 31 and 113 DF, p-value: < 2.2e-16

In our model, the intercept represents the average claims experience for TOWNCODE 10 
with a zero per capita income, one person per square mile, and the variable YR set to 
zero (i.e., 1992). This number does not have practical significance because we know 
that town code 10 does not have a per capita income of zero or a population of one  
person per square mile. In town code 10, the per capita income is about $18,500 and 
the logarithm of the population per square mile is about 7.3. The other TOWNCODE 
coefficients measure deviations from TOWNCODE 10 with the other variables set  
as before.

Note that some of the town-specific coefficients are not significant, and many 
of them are significant at the 10% level but not at the 5% level. Per capita income 
and population per square mile are no longer significant, and the effect of calendar  
year has increased to almost 6 and is significant at the 5% level. More importantly, 
an estimated yearly increase of $6 is of practical significance because it represents about 
a 4.4% increase from the overall average claim cost over inflation (across all towns 
and years) of $138.

With this model we have estimated coefficients for the 29 specific towns. And while 
we can make inferences for them, they are just a sample of the more than 300 towns 
in the state, and we could not easily justify using them to make inferences about other 
towns in the state. In the next section, we’ll treat these towns as a random sample of the 
larger population of towns and fit a random-effects model to this data.

Random-Effects Model
Instead of treating the intercepts αi for each of the 29 sampled towns in Massachusetts 

as fixed, we can treat them as random variables and fit the following LMM:

E AC8 B= a i +b 0+b 1 PCI +b 2 log PPSM` j+b 3 YR ,• • •
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where αi is a normal random variable with mean zero and variance σα. The index i runs 
through all the towns, and we fit this model as follows:

bi.rnd.int <- lme(AC ~ PCI.k + lnPPSM + YR,
	 data = db.train,
	 random = ~ 1 | TOWNCODE)
summary(bi.rnd.int)

Linear mixed-effects model fit by REML
  Data: db.train 
  	 AIC	 BIC	 logLik
  	1310.722	 1328.415	 –649.361

Random effects:
  Formula: ~1 | TOWNCODE
	 (Intercept)	 Residual
StdDev:	 18.44886	 19.01929

Fixed effects: AC ~ PCI.k + lnPPSM + YR 
	 Value	 Std.Error	 DF	 t-value	 p-value
(Intercept)	 70.25708	 39.65931	 113	 1.771516	 0.0792
PCI.k	 –4.19414	 0.97273	 113	 –4.311736	 0.0000
lnPPSM	 21.98209	 5.16832	 113	 4.253237	 0.0000
YR	 3.82988	 1.14148	 113	 3.355195	 0.0011
  Correlation: 
	 (Intr)	 PCI.k	 lnPPSM
PCI.k	 –0.555 
lnPPSM	 –0.872	 0.096 
YR	 0.079	 –0.197	 –0.082

Standardized Within-Group Residuals:
	 Min	 Q1	 Med	 Q3	 Max 
	–2.56010534	 –0.61512040	 0.01209624	 0.48774689	 2.89511606 

Number of Observations: 145
Number of Groups: 29

The above output tells us that the random intercepts ai have a standard deviation 
equal to σα = 18.45. This is the variability between the towns. Actuaries would call its 
square the variance of the hypothetical means, or VHM, and statisticians would call it 
the between-group variability. The residual standard deviation is equal to σ = 19.02—
statisticians call this the within-group variability, and actuaries would say that its square 
is the expected value of the process variance, or EVPV. Note that the between-town and 
the within-town standard deviations are quite similar. The ratio

va +v

va =
18.45+19.02

18.45
= 49.2%
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is known as the intraclass correlation. For our data this ratio is close to 50%, letting us 
know that the observations within a town are mildly correlated.

Note that the fixed effects for per capita income, population per square mile, and 
year are all statistically significant. The coefficient for calendar year is now estimated 
at $3.83—still a sizable increase beyond the adjustment made to the data (prior to 
loading it) based on the CPI.

Figure 6.8 shows a diagnostic plot for the model where the y-axis has the stan-
dardized residuals and on the x-axis we have the fitted values. From this plot we can 
see that the assumption that our response variable has constant variance is reasonable. 
We do not see any fanning in or out of the residuals. There are no clear outliers in the 
plot, and so our assumption that the data comes from a single data-generating process 
(as defined by our model) also seems reasonable.

The between-town variability σα certainly seems large enough to be significant, 
but we should check. The intervals() function will display approximate 95% 
confidence intervals for fixed as well as random effects.
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Figure 6.8.    Standardized residuals versus fitted values  
for the random intercept model fitted to the sample  
of Massachusetts towns.

intervals(bi.rnd.int)

Approximate 95% confidence intervals

Fixed effects:
	 lower	 est.	 upper
(Intercept)	 –8.315161	 70.257082	 148.829325
PCI.k	 –6.121279	 –4.194135	 –2.266991
lnPPSM	 11.742719	 21.982095	 32.221471
YR	 1.568409	 3.829885	 6.091360
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Random Effects:
Level: TOWNCODE 
	 lower	 est.	 upper
sd((Intercept))	 13.25503	 18.44886	 25.67781

Within-group standard error:
	 lower	 est.	 upper 
	16.71330	 19.01929	 21.64345

Based on the above output, the between-town variability is clearly significant. 
Our current model has four fixed parameters and one random parameter even though 
we have 29 different towns. If we expanded our data to include more towns, this model 
will still have only five parameters.

Exercise 6.1    From our multiple series plot, Figure 6.1, we might suspect that different 
towns should have different slope coefficients for the predictor variable YR. Should we add a 
random component for this variable?

Solution 6.1    If we want to add a random component to the slope of YR, then we want to 
fit the following model:

E AC8 B = a i + b 0 + b 1 PCI + b 2 log PPSM` j+ b 3 + c i` j YR,• • •

where both αi and γi are random variables.

We can fit that model and display approximate 95% confidence intervals for the parameters via

bi.rnd.slope <- lme(AC ~ PCI.k + lnPPSM + YR,
	 data = db.train,
	 random = ~ 1 + YR | TOWNCODE)
intervals(bi.rnd.slope)

Approximate 95% confidence intervals

  Fixed effects:
	 lower	 est.	 upper
(Intercept)	 –8.483553	 67.376635	 143.236823
PCI.k	 –5.920253	 –4.037949	 –2.155646
lnPPSM	 12.083632	 21.958795	 31.833958
YR	 1.408192	 3.795298	 6.182403

  Random Effects:
    Level: TOWNCODE 
	 lower	 est.	 upper
sd((Intercept))	 6.6223297	 14.3342800	 31.0270845
sd(YR)	 0.3672731	 2.4125204	 15.8472126
cor((Intercept),YR)	 –0.9935728	 0.4066217	 0.9988532
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  Within-group standard error:
	 lower	 est.	 upper 
	 16.11193	 18.64116	 21.56742

From the output, we can see that the standard deviation for the random slope σγ has been 
estimated at 2.41 and its confidence interval does not include zero; therefore, the model suggests 
that a random slope for each town is important.

A five-point summary of the estimated random slopes yields

summary(ranef(bi.rnd.slope)[[“YR”]])

	 Min.	 1st Qu.	 Median	 Mean	 3rd Qu.	 Max. 
	–2.35759	 –0.82400	 –0.07675	 0.00000	 0.32923	 5.83271

Model Predictions
So far we have estimated four models:

•	 bi.all: complete pooling of all data,
•	 bi.fixed: fixed effects for TOWNCODE,
•	 bi.rnd.int: random effects for TOWNCODE, and
•	 bi.rnd.slope: random effects for TOWNCODE and YR.

From these models we can compute predictions for the training data as well as the 
validation data and compare them with the actual observations. Table 6.2 shows the 
following performance measures on the training data:

•	 AIC, Akaike information criterion,
•	 BIC, Bayesian information criterion,
•	 MSPE, mean squared prediction error, and
•	 MAPE, mean absolute prediction error.

For the validation data we use MSPE and MAPE.

Table 6.2.    Comparison metrics for all four models using both the training 
and validation data. AIC is the Akaike information criterion, BIC is the 
Bayesian information criterion, MSPE is the mean squared prediction error, 
and MAPE is the mean absolute prediction error.

Training Data Validation Data

Model AIC BIC MSPE MAPE MSPE MAPE

bi.all 1,362.21 1,377.09 657.01 19.50 769.90 23.42

bi.fixed 1,293.31 1,391.55 277.65 12.43 743.98 22.80

bi.rnd.int 1,310.72 1,328.41 298.22 13.06 675.22 21.41

bi.rnd.slope 1,312.77 1,336. 36 280.51 12.85 728.66 22.12
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The worst model, across all measures, is bi.all, where we ignored the variable 
TOWNCODE. Many modelers use AIC/BIC as part of their model selection criteria. 
Across the above models, AIC would select the bi.fixed model and BIC would go 
with bi.rnd.int. Both measures of prediction error, computed on the training data, 
suggest that the fixed-effects model, bi.fixed, is the better choice. We know full well 
that relying on any measure of performance based on the training data may lead us astray!

We can see that both prediction error measures are larger on the validation data 
than on the training data and both measures have their minimum for the random 
intercept model, bi.rnd.int. Our selected model is the random intercept model:

E AC8 B = b 0+a i` j+b 1 PCI +b 2 log PPSM` j+b 3 YR.• • •

Figure 6.9 shows the actual data from 1993 to 1998 together with the predictions 
for 1998 based on the training data (1993–1997). The predictions are in open red-colored 
circles and are joined to their actual values by a pink line.

6.2.  Hospital Length of Stay
The length of stay at a hospital is a measure health organizations track, and it is 

important to understand some of the patient characteristics that may influence it. The 
following example comes from Hilbe (2007), and the data is a random sample of patients 
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Figure 6.9.   Time series plot of actual claim costs across calendar 
years for the 29 randomly selected Massachusetts towns (shown 
in black) for the training data (1993–1997). The actual 1998 
experience is shown in gray along with the predicted values from 
the random intercept model (shown in red).
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drawn from the state of Arizona Medicare program for a single undisclosed diagnostic 
group. The data, medpar, is available at the book’s website.

The response variable is length of stay, los, a count of the number of days a patient 
spent in the hospital. The following explanatory variables are available:

1.	 provnum: identifier for the medical provider
2.	 hmo: does the patient belong to a health maintenance organization (HMO)?
3.	 white: does the patient self-identify primarily as a Caucasian?
4.	 type1: was the admission to the hospital elective?
5.	 type2: was the admission to the hospital urgent?
6.	 type3: was the admission to the hospital emergency?
7.	 age: the age group of the patient (1 to 9)
8.	 age80: patient is older than or equal to 80
9.	 died: did the patient die at the hospital?

All variables are indicator variables (1/0) except for provnum and age. The data 
has 1,495 observations and 54 unique medical providers. We would like to understand 
how these explanatory variables could help us predict the length of stay for a newly 
admitted patient.

The response variable is counting the days that a patient spends in the hospital, 
and so perhaps we should use a Poisson distribution for the length of stay. But the 
Poisson distribution would not be entirely appropriate because length of stay can 
never be zero. What would work is the zero-truncated Poisson distribution defined 
as follows: we say that N is a zero-truncated Poisson random variable with parameter 
λ > 0 if

Prob N = y` j=
1- e-m

1
y!

e-mm y

for y =1, 2, . . .

Thus a zero-truncated Poisson random variable is a rescaled Poisson random variable 
where we have removed the possibility of N = 0.

Exercise 6.2    Show that the zero-truncated Poisson distribution is a member of the exponen-
tial family.

Solution 6.2    To show that a zero-truncated Poisson distribution is a member of the exponen-
tial family, we have to rewrite the density function in the form

a y,z` jexp
z

yi - l i` j
R

T

S
S
S

V

X

W
W
W,

where ϕ is a dispersion parameter and a(y, ϕ) is a normalizing constant.

The mean of the distribution is given by the first derivative of κ(θ), and the variance function 
is the derivative of the mean with respect to θ, that is, κ″(θ).
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We can rewrite the density function as follows:

y! 1- e-m` j
e-mm y

=
y!
1

em -1` j
m y

=
y!
1
e ylog m` j- log e m-1` j.

Hence, we have θ = log(λ), κ(θ) = log(eeθ − 1), a(y, ϕ) = 1/ y!, and ϕ = 1.

Therefore, the zero-truncated Poisson distribution is a member of the exponential family of 
distributions. The mean of the distribution is

	
ll i` j =

ee i - 1
eiee i

=
em -1
mem

= n.	 (6.1)

In an application, we would have an estimate of what the mean of the distribution might be, and 
so we would like to express the parameter λ in terms of the mean µ. Solving the above equation 
for λ in terms of the mean µ requires the use of the Lambert W function (see Appendix C), 
and we have that

m = n +W0 -ne-n` j,

where W0 is the principal branch.

The variance function in terms of the mean µ is

	
lll i` j =

ee i -1` j2
eiee i ee i - ei -18 B

=
em -1` j2

mem em - m -18 B
=n 1+W0 -ne-n` j
R

T
SS

V

X
WW,	 (6.2)

where again W0 is the principal branch of the Lambert W function.

Exercise 6.3    Compare the Poisson and zero-truncated Poisson distributions with means 
equal to 1.5, 2.5, and 3.5. Based on this information, what would you conclude in terms of 
the usefulness of the zero-truncated Poisson distribution?

Solution 6.3    The Poisson distribution with parameter λ has a mean equal to λ. But the 
zero-truncated Poisson distribution with parameter λ has a mean equal to λ/(1 – e–λ), and thus 
we need to find the appropriate value of λ to give us a zero-truncated Poisson distribution 
with the correct mean; that is, given the mean µ the correct value of λ (see previous exercise) is

m = n +W0 -ne-n` j,

where W0 is the principal branch of the Lambert W function. See Appendix C for more infor-
mation on Lambert’s function.

Figure 6.10 shows the probability mass functions for the Poisson and zero-truncated Poisson 
random variables with means equal to 1.5, 2.5, and 3.5. The solid dots correspond to the Poisson 
distribution, and the open circles are the zero-truncated Poisson.
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When the mean is small, the probabilities between the two distributions differ significantly. 
But as the mean increases, the probabilities get closer and closer together. If the mean length of 
stay is larger than, say, 4 or 5, then using the Poisson distribution instead of the zero-truncated 
Poisson distribution would yield nearly identical results.
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Figure 6.10.    Poisson and zero-truncated Poisson probabilities  
for means equal to 1.5, 2.5, and 3.5. As the mean increases,  
the difference between the Poisson and the zero-truncated 
Poisson distributions narrows quickly. The closed circles represent 
the Poisson distribution, and the open circles correspond to the  
zero-truncated Poisson distribution. Red-colored points correspond 
to a mean of 1.5, blue corresponds to 2.5, and purple has a  
mean of 3.5.

Exploratory Data Analysis
On average, we should have about 30 patients per provider, but the data shows a 

lot of variation—we have a provider with a single patient and another with 92. The 
overall mean length of stay in the hospital is equal to 9.9 days. Table 6.3 shows the 
top-five and bottom-five providers in terms of their mean length of stay along with 
the number of patients, their mean age group, how many of them consider themselves 
Caucasian, and the type of admission to the hospital.

The length of stay is strongly influenced by the type of admission but not the age 
of the patient. Table 6.4 displays the average hospital stay by age group and type of 
admission. As we read down the columns, there are no clear upward or downward 
trends—therefore, age group does not seem to be related to the number of days a 
patient stays in the hospital. Reading horizontally across, we find that nearly all elective 
admissions have the shortest stays, emergency admissions have the longest stays, and 
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Table 6.3.   Top-five and bottom-five providers sorted by mean length of stay in decreasing 
order. Also showing the number of patients for each provider, their mean age group,  
the number of patients who consider themselves Caucasian (White), and the number 
by type of admission to the hospital.

Provider
Number 

of Patients
Mean 
Stay

Mean 
Age

Count 
White

Type of Admission

Elective Urgent Emergency

32003 2 47.5 5.0 2 0 2 0

32002 10 28.3 5.3 9 0 0 10

32000 38 26.6 4.8 32 0 0 38

30073 4 21.8 6.5 0 2 2 0

30078 3 18.3 5.0 0 2 1 0

30025 3 4.7 4.3 2 3 0 0

30067 5 4.4 5.4 5 5 0 0

30060 2 3.5 5.5 2 1 1 0

30044 2 3.0 6.5 2 0 2 0

30068 1 2.0 4.0 1 1 0 0

Table 6.4.    Average length of stay by age group 
and type of admission. Note that in nearly all cases 
elective admissions are the shortest and emergency 
admissions are the longest. An entry of “NA” means 
that there is no data for this combination.

Type of Admission

Age Group Elective Urgent Emergency

1 13.8 9.5 NA

2 7.5 16.2 20.6

3 9.7 11.4 12.6

4 9.1 11.0 18.5

5 8.3 10.8 22.7

6 9.1 11.4 16.9

7 8.9 10.6 15.4

8 7.8 12.1 16.3

9 8.7 7.7 17.3
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urgent admissions are between. Also note that for age group 1, the average length of 
stay for elective admissions is very high at 13.8 days. But that high mean value is based 
on only four observations, and thus we should be careful about using these levels as 
base levels in our estimation of models.

Exercise 6.4    Further explore the relationship between age and los. Do not treat age 
as a numeric variable but do take into account the type of admission. Does the data have many 
outliers?

Solution 6.4    The following display shows age as a categorical variable and length of stay, 
los, using boxplots for each type of admission. Note that most of the outliers are for emergency 
and urgent admissions.
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ggplot(data = db,
	 mapping = aes(x = factor(age),
	 y = los)) +
  facet_wrap(~ type) +
  geom_boxplot() +
  labs(x = “Age Group”,
       y = “Length of Stay (days)”)

Modeling Length of Stay
Our response variable is length of stay, los, a count of the number of days a patient 

remained hospitalized. For now we ignore the information supplied by the variable 
provnum (medical provider) because that variable has a large number of levels, 54.

For our first model, we will use the Poisson distribution and include hmo, white, 
type, and age.cat as explanatory variables. The variable age.cat is a categorical 
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version of age, and we have selected age group 6 as the base level because that level 
has the largest number of observations. For type of admission, type, we have selected 
level elective as our base for the same reason.

The model fit is summarized below.

Call:
glm(formula = los ~ type + white + hmo + age.cat, 
    family = poisson(link = “log”), data = db)

Coefficients:
	 Estimate	 Std. Error	 z value	 Pr(>|z|)	
(Intercept)	 2.36401	 0.03339	 70.795	 < 2e-16	 ***
typeUrgent	 0.21949	 0.02113	 10.388	 < 2e-16	 ***
typeEmergency	 0.70906	 0.02620	 27.066	 < 2e-16	 ***
white	 –0.15835	 0.02912	 –5.437	 5.41e-08	 ***
hmo	 –0.07505	 0.02400	 –3.128	 0.00176	 ** 
age.cat1	 0.12164	 0.11900	 1.022	 0.30669 
age.cat2	 –0.09817	 0.04645	 –2.113	 0.03456	 * 
age.cat3	 0.01670	 0.03032	 0.551	 0.58184 
age.cat4	 –0.01421	 0.02536	 –0.560	 0.57524 
age.cat5	 –0.03259	 0.02507	 –1.300	 0.19360 
age.cat7	 –0.05237	 0.02921	 –1.793	 0.07295	 . 
age.cat8	 –0.09316	 0.03895	 –2.392	 0.01678	 * 
age.cat9	 –0.09152	 0.05179	 –1.767	 0.07716	 . 
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 8901.1 on 1494 degrees of freedom
Residual deviance: 8125.4 on 1482 degrees of freedom
AIC: 13867

Number of Fisher Scoring iterations: 5

Note that it appears that type, white, and hmo are all statistically significant 
variables. Many of the estimated coefficients for age.cat have a negative sign but 
do not appear to be significant at the 5% level. Relative to age group 6, every other 
group appears to have either a similar length of stay or a shorter one (groups 2 and 8).

This model unfortunately does not fit the data well. Figure  6.11 shows several 
diagnostic plots. The deviance residuals should be approximately normally distributed. 
Their mean is –0.281, and their standard deviation is 2.315. Clearly we have some very 
large residuals. The QQ plot in the bottom-left panel shows that the deviance residuals  
have much thicker tails than the normal distribution, and the bottom-right panel shows 
a nonsymmetrical distribution for the deviance residuals. Finally, the upper-right panel, 
which displays the absolute value of the deviance residuals against the fitted values, 
shows an increasing trend whereby the variance increases as the fitted values increase.
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The clusters of observations seen in the upper panels arise because the different 
types of admission to the hospital (elective, urgent, and emergency) have little overlap 
in the response variable. We also see a clear decreasing pattern in the upper-left panel. 
The model overpredicts many of the emergency admissions.

Also, if the model fit had been good, we would expect an estimate of the dis-
persion parameter to be close to 1. Here both the mean deviance estimate as well 
as the Pearson estimate of the dispersion parameter are well above 1, indicating 
overdispersion.

	Mean Dev. Estimate	 Pearson Estimate 
	 5.482701	 6.257832

But is the overdispersion real or apparent? Apparent overdispersion can arise 
when our modeling of the data is deficient. For example, not including an important 
explanatory variable in our model, using the wrong link function, or the presence of 
outliers might show that the estimate of the dispersion parameter is greater than 1, 
leading us to think that the data is overdispersed. But once we fix our model, the 
estimate of the dispersion parameter falls back close to unity.
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Figure 6.11.    Diagnostic plots for the Poisson model predicting 
length of stay based on type of admission, self-reported race, 
age category, and whether the patient is a member of an HMO. 
The clusters, from left to right in the upper panels, correspond 
to elective, urgent, and emergency admissions to the hospital.
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Exercise 6.5    Outlier observations violate one of the most important assumptions in regres-
sion analysis, namely, that all of the observations come from the same data generation process.

Repeat the above analysis, but first remove the largest 5% of observations in terms of length 
of stay. The Pearson estimate of the dispersion parameter should now be smaller, but it is still 
well above 1.

Solution 6.5    Remove the top 5% of observations and fit the Poisson model to the new 
dataset dta.

dta <- filter(db,
	 db$los < quantile(db$los, probs = 0.95))
los.pois.no <- glm(los ~ type + white + hmo + age.cat,
	 data = dta,
	 family = poisson(link = “log”))
summary(los.pois.no)

Call:
glm(formula = los ~ type + white + hmo + age.cat, 
    family = poisson(link = “log”), data = dta)

Coefficients:
	 Estimate	 Std. Error	 z value	 Pr(>|z|) 
(Intercept)	 2.15992	 0.03889	 55.541	 < 2e-16	 ***
typeUrgent	 0.11565	 0.02388	 4.844	 1.27e-06	 ***
typeEmergency	 0.15445	 0.03909	 3.952	 7.76e-05	 ***
white	 –0.11289	 0.03406	 –3.314	 0.000918	 ***
hmo	 –0.02104	 0.02544	 –0.827	 0.408236 
age.cat1	 0.34929	 0.11998	 2.911	 0.003600	 ** 
age.cat2	 –0.15257	 0.05733	 –2.661	 0.007781	 ** 
age.cat3	 0.04527	 0.03467	 1.306	 0.191613 
age.cat4	 0.12751	 0.02834	 4.499	 6.84e-06	 ***
age.cat5	 –0.00572	 0.02896	 –0.198	 0.843411 
age.cat7	 0.08706	 0.03211	 2.711	 0.006709	 ** 
age.cat8	 0.03440	 0.04200	 0.819	 0.412732 
age.cat9	 0.05025	 0.05584	 0.900	 0.368183 
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 4908.2 on 1410 degrees of freedom
Residual deviance: 4801.4 on 1398 degrees of freedom
AIC: 10096

Number of Fisher Scoring iterations: 5

Compute fitted values and deviance residuals, and generate the diagnostic plots.
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The deviance residuals versus the fitted values (upper-left panel) show that many points 
seem to be on straight lines with a negative slope. These “patterns” are an artifact indicating 
that our response variable is an integer, and they arise for count and binomial (with response 
variable 0 or 1) models. For these models, using quantile residuals is recommended (Dunn 
and Smyth 1996). You can calculate quantile residuals for GLMs via the function qresid(), 
available in the statmod package.

The QQ plot shows that both tails of the deviance residuals are too thin in relation to the 
normal distribution. The upper-right panel depicts a funnel-type shape fanning inward as the 
fitted values increase.

The estimates of the dispersion parameter are

	Mean Dev. Estimate	 Pearson Estimate
	 3.434447	 3.305389

Both values are much smaller than in our previous model with all the observations, but they 
are still much larger than the theoretical value of 1.
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The following exercise shows how apparent overdispersion can arise if we do not 
have the appropriate explanatory variables.

Exercise 6.6    Generate a dataset with a response variable that is Poisson distributed and 
a categorical variable with four levels. The response variable, skip, is the number of classes 
that students at a university skip in one semester. The categorical variable, class, classifies  
students by how many years they have already been at the university: 0 (freshman), 1 (sophomore), 
2 (junior), or 3 (senior).
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Each group should have the same number of students, and the mean number of classes skipped 
for freshmen is 4.5, sophomores is 1.5, juniors is 1.5, and seniors is 6.5.

1.	 Fit a Poisson GLM to the data ignoring the class variable and compute the Pearson 
estimate of the dispersion parameter. Is overdispersion present in this dataset?

2.	 Fit a Poisson GLM including the class variable and recompute the Pearson estimate of 
the dispersion parameter. Does the result indicate that the data is overdispersed?

Solution 6.6    Set a seed for the random number generator so we can reproduce our  
computations and generate our data based on four classes, each Poisson distributed with 
a different mean.

set.seed(12853)
N <- 100
dta <- tibble(skip = c(rpois(N, lambda = 4.5),
	 rpois(N, lambda = 2.5),
	 rpois(N, lambda = 1.5),
	 rpois(N, lambda = 6.5)),
	 class = c(rep(“freshman”, N),
	 rep(“sophomore”, N),
	 rep(“junior”, N),
	 rep(“senior”, N)))

Ignoring the class standing of a student, we fit a Poisson model across all observations and 
compute the Pearson estimate ϕ̂ of the dispersion parameter.

m1 <- glm(skip ~ 1,
	 data = dta,
	 family = poisson(link = “log”))
(phi.hat <- sum(resid(m1, type = “pearson”)^2) / df.residual(m1))

[1] 2.11863

The value of ϕ̂ is well above its theoretical value of 1, indicating that the data is overdispersed. 
Next, we include the explanatory variable class and recompute the Pearson estimate of the 
dispersion parameter, yielding a value that is much closer to 1.

m2 <- glm(skip ~ class,
	 data = dta,
	 family = poisson(link = “log”))
(phi.hat <- sum(resid(m2, type = “pearson”)^2) / df.residual(m2))

[1] 0.9422353

Therefore, we conclude that the overdispersion we saw earlier is apparent.
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As a consequence of the overdispersion, the estimated standard errors for our 
coefficients are too narrow, and this might lead us to infer that some explanatory 
variables are significant when in fact they are not. One may compensate for the over-
dispersion by inflating the standard error with a multiplicative factor equal to the square 
root of the estimated dispersion parameter. For our data this factor would be equal to 
approximately 2.5, and applying it to our fitted Poisson model would render all of 
the estimated coefficients for age.cat not significant at the 5% level as well as the 
indicator for the health maintenance organization, hmo.

Exercise 6.7    Adjust the standard errors by fitting a quasi-Poisson model, and verify the 
claims made in the previous paragraph.

Solution 6.7 

los.qpoi <- glm(los ~ type + white + hmo + age.cat,
	 data = db,
	 family = quasipoisson(link = “log”))
summary(los.qpoi)

Call:
glm(formula = los ~ type + white + hmo + age.cat, 
    family = quasipoisson(link = “log”), data = db)

Coefficients:
	 Estimate	 Std. Error	 t value	 Pr(>|t|) 
(Intercept)	 2.36401	 0.08353	 28.300	 < 2e-16	 ***
typeUrgent	 0.21949	 0.05286	 4.153	 3.48e-05	 ***
typeEmergency	 0.70906	 0.06553	 10.820	 < 2e-16	 ***
white	 –0.15835	 0.07285	 –2.174	 0.0299	 * 
hmo	 –0.07505	 0.06003	 –1.250	 0.2114 
age.cat1	 0.12164	 0.29769	 0.409	 0.6829 
age.cat2	 –0.09817	 0.11620	 –0.845	 0.3983 
age.cat3	 0.01670	 0.07584	 0.220	 0.8258 
age.cat4	 –0.01421	 0.06343	 –0.224	 0.8228 
age.cat5	 –0.03259	 0.06272	 –0.520	 0.6034 
age.cat7	 –0.05237	 0.07306	 –0.717	 0.4736 
age.cat8	 –0.09316	 0.09745	 –0.956	 0.3392 
age.cat9	 –0.09152	 0.12954	 –0.707	 0.4800 
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasipoisson family taken to be 6.257848)

    Null deviance: 8901.1 on 1494 degrees of freedom
Residual deviance: 8125.4 on 1482 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 5
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Real overdispersion can also arise because the observations in our data are not 
independent of each other. That is, there are clusters of observations that are similar 
to each other and thus would violate the assumption that they are sampled indepen-
dently. In our current application, patients belonging to a medical provider might have 
other (unobserved) characteristics in common, creating a cluster that contributes to 
the overdispersion.

There are 54 unique medical providers in the dataset, many of them (11) with 
fewer than five data points each. Hence, estimating a Poisson model with provnum as 
an explanatory variable may yield estimated coefficients for the medical providers that 
are extreme because they are based on a small number of observations. Estimating a 
Poisson GLM with provnum as an explanatory variable yields the following summary:

Call:
glm(formula = los ~ type + white + hmo + age.cat + provnum, 
    family = poisson(link = “log”), data = db)

Coefficients:
	 Estimate	 Std. Error	 z value	 Pr(>|z|) 
(Intercept)	 2.00488	 0.06025	 33.277	 < 2e-16	 ***
typeUrgent	 0.23065	 0.02506	 9.204	 < 2e-16	 ***
typeEmergency	 0.09751	 0.04993	 1.953	 0.050835 	. 
white	 –0.01110	 0.03205	 –0.346	 0.729081 
hmo	 –0.09637	 0.02603	 –3.702	 0.000214	 ***
age.cat1	 0.24808	 0.12120	 2.047	 0.040662	 * 
age.cat2	 –0.06257	 0.04726	 –1.324	 0.185514 
age.cat3	 –0.02743	 0.03128	 –0.877	 0.380545 
age.cat4	 –0.02967	 0.02594	 –1.144	 0.252772 
age.cat5	 –0.05041	 0.02556	 –1.973	 0.048538	 * 
age.cat7	 –0.07119	 0.02988	 –2.383	 0.017182	 * 
age.cat8	 –0.13813	 0.03965	 –3.483	 0.000495	 ***
age.cat9	 –0.07188	 0.05272	 –1.363	 0.172781 
provnum30002	 0.28683	 0.06480	 4.426	 9.58e-06	 ***
provnum30003	 0.06364	 0.15630	 0.407	 0.683877 
provnum30006	 0.31611	 0.06218	 5.084	 3.70e-07	 ***
provnum30007	 –0.11236	 0.12131	 –0.926	 0.354327 
provnum30008	 0.10272	 0.08681	 1.183	 0.236687 
provnum30009	 0.50116	 0.08813	 5.687	 1.29e-08	 ***
provnum30010	 0.39929	 0.06552	 6.094	 1.10e-09	 ***
provnum30011	 0.37310	 0.07103	 5.252	 1.50e-07	 ***
provnum30012	 –0.16181	 0.10005	 –1.617	 0.105826 
provnum30013	 0.34277	 0.06421	 5.338	 9.40e-08	 ***
provnum30014	 0.04435	 0.06758	 0.656	 0.511686 
provnum30016	 0.56156	 0.06725	 8.350	 < 2e-16	 ***
provnum30017	 –0.37225	 0.10082	 –3.692	 0.000222	 ***
provnum30018	 0.22986	 0.07877	 2.918	 0.003521	 ** 
provnum30019	 0.01020	 0.10322	 0.099	 0.921248 
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provnum30022	 0.22303	 0.06876	 3.244	 0.001180	 ** 
provnum30023	 0.48433	 0.15370	 3.151	 0.001627	 ** 
provnum30024	 0.25737	 0.07018	 3.667	 0.000245	 ***
provnum30025	 –0.41530	 0.27244	 –1.524	 0.127419 
provnum30030	 0.31769	 0.07399	 4.294	 1.76e-05	 ***
provnum30033	 0.08566	 0.35749	 0.240	 0.810630 
provnum30035	 –0.26337	 0.17333	 –1.519	 0.128641 
provnum30036	 0.38796	 0.10186	 3.809	 0.000140	 ***
provnum30037	 –0.14532	 0.09916	 –1.465	 0.142793 
provnum30038	 0.34154	 0.06731	 5.074	 3.89e-07	 ***
provnum30043	 –0.18059	 0.11190	 –1.614	 0.106569 
provnum30044	 –1.09085	 0.41219	 –2.646	 0.008134	 ** 
provnum30055	 0.18654	 0.07591	 2.457	 0.014002	 * 
provnum30059	 0.16790	 0.17885	 0.939	 0.347845 
provnum30060	 –0.84098	 0.38162	 –2.204	 0.027547	 * 
provnum30061	 0.38228	 0.05985	 6.388	 1.68e-10	 ***
provnum30062	 –0.15580	 0.10219	 –1.525	 0.127333 
provnum30064	 0.37192	 0.07454	 4.990	 6.05e-07	 ***
provnum30065	 0.38364	 0.06843	 5.606	 2.07e-08	 ***
provnum30067	 –0.46192	 0.21922	 –2.107	 0.035105	 * 
provnum30068	 –1.27096	 0.70906	 –1.792	 0.073057	 . 
provnum30069	 –0.02031	 0.09571	 –0.212	 0.831949 
provnum30073	 0.98774	 0.12270	 8.050	 8.27e-16	 ***
provnum30078	 0.84927	 0.14678	 5.786	 7.22e-09	 ***
provnum30080	 0.20900	 0.08087	 2.584	 0.009753	 ** 
provnum30083	 0.17626	 0.09096	 1.938	 0.052642	 . 
provnum30084	 0.47395	 0.16488	 2.874	 0.004047	 ** 
provnum30085	 0.07268	 0.08337	 0.872	 0.383291 
provnum30086	 0.12834	 0.08538	 1.503	 0.132803 
provnum30087	 0.37814	 0.07492	 5.048	 4.47e-07	 ***
provnum30088	 0.24951	 0.06398	 3.900	 9.62e-05	 ***
provnum30089	 0.18284	 0.06584	 2.777	 0.005484	 ** 
provnum30092	 –0.06362	 0.10993	 –0.579	 0.562791 
provnum30093	 0.28739	 0.07169	 4.009	 6.10e-05	 ***
provnum30094	 0.12694	 0.11596	 1.095	 0.273659 
provnum32000	 1.22846	 0.07710	 15.932	 < 2e-16	 ***
provnum32002	 1.29685	 0.09218	 14.069	 < 2e-16	 ***
provnum32003	 1.65103	 0.11696	 14.117	 < 2e-16	 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 8901.1 on 1494 degrees of freedom
Residual deviance: 7080.2 on 1429 degrees of freedom
AIC: 12927

Number of Fisher Scoring iterations: 5
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Previously, in Table 6.3, we displayed the top-five and bottom-five medical providers 
by the average length of stay of their patients. Provider 30068 has the lowest average 
length of stay, only two days, but has only one patient. The estimated coefficient for 
this provider is equal to –1.271 with a standard error equal to 0.709. This is the lowest 
estimated coefficient, and it has the highest standard error. Should we completely trust 
such an estimate? Most likely not.

Exercise 6.8    Which medical provider has the largest estimated coefficient? How many 
patients does this provider have, and what is the average length of stay for these patients?

Solution 6.8    Provider 32003 has the largest estimated coefficient, equal to 1.651, with a 
standard error of 0.117. The number of patients for this provider is equal to only two.

Since the number of observations for each medical provider varies significantly, we 
may try to address that by applying some weights (based on the number of observa-
tions by provider) to the observations in our dataset. Unfortunately, doing a weighted 
quasi-Poisson regression where the weights are proportional to the number of patients 
for each medical provider yields estimated coefficients that are close to the unweighted 
estimates (except for a handful of providers).

Call:
glm(formula = los ~ type + white + hmo + age.cat + provnum, 
    family = quasipoisson(link = “log”), data = db2, 
    weights = n.obs)

Coefficients:
	 Estimate	 Std. Error	 t value	 Pr(>|t|) 
(Intercept)	 1.965719	 0.127297	 15.442	 < 2e-16	 ***
typeUrgent	 0.233498	 0.057253	 4.078	 4.79e-05	 ***
typeEmergency	 0.070619	 0.109089	 0.647	 0.517506 
white	 0.053577	 0.075344	 0.711	 0.477139 
hmo	 –0.095672	 0.052505	 –1.822	 0.068641	 . 
age.cat1	 0.241992	 0.282850	 0.856	 0.392389 
age.cat2	 –0.111448	 0.113022	 –0.986	 0.324264 
age.cat3	 –0.004385	 0.068611	 –0.064	 0.949054 
age.cat4	 –0.054710	 0.058995	 –0.927	 0.353893 
age.cat5	 –0.074684	 0.056869	 –1.313	 0.189301 
age.cat7	 –0.112541	 0.066895	 –1.682	 0.092717	 . 
age.cat8	 –0.166028	 0.086961	 –1.909	 0.056432	 . 
age.cat9	 –0.181743	 0.126114	 –1.441	 0.149774 
provnum30002	 0.289466	 0.129847	 2.229	 0.025950	 * 
provnum30003	 0.077958	 0.926951	 0.084	 0.932988 
provnum30006	 0.313415	 0.120664	 2.597	 0.009489	 ** 
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provnum30007	 –0.121399	 0.479380	 –0.253	 0.800119 
provnum30008	 0.105866	 0.238715	 0.443	 0.657483 
provnum30009	 0.496947	 0.293825	 1.691	 0.090997	 . 
provnum30010	 0.402419	 0.133208	 3.021	 0.002564	 ** 
provnum30011	 0.362179	 0.159036	 2.277	 0.022913	 * 
provnum30012	 –0.174294	 0.305841	 –0.570	 0.568846 
provnum30013	 0.339376	 0.127773	 2.656	 0.007993	 ** 
provnum30014	 0.039314	 0.132206	 0.297	 0.766228 
provnum30016	 0.569275	 0.150209	 3.790	 0.000157	 ***
provnum30017	 –0.372642	 0.276532	 –1.348	 0.178015 
provnum30018	 0.224550	 0.199666	 1.125	 0.260936 
provnum30019	 0.015502	 0.348737	 0.044	 0.964551 
provnum30022	 0.236672	 0.142651	 1.659	 0.097316	 . 
provnum30023	 0.480942	 1.109426	 0.434	 0.664713 
provnum30024	 0.260151	 0.152573	 1.705	 0.088394	 . 
provnum30025	 –0.421529	 2.363310	 –0.178	 0.858462 
provnum30030	 0.310828	 0.175149	 1.775	 0.076169	 . 
provnum30033	 0.060146	 5.410482	 0.011	 0.991132 
provnum30035	 –0.254227	 1.033011	 –0.246	 0.805638 
provnum30036	 0.379939	 0.403487	 0.942	 0.346536 
provnum30037	 –0.141328	 0.304890	 –0.464	 0.643049 
provnum30038	 0.338189	 0.140090	 2.414	 0.015900	 * 
provnum30043	 –0.184867	 0.402848	 –0.459	 0.646375 
provnum30044	 –1.099493	 4.418330	 –0.249	 0.803514 
provnum30055	 0.175451	 0.176889	 0.992	 0.321428 
provnum30059	 0.148876	 1.315957	 0.113	 0.909943 
provnum30060	 –0.857764	 4.090546	 –0.210	 0.833936 
provnum30061	 0.379276	 0.113578	 3.339	 0.000861	 ***
provnum30062	 –0.165666	 0.331095	 –0.500	 0.616901 
provnum30064	 0.395085	 0.181491	 2.177	 0.029652	 * 
provnum30065	 0.394153	 0.147450	 2.673	 0.007600	 ** 
provnum30067	 –0.456194	 1.462445	 –0.312	 0.755132 
provnum30068	 –1.271439	 10.819353	 –0.118	 0.906468 
provnum30069	 –0.028841	 0.298681	 –0.097	 0.923087 
provnum30073	 1.045035	 0.829866	 1.259	 0.208134 
provnum30078	 0.904141	 1.197396	 0.755	 0.450320 
provnum30080	 0.204418	 0.208851	 0.979	 0.327859 
provnum30083	 0.173088	 0.272612	 0.635	 0.525579 
provnum30084	 0.536975	 1.353745	 0.397	 0.691678 
provnum30085	 0.078455	 0.214062	 0.367	 0.714042 
provnum30086	 0.127506	 0.230451	 0.553	 0.580152 
provnum30087	 0.376572	 0.183396	 2.053	 0.040222	 * 
provnum30088	 0.244327	 0.124009	 1.970	 0.049005	 * 
provnum30089	 0.174125	 0.129690	 1.343	 0.179609 
provnum30092	 –0.065579	 0.398792	 –0.164	 0.869404 



152	 Casualty Actuarial Society

Practical Mixed Models for Actuaries

provnum30093	 0.289241	 0.158450	 1.825	 0.068143	 . 
provnum30094	 0.120033	 0.491714	 0.244	 0.807179 
provnum32000	 1.253908	 0.167028	 7.507	 1.06e-13	 ***
provnum32002	 1.340420	 0.323211	 4.147	 3.56e-05	 ***
provnum32003	 1.634917	 1.116040	 1.465	 0.143161 
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasipoisson family taken to be 2.544499)

    Null deviance: 4014.1 on 1494 degrees of freedom
Residual deviance: 3434.7 on 1429 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 5

This approach does not resolve our issue. Moreover, these medical providers are 
not the universe of all medical providers. They are only a sample from all possible 
medical providers, and we would like to be able to infer something about their popula-
tion. To that end, we fit a GLMM with a random intercept varying by provider.

First, we define the model for the mean where we want a log-link, fixed effects of 
type, white, hmo, and age.cat, and we want to define a random intercept for  
provnum. In addition, we fit the GLMM with a Poisson distribution, a log-link 
function for the mean, a random effect for medical provider, and a constant dispersion 
parameter.

model.mu <- DHGLMMODELING(Model = “mean”,
	 Link = “log”,
	� LinPred = los ~ type + white +  

  hmo + age.cat + (1 | provnum),
	 RandDist = “gamma”)
model.phi <- DHGLMMODELING(Model = “dispersion”)

los.re <- dhglmfit(RespDist = “poisson”,
	 DataMain = db,
	 MeanModel = model.mu,
	 DispersionModel = model.phi)

Distribution of Main Response : 
	 “poisson” 
[1] “Estimates from the model(mu)”
los ~ type + white + hmo + age.cat + (1 | provnum)
[1] “log”
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	 Estimate	 Std. Error	 t-value
(Intercept)	 2.41205	 0.07681	 31.4018
typeUrgent	 0.23690	 0.02488	 9.5218
typeEmergency	 0.13434	 0.04818	 2.7885
white	 –0.01709	 0.03173	 –0.5385
hmo	 –0.09678	 0.02600	 –3.7222
age.cat1	 0.24307	 0.12109	 2.0074
age.cat2	 –0.06605	 0.04717	 –1.4003
age.cat3	 –0.02877	 0.03122	 –0.9215
age.cat4	 –0.02933	 0.02590	 –1.1324
age.cat5	 –0.05183	 0.02552	 –2.0312
age.cat7	 –0.07229	 0.02982	 –2.4243
age.cat8	 –0.13931	 0.03961	 –3.5167
age.cat9	 –0.07316	 0.05266	 –1.3894
[1] “Estimates for logarithm of lambda=var(u_mu)”
[1] “gamma”
	 Estimate	 Std. Error	 t-value
provnum	 –1.502	 0.2001	 –7.51
[1] “====== Likelihood Function Values and Condition AIC ======”
		  [,1]
–2ML (–2 p_v(mu) (h))	 :	13045.785
–2RL (–2 p_beta(mu),v(mu) (h))	:	13107.507
cAIC	 :	12929.385
Scaled Deviance	 :	 7087.167
df	 :	 1431.471

The estimated coefficients for our random intercept model do not differ signifi-
cantly from the fixed effects estimated in the Poisson GLM. The intercept and the 
coefficient for the emergency type of admission are the only ones where the difference 
is a bit larger.

Table 6.5 shows the estimated coefficients and their t-statistics for the Poisson, 
weighted Poisson, and the Poisson model with random intercepts. In all three models 
the type of admission to the hospital is significant. Note that in all three models urgent 
admissions have a longer average length of stay compared with elective admissions. But 
even though emergency admissions also have a positive coefficient, the size is smaller 
than for urgent admissions, which we might feel goes against intuition. Moreover, 
for the Poisson and weighted quasi-Poisson models this coefficient is not statistically 
significant, but it is for the random intercepts model.

From these coefficients and their standard errors we can see that the type of admission 
is important, but the size of these coefficients may not be intuitive. Both urgent and 
emergency admissions have positive coefficients, indicating that these patients will, 
on average, stay longer in the hospital compared with elective admissions. But the 
coefficient for urgent admission is much bigger than that for emergency admission. 
We might expect emergency admission patients to be in worse health compared with 
urgent admissions and thus stay longer in the hospital.
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The self-identified indicator of race, white, is not significant, but the indicator of 
membership in a health maintenance organization, hmo, is significant with a negative 
coefficient, suggesting that HMO patients’ length of stay is about 10% shorter than 
that of non-HMO patients. Some of the age group coefficients are not statistically 
significant while others are, and the coefficients do not suggest a linear relationship 
between increasing age and length of stay. Note that the youngest age group has a 
positive coefficient that is statistically significant. This suggests that young patients 
tend to stay longer (about 25% longer) at the hospital compared with patients in age 
group 6.

Table 6.5.    Estimated coefficients and their t-values from three models  
that include provnum as an explanatory variable but whose coefficients are 
not shown. The models are Poisson, weighted quasi-Poisson, and Poisson 
with random intercepts.

Poisson Wtd. quasi-Poisson Random Intercepts

Variable Est. t-stat Est. t-stat Est. t-stat

Intercept 2.005 33.277 * 1.966 15.442 * 2.412 31.402 *

Type Urgent 0.231 9.204 * 0.233 4.078 * 0.237 9.522 *

Type Emergency 0.098 1.953 0.071 0.647 0.134 2.788 *

White −0.011 −0.346 0.054 0.711 −0.017 −0.539

HMO −0.096 −3.702 * −0.096 −1.822 −0.097 −3.722 *

Age Group 1 0.248 2.047 * 0.242 0.856 0.243 2.007 *

Age Group 2 −0.063 −1.324 −0.111 −0.986 −0.066 −1.400

Age Group 3 −0.027 −0.877 −0.004 −0.064 −0.029 −0.921

Age Group 4 −0.030 −1.144 −0.055 −0.927 −0.029 −1.132

Age Group 5 −0.050 −1.973 * −0.075 −1.313 −0.052 −2.031 *

Age Group 7 −0.071 −2.383 * −0.113 −1.682 −0.072 −2.424 *

Age Group 8 −0.138 −3.483 * −0.166 −1.909 −0.139 −3.517 *

Age Group 9 −0.072 −1.363 −0.182 −1.441 −0.073 −1.389

Exercise 6.9    Perhaps the reason younger patients stay in the hospital longer than patients 
in age group 6 is because older patients are more likely to die in the hospital.

One of the variables in our dataset, died, tells us whether the patient died at the hospital. We 
cannot use that variable to predict the length of stay, but we can check whether our intuition 
that patients dying in the hospital tend to be the older patients is correct.

Based on the data, compute the empirical probability of dying at the hospital split by age 
group.
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db |>
  group_by(age.cat) |>
  summarize(n.dead = sum(died),
	 n.patients = n(),
	 prob.death = mean(died)) |>
  arrange(levels(age.cat))

# A tibble: 9 x 4
	 age.cat	 n.dead	 n.patients	 prob.death
	 <fct>	 <int>	 <int>	 <dbl>
1	1	 1	 6	 0.167
2	2	 14	 60	 0.233
3	3	 38	 163	 0.233
4	4	 84	 291	 0.289
5	5	 104	 317	 0.328
6	6	 120	 328	 0.366
7	7	 87	 191	 0.455
8	8	 46	 93	 0.495
9	9	 19	 46	 0.413

Note that as age increases, the probability of dying also increases, except for age group 9, where 
it drops.

Figure 6.12 displays some of the standard diagnostic plots for our random inter-
cept model. The panel on the upper left shows the fitted values versus the studentized 
residuals. The fitted values are on the scale of the linear predictor (as opposed to being 
on the scale of the response). There is a cluster of 50 claims with a fitted value between 
3 and 3.5. These claims come from three medical providers, and nearly all of them 
are emergency admissions, with a few of them being urgent admissions. None of the 
patients belong to an HMO. Note that the studentized residuals for these observations 
have both positive and negative values. Hence, our current model both underpredicts 
as well as overpredicts these patients.

The panel on the upper right shows the absolute value of the studentized residuals 
against the fitted values. There is a general upward trend mainly driven by the observa-
tions with fitted values in excess of 3.

The panel on the lower left displays a QQ plot showing that the studentized residuals 
have a thicker right-hand tail than the normal distribution. And the lower-right panel 
shows that the distribution of the residuals is skewed to the right, in agreement with 
the QQ plot.

Figure 6.13 shows the estimated density function for the random effects along with 
the individual estimates for each medical provider.

Solution 6.9    The variable dead is an indicator variable where a 1 means the patient died at 
the hospital, and otherwise it is zero. To compute the probability of dying, we need to group 
our data by age and compute the mean value of died for each group. It’s important to also 
know how many patients are in each group.
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Figure 6.13.   The estimated density function for the  
intercept random effects along with the estimated medical 
provider random effects.

Figure 6.12.    Diagnostic plots for the length of stay random 
intercept model by medical provider.
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6.3.  Swedish Bus Insurance
In this section we use a bus insurance example from Section 4.5 of Ohlsson and 

Johansson (2010). The data comes from the former Swedish insurance company Wasa 
for the years 1990 to 1998. It concerns insuring transportation companies and can be 
accessed from Ohlsson and Johansson’s book. Each company owns one or more buses 
that are insured for shorter or longer periods of time. At that time, the pricing scheme 
was rather simple, based on geographic zone and the age class of the bus.

The variables available and their descriptions, taken from Ohlsson and Johansson 
(2010), are as follows. We use an English abbreviation first and list the original Swedish 
acronym in parentheses:

1.	 zone (ZON): geographic subdivision of Sweden into seven zones, based on parishes 
and numbered 1 through 7.

2.	 bus.age (BUSSALD): the age class of the bus, in the span 0 to 4.
3.	 co.id (KUNDNR): an ID for the company, recoded here for confidentiality reasons.
4.	 no.obs (ANTAVT): number of observations for the company in a given tariff cell 

based on the zone and age class. There may be more than one observation per bus, 
since each renewal is counted as a new observation.

5.	 dur (DUR): duration measured in days and aggregated over all observations in the 
tariff cell.

6.	 clm.cnt (ANTSKAD): the corresponding number of claims.
7.	 tot.cost (SKADKOST): the corresponding total claim cost in Swedish kronor 

(unadjusted for inflation).

The variable dur is the amount of time a policy is in force, and thus we may use it 
as a measure of exposure. The premium is based on a bus-year unit of exposure, and 
the premium for a company would be the sum across all buses in its fleet.

Exploratory Data Analysis
The dataset has 1,542 observations and seven variables. The variables geographic 

zone, zone; age class of the bus, bus.age; and company identification, co.id, are 
categorical, and the remaining variables—number of observations, no.obs; duration 
(or exposure), dur; claim counts, clm.cnt; and total claim cost, tot.cost—are 
numeric.

There are 666 unique company IDs in the dataset. Some companies have a large 
amount of exposure while others have very little, so using this categorical variable when 
estimating frequency or severity at the level of a single company would be problematic.

Table 6.6 displays summary statistics for the numeric variables. Note that the 
number of claims, clm.cnt, ranges from zero to 402, but the 75th percentile is just 
one claim. Hence, we suspect that something is not quite right with the number of 
claims for one or more companies. Similarly, the total claim cost has some negative 
entries, and we can see that only 616 records have a non-missing entry. The missing 
entries correspond to having zero claim counts.
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Regarding the negative entries for total loss cost, they arise from 60 rows of data. 
We do not know why those entries have negative loss costs, and we will remove them 
from our analysis. Also, the top-10 claim counts are

[1]  402  377  55  53  38  34  34  29  28  27

The two largest, 402 and 377, come from company 145. We suspect that these 
entries are erroneous, and because we cannot go back to the source systems or other 
sources of information to correct them, we will delete company 145 from our analysis. 
This will remove a total of nine rows of data.

In Figure 6.14 we have the histograms of our four numeric variables. Note that all 
four are highly skewed to the right, and to enhance each of the displays we have 
omitted some large observations.

In the 1990s, the rating plan might have been relatively simple—perhaps it 
would have used only two rating factors: zone and age class. Using these two variables, 
Table 6.7 shows the empirical frequency (per year of exposure) for each of the 35 (7 × 5) 
rating cells in the plan. There is considerable variation in the empirical frequencies, 
and thus we can use zone and bus.age as part of a rating plan.

Table 6.6.    Summary statistics for the numeric variables in the bus 
dataset. Variable no.obs is the number of observations in a particular 
tariff cell. Note that each renewal counts as one observation. Duration, 
dur, is measured in days. The variable clm.cnt is the number of claims,  
and tot.cost is the total loss cost.

Percentiles

Variable Count Mean Std. Dev. 25 50 75 Min Max

no.obs 1,542 13 33 2 4 9 1 392

dur 1,542 2,284 4,970 365 725 1,876 1 66,327

clm.cnt 1,542 2 15 0 0 1 0 402

tot.cost 616 52,871 143,944 0 3,525 39,897 −17,318 1,330,610

Exercise 6.10    Summarize the number of claims in the bus data by zone and bus.age. 
How many cells have a small number of claims, say, fewer than five?

You can repeat the exercise with exposure.

Solution 6.10    We summarize the data as follows:

db |>
  group_by(zone, bus.age) |>
  summarize(clm.cnt = sum(clm.cnt),
	 .groups = “drop”) |>
  pivot_wider(names_from = bus.age,
	 values_from = clm.cnt)
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# A tibble: 7 x 6
	 zone	 ‛0’	 ‛1’	 ‛2’	 ‛3’	 ‛4’
	 <fct>	 <dbl>	 <dbl>	 <dbl>	 <dbl>	 <dbl>
1	1	 20	 8	 14	 24	 38
2	2	 14	 26	 13	 25	 151
3	3	 11	 19	 19	 11	 132
4	4	 83	 105	 150	 118	 709
5	5	 3	 8	 0	 1	 51
6	6	 29	 14	 14	 16	 184
7	7	 1	 2	 1	 3	 7

Note that most of the cells in zone 7 and zone 5 have very few counts. All other cells have 
many more claim counts. In particular, buses in age category 4 have the most claims, and of 
the zones, zone 4 has the most claims.

Looking at exposure, we have

db |>
  group_by(zone, bus.age) |>
  summarize(expo = sum(dur),
	 .groups = “drop”) |>
  pivot_wider(names_from = bus.age,
	 values_from = expo)

# A tibble: 7 x 6
	 zone	 ‘0’	 ‘1’	 ‘2’	 ‘3’	 ‘4’
	 <fct>	 <dbl>	 <dbl>	 <dbl>	 <dbl>	 <dbl>
1	1	 10061	 10823	 15073	 30924	 79106
2	2	 22407	 19023	 18736	 24372	 168620
3	3	 25624	 24768	 22716	 29321	 278519
4	4	 88665	 112912	 143189	 151654	 1434918
5	5	 3299	 4541	 3800	 2958	 87265
6	6	 20791	 21966	 20740	 23695	 296228

7	7	 2739	 2496	 3135	 3377	 31632

Again, zone 4 and age category 4 have the most exposure. Zones 5 and 7 have much smaller 
exposures.

Because both zone and bus.age have few levels, we can reliably estimate the 
frequency for most cells, but within each cell we may still have many companies whose 
experiences are not similar to each other. Hence, we would like to include a company 
identifier, co.id, into the rating plan. Unfortunately, the company identifier has more 
than 600 unique entries. Hence, adding it as a regular classification variable would give 
us a rating plan with 7 × 5 × 660 = 23,100 individual cells. Because our data only has 
around 1,500 observations, most of the cells would be empty. We cannot go in this 
direction.
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What we can do is bring to bear the tools of credibility and mixed-effects models to 
help us incorporate the information we have regarding the experience of each company.

Modeling Frequency
Let us start with modeling frequency of claims by first looking at the empirical data 

we have. The overall yearly frequency, without regard to any classification variables, is 
equal to 0.228. If we cross-classify our data by geographical zone and bus age category, 
then the yearly frequency for each combination is displayed in Table 6.7.

Note that zone 1 and bus age category 0 has a very high empirical yearly frequency 
of 0.726. Looking at the data for this cell, along with the individual companies’ annual 
frequency, given in Table 6.8, we can see that the experience is quite heterogeneous. 
We have companies with a small amount of exposure (356 and 460 days) along with 
companies with more exposure (2,191 and 1,949 days).

We can fit a GLM to geographic zone and bus age, ignoring company for the 
moment, to get an initial sense of how we might model frequency.
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Figure 6.14.    Histograms of the numeric variables in the bus 
dataset. Note that all four are heavily skewed to the right, and  
to enhance the display we do not show all data points. For the  
number of bus observations, 30 observations greater than 100 are 
not shown. For duration, 26 observations greater than 20,000 
are not displayed. Seven claim counts greater than 25 are not 
shown, and 23 observations for total loss cost greater than 
300,000 are also not shown.
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Exercise 6.11    Fit a Poisson model to frequency of claims using zone and bus.age as 
classification variables and a log-link function. Does the model fit the data well?

Solution 6.11    The Poisson model can be fitted via

fq.poi <- glm(clm.cnt ~ zone + bus.age,
	 data = db,
	 family = poisson(link = “log”),
	 offset = log(dur))
summary(fq.poi)

Table 6.8.    Observations available for zone 1 and bus age category 0 along 
with the empirical annual frequency for each company. The overall annual 
frequency for this cell is equal to 0.726.

Zone Bus Age Company Duration Claim Count Frequency

1 0 518 1,079 8 2.706

1 0 184 1,213 4 1.204

1 0 226 1,949 5 0.936

1 0 597 457 1 0.799

1 0 231 1,777 1 0.205

1 0 385 2,191 1 0.167

1 0 471 356 0 0.000

1 0 539 460 0 0.000

1 0 15 579 0 0.000

Table 6.7.    Empirical frequency (per year of exposure) for the 
bus dataset by geographic zone and age class of the bus.

Bus Age Class

Zone 0 1 2 3 4

1 0.726 0.270 0.339 0.283 0.175

2 0.228 0.499 0.253 0.374 0.327

3 0.157 0.280 0.305 0.137 0.173

4 0.342 0.339 0.382 0.284 0.180

5 0.332 0.643 0.000 0.123 0.213

6 0.509 0.233 0.246 0.246 0.227

7 0.133 0.292 0.116 0.324 0.081
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Since the Poisson model does not fit the data well, we proceed to fit a negative 
binomial model using zone and bus.age as main effects. Before fitting the model,  
we select zone 4 and bus age 4 as the base levels for these factors’ variables because at 
these levels they have the most exposure.

Call:
glm.nb(formula = clm.cnt ~ zone.f + bus.age.f + offset(log(dur)), 
    data = db, init.theta = 2.027840354, link = log)

Coefficients:
	 Estimate	 Std. Error	 z value	 Pr(>|z|) 
(Intercept)	 –7.66330	 0.06203	 –123.536	 < 2e-16	 ***
zone.f1	 0.17132	 0.16878	 1.015	 0.310083 

Call:
glm(formula = clm.cnt ~ zone + bus.age, data = db, offset = log(dur),
    family = poisson(link = “log”))

Coefficients:
	 Estimate	 Std. Error	 z value	 Pr(>|z|) 
(Intercept)	 –6.943244	 0.123755	 –56.105	 < 2e-16	 ***
zone2	 0.279470	 0.118671	 2.355	 0.0185	 * 
zone3	 –0.271849	 0.122356	 –2.222	 0.0263	 * 
zone4	 –0.084820	 0.103045	 –0.823	 0.4104 
zone5	 –0.002343	 0.160733	 –0.015	 0.9884 
zone6	 0.034376	 0.117055	 0.294	 0.7690 
zone7	 –0.718687	 0.284924	 –2.522	 0.0117	 * 
bus.age1	 0.008051	 0.108257	 0.074	 0.9407 
bus.age2	 0.014442	 0.104842	 0.138	 0.8904 
bus.age3	 –0.213333	 0.106407	 –2.005	 0.0450	 * 
bus.age4	 –0.531115	 0.083951	 –6.327	 2.51e-10	 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 2142.9 on 1472 degrees of freedom
Residual deviance: 1985.3 on 1462 degrees of freedom
AIC: 3502.9

Number of Fisher Scoring iterations: 5

The mean deviance estimate of the dispersion parameter ϕ is equal to

[1] 1.358

which is clearly larger than the theoretical value of ϕ = 1, indicating that the data is over
dispersed and the Poisson model does not fit well.

The Pearson estimate of the dispersion parameter yields a value of 1.465 and thus a similar 
conclusion.
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zone.f2	 0.30441	 0.12369	 2.461	 0.013848	 * 
zone.f3	 –0.07103	 0.11665	 –0.609	 0.542551 
zone.f5	 0.20278	 0.18607	 1.090	 0.275806 
zone.f6	 0.16002	 0.10442	 1.533	 0.125394 
zone.f7	 –0.49637	 0.32616	 –1.522	 0.128046 
bus.age.f0	 0.59037	 0.11936	 4.946	 7.57e-07	 ***
bus.age.f1	 0.46727	 0.11740	 3.980	 6.88e-05	 ***
bus.age.f2	 0.40988	 0.11836	 3.463	 0.000534	 ***
bus.age.f3	 0.37029	 0.11220	 3.300	 0.000965	 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for Negative Binomial(2.0278) family 
taken to be 1)

    Null deviance: 1252.1 on 1472 degrees of freedom
Residual deviance: 1196.4 on 1462 degrees of freedom
AIC: 3188.6

Number of Fisher Scoring iterations: 1

	 Theta:	2.028 
	 Std. Err.:	0.252 

 2 x log-likelihood: –3164.615

Note that the coefficients for bus.age are positive and decline steadily as the age 
category increases. All of the zone coefficients have large standard errors compared 
with their estimated values except for zone 2. Hence, it appears that all zones, except 
zone 2, have a similar claim frequency as zone 4.

Annual frequency predictions from the negative binomial model are displayed in 
Table 6.9, and they do not take into account that the claims experience comes from 
different companies.

Next, we incorporate the information available in the company identification 
variable, co.id, by adding it as a random effect for the intercept. We first define the 
model structure we want for the mean, and we will keep the dispersion parameter fixed; 
therefore, we are defining a GLMM where the response distribution is Poisson and the 
random effect is gamma distributed.

model.mu <- DHGLMMODELING(Model = “mean”,
	 Link = “log”,
	 �LinPred = clm.cnt ~ zone.f +  

  bus.age.f + (1 | co.id),
	 RandDist = “gamma”,
	 Offset = log(db$dur))
model.phi <- DHGLMMODELING(Model = “dispersion”)
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We fit our model via the dhglmfit() function as follows:

Table 6.9.    Annual mean frequency predictions from the 
negative binomial model with main effects for geographic 
zone and bus age class.

Bus Age Class

Zone 0 1 2 3 4

1 0.367 0.325 0.307 0.295 0.204

2 0.420 0.371 0.350 0.337 0.232

3 0.288 0.255 0.241 0.231 0.160

4 0.309 0.274 0.258 0.248 0.171

5 0.379 0.335 0.316 0.304 0.210

6 0.363 0.321 0.303 0.291 0.201

7 0.188 0.167 0.157 0.151 0.104

fq.poi.re <- dhglmfit(RespDist = “poisson”, 
	 DataMain = db, 
	 MeanModel = model.mu, 
	 DispersionModel = model.phi)

Distribution of Main Response : 
	 “poisson” 
[1] “Estimates from the model(mu)”
clm.cnt ~ zone.f + bus.age.f + (1 | co.id)
[1] “log”
	 Estimate	 Std. Error	 t-value
(Intercept)	 –7.65055	 0.05797	 –131.9806
zone.f1	 0.22644	 0.14761	 1.5340
zone.f2	 0.44224	 0.13197	 3.3512
zone.f3	 0.03305	 0.12813	 0.2579
zone.f5	 0.28805	 0.18542	 1.5535
zone.f6	 0.20941	 0.11306	 1.8522
zone.f7	 –0.57862	 0.36349	 –1.5919
bus.age.f0	 0.51538	 0.08706	 5.9201
bus.age.f1	 0.50149	 0.08194	 6.1204
bus.age.f2	 0.46698	 0.07892	 5.9170
bus.age.f3	 0.36315	 0.08001	 4.5390
[1] “Estimates for logarithm of lambda=var(u_mu)”
[1] “gamma”
	 Estimate	 Std. Error	 t-value
co.id	 –1.097	 0.1033	 –10.62
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[1] “====== Likelihood Function Values and Condition AIC ======”
		  [,1]
-2ML (-2 p_v(mu) (h))	 :	3171.369
-2RL (-2 p_beta(mu),v(mu) (h)) :	3199.679
cAIC	 :	3107.045
Scaled Deviance	 :	1194.541
df	 : 1264.553

From the above output we can see that the estimated coefficients are not too  
different from those we obtained for the negative binomial model. We also have the 
estimated variance for our unobserved gamma random effect. Its value is equal to 0.334. 
The density function for the random effect, along with company estimated random 
effects, is shown in Figure 6.15.

Note that we have five points with an estimated random effect greater than 2.25. 
In Table 6.10 we extract these companies and provide their total claim count, exposure, 
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Figure 6.15.   The estimated density function for the  
intercept random effects along with the individual estimated 
company effects.

Table 6.10.    Empirical annual frequency and estimated random effect for 
the top-five companies ranked on the size of their random effect.

Company Number of Claims Exposure (in days) Annual Frequency Random Effect

561 37 13,615 0.992 3.112

559 106 59,833 0.647 2.944

301 26 17,216 0.551 2.518

535 41 29,378 0.509 2.467

406 12 4,709 0.930 2.454
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empirical annual frequency, and the estimated random effect. Note that for these com-
panies the empirical frequency is quite large, given that the portfolio annual frequency is 
0.228, and so we would expect them to have large estimated random effects.

Based on this GLMM, the annual frequency would be calculated via the formula

n F = exp intercept + zone + bus.age + log 365` jb l# random effect of company` j.

The first term in the above expression represents all the combinations of the fixed 
effects. The last term is the random effect for the company. Table 6.11 shows the annual 
frequency for each combination of geographic zone and bus age category based on the 
fixed effects, and Table 6.12 shows 30 companies along with their estimated random 
effects. The companies have been sorted by the magnitude of the random effects, and 
the table displays the 10 smallest and largest random effects, as well as 10 entries from 
the middle. Figure 6.16 shows a scatterplot of all companies by their total exposure 
and estimated random effects along with their total claim count. Companies with large 
random effects tend to have worse claims experience, that is, lower exposure and 
large numbers of claims. Companies with random effects below 1 tend to have better 
claims experience.

Table 6.11.    Estimated annual frequency based only  
on the fixed effects from the GLMM.

Bus Age Category

Zone 0 1 2 3 4

1 0.365 0.360 0.347 0.313 0.218

2 0.452 0.446 0.431 0.389 0.270

3 0.301 0.296 0.286 0.258 0.179

4 0.291 0.287 0.277 0.250 0.174

5 0.388 0.382 0.369 0.333 0.232

6 0.358 0.354 0.342 0.308 0.214

7 0.163 0.161 0.155 0.140 0.097
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Table 6.12.    Estimated company random effects. Companies have been sorted from 
smallest to largest random effects.

Smallest Medium Largest

Company Random Effect Company Random Effect Company
Random 

Effect

524 0.312 478 0.926 271 2.034

136 0.346 587 0.929 169 2.071

289 0.365 154 0.929 297 2.077

368 0.370 314 0.930 548 2.086

549 0.385 91 0.931 226 2.179

285 0.393 665 0.932 406 2.454

279 0.418 526 0.932 535 2.467

183 0.420 5 0.932 301 2.518

522 0.426 437 0.932 559 2.944

373 0.473 184 0.932 561 3.112
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Figure 6.16.   Total company exposure and claim counts  
along with the estimated company random effect.
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In the Bühlmann–Straub model, the observation for risk class j in time period t, Xjt, 
can be decomposed as

X jt =m +N j + e jt ,

where m is the overall average and j = 1, 2, . . . , J and t = 1, 2, . . . , T + 1. The unob-
servable component Ξj represents deviations from the overall mean m for risk class j, 
and we assume that they are independent and identically distributed with mean zero and 
Var[Ξj] = τ2. The component ejt represents deviations across time from the long-term 
average of risk class j, that is, m + Ξj. We also assume that they are independent and 
identically distributed with variance given by

Var e jt8 B= wjt

v 2

,

where wjt are weights.
The Bühlmann–Straub model assumes that only the first and second moments exist. 

To simulate data from their model, we will assume normal distributions for the two 
random components: Ξj and ejt. We will also assume that the weights wjt are uniformly 
distributed in an interval.

The code below uses the abbreviations in Table A.1.
The following function, sim.BS(), simulates a Bühlmann–Straub dataset with 

given parameter values and returns a data frame.

A.  Bühlmann–Straub Simulation

APPENDICES

sim.BS <- function(
    sim.label = “A”,
    J = 100,
    N = 5,
    beta = 80,
    sigma.b.sq = 64,
    sigma.sq = 100,
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    weight.min = 0.5,
    weight.spread = 1) {
  risk.dev <- rep(rnorm(J, mean = 0, sd = sqrt(sigma.b.sq)),
	 each = N)
  time.dev <- rnorm(J * N, mean = 0, sd = sqrt(sigma.sq))
  weight <- weight.min + runif(J * N, min = 0, 
	 max = weight.spread)
  tb <- tibble(
    sim.label = rep(sim.label, J * N),
    risk = factor(rep(1:J, each = N)),
    Wt = weight,
    rsk.dev = risk.dev,
    tme.dev = time.dev,
    Y = beta + rsk.dev + tme.dev
  )
  return(tb)
}

Table A.1.    Code constructs and corresponding 
mathematical notation.

Code Notation Comments

J J Number of risk classes

N T + 1 Number of time periods

m m Overall average

sigma.b.sq τ2 Between-risk variance

sigma.sq σ2 Within-risk variance

weight.min Minimum weight

weight.spread Length of interval for weights

risk.dev Ξj Risk deviation from m

time.dev ejt Risk deviation from m + Ξj

weight wjt Weights

With this function we can generate four different datasets with a different number 
of observations per risk, N = 5, 10, 20, 40, and store them in a list.

set.seed(398845)
BS.data <- list(
  BS.5  = sim.BS(sim.label = “5 Obs. per Risk”, N = 5),
  BS.10 = sim.BS(sim.label = “10 Obs. per Risk”, N = 10),
  BS.20 = sim.BS(sim.label = “20 Obs. per Risk”, N = 20),
  BS.40 = sim.BS(sim.label = “40 Obs. per Risk”, N = 40))
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To each dataset we will fit a linear mixed-effects model and store the fitted models 
in a list.

BS.models <- map(BS.data,
	 \(d) lmer(Y ~ 1 + (1 | risk),
	 data = d,
	 weights = Wt))

Next, we compute the fitted values and standardized residuals for each model and 
append them to the dataset. We also calculate the slopes of the fitted linear regression 
where the response variable is the standardized residual and the predictor variable is 
fitted value.

BS.FV.Res <- map(BS.models,
	 \(m) {
	 tb <- getData(m)
	 tb$mu <- fitted(m)
	 tb$rsP <- resid(�m, type = “pearson”) /  

sigma(m)
	 return(tb)})

BS.slopes <- map_dbl(BS.FV.Res,
	 \(tb) {
	 fm <- lm(rsP ~ mu,
		  data = tb)
	 sfm <- summary(fm)
	 return(coef(sfm)[2,1])})

BS.pvals <- map_dbl(BS.FV.Res,
	 \(tb) {
	 fm <- lm(rsP ~ mu,
		  data = tb)
	 sfm <- summary(fm)
	 return(coef(sfm)[2,4])})

We collect all the information into a single data frame and create a categorical 
variable to identify the simulation.

BS.results <- reduce(BS.FV.Res, bind_rows)
BS.results$sim.label <- factor(BS.results$sim.label)
BS.results$sim.label <- fct_relevel(
  BS.results$sim.label,
  str_c(str_sub(names(BS.slopes), 4),
        “ Obs. per Risk”)[order(BS.slopes,
                                decreasing = TRUE)])
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	 5 Obs.	 10 Obs.	 20 Obs.	 40 Obs.
Slope	 0.0393	 0.0177	 0.008	 0.0031
P-Value	 0.0000	 0.0001	 0.007	 0.0889

tb <- round(rbind(BS.slopes,
      BS.pvals), 4)
dimnames(tb) <- list(c(“Slope”, “P-Value”),
	 c(“5 Obs.”, “10 Obs.”, “20 Obs.”, 
	 “40 Obs.”))
tb

20 Obs. per Risk 40 Obs. per Risk
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Figure A.1.    Results of fitting a linear regression model to simulated 
data from the Bühlmann–Straub model. The panels have been 
arranged from the largest slope in the upper left (5 obs. per risk) 
to the smallest slope in the lower right (40 obs. per risk).

Figure A.1 shows the results, where we can see that as the number of observations 
increases, the slope of the line decreases. For this particular set of simulated data, 
the slopes for the 5, 10, and 20 observations per risk sets are statistically different from 
zero but not for the 40 observations per risk set.
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In Chapter 3 we found an expression for the credibility matrix Aj as shown in Equa-
tion 3.27, and in Section 4.4, using linear mixed model theory, we found another 
expression, Equation 4.2. We want to show here that these two seemingly different 
expressions are equivalent.

Equation 4.2 says that, assuming the matrices D and Wj have the forms

D =
x 0

2

0

0

x 1
2

R

T

S
S
S

V

X

W
W
W

and Wj =
wj

t tw jt/
t tw jt/

t t 2wjt/

R

T

S
S
SS

V

X

W
W
WW
,

•

then the credibility matrix Aj is given by

	
Aj = det DWj` j+vt 2 trace DWj` j+vt 4

det DWj` jI2 +vt 2DWj
.	 (B.1)

We want to show that this is equivalent to Equation 3.27, that is,

	

A j = d
wj

wj Var j
(s) t8 B+l 1

l 0E j
(s) t8 B

l 1E j
(s) t8 B

wj Var j
(s) t8 B+l 0E j

(s) t 28 B

R

T

S
S
S
S

V

X

W
W
W
W
,• •

•

	 (B.2)

where

d = wj +l 0` j wj E j
(s) t 28 B+l 1b l- wj E j

(s) t8 Bb l2• • •

and κ0 = σ2/τ2
0 and κ1 = σ2/τ2

1.
The notations E j

(s)[t] and Var j
(s)[t] are shorthand for

E j
(s) t8 B=

wj

w jt

t
/ t and Var j

(s) t8 B= E j
(s) t 28 B- E j

(s) t8 Bb l2.
•

Equivalence of the Denominator
We will start by showing that the denominator of Equation B.1 is equal to d in 

Equation B.2.

B.  Equivalence of Credibility Matrices
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The matrix DWj is equal to

x 0
2wj

x 1
2

t tw jt/
x 0

2
t tw jt/

x 1
2

t t 2wjt/

R

T

S
S
SS

V

X

W
W
WW

•

and hence its determinant is

det DW j` j=x0
2x1

2wj t 2w jt -
t
/ x0

2x1
2 tw jt

t
/c m

2,•

and its trace is

tr DW j` j=x0
2wj +x1

2 t 2w jt
t
/ .•

Therefore, the denominator is equal to

x0
2x1

2wj t 2w jt -
t
/ x0

2x1
2 tw jt

t
/c m

2
+v 2x0

2wj +v 2x1
2 t 2w jt +v 4

t
/ .• •

In the above expression, we can replace the sums with the Ej
(s) notation to obtain

x0
2x1

2w j
2 E j

(s) t 28 B-x0
2x1

2w j
2 E j

(s) t8 Bb l2+v 2x0
2wj +v 2x1

2wj E j
(s) t 28 B+v 4.• • • •

Next, we factor out τ0
2τ1

2, yielding

x0
2x1

2 w j
2 E j

(s) t 28 B- wj E j
(s) t8 Bb l2+l 1wj +l 0wj E j

(s) t 28 B+l 0l 1

R

T

SS
V

X

WW,• • • •

and now we just rearrange like terms to get

x0
2x1

2 wj +l 0` j wj E j
(s) t 28 B+l 1& 0- wj E j

(s) t8 Bb l2
R

T

SS
V

X

WW.• • •

Apart from the factor τ0
2τ1

2, this is the same expression for the denominator in 
Equation B.2 that we wanted to show. The factor τ0

2τ1
2 will also appear in our calculations 

of the numerator, and thus it will cancel out.

Equivalence of the Numerator
The numerator in Equation B.1 and Equation B.2 is a 2 × 2 matrix, and so we 

will show the equivalence of the (1, 1), (1, 2), and (2, 2) entries. The entry at (2, 1) is 
similar to the (1, 2) entry.
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The (1, 1) entry in Equation B.1 is equal to

x0
2x1

2wj t 2w jt -
t
/ x0

2x1
2 tw jt

t
/c m

2
+v 2x0

2wj .• •

Again we factor out τ0
2τ1

2 to get

x0
2x1

2 wj t 2w jt -
t
/ tw jt

t
/c m

2
+l 1wj

R

T

S
S

V

X

W
W
.• •

Next, we multiply the first factor inside the square brackets by wj•/wj• and the second 
factor by w2

j•/w2
j•. This will allow us to rewrite these two items using Var j

(s)[t] as follows

x0
2x1

2 w j
2 Var j

(s) t8 B+l 1wj

R

T
SS

V

X
WW.• •

Now we factor out wj• to obtain our final result

x0
2x1

2wj wj Var j
(s) t8 B+l 1

R

T
SS

V

X
WW,• •

which apart from the τ0
2τ1

2 factor matches the (1, 1) entry in Equation B.2.
For the (1, 2) entry we start with

v 2x0
2 tw jt

t
/ .

Multiply this expression by wj•/wj• to obtain

v 2x0
2wj t

wj

w jt

j
/ =v 2x0

2wj E j
(s) t8 B=x0

2x1
2wj l 1E j

(s) t8 B
R

T
SS

V

X
WW.•

•
• •

Again, apart from the factor τ0
2τ1

2, this is the expression we wanted to arrive at.
Finally, for the (2, 2) entry we begin with

x0
2x1

2wj t 2w jt -
t
/ x0

2x1
2 tw jt

t
/c m

2
+v 2x1

2 t 2w jt
t
/ .•

Multiplying the first and the last terms by wj•/wj• and the second term by w2
j•/w2

j• and 
simplifying by using the E j

(s)[] notation, we get

x0
2x1

2w j
2 E j

(s) t 28 B-x0
2x1

2w j
2 E j

(s) t8 Bb l2+v 2x1
2w j

2 E j
(s) t 28 B.• • •

Now, factor out τ0
2τ1

2wj• to arrive at

x0
2x1

2wj wj Var j
(s) t8 B+l 0E j

(s) t 28 B
R

T
SS

V

X
WW.• •

The factor τ0
2τ1

2 will cancel with the same factor we have in the denominator, and so we 
have shown the equivalence of both expressions for the credibility matrix Aj.
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The Lambert W function is also known as the omega function or the product logarithm 
function. Consider the function f (x) = xex with domain x ∈ R and range f (x) ∈ [–e–1, ∞). 
Figure C.1 shows a plot of f (x) against x for x ∈ [–4, 1], and note that as x moves 
toward negative infinity the value of f (x) approaches zero from below. The function f (x) 
has a minimum value at the point (–1, –e–1).

The Lambert W function solves the equation y = f (x) for x in terms of y—that is,

y = xe x if and only if W y` j= x .

But in the interval [–e–1, 0) Lambert’s function could take on two values, and 
we must choose which solution we want to use (see Figure C.2). The red-colored curve 
(with y values greater than or equal to –1) is known as the principal branch and is  
denoted by W0. The blue-colored curve represents another possible solution. This branch 
is denoted by W–1.

C.1.  Mean for Zero-Truncated Poisson
In the hospital length of stay application described in Section 6.2, we determined 

that the mean of the zero-truncated distribution can be expressed as (see Equation 6.1)

n=
em -1
mem

,

and we would like to solve this equation for λ in terms of µ. To that end, we rewrite 
the above equation as

nem -n=mem

and now move the term µeλ to the other side of the equation to obtain

-n= m -n` jem.

Multiply both sides by a factor of e–µ, yielding

-ne-n = m -n` jem-n.

C.  Lambert W  Function
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Figure C.1.   The function f (x) 5 xex in the interval from –4 to 1.

Figure C.2.   The two branches of the Lambert W function, 
that is, the inverse of the function f (x) 5 xex. The red-colored 
curve is known as the principal branch and denoted as W0, 
and the blue-colored curve is denoted as W–1.
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Notice that this last equation is of the form z = wew, and we can apply Lambert’s W0 
to both sides to obtain

W 0 -ne-n` j=m -n,

and so we have that

m =n+W 0 -ne-n` j,

giving us the parameter λ of the distribution in terms of the mean of the distribution.

C.2. � Variance Function for Zero-Truncated Poisson Distribution
To express the variance function of the zero-truncated Poisson distribution in terms 

of the mean, we start with the following expression for the variance (see Equation 6.2) 
in terms of λ:

em -1` j2
mem em -m -18 B

.

We can rewrite this expression as

em -1
mem

em -1
em -1-m

=n 1-
em -1
m

R

T

S
SS

V

X

W
WW,

•

where we have used the fact that µ = λeλ/(eλ – 1). The second term inside the square 
brackets can be rewritten as

em -1
m
=
em
n

by using the same relationship between µ and λ that we used in the previous equation. 
Therefore, our expression for the variance so far looks like

n 1-
em
nR

T

S
S

V

X

W
W.

Next, we substitute λ = µ + W0 (–µe−µ) and use the identity eW0(x) = x/W0(x) to get

n 1-
em
nR

T

S
S

V

X

W
W=n 1-

en+W 0 -ne-n` j
nR

T

S
S

V

X

W
W=n 1-

en -ne-n` j
nW 0 -ne-n` j

R

T

S
S
SS

V

X

W
W
WW
,

which simplifies to

n 1+W 0 -ne-n` j
R

T
SS

V

X
WW,

which is what we wanted to show, that is, the variance function expressed in terms of 
the mean of the distribution.
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The functions HBG(), sig.sq(), and tau() defined below implement the estima-
tion procedures provided in Chapter 8 of Bühlmann and Gisler (2005). These functions 
are used to implement Theorem 3.4.

Function HBG() (Hachemeister Bühlmann–Gisler) is the main function used to 
calculate credibility estimates. The function sig.sq() codes the formula for the 
estimator of σ̂ (Equation 3.29), and the function tau() codes the estimator for τ̂ that 
combines the variance estimators for the intercept (Equation 3.30) and for the slope 
(Equation 3.32) into a diagonal matrix.

D.  Bühlmann–Gisler Estimators

HBG <- function(sigma.sq,
	 D,
	 X.jt,
	 T.jt,
	 W.jt,
	 state,
	 use.B.gls = TRUE) {
  if (!is.factor(state)) {
    state <- factor(state)
  }
  J <- length(levels(state))
  W.jb <- tapply(W.jt, state, sum)
  Fj.t <- tapply(W.jt * T.jt, state, sum)
  Fj.t2 <- tapply(W.jt * T.jt^2, state, sum)
  Fj.X <- tapply(W.jt * X.jt, state, sum)
  Fj.tX <- tapply(W.jt * T.jt * X.jt, state, sum)
  I <- diag(1, nrow = 2, ncol = 2)

  W <- map(1:J, function(i) {
    ans <- matrix(c(W.jb[i], Fj.t[i], 
	 Fj.t[i], Fj.t2[i]),
	 nrow = 2, ncol = 2,
	 byrow = TRUE)
    return(ans)
  })
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  sW <- reduce(W, ‛+‛)
  M <- map(1:J, function(i) {
    ans <- matrix(c(Fj.X[i], Fj.tX[i]),
	 nrow = 2, ncol = 1)
    return(ans)
  })
  sM <- reduce(M, ‛+‛)
  xi <- map(1:J, function(i) {
    DW <- D %*% W[[i]]
    dt <- det(DW)
    tr <- sum(diag(DW))
    den <- dt + sigma.sq * tr + sigma.sq^2
    ans <- (dt * I + sigma.sq * DW) / den
    return(ans)
  })
  sxi <- reduce(xi, ‛+‛)
  B <- map(1:J, function(i) {
    ans <- solve(W[[i]]) %*% M[[i]]
    return(ans)
  })

  WB <- pmap(list(xi, W, M), ~ ..1 %*% solve(..2) %*% ..3)
  sWB <- reduce(WB, ‛+‛)

  B.gls <- solve(sxi) %*% sWB
  B.all <- solve(sW) %*% sM
  B.col <- if (use.B.gls) B.gls else B.all
  CW <- map2(xi, B, ~ .x %*% .y + (I – .x) %*% B.col)

  tb <- cbind(as.matrix(rep(1:J, each = 2), ncol = 1),
	 reduce(xi, rbind),
	 reduce(B, rbind),
	 reduce(CW, rbind),
	 matrix(B.col, nrow = 2 * J))
  dimnames(tb) <- list(NULL,
	 c(“state”, “CM.1”, “CM.2”, 
	 “Standalone”, “Credibility”, 
	 “Collective”))
  tb <- as_tibble(tb)

  ans <- list(sigma.sq = sigma.sq,
	 D = D,
	 dta = data.frame(X.jt = X.jt,
	 T.jt = T.jt,
	 W.jt, W.jt,
	 state = state),
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	 use.B.gls = use.B.gls,
	 W = W,
	 M = M,
	 xi = xi,
	 B = B,
	 B.gls = B.gls,
	 B.all = B.all,
	 B.col = B.col,
	 CW = CW,
	 tb = tb)
  return(ans)
}

sig.sq <- function(X.jt, T.jt, W.jt, state) {
  if (!is.factor(state)) {
    state <- factor(state)
  }
  J <- length(levels(state))
  W.jb <- tapply(W.jt, state, sum)
  W.bb <- sum(W.jb)
  Fj.t <- tapply(W.jt * T.jt, state, sum)
  Fj.t2 <- tapply(W.jt * T.jt^2, state, sum)
  Fj.X <- tapply(W.jt * X.jt, state, sum)
  Fj.tX <- tapply(W.jt * T.jt * X.jt, state, sum)

  W <- map(1:J, function(i) {
    ans <- matrix(c(W.jb[i], Fj.t[i],
	 Fj.t[i], Fj.t2[i]),
	 nrow = 2, ncol = 2,
	 byrow = TRUE)
    return(ans)
  })
  M <- map(1:J, function(i) {
    ans <- matrix(c(Fj.X[i], Fj.tX[i]),
	 nrow = 2, ncol = 1)
    return(ans)
  })
  B <- map(1:J, function(i) {
    ans <- solve(W[[i]]) %*% M[[i]]
    return(ans)
  })

  Y <- map(tapply(T.jt, state, list),
	 function(x) cbind(rep(1, length(x)), x))
  mu <- map2(Y, B, function(x,y) as.vector(x %*% y))
  w <- tapply(W.jt, state, list)
  x <- tapply(X.jt, state, list)
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  sigmaj.sq <- pmap(list(w, x, mu),
	 ~ sum(..1 * (..2 – ..3)^2) / 
		  (length(..1) – 2))
  sigma.sq <- reduce(sigmaj.sq, ‛+‛) / length(sigmaj.sq)

  ans <- list(dta = data.frame(state = state,
	 X.jt = X.jt,
	 T.jt = T.jt,
	 W.jt = W.jt),
	 W = W,
	 M = M,
	 B = B,
	 Y = Y,
	 mu = mu,
	 w = w,
	 x = x,
	 sigmaj.sq = sigmaj.sq,
	 sigma.sq = sigma.sq)
  return(ans)
}

tau <- function(sigma.sq, X.jt, T.jt, W.jt, state) {
  if (!is.factor(state)) {
    state <- factor(state)
  }
  J <- length(levels(state))
  W.jb <- tapply(W.jt, state, sum)
  W.bb <- sum(W.jb)
  Fj.t <- tapply(W.jt * T.jt, state, sum)
  Fj.t2 <- tapply(W.jt * T.jt^2, state, sum)
  Fj.X <- tapply(W.jt * X.jt, state, sum)
  Fj.tX <- tapply(W.jt * T.jt * X.jt, state, sum)
  Vj.t <- Fj.t2 / W.jb – (Fj.t / W.jb)^2
  Ws.jb <- Vj.t * W.jb 
  Ws.bb <- sum(Ws.jb)

  W <- map(1:J, function(i) {
    ans <- matrix(c(W.jb[i], Fj.t[i],
	 Fj.t[i], Fj.t2[i]),
	 nrow = 2, ncol = 2,
	 byrow = TRUE)
    return(ans)
  })
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  M <- map(1:J, function(i) {
    ans <- matrix(c(Fj.X[i], Fj.tX[i]),
	 nrow = 2, ncol = 1)
    return(ans)
  })
  B <- map(1:J, function(i) {
    ans <- solve(W[[i]]) %*% M[[i]]
    return(ans)
  })
  B0 <- map_dbl(B, function(x) x[1,1])
  B0.bar <- sum(W.jb * B0 / W.bb)
  c0 <- (J – 1) / (J * sum(W.jb / W.bb * (1 – W.jb / W.bb)))
  tau0.sq <- c0 * (J * sum(W.jb * (B0 – B0.bar)^2 / W.bb)
	 / (J – 1) – J * sigma.sq / W.bb)

  B1 <- map_dbl(B, function(x) x[2,1])
  B1.bar <- sum(Ws.jb * B1 / Ws.bb)
  c1 <- (J – 1) / (J * sum(Ws.jb / Ws.bb * (1 – Ws.jb / Ws.bb)))
  tau1.sq <- c1 * (J * sum(Ws.jb * (B1 – B1.bar)^2 / Ws.bb)
	 / (J – 1) – J * sigma.sq / Ws.bb)

  ans <- list(sigma.sq = sigma.sq,
	 dta = data.frame(state = state,
	 X.jt = X.jt,
	 T.jt = T.jt,
	 W.jt = W.jt),
	 W = W,
	 M = M,
	 B = B,
	 Bj = rbind(B0, B1),
	 �B.bar = matrix(c(B0.bar, B1.bar), nrow = 2,  

	 ncol = 1),
	 c01 = c(c0, c1),
	 D = diag(c(tau0.sq, tau1.sq)))
  return(ans)
}
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