

Pandemics, Wars and More: How to Correct for Singular Events in Mortality Forecasting Models

MSc Actuarial Science Thom van Rijn Zürich, 29.09.2023

Singular Event:

A historical event with a large impact on the observed mortality frequencies.

"

Outline

- Mortality Forecasting Model
 - Nolfi
 - Measuring Accuracy
- Identifying Singular Events
 - Expert Judgement
 - Algorithm
- Correction Methods for Singular Events
 - Correction Step
 - Results
- Conclusion

Mortality Forecasting Model

Mortality Forecasting Model Data

- $D_x(t)$: number of deaths within year t for age x
- $E_{\chi}(t)$: exposures within year t for age x
- $\bar{q}_{\chi}(t) = \frac{D_{\chi}(t)}{E_{\chi}(t)}$: observed mortality frequency
- Mortality.org

Mortality Forecasting Model Nolfi

$$q_x(t) = q_x(t_0) \exp\left(-\frac{\ln(2)}{\beta_x}(t-t_0)\right)$$

where

- ... t_0 : First fitting year
- ... $q_x(t_0)$: Starting mortality rate
- ... β_{χ} : Half-value period

Mortality Forecasting Model Lee-Carter & Renshaw-Haberman

Lee-Carter:

$$q_x(t) = \exp(\alpha_x + \beta_x k_t)$$

Renshaw-Haberman:

$$q_x(t) = \exp(\alpha_x + \beta_x k_t + \beta_x^* \iota_{(t-x)})$$

Mortality Forecasting Model Fitting Symbol

Mortality Forecasting Model Measuring Accuracy

Fitting Mortality Forecasting Model Measuring Deviations (Errors) - Formula

$$\varepsilon_{x}(t) = \frac{\overline{q}_{x}(t)}{\widehat{q}_{x}(t)} - 1$$

Mortality Forecasting Model Measuring Accuracy – Graphically (2D)

Nolfi: Relative Difference Observed Mortality Frequency vs Estimated Mortality Rate (Male, Switzerland, Age: 30)

Mortality Forecasting Model Measuring Accuracy – Graphically (2D)

Nolfi: Relative Difference Observed Mortality Frequency vs Estimated Mortality Rate (Male, Switzerland, Age: 30)

Mortality Forecasting Model Measuring Accuracy – Graphically (2D)

Nolfi

Renshaw-Haberman

Identifying Singular Events

Identifying Singular Events Expert Judgement

0

Nolfi: Observed / Expected Deaths (Male, Switzerland) 2010-0.3 2005-0.2 2000-0.1 1995-Year AIDS 1990 0 1985 -0.11980--0.2 1975--0.3 1970 70 80 50 60 10 20 30 40 90

Age

.....

Identifying Singular Events Algorithm - Epsilon

Nolfi: Observed / Expected Deaths (Male, Switzerland)

20

.....

Identifying Singular Events Algorithm - Gamma

Identifying Singular Events Algorithm - Alpha

...:

Identifying Singular Events Algorithm

24

Identifying Singular Events Singular Event Diagram

Correction Methods for Singular Events

Correction Methods for Singular Events

$$\widetilde{D}_{x}(t) = \begin{cases} z\widehat{D}_{x}(t) + (1-z)D_{x}(t) & \text{if } (x,t) \in \Omega^{(se)} \\ D_{x}(t) & \text{if } (x,t) \notin \Omega^{(se)} \end{cases}$$

where

- ... z: Credibility Weight,
- ... $\widehat{D}_{\chi}(t)$: Estimated number of deaths,
- ... $D_{\chi}(t)$: Observed number of deaths and
- ... $\Omega^{(se)}$: Set of tuples (x, t) within singular event.

Correction Methods for Singular Events Correction Symbol

30

..:

SE

32

..:

...:

Correction Methods for Singular Events Single Correction Method – Parameter Differences

36

.....

Correction Methods for Singular Events Single Correction Method – Error Improvement

Correction Methods for Singular Events Stationary Iterative Correction Method

Correction Methods for Singular Events Stationary Iterative Correction Method – SE Error

Correction Methods for Singular Events Stationary Iterative Correction Method – SE Error

Correction Methods for Singular Events Stationary Iterative Correction Method – Improvement

42

Correction Methods for Singular Events Moving Iterative Correction Method

Correction Methods for Singular Events Final Fit Correction Method – Growing SE

Iteration 3: Age 20-37, Calendar Year 1988-1998

Iteration 2: Age 20-37, Calendar Year 1988-1998

Correction Methods for Singular Events Final Fit Correction Method – Improvement

2000-

1975-

1970-

1990

Correction Methods for Singular Events Final Fit Correction Method

Correction Methods for Singular Events Final Fit Correction Method – Error Improvement

47

Conclusion

- Singular events distort parameters
- Correcting for the singular event reduces distortion
 - Improves estimation quality
 - Improves projection quality
- Showed improvements for:
 - AIDS
 - Spanish Flu (see Appendix)
 - WWI (see Appendix)
 - WW II (see Appendix)
- COVID-19

References

- Spanish Flu: By Otis Historical Archives, National Museum of Health and Medicine Emergency hospital during influenza epidemic (NCP 1603), National Museum of Health and Medicine.https://www.buckscountycouriertimes.com/news/20190923/mxfctter-museum-to-mark-historic-influenzapandemic/1, Public Domain, <u>https://commons.wikimedia.org/w/index.php?curid=25513204</u>
- Human Mortality Database: mortality.org

Appendix

Spanish Flu

Nolfi: Moving Iterative Correction Mortality Estimation Errors

Lee-Carter: Final Fit Correction Mortality Estimation Errors

-0.1

-0.2

-0.3

Renshaw-Haberman: Final Fit Correction Mortality Estimation Errors

World War I

Lee-Carter: Final Fit Correction Mortality Estimation Errors

Renshaw-Haberman: Final Fit Correction Mortality Estimation Errors

World War II

Renshaw-Haberman: Final Fit Correction Mortality Estimation Errors

