Evaluating and Selecting a Bayesian MCMC Model

Casualty Actuarial Society Spring 2023 Meeting
Presenter: Michael R Larsen

Antitrust Notice

- The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.
- Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding - expressed or implied - that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.
- It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

Goals of Presentation

- Demonstrate steps in model selection
- Exploratory Data Analysis
- Identify potential model forms
- Build alternative models
- Check integrity of model estimates
- Evaluate model fit
- Compare predictive power
- Highlight software that makes this practical
- Ggplot2
- STAN
- Brms
- Bayesplot \& ShinyStan:
- Tidybayes \& ggdist
- Loo and loo_compare

Modeling Environment

Exploratory Data Analysis

Exploratory Data Analysis

- Goals for this presentation
- Display patterns as first step to writing formulas for models
- Information on likely predictive variable distribution
- Additional steps for real life analysis
- Search for anomalous behavior in claim handling by region or business unit
- Look for changes in behavior in claims activity over time caused by change in underwriting practice
- Check for claim recoding effects
- Data Source
- Simulated data using Poisson for counts \& Lognormal for severity
- Underlying distributions displayed in appendix

Plot of Development Year Incremental Payments
By Accident Year

Ggplot2 Example

B Spring_2023_Meeting - RStudio

File Edit Code View Plots Session Build Debug Profile Tools Help
 geom_line(aes (group=Acc_Yr), color=" "Greys0") $x=$ "Development Year",
$y=$ "Incremental Payments"
geom_1ine(aes (group=Acc_Yr), color="areys0")
geom_line (aes (group=Acc_Yr), color="grey 50 ") + Change in Inflation Distribution
Change in company operations")
qeom_1ine (aes(group=Acc_-Yr), color="|areys0") +
(Top Level)
Console Terminal
R R 4.0 .5 - C:/Users/mikep/Spring_2023 Meeting
bootstrap
Loading required package: shiny
This is shinystan version 2.6.0
> source("C:/Users/mikep/Spring_2023_Meeting/Create_Data_Set_Spring_2023.R")
 geom_line (aes (group=Acc_Yr), color="grey ${ }^{\prime} 0$ ") +
lam_ditle=" Plot of Development Year Incremental Payments \n By Accident Year"
$+x=$ "Development Year",
$+y=$ "Incremental Payments")
 Environment History Connections Tutorial
ggplot(data =Train_Triangle_All_operation, aes (x=Dev_Yr, y=Trended_Incr_Payment)
labs (title=" Plot of Development Year Incremental Payments \n By Accident Year"
ggplot (data =Train_Triangle_All_Operation, aes(x=Dev_Yr,y=Trended_Incr_PP)) \ddagger
labs(title=" Plot of Development year Incremental Pure Premium \n By Accident year")
ggplot(data =Train_Triangle_All_operation, $\left.\operatorname{aes}\left(x=D e v _Y r, y=T r e n d e d _I n c r _P P _D e f\right)\right)+$

ggplot(data =Train_Triangle_All_operation, aes(x=Dev_Yr, y=Ln_Trd_Incr_PP))+

Plot of Development Year Incremental Payments By Accident Year

Plot of Development Year Log Deflated Incremental Pure Premium By Accident Year

Box Plot of Deflated Incremental Pure Premium
Across Accident Year

Mean Natural Log of Incremental PP Deflated
 Across Accident Years

Standard Deviation Natural Log of Incremental PP Deflated Across Accident Years

Mean Natural Log of Mean Payment Deflated
Across Accident Years

Standard Deviation Natural Log of Mean Payment Deflated Across Accident Years

Box Plot Incremental Paid Count Freq Across Accident Year

QQ Plot for Log of Deflated Pure Premium Incremental Payments By Development Year

EDA Observations

- Lognormal distribution should work for dependent variable
- Mean shows some form of a parabolic development pattern
- Sigma generally decreases first 10 development years then starts to increase
- No sign of change in rate of loss cost increases
- No sign of change in claim handling or business mix

Alternative Models

Model forms

- Model incremental paid loss to isolate effect of inflation
- Normalize losses (incremental deflated pure premium)
- Divide incremental paid losses by exposure (claim count at 12 months)
- Divide incremental losses by accumulated CPI type index
- Incremental pure premium vs. incremental counts and average deflated severity
- Modeling counts and amounts implies measuring correlation between counts \& severity estimates which is a more complicated model
- Built in log pointwise prediction comparison tools need a single, common predictive value
- Appealing but impractical model form for this exercise
- Potential model forms:
- Polynomial for development year \& random effects (group) for accident year
- Non-linear for development year \& random effects (group) for accident year
- Generalized Additive Model for development year \& random effects (group) for accident year
- Additional inflation effects as calendar year time elapsed

Effect of STAN on
 Modeling

- Execution time is much better
- Bayesian MCMC solves for parametric parameters iteratively for a wide range of model structures
- Start with a given set of parameters (prior distribution) and compare successive alternative sets effect on likelihood function substituting parameters that yield better likelihood results until convergence
- STAN uses an algorithm (Hamiltonian) that is much more efficient at selecting the next set of parameters to try than earlier Bayesian MCMC algorithms
- Diagnostics on algorithm execution success available

Polynomial 1 Prior Definitions

```
Polynomial_1_prior < - c(prior(normal(.6,2),class=b, coef= Dev_Yr_6_Cap),
    prior(normal(-2,2),class=b, coef= Dev_Yr_6_Cap_Sard),
    prior(normal(-2,,1),class=b, coef= Dev____6_Spline),
    prior(normal(-1,05),lass=b, coef= Dev_Yr_6_Spline_Sqra),
    prior(norma((1,25),class=b, coef=Ln_Dev_Yr),
    prior(normal(-1,25),class=b,coef = Intercept),
    prior(normal(.02,01),class=b, coef=Cal_\r_Time),
    prior(norma|(0.2,1),class=b,coef =Intercept, dpar=sigma),
    prior(normal(-1,05),class=b, coef=Dev_Yr_10_Cap,dpar=sigma),
    prior(student_((3,1,,05),lass=b, coef=Dev_\r_10_Spline,dpar=sigma))
```

Prior distributions reflect your knowledge of the subject in terms of plausible results.

The priors with a "dpar=" are used to give instructions for model components besides the mean or mu for the lognormal distribution

A listing of variable definitions is given in the appendix.

Grammar for brms models

- Brm: calls the brms routine
- Components bolted on as needed via " + " signs
- bf(): defines the formulas used to estimate the mean and other parameters
- Iter: tells the routine how many times to simulate the parameters to solve in MCMC routine
- Prior: identifies the prior distributions to be used in a model
- Seed: sets the simulation seed to ensure results can be replicated
- Control: instructions to STAN when default settings don't work
- Data: name of data set

Polynomial Model 1 brms Instructions

Model_Polynomial_1 <-brm(bff(Trended_Incr_PP_Def $\sim 0+\mid$ Intercept + Ln_Dev_Yr +
Dev_Yr_6_Cap + Dev_Yr_6_Cap_Sard +
Dev_Yr_6_Spline + Dev_Yr_6_Spline_Sqrd $+(1| |$ Acc_Yr $)+$
Cal__r_Time,
sigma ~ O+ Intercept + Dev_Yr_10_Cap + Dev_Yr_10_Spline),
iter $=4000$,
prior= Polynomial_1_prior,
seed $=8603529$,
control = list(max_treedepth=15),
data $=$ Train_Triangle_All_Operation, family = lognorma()())

Mu or the mean's model is defined after the first " "".

Sigma's model is defined after the second "~".

Other modeling
instructions are bolted on as needed.

Polynomial Model 1 Results Summary

```
summary(Mode1__Polynomia1__1)
    Family: lognormal
        Links: mu = identity; sigma = 1og
Formula: Trended__Incr__PP_Def ~ O + Intercept + Ln__Dev__Yr + Dev_Yr__6_Cap + Dev_Yr__6_Cap_Sqrd
                        + Dev_Yr__6_Sp1ine + Dev_Yr__6_Spiine_Sqrd + (I || Acc_Yr) + Cal__Yr__Time
                sigma ~ O + Intercept + Dev_Yr_lO_Cap + Dev__Yr__lo__Spline
            Data: Train_Triang\e_Al]_Operation (Number of observations: 253)
    Draws: 4 chains, each with iter = 4000; warmup = 2000; thin = 1;
        total post-warmup draws = 8000
Group-Leve1 Effects:
~ACC_Yr (Number of levels: 22)
```



```
Population-Level Effects:
                                    Estimate Est.Error 1-95% CI u-95% CI Rhat Bu\k_ESS Tai\_ESS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Estimate & Est.Error & 1-95\% CI & u-95\% CI & Rhat & Bu7k_ESS & Tai 1 _ESS \\
\hline Intercept & -0.51 & O. 13 & -0. 77 & -0. 25 & 1.00 & 3371 & 4709 \\
\hline Ln_Dev_Yr & 2. 24 & O. 18 & 1.89 & 2.60 & 1.00 & 2466 & 4264 \\
\hline Dev_Yr_6__Cap & 1.16 & O. 11 & O. 93 & 1.38 & 1.00 & 2153 & 3348 \\
\hline Dev_Yr_6__Cap_Sqrd & -0.14 & 0.01 & -0.15 & -0.12 & 1.00 & 2600 & 4169 \\
\hline Dev_Yr__6_Spline & -0.45 & 0.03 & -0. 50 & -0.40 & 1.00 & 2296 & 3765 \\
\hline Dev_Yr_6_Spline_Sqrd & -0.01 & O. 00 & -0.02 & -0.01 & 1.00 & 3051 & 5357 \\
\hline Cal_Yr_Time & O. 01 & 0.00 & 0.00 & O. 01 & 1.00 & 4143 & 5340 \\
\hline Sigma_Intercept & -0.37 & 0.09 & -0. 53 & -0. 20 & 1.00 & 4437 & 5434 \\
\hline sigma_Dev_Yr_lo_cap & -0.30 & O. 01 & -0. 32 & -0. 27 & 1.00 & 3832 & 4614 \\
\hline igma & 0. 22 & 0.02 & 0. 17 & 0.27 & 1.00 & 5625 & 6240 \\
\hline
\end{tabular}
Draws were sampled using sampiing(NUTS). For each parameter, Bulk_ESS
scale reduction factor on split chains (at convergence, Rhat = 1) .
```


Bayesian MCMC performance summary terms

- Rhat: used to summarize parameter comparison between chains with 1.00 signifying the comparison is good.
- Bulk_ESS: Number of non-correlated iterations used to get measure of effective overall sample size for an estimate
- Tail_ESS: Number of non-correlated iterations used to get measure of effective sample size for an estimate in the tail of the distribution
- Group Level effects: displays standard deviation across groups used in least squares credibility weighting of mean result for a given group
- Population level effects: equivalent to GLM independent variables

Historical Pure Premium vs. Distribution of Predicted Model Polynomial 1

Historical Pure Premium vs. Distribution of Predicted Model Polynomial 1

Development Year vs. Normalized Residuals Polynomial Model 1

Total Reserve Estimate
Model Polynomial 1
Simulated Future Inflation

Polynomial 2 Prior Definitions

```
Polynomial_2_prior <-c(prior(normal (.6, .2),class=b, coef= Dev_Yr_6_Cap),
prior(normal(-.2, 2),class=b, coef= Dev_Yr_6_Cap_Sard),
prior(normal(-.2, ,2),class=b, coef= Dev_Yr_6_spline),
\[
\operatorname{prior}(\text { normal }(-.2, .2), c \text { class=b, coef= Dev_Yr_6_Sppline_Sard), }
\]
prior(normal(1,.25),class=b, coef=Dev_Yr_2_Factor2),
prior(normal(2,.25),class=b, coef=Dev_Yr_2_Factor3),
prior(normal (-1, , 25), class=b ,coef =Intercept),
prior(normal (.02,.01),class=b, coef=Cal_Yr_Time),
prior(normal(-.01, ,005),class=b, coef=Dev_Yr_10_Cap,dpar=signa),
\[
\text { prior(student_t( }(2, .02, .01), \text { class=b, coef=Dev_Yr_10_spline,dpar=sigma)) }
\]
```


Polynomial Model 2 brms Instructions

```
Model_Polynomial_2 <- brm(bf(Trended_Incr_PP_Def ~ 0 + Intercept + Dev_Yr_2_Factor +
    Dev_Yr_6_Cap + Dev_Yr_6_Cap_Sqrd +Dev_Yr_6_Spline
    + Dev_Yr_6_Spline_Sgrd+Cal_Yr_Time +(1|Acc_Yr),
    sigma ~ Dev_Yr_10_Cap + Dev_Yr_10_Spline ),
    iter = 4000,
    prior= Polynomial_2_prior,
    seed= 8603529,
    data = Train_Triangle_All_Operation, family = lognormal())
```


Polynomial Model 2 Results Summary

```
summary(Mode1_Po1ynomia1_2)
    Family: lognormal
    Links: mu = identity; sigma = log
Formula: Trended_Incr_PP_Def ~ O + Intercept + Dev_Yr__2_Factor + Dev_Yr__6_Cap
            + Dev_Yr_6_Cap_Sqrd + Dev_Yr_6__Spiine + Dev_Yr__6_Spiine_Sqrd + Cal_Yr_Time + (1 | | Acc_Yr)
            sigma ~ Dev_Yr__10_Cap + Dev_Yr_10__sp1ine
        Data: Train_Triangle_Al7_operation (Number of observations: 253)
    Draws: 4 chains, each with iter = 4000; warmup = 2000; thin = 1;
    total post-warmup draws = 8000
```

Group-Leve1 Effects:
~ACC_Yr (Number of levels: 22)
EStimate ESt.Error $1-95 \%$ CI u-95\% CI Rhat Bulk_ESS Tail_ESS

Population-Level Effects:
Estimate Est.Error 1-95\% CI u-95\% CI Rhat Bulk_ESS Tail_ESS

	Estimate	Est.Error	1-95\% CI	u-95\% CI	Rhat	BU7k_ESS	ai 1_ESS
sigma_Intercept	-2.88	0.07	-3.00	-2.74	1.00	5753	5598
Intercept	-1.22	0.05	-1.31	-1.12	1.00	2148	3641
Dev_Yr_2_Factor2	1.79	0.04	1.72	1.86	1.00	2288	3638
Dev_Yr_2_Factor3	2.26	0.06	2.14	2.39	1.00	2093	3217
Dev_Yr_6__Cap	1.47	0.05	1.37	1.57	1.00	1973	2856
Dev_Yr_6_Cap_Sqrd	-0.12	0.01	-0.13	-0.11	1.00	1974	2861
Dev_Yr_6_Spitine	-0.10	0.01	-0.12	-0.09	1.00	4320	5297
Dev_Yr_6__Spline_sqrd	-0.03	0.00	-0.03	-0.02	1.00	4383	5083
Ca1_Yr_Time	0.01	0.00	0.01	0.01	1.00	5867	5854
sigma_Dev_Yr_10_Cap	-0.02	0.00	-0.03	-0.01	1.00	10244	6103
sigma_Dev_Yr_10_spline	O. 25	0.02	O. 20	0.29	1.00	4987	5873

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS

Historical Pure Premium Deflated vs. Distribution of Predicted
Polynomial Model 2

Historical Pure Premium vs. Distribution of Predicted Polynomial Model 2

Development Year vs. Normalized Residuals Polynomial Model 2

Total Reserve Estimate

Model Polynomial 2
Simulated Future Inflation

Comments on Multivariate Model Slides

- Excluded from model comparison
- Slides included to show some features of building a reserve model if you have to split it into counts and severity to get a decent fit
- Prior definitions
- Split Poisson vs. Lognormal using "resp="
- Other components work as before
- Split the model formula using separate objects for counts and severity
- Keeps the length of code for a given task readable
- Bolt the model objects together using " + "

Multivariate Model Prior Definitions

```
multivariate_prior <- c(prior(normal(.6,.2),class=b, coef= Dev_Yr_8_Cap, resp=TrendedMeanPaymentDef),
    prior(normal(-.2,.2),class=b, coef= Dev_Yr_8_Cap_Sqrd,resp=TrendedMeanPaymentDef),
    prior(normal(-.2,.2),class=b, coef= Dev_Yr_8_Spline,resp=TrendedMeanPaymentDef),
    prior(normal(-.2,.2),class=b, coef= Dev_Yr_8_Spline_Sqrd,resp=TrendedMeanPaymentDef),
    prior(normal(1,.25),class=b, coef=Dev_Yr_1_Factor2,resp=TrendedMeanPaymentDef),
    prior(normal(1,.25),class=b ,coef =Intercept,resp=TrendedMeanPaymentDef),
    prior(normal(.02,.01),class=b, coef=Cal_Yr_Time,resp=TrendedMeanPaymentDef),
    prior(normal(-2,.5),class=b ,coef =Intercept,dpar=sigma,resp=TrendedMeanPaymentDef),
    prior(normal(-.01,.005),class=b, coef=Dev_Yr_15_Cap,dpar=sigma,resp=TrendedMeanPaymentDef),
    prior(normal(-1,.5),class=b, coef=Intercept,resp=PaidCnt),
    prior(normal(.2,.1),class=b, coef=Dev_Yr_4_Cap,resp=PaidCnt),
    prior(normal(1,.1),class=b, coef=Ln_Dev_Yr,resp=PaidCnt),
    prior(normal(-.2,.1),class=b, coef=Dev_Yr_4_Spline,resp=PaidCnt))
```


Multivariate Model brms Instructions

```
form_count <- bf(Paid__Cntl rate(Rptd__Cnt) ~ O + Intercept
    + Dev_Yr__4_Cap
    + Ln__DeV__Yr
    + Dev__Yr__4__Sp7ine
    + (I||ACC_Yr), family = poisson())
form_sev <-bf(Trended__Mean__Payment__Def~ O + Intercept
    + Dev__Yr__8__Cap
    + Dev_Yr__8_Cap_Sqrd
    + Dev_Yr_8_Sp\ine
    + Dev__Yr__8_Sp7ine_Sqrd
    + Dev_Yr__l_Factor
    + Ca1__Yr__Time
    + (1||ACC_Yr),
    sigma ~ O + Intercept +Dev_Yr_l5_Cap ,
    family =1ognormal(C) )
Mode1_Multivariate <- brmCForm_sev + form_count ,
                            prior=multivariate_prior,
                            data = Train_Triangle_Ali__operati
```


Multivariate Model Results Summary

```
Family: MV(7ognormal, poisson)
    Links: mu = identity; sigma = 1og
        mu = ide
Formula: Trended_Mean_Payment_Def ~ O + Intercept + Dev_Yr_8_Cap + Dev_Yr_8_Cap_Sqrd + Dev_Yr_8_Spline
    + Dev_Yr_8_Spline_Sqrd + Dev_Yr_1_Factor + Cal_Yr_Time + (1 | | Acc_Yr)
    sigma ~ O + Intercept + Dev_Yr_15_Cap
    Paid__Cnt | rate(Rptd_Cnt) ~ O + Intercept + Dev_Yr_4_Cap + Ln__Dev_Yr + Dev_Yr_4_Spline + (l | | Acc_Y
    Data:
    Train_Triangle_Al1__Operation (Number of observations: 253)
    Oraws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
    total post-warmup draws = 4000
```

Group-Level Effects:
~ACC_Yr (Number of 1evels: 22)

sd(PaidCnt_Intercept) 0.02 0.01 0.01 0.03 1.00 0.0187

Population-Level Effects:

TrendedMeanPaymentDef_Intercept
TrendedmeanpaymentDef_Dev_Yr_8_cap
TrendedMeanpaymentDef_Dev_Yr_8_Cap_sqrd
TrendedMeanPaymentDef_DEV_Yr_8_Spline TrendedMeanPaymentDef_Dev_Yr_8_Spiine_Sqrd TrendedMeanPaymentDef_Dev_Yr_1_Factor2 TrendedMeanPaymentDef_cal_Yr_Time
sigma_TrendedMeanpaymentDef_Intercept
sigma_TrendedMeanPaymentDef_Dev_Yr_15_cap paidcnt_Intercept
PaidCnt_Dev_Yr_4_Cap
paidcnt_Ln_Dev_Yr
PaidCnt_Dev_Yr_4_Spline

Estimate Est.Error 1-95\% CI u-95\% CI Rhat Bulk_ESS Tail_ESS
0.04 0.03 $0.0 .01 \quad 0.101 .00 \quad 4628 \quad 3231$

1.48	0.02	1.44	1.52	1.00	3322	3061

-0.11	0.00	-0.11	-0.10	1.00	3347

-0.09	0.01	-0.11	-0.08	1.00	6696

-0.01	0.00	-0.01	-0.01	1.00	6412

1.48	0.04	1.41	1.55	1.00	4355	3272

1.01	0.00	0.01	0.01	1.00	5502

-2.37	0.05	-2.47	-2.26	1.00	5246

0.02002927

-0.02	0.00	-0.03	-0.01	1.00	5743
-0.99	0.02	-1.02	-0.96	1.00	2647

-0.99	0.02	-1.02	-0.96	1.00	2647
-0.29	0.02	-0.32	-0.26	1.00	2438

0.97	0.03	0.91	1.03	1.00	2509

-0.29	0.00	-0.30	-0.29	1.00	2649	2834

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat $=1$).

Historical Pure Premium vs. Distribution of Predicted
Multivariate Model

Dev_Yr vs. Distribution of Predicted Multivariate MOdel

Development Year vs. Normalized Residuals Multivariate Model

Nonlinear Model Prior Definitions

```
Non_linear_prior_4 <- c(prior(normal(-.1,.05),class=b, n7par=b1,ub=0),
    prior(normal(1.5,.25),class=b, nlpar=b2,),
    prior(normal(-.1,.05),class=b, nlpar=b3,ub=0),
    prior(normal(-.1,.05),class=b, nlpar=b4,ub=0),
    prior(normal(1,.5),class=b, n7par=b5,ub=2),
    prior(normal(.02,.02),class=b, n7par=inf1,1b=0),
    prior(normal (-1,.1),class=b, nlpar=dev1,ub =-.4),
    prior(normal (-2,.1),class=b ,coef =Intercept, dpar=sigma),
    prior(normal(-.01,.005),class=b, coef=Dev_Yr_10_Cap,dpar=sigma),
    prior(student_t(3,.05,.01),class=b, coef=Dev_Yr_10_Spline_Ln,dpar=sigma))
```


Nonlinear Model brms Instructions

```
Mode1_NL_4 <- brmC
    bf(Trended_Incr_PP_Def ~
        ( exp(dev1 + b1 *Dev_Yr_5_Cap
            + b2*Ln_Dev_Yr
            + b3 * Dev_Yr_5_spiine
            + b4 * Dev_Yr_5_sp1ine_Sqrd
            + b5 * Dev_Yr_GT_1
        )
        +inf1*Ca1_Yr_Time),
        b1 +b2 +b3 + +b4+ b5 +inf1 ~ 1,dev1 ~ 1 +(1||Acc_Yr),
        sigma ~ 0 + Intercept +Dev_Yr_10_Spline_Ln +Dev_Yr_10_cap,
        n1 = TRUE),
    data = Train_Triangle_Al1_operation, family = lognormal(),
    prior= Non_linear_prior_4,
    seed= 8603529,
    iter= 4000,
    contro1 = 1ist(adapt_de1ta = 0.99,
            max_treedepth =12))
```


Nonlinear Model Results Summary

```
Family: lognormal
    Links: mu = identity; sigma = log
```



```
            +b4 * Dev_Yr_5__Spline_Sqrd + b5 * Dev_Yr__GT__1) + infl * Cal_Yr__Time)
            b1 ~ 1
            b2 ~ 1
            b3 ~ 1
            b4 ~ 1
            b5~~
            infl ~ l
            devi ~ 1 + (1 || ACC_Yr)
            sigma ~ O + Intercept + Dev_Yr_lo_Spline_Ln + Dev_Yr_lo_cap
            Data: Train_Triangle_Al _ Operation (Number of observations: 253)
    Draws: 4 chains, each with iter = 4000; warmup = 2000; thin = 1;
            total post-warmup draws = 8000
Group-Level Effects:
~ACC_Yr (Number of levels: 22)
SdCdevl Intercept) Estimate Est.Error i-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Population-Level Effects:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Estimate & Est.Error & 1-95\% CI & u-95\% CI & Rhat & BUTK_ESS & Tail_EESS \\
\hline bl_Intercept & -0.27 & O.01 & -0.29 & -0. 24 & 1.00 & 3385 & 4533 \\
\hline bz_Intercept & 1.45 & 0.03 & 1. 38 & 1.52 & 1.00 & 3280 & 4305 \\
\hline b3_Intercept & -0.23 & O. 00 & -0. 24 & -0.22 & 1.00 & 3224 & 4263 \\
\hline b4_Intercept & -0.00 & O. 00 & -0.00 & -0.00 & 1.00 & 6008 & 3723 \\
\hline b5_Intercept & 1.93 & 0.05 & 1.83 & 2.00 & 1.00 & 4674 & 3548 \\
\hline infu_untercept & O.01 & 0.00 & O. 00 & O. 01 & 1.00 & 4563 & 3458 \\
\hline devl_untercept & -1.26 & 0.05 & -1.33 & -1.15 & 1.00 & 4566 & 3762 \\
\hline sigma_Intercept & -2.50 & 0.06 & -2.60 & -2.38 & 1.00 & 7136 & 5925 \\
\hline sigma_Dev_Yr_lo_spline_Ln & 1.19 & 0.06 & 1. 08 & 1.31 & 1.00 & 7106 & 5937 \\
\hline sigma_Dev_Yr_lo_cap & -0.02 & O. 00 & -0.03 & -0.01 & 1.00 & 9890 & 6757 \\
\hline
\end{tabular}
```

Draws were sampled using sampiing(NuTS) . For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains cat convergence, Rhat = l).

Historical Pure Premium vs. Distribution of Predicted
Non-Linear Model

Dev_Yr vs. Distribution of Predicted
Non-Linear Model

Development Year vs. Normalized Residuals Non-Linear Model

Total Reserve Estimate
Model Nonlinear
Simulated Future Inflation

Checking Prior Distribution for Plausibility

- Generally, a good practice to simulate prior distributions
- Essential for some model forms and small data sets
- Sometimes, just checking mean parameters in EXCEL is enough
- In larger data sets, prior distribution effects may not matter
- Brms offers option to simulate population level prior distributions
- Example follows to show how software today reduces time burden to create Bayesian MCMC models

Nonlinear Model brms Instructions (Use Only Prior Distributions)

```
Model_NL_4_prior <- brm(
    bf(Trended_Incr_PP_Def ~
        ( exp(dev1 + b1 *Dev_Yr_5_Cap
            +b2*Ln_Dev_Yr
            + b3 * Dev_Yr_5_Spline
            +b4 * Dev_Yr_5_Spline_Sqrd
            + b5 * Dev_Yr_GT_1
    )
+infl*Cal_Yr_Time),
b1 +b2 +b3 + +b4+ b5 +infl ~ 1,dev1 ~ 1,
sigma ~ O + Intercept +Dev_Yr_10_Spline_Ln +Dev_Yr_10_Cap,
nl = TRUE),
sample_prior = "only",
data = Train_Triangle_All_Operation, family = Iognormal(),
save_pars = save_pars(all=TRUE),
prior= Non_linear_prior_4,
seed=8603529,
iter=4000,
control = list(adapt_delta = 0.99,
    max_treedepth =12))
```

Include statement
"sample_prior ="only" Drop random effects (group) component of variable dev1

Historical Pure Premium vs. Distribution of Predicted Using Only Prior Non-Linear Model

Dev_Yr vs. Distribution of Predicted Using Only Prior Non-Linear Model

Historical Pure Premium vs. Distribution of Predicted mu using only prior Non-Linear Model

Historical Pure Premium vs. Distribution of Predicted sigma using only prior Non-Linear Model

Comments on Generalized Additive Model Example

- Excluded from list of models to be compared given unresolved divergent error message
- Included in presentation:
- Illustrates STAN/brms does give useful feedback on MCMC integrity
- Provides illustration of bayesplot and ShinyStan diagnostics
- Demonstrates why one has to pay attention to warnings
- Bayesplot is a package one can invoke within Rstudio with a range of diagnostics
- ShinyStan is a package one can launch which produces a set of prepackaged diagnostics

Generalized Additive Model Prior Definitions

```
GAM_prior <- c(prior(normal(.02,.01),class=b, coef=ca1_Yr_Time),
    prior(normal(0,.25),class=b, coef=Intercept),
    prior(normal(-2,.5),class=b ,coef =Intercept, dpar=sigma),
    prior(normal(-.02,.01),class=b, coef=Dev_Yr_10_Cap,dpar=sigma),
    prior(student_t(3,.02,.01),class=b, coef=Dev_Yr_10_spline,dpar=sigma))
```


Complete set
of prior specifications including defaults

Generalized Additive Model brms Instructions

```
Mode1_GAM <- brm(bf(Trended_Incr_PP_Def ~ 0 +Intercept + s(Dev_Yr, k=3, m=2)
            +Ca1_Yr_Time +(1|Acc_Yr),
    sigma ~ 0 + Intercept + Dev_Yr_10_Cap + Dev_Yr_10_Spline),
    iter = 4000,
    prior= GAM_prior,
    seed=8603529,
    control = list(adapt_de1ta = .99,
        max_treedepth=15),
    data = Train_Triangle_Al1_Operation, family = lognormal())
```

Generalized Additive Model formula for Dev_Yr invoked in "s(Dev_Yr, $\mathrm{k}=3, \mathrm{~m}=2$)"

Generalized Additive Model Results Summary

```
Family: lognormal
    Links: mu = identity; sigma = log
Formula: Trended_Incr_PPP_Def ~ O + Intercept + s(Dev_Yr, k = 3, m = 2)
    + Cal_Yr_Time + (1 | | Acc_Yr)
    sigma ~ O + Intercept + Dev_Yr__lo_Cap + Dev_Yr__lo__Sp\ine
    Data: Train_Triangle_All_operation (Number of observations: 253)
    Draws: 4 chains, each with iter = 4000; warmup = 2000; thin = 1;
    total post-warmup draws = 8000
Smooth Terms:
```



```
Group-Level Effects:
~ACC_Yr (Number of levels: 22)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Estimate & Est.Error & 1-95\% CI & U-95\% CI & Rhat & 17 k_ESS & _ESS \\
\hline sd(Intercept) & 2.83 & O. 54 & 1.93 & 4.05 & 1.01 & 993 & 1948 \\
\hline
\end{tabular}
Population-Level Effects:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Estimate & Est.Error & 1-95\% CI & u-95\% CI & Rhat & Bulk_ESS & Tai 1 _ESS \\
\hline Intercept & O. 47 & O. 27 & -0.06 & 1.01 & 1.00 & 4380 & 4602 \\
\hline Cal_Yr_Time & 0.03 & O. 01 & 0.01 & 0.05 & 1.00 & 3852 & 4740 \\
\hline sigma_Intercept & O. 41 & 0.06 & 0. 28 & O. 53 & 1.00 & 4571 & 3990 \\
\hline sigma_Dev_Yr_1O_Cap & -0.07 & O. 01 & -0.09 & -0.05 & 1.00 & 5081 & 4702 \\
\hline sigma_Dev_Yr_lo_Spi ine & -0.14 & 0.03 & -0.19 & -0.07 & 1.00 & 2905 & 1705 \\
\hline sDev_Yr_1 & 1. 53 & O. 08 & 1.38 & 1.68 & 1.00 & 3360 & 3652 \\
\hline
\end{tabular}
Draws were sampled using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on spititchains (at convergence, Rhat = 1) .
warning message:
There were 3 divergent transitions after warmup. Increasing adapt_delta above O.99 may help. see http://mc-stan.org/misc/warnings.htmi\#divergent-transitions-after-warmup
```


Checking Syntax for GAM Model

```
B Spring_2023_Meeting - RStudio
File Edit Code View Plots Session Build Debug Profile Tools Help
```


Generalized Additive Model bayesplot example for pairs() graph

Generalized Additive Model ShinyStan

Generalized Additive Model ShinyStan

Glossary

Effective sample size	divergent
Monte Carlo uncertainty	Quick definition
Rhat	The number of leapfrog transitions with diverging error. Because NUTS terminates at the first divergence this will be either or 1 for each iteration. The average value of divergent over all iterations is therefore the proportion of iterations with diverging error.
No-U-Turn Sampler (NUTS)	More details
accept_stat	When numerical issues arise during the evaluation of the parameter Jacobians or the model log density, an exception is raised in the underlying code and the current expansion of the Hamiltonian forward and backward in time is halted. This is marked as a divergent transition.
divergent	The primary cause of divergent transitions in Euclidean HMC (other than bugs in the model code) is numerical instability in the leapfrog integrator used to simulate the Hamiltonian evaluation. The fundamental problem is that a fixed step size is being multiplied by the gradient at a particular
energy stepsize	point, to determine the next simulated point. If the stepsize is too large, this can overshoot into ill-defined portions of the posterior. If there are (post-warmup) divergences then the results may be biased and should not be used. In some cases, simply lowering the initial step size and increasing the target acceptance rate will keep the step size small enough that sampling can
n_leapfrog treedepth	proceed. The exact cause of each divergent transition is printed as a warning message in the output console. This can be useful in cases where managing the step size is insufficient. In such cases, a reparameterization is often required so that the posterior curvature is more manageable; see the section about Neal's Funnel in the Stan manual for an example.
	For more details see Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo.

Glossary entries are compiled (with minor edits) from various excerpts of the Stan Modeling Language User's Guide and Reference Manual (CC BY (V3))

Historical Pure Premium vs. Distribution of Predicted Model GAM

Historical Pure Premium vs. Distribution of Predicted Model_GAM

Development Year vs. Normalized Residuals GAM Model

Total Reserve Estimate

Model GAM
Simulated Future Inflation

Model Selection

Bayesian MCMC Model Comparison Metrics

- PSIS
- Pareto Smoothed Importance Sampling Cross Validation
- Approximation of leave one out cross validation
- Uses individual observation log pointwise predictive distribution details
- Uses relative effect of a given observation as input to weighting
- Avoids computational cost of literal leave one out cross validation
- Diagnostics on safety of using approximation furnished
- WAIC:
- Widely Applicable Information Criteria
- Uses log pointwise predictive distribution details
- Similar to AIC in that there is a penalty term
- Informed guess on out-of-sample KL divergence
- Useful for comparison between models
- Diagnostics on safety of using furnished

Example of Criteria for Comparison Safeguards

```
Poly_1_loo <- add_criterion(Model_Polynomial_1,c('loo'', ''waic'),
moment_match=TRUE)
1: Some pareto k diagnostic values are sijghtly high. See help('pareto-k-diagnostic') for details.
    2:00
11 (4.3%) p_waic estimates greater than 0.4. we recommend trying loo instead.
> PO1y_l__10o_prep <- 10o(Model_Polynomial__l)
> Poly 1 700 mm <-700 moment_match(Mode7_Polynomial_1, 700=Poly 1 100 prep)
warning message
Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
> P07y__l_100__mm
Computed from 8000 by 253 7og-7ike\ihood matrix
\begin{tabular}{lrr} 
& Estimate & SE \\
e1pd_100 & -801.1 & 25.0 \\
p_100 & 18.7 & 3.3 \\
100ic & 1602.2 & 49.0
\end{tabular}
100ic 1602.2 49.9
Monte Carlo SE of elpd_loo is O.l
Pareto k diagnostic values
C-Inf, O.5]
    CO.5, O.7]
    (0.7, 1]
    (1, Inf)
(good) 250
(ok) (o)
(bad) 0 1.2%
(very bad) O O.O% <NA>
A71 Pareto k estimates are ok (k < O.7).
```


Model Comparison
 Using loo (approximate leave one out)

- Comparison of log pointwise predictive density
- Need both the difference and the se_diff (standard error of difference)
- Comparison is to best model Polynomial 2 in this case (0.0 is best)
- Sometimes standard error relative to difference is so large that differences may not be large enough to say one model is better

```
> mode1_compare <- loo_compare(Poly_1_1oo,Poly_2_1oo,
+ Nonlinear_loo,
+ criterion = "loo")
> model_compare
    elpd_diff se_diff
Poly_2_loo 0.0 0.0
Nonlinear_loo -94.3 13.6
Poly_1_loo -132.2 16.0
```


Model

Averaging Results

- Weight shows the sampling of forecast losses to obtain the best results in terms of estimated expected log pointwise predictive distribution results.
- The weights are selected to obtain the optimal approximate leave one out (loo) result from the weighted forecast.
- Note that weights for the predicted forecast not the parameter values.

```
1oo_mode1_weights(Mode1_NL_4,Mode1_Polynomia1_1,Mode1_Po1ynomia1_2)
Method: stacking
```

```
weight
```

weight
Mode1_NL_4 0.053
Mode1_NL_4 0.053
Mode1_Polynomia1_1 0.000
Mode1_Polynomia1_1 0.000
Mode1_Polynomia1_2 0.947
Mode1_Polynomia1_2 0.947
Warning message:
Warning message:
Some Pareto k diagnostic values are slightly high.
Some Pareto k diagnostic values are slightly high.
See help('pareto-k-diagnostic') for details.

```
See help('pareto-k-diagnostic') for details.
```


Model Forecast Comparison (millions)

	Polynomial 1	Polynomial 2	Non_Linear	GAM
Min	39.21	40.09	42.38	11.85
1st Quartile	44.52	44.67	47.46	23.33
Median	45.81	45.76	48.77	27.39
Mean	45.85	45.77	48.88	28.4
3rd Quartile	47.12	46.8	50.21	32.36
Max	53.67	51.61	61.05	95.17

Note: Forecasts assume base inflation continues with lognormal distribution mu $=.03$ and sigma= .02 and loss cost multiplier continues with lognormal
distribution $m u=.01$ and sigma $=.01$.

Total Reserve Estimate By Model

model

- Nonlinear

Polynomial 1
Polynomial 2

Conclusion

- Bayesian probability models are not new
- Reverend Thomas Bayes in 1754
- Combination of software, algorithm development and computing power makes application practical
- Metropolis Hastings: First described in 1953 publication
- Tidyverse programming concepts: ggplot2 first released in 2005
- STAN (Hamiltonian): Released in 2015
- Brms released in 2017
- Use requires picking up new vocabulary and concepts
- Value to actuaries:
- Links credibility weighting to variety of parametric models
- Document one's prior knowledge of the problem at hand

Appendix

Additional Resources

- Brms
- brms: An R Package for Bayesian Multilevel Models using Stan, Paul-Christian Burkner, Journal of Statistical Software 2017
- Advanced Bayesian Multilevel Modeling with the R Package brms by Paul-Christian Bürkner, The R Journal Vol. 10/1, July 2018
- STAN
- https://mc-stan.org/
- Rstudio
- https:///studio.com/
- Tidyverse
- Rstudio help
- R for Data Science: Import, Tidy, Transform, Visualize, and Model Data 1st Edition, Hadley Wickham, Garret Grolemund
- Bayesian MCMC textbooks
- Statistical Rethinking: A Bayesian Course with Examples in R and STAN (Chapman \& Hall/CRC Texts in Statistical Science) 2nd Edition, by Richard McElreath
- Bayesian Data Analysis (Chapman \& Hall/CRC Texts in Statistical Science) 3rd Edition, Gelman et.al.
- Tidybayes
- https://cran.r-project.org/web/packages/tidybayes

Create Count and Severity Distributions (Page 1)

```
Change_Operation <- Triangle__Dates_Operation %>%
    group__by(Acc__Yr, Dev__Yr) %>%
    mutate(Ln__Dev_Yr=log(Dev__Yr),
    P__rate = case__when(
        Acc__Yr = = 200O ~ Exp(-.98 + Dev__Yr* (-.30) + Dev__Yr__Sqrd * (O) + Ln__Dev__Yr* (1.O)),
        Acc__Yr == 2001 ~ exp(-.97 + Dev__Yr* (-.30) + Dev__Yr__Sqrd * (O) + Ln_Dev_Yr* (1.O)),
        Acc_Yr == 2002 ~ exp(-.98 + Dev__Yr* (-.30) + Dev_Yr__Sqrd * (O) + Ln__Dev_Yr* (1.O)),
        Acc__Yr == 2003 ~ exp(-.99 + Dev__Yr* (-.3O) + Dev__Yr__Sqrd * (O) + Ln__Dev__Yr* (1.O)),
        Acc_Yr == 2004 ~ exp(-1.O1 + Dev_Yr* (-.3O) + Dev__Yr__Sqrd * (O) + Ln__Dev__Yr* (1.O)),
        Acc_Yr == 2005 ~ exp(-1.O2 + Dev__Yr* (-.3O) + Dev__Yr__Sqrd * (O) + Ln__Dev__Yr* (1.O)),
        Acc__Yr == 2006 ~ exp(-1 + Dev__Yr* (-.3O) + Dev__Yr__Sqrd * (O) + Ln__Dev__Yr* (1.O)),
        Acc__Yr == 2007 ~ exp(-.98 + Dev__Yr* (-.3O) + Dev__Yr__Sqrd * (O) + Ln__Dev__Yr* (1.O))
        Acc_Yr == 2008 ~ exp(-.99 + Dev_Yr* (-.3O) + Dev__Yr__Sqrd * (O) + Ln__Dev_Yr* (1.O)),
        Acc_Yr = = 2009 ~ exp(-1.02 + Dev__Yr* (-.30) + Dev__Yr__Sqrd * (O) + Ln__Dev__Yr* (1.O)),
        Acc__Yr == 201O ~ Exp(-1.O1 + Dev__Yr* (-.3O) + Dev__Yr__Sqrd * (O) + Ln__Dev__Yr * (1.O)),
        Acc__Yr == 2011~ exp(-.98 + Dev_\_Yr* (-.3O) + Dev__Yr__Sqrd * (O) + Ln__Dev__Yr * (1.O)),
        Acc__Yr==2012~\operatorname{exp(-.99 + Dev__Yr* (-.3O) + Dev__Yr__Sqrd * (O) + Ln__Dev__Yr* (1.O)),}
        Acc__Yr == 2O13 ~ exp(-1 + Dev__Yr* (-.3O) + Dev__Yr__Sqrd * (O) + Ln__Dev__Yr* (1.O)),
        Acc_Yr == 2014~\operatorname{exp(-1.O1 + Dev__Yr* (-.3O) +Dev__Yr__Sqrd * (O) + Ln__Dev_Yr* (1.O)),}
        Acc__Yr== 2015~ exp(-1.O2 + Dev__Yr* (-.3O) + Dev__Yr__Sqrd * (O) + Ln__Dev__Yr* (1.O)),
        Acc__Yr== 2016~ exp(-.97 + Dev__Yr* (-.3O) + Dev__Yr__Sqrd * (O) + Ln__Dev__Yr* (1.O)),
        Acc_Yr == 2017 ~ exp(-.98+Dev_Yr* (-.3O) + Dev_Yr_Sqrd * (O) + Ln_Dev_Yr* (1.O)),
        Acc_Yr == 2018~ Exp(-1.O2 + Dev__Yr* (-.3O) + Dev__Yr__Sqrd * (O) + Ln__Dev__Yr* (1.O)),
        Acc__Yr == 2019 ~ exp(-1.O3 + Dev__Yr* (-.3O) + Dev__Yr__Sqrd * (O) + Ln__Dev__Yr* (1.O)),
        Acc_Yr== 2O2O~ Exp(-.99 + Dev_Yr* (-.3O) + Dev__Yr__Sqrd * (O) + Ln__Dev_Yr* (1.O)),
        Acc__Yr == 2021 ~ exp(-.98 + Dev__Yr* (-.3O) + Dev__Yr__Sqrd * (O) + Ln__Dev__Yr* (1.O)),
        ),
    p_rate = exp(-1 + Dev_Yr* (-.35) + Dev__Yr__Sqrd * (O) + Ln__Dev__Yr* (1.O)),
        p__rate__adj =Rptd__Cnt *
```


Create Count and Severity Distributions (Page 2)

```
mu__ln = case__when(
    Acc__Yr== 200O ~ (1.97+Dev__Yr* (-.6)+Dev__Yr__Sqrad * (O) + Ln__Dev_Yr* (4.5)),
    Acc_Yr==2001 ~ (1.98+DEv_Yr* (-.6)+Dev__Yr__Sqrad * (O) + Ln__Dev_Yr* (4.5)),
    ACC_Yr== 2002 ~ (1.99+DEV_Yr * (-.6)+Dev_Yr__Sqrad * (O) + Ln__Dev_Yr * (4.5)),
    Acc_Yr==2003 ~ (2.O2+ Dev_Yr * (-.6)+Dev_Yr__Sqrd * (O) + Ln__Dev_Yr * (4.5)),
    Acc_Yr== 2004 ~ (2.O3+Dev_Yr* (-.6)+Dev__Yr__Sqrad * (O) + Ln_DEv_Yr* (4.5)),
    Aсс_Yr== 2005 ~ (2.O1+Dev__Yr * (-.G)+Dev__Yr__Sqrad * (O) + Ln__Dev_Yr * (4.5)),
    Acc__Yr==2006 ~ (1.97+Dev_Yr * (-.6 )+ Dev__Yr_SGqrd * (O) + Ln__Dev_Yr * (4.5)),
    Acc_Yr==2007 ~ (1.98+ Dev_Yr * (-.6)+Dev__Yr__Sqra * (O) + Ln__Dev__Yr * (4.5)),
    Aсс_Yr==2008 ~ (1.99+Dev_Yr * (-.6)+Dev__Yr__Sqrad * (O) + Ln__Dev_Yr* (4.5)),
    Acc_Yr== 2009 ~ (2+ Dev__Yr* (-.6 )+ Dev__Yr__Sqrd * (O) + Ln__Dev__Yr* (4.5)),
    Acc_Yr==201O ~ (2.O2+DEv_Yr* (-.6)+DEV_Yr__Sqrad * (O) + Ln__Dev_Yr* (4.5)),
    Aсс_Yr== 2011 ~ (2.O3+Dev_Yr**(-.G)+Dev__Yr__Sqrad * (O) + Ln__Dev_Yr* (4.5)),
    Aсс_Yr== 2012 ~ (2.O4+DEv__Yr* (-.6)+Dev__Yr__Sqrd * (O) + Ln__Dev_Yr * (4.5)),
    Acc_Yr==2013 ~ (1.99+ Dev_Yr* (-.6)+Dev__Yr__Sard * (O) + Ln_DEv__Yr* (4.5)),
    Aсc_Yr==2014 ~ (2.O1+Dev_Yr* (-.6)+Dev_Yr__Sqrad * (O) + Ln__Dev_Yr* (4.5)),
    Acc__Yr==2015 ~ (2.O2+ Dev__Yr* (-.6 )+ Dev__Yr__Sqrd * (O) + Ln__Dev__Yr* (4.5)),
    Acc_Yr==2016~(1.98+DEV_Yr* (-.6)+Dev__Yr__Sqra * (O) + Ln__Dev__Yr* (4.5)),
    Acc_Yr = = 2017 ~ (1.97+Dev_Yr**(-.6)+Dev__Yr__Sqrd * (O) + Ln__Dev__Yr * (4.5)),
    Acc__Yr==2018 ~ (2.O2+ Dev__Yr* (-.6 )+ Dev__Yr__Sqrd * (O) + Ln__Dev__Yr* (4.5)),
    Acc_Yr==2019~(2.O4+DEv_Yr* (-.6)+Dev__Yr__Sqrd * (O) + Ln__Dev__Yr* (4.5)),
    Acc__Yr==2020 ~ (1.98+Dev__Yr* (-.6 )+ Dev__Yr__Sqra * (O) + Ln__Dev__Yr* (4.5)),
    Aсс_Yr==2O21 ~ (2.O2+Dev_Yr* (-.6)+Dev__Yr__Sqrad * (O) + Ln__Dev_Yr* (4.5)), ),
        sigma_In = exp(-2.0 +Dev_Yr *.O15+Dev_Yr__Sqrad * O + (.1)*Ln__Dev_Yr),
        Paid__Cnt = rpois(1,lambda =p__rate__adj) ,
        Expected__Payment= exp(mu__ln + .5 * (sigma__ln**2)),
        Mean__Payment = if__else(Paid__Cnt = = 0, O,
            mean(rlnorm(Paid__Cnt,meanlog = mu__ln,sdlog=sigma__ln))),
            Incr__Payment = Paid__Cnt * Mean__Payment
            Pure__Prem =Incr__Payment/Rptd__Cnt)
```


Create Transformed Variables (Page 1)

```
Complete_Triangle_Operation <- left_join(Change_Operation,Cal_Yr_Trend_Acc, by=c('Cal_Yr')) %>%
    mutate(Trended_Incr_Payment = Incr_Payment * Accum_Loss_Cost_Trend_Mid,
    Trended_Incr_Payment_Def=Trended_Incr_Payment/Accum_Infl_Index_Mid,
    Trended_Incr_PP =Trended_Incr_Payment/Rptd_Cnt,
    Trended_Mean_Payment = Mean_Payment * Accum_Loss_Cost_Trend_Mid,
    Trended_Mean_Payment_Def = Trended_Mean_Payment/Accum_Infl_Index_Mid,
    Trended_Incr_PP_Def =Trended_Incr_Payment_Def/Rptd_Cnt,
    Paid__Cnt_Freq =Paid__Cnt/Rptd_Cnt,
    Ln_Paid_Cnt_Freq = log(Paid_CCnt_Freq),
    Inv_Rptd_Cnt=1/Rptd_Cnt,
    Ln_Trd__Incr_PP =log(Trended_Incr_PP),
    Ln_Trd_Incr_PP_Def =log(Trended_Incr_PP_Def),
    Ln_Mean_Payment_No_Trend =log(Mean_Payment),
    Ln_Mean_Payment_Def =log(Trended_Mean_Payment_Def),
    Cal_Yr_Time = Cal_Yr - 2000,
    Dev_Yr_4_Cap = if_else(Dev_Yr < 4, Dev_Yr,
        as.integer(4) ),
    Dev_Yr_4_Spline=if_else(Dev_Yr < 4,0,
        Dev_Yr-4),
    Dev_Yr_4_Cap_Sqrd = Dev_Yr_4_Cap * Dev_Yr_4_Cap,
    Dev_Yr_4_Spline_Sqrd =Dev_Yr_4_Spline *Dev_Yr_4_Spline,
    Dev_Yr_5_Cap = if_else(Dev_Yr < 5, Dev_Yr,
        as.integer(5) ),
    Dev_Yr_5_Spline=if_else(Dev_Yr< 5,0,
        Dev_Yr-5),
    Dev_Yr_5_Spline_Sqrd = Dev_Yr_5_Spline* Dev_Yr_5__Spline,
    Dev_Yr_6_Cap = if_else(Dev_Yr < 6, Dev_Yr,
        as.integer(6) ),
```


Create Transformed Variables (Page 2)

```
Dev_Yr_6_Cap_Sqrd = Dev_Yr_6_Cap * Dev_Yr__6_Cap
Dev_Yr_6_Spline=if_else(Dev_Yr< 6,0,
Dev_Yr-6),
Dev_Yr_6_Spline_Sqrd = Dev_Yr_6__Spline* Dev_Yr_6__Spline,
Dev Yr 6 Cap Sqrd = Dev Yr_6_Cap* Dev Yr_6_Cap
Dev_Yr_GT__1 = if_else(Dev_Yr< 2,0,1),
Dev_Yr_1_Factor = as.factor(case_when(
    Dev_Yr==1~1
    Dev_Yr>1 ~2
)),
Dev_Yr_8_Cap = if_else(Dev_Yr< 8, Dev_Yr,
    as.integer(8)),
Dev_Yr_8_Spline=if_else(Dev_Yr < 8,0,
Dev_Yr-8),
Dev_Yr_8_Cap_Sqrd = Dev_Yr__8_Cap * Dev_Yr_8_Cap,
Dev_Yr_8_Spline_Sqrd =Dev_Yr_8_Spline * Dev_Yr_8_Spline,
Dev_Yr_1_Factor = as.factor(case_when(
    Dev_Yr==1~1,
    Dev Yr>1 ~2
)),
Dev_Yr_3_Factor = as.factor(case_when(
    Dev_Yr == 1 ~ 1,
    Dev_Yr==2~2,
    Dev_Yr== 3~3,
    Dev Yr> 3~4
)),
Dev_Yr_2__Factor = as.factor(case_when(
Dev Yr==1~1,
    Dev_Yr==2~2,
    Dev_Yr> 2 ~3
)),
```


Create Transformed Variables (Page 3)


```
    Sev-rr==1 ~1
    Oev-yr==2~2
```



```
    Dev_Yr==5~4,
    Dev_Yr==6 ~4
    Dev_rr==8-4
    Dev-rr == 9-4,
    Dev-Yr==10~4
    Dev-Yr==111~4
    Dev-yr==12~4
    OeV_rr==13 ~4,
),
Dev_Yr_z__l4_Factor = as.factorlcase_whenc
    Dev-rr==1 =1,
    Dev-yr==2~2
    Dev_亿r==4 4 3
```



```
    Dev-rr ==6 -3
    Dev_yr== \ ~ 3
    Dev-yr==8~3
    Dev_rr ==10 ~3
    Dev二rr==111~3
    Dev-Yr==12~3
    Dev-vr==13~3
)
Dev_Yr_llO_Spline =if_else(Dev_Yr < 10,0,
Dev Yr-10, Dev-rr-10)
Dev_hr_10_cap =if_else(Dev_yr < 10,Dev_yr
Dev Yr 12 cap-integer(10))
Dev_Yr__lZ__Cap =if__elselDev_Yr< < IO,DeV_Yr
DeV_Yr__l5__Cap =if__elselDev__Yr< < 15,DeV__Yr
as-integer(15))
Dev_rr__lz_Spline =if__else(Dev__rr<12,0
pev Yr 10 splinever-12)
DeV_Yr__lO_Spline__Cap__15 = case_whenc
Yr}< \0 ~0
Dev_rr<16~0ev_rr-10.
Dev_Yr>=16 ~5),
DeV_Yr_lO_Spline_Ln =if_else(Dev_rr,< 11,0,
Dev_yr_15_splines(Dif_else(DQu_Spline)),
```


