Effective Data Visualization for Actuaries

Jordan Bonner \& Brian A. Fannin

Antitrust Notice

- The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.
- Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding - expressed or implied - that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.
- It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

Effective Data Visualization for Actuaries

Jordan Bonner \& Brian A. Fannin

How is visualization

useful?

Visualization is a tool which facilitates communication with the less numerate.

ACTUARY

STAKEHOLDER

Describe how linear regression works using only equations or numbers.

$$
\begin{gathered}
\widehat{y}_{i}=\beta_{0}+\sum_{j=0}^{p} \beta_{j} X_{i j}+\epsilon_{i j} \\
\epsilon_{i j} \sim N\left(0, \sigma^{2}\right) \\
\hat{\beta}=\operatorname{argmin} \sum_{j=0}^{p}\left(y_{i}-\widehat{y}_{i}\right)^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \widehat{y}_{i}=\beta_{0}+\sum_{j=0}^{p} \beta_{j} X_{i j}+\epsilon_{i j} \\
& \epsilon_{i j} \sim N\left(0, \sigma^{2}\right) \\
& \hat{\beta}=\operatorname{argmin} \sum_{j=0}^{p}\left(y_{i}-\widehat{y}_{i}\right)^{2}
\end{aligned}
$$

Visualization is a tool which facilitates communication with the less numerate.

In particular, it is an indispensable aid for actuaries who are trying to learn or interpret statistical models.

```
tbl_wide |>
    ggplot(aes(year, revenue)) +
    geom_point() +
    geom_smooth(
    method = lm,
    se = FALSE)
```


mutate_at(select(tbl_fits, group, slope, i...

	\checkmark Filter						Q	
\wedge	group	*	slope	\uparrow	intercept	\uparrow	r_squared	$\stackrel{\square}{*}$
1	1		1.33		-0.998		0.667	
2	2		1.33		-0.995		0.666	
3	3		1.33		-1		0.666	
4	4		1.33		-1		0.667	

Showing 1 to 4 of 4 entries, 4 total columns

You have been given predictive data by your broker. There are 16 columns to work with.

(B) visualization - RStudio Source Editor

[^0]| ® visualization - RStudio Source Editor $\quad-\quad \square$ | | | | | - | \square | \times |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \square select(tbl_long, year, revenue, predictor... \times | | | | | | | |
| , | ¢1 『 | Filter | | | Q | | |
| - | year ${ }^{\text {\% }}$ | revenue $\hat{}$ | predictor $\hat{}$ | metric $\hat{\sim}$ | | | |
| 1 | 2002 | 16.97937 | x_01 | 402 | | | - |
| 2 | 2002 | 16.97937 | x_02 | 258 | | | |
| 3 | 2002 | 16.97937 | x_03 | 281 | | | |
| 4 | 2002 | 16.97937 | x_04 | 262 | | | |
| 5 | 2002 | 16.97937 | x_05 | 217 | | | |
| 6 | 2002 | 16.97937 | x_06 | 306 | | | |
| 7 | 2002 | 16.97937 | x_07 | 398 | | | |
| 8 | 2002 | 16.97937 | x_08 | 390 | | | |
| 9 | 2002 | 16.97937 | x_09 | 432 | | | |
| 10 | 2002 | 16.97937 | x_10 | 320 | | | |
| 11 | 2002 | 16.97937 | x_11 | 415 | | | |
| 12 | 2002 | 16.97937 | x_12 | 316 | | | |
| 13 | 2002 | 16.97937 | x_13 | 355 | | | |
| 14 | 2002 | 16.97937 | x_14 | 367 | | | |
| 15 | 2002 | 16.97937 | x_15 | 346 | | | |
| 16 | 2002 | 16.97937 | x_16 | 307 | | | |
| 17 | 2003 | 17.06864 | x_01 | 299 | | | |
| -n | nan | - 7 nenr. | - | an | | | - |

(B) visualiza	ion - RStudio Source Editor	-	\square	\times
(3) Untitled1* \times				
1 tbl_1ong \|>				
2 ggplot(aes(metric,				
3				
4				
5 geom noint				
6	facet_wrap (\sim predictor, nrow = 4)			
7	geom_smooth(method $=1 \mathrm{~m}$,			
8	se $=$ FALSE) +			
9	theme(legend. position="none")			
10				
6:15	$($ Top Level) $*$		R Scrip	

Non-linearity

B visuali	on - RStudio Source Ed	\square	\times
(3) Untitled1* \times			
1 tb1_wide_scaled \|>			
$2 \operatorname{ggplot}\left(\operatorname{aes}\left(x _04\right.\right.$, revenue)) +			
3 geom poi			
4 geom_st			
aes(x_04, predict_tree			
6			
data = tb1_tree_1) +			
	geom_smo	FAL	
7:13	(Top Level) \uparrow	R Sc	ipt


```
(R) visualization - RStudio Source Editor



Clarity Matters
\begin{tabular}{|cccccc|}
\hline Product & 25th Percentile & Median & Mean & \multicolumn{2}{c|}{ 75th Percentile 90 th Percentile } \\
\hline A & 14,738 & 23,047 & 24,222 & 27,995 & 35,049 \\
\hline B & 46,333 & 59,952 & 60,119 & 66,669 & 72,812 \\
\hline C & 15,038 & 22,852 & 23,831 & 28,062 & 31,854 \\
\hline D & 7,333 & 17,956 & 24,383 & 30,177 & 46,827 \\
\hline
\end{tabular}
\begin{tabular}{|cccccc|}
\hline Product & 25th Percentile & Median & Mean & \multicolumn{2}{c|}{ 75th Percentile 90 th Percentile } \\
\hline A & 14,738 & 23,047 & 24,222 & 27,995 & 35,049 \\
\hline B & 46,333 & 59,952 & 60,119 & 66,669 & 72,812 \\
\hline C & 15,038 & 22,852 & 23,831 & 28,062 & 31,854 \\
\hline D & 7,333 & 17,956 & 24,383 & 30,177 & 46,827 \\
\hline
\end{tabular}

\section*{Twenty data points.}
\begin{tabular}{|cccccc|}
\hline Product & 25th Percentile & Median & Mean & \multicolumn{2}{c|}{ 75th Percentile 90 th Percentile } \\
\hline A & 14,738 & 23,047 & 24,222 & 27,995 & 35,049 \\
\hline B & 46,333 & 59,952 & 60,119 & 66,669 & 72,812 \\
\hline C & 15,038 & 22,852 & 23,831 & 28,062 & 31,854 \\
\hline D & 7,333 & 17,956 & 24,383 & 30,177 & 46,827 \\
\hline
\end{tabular}

\section*{Twenty data points. Information overload.}
\begin{tabular}{|cccccc|}
\hline Product & 25th Percentile & Median & Mean & \multicolumn{2}{c|}{ 75th Percentile 90 th Percentile } \\
\hline A & 14,738 & 23,047 & 24,222 & 27,995 & 35,049 \\
\hline B & 46,333 & 59,952 & 60,119 & 66,669 & 72,812 \\
\hline C & 15,038 & 22,852 & 23,831 & 28,062 & 31,854 \\
\hline D & 7,333 & 17,956 & 24,383 & 30,177 & 46,827 \\
\hline
\end{tabular}

\section*{Twenty data points. Information overload. Especially for non-actuaries.}

\title{
Severity estimate of \(\mathbf{\$ 6 0 , 0 0 0}\) for Product B and \(\$ \mathbf{2 4 , 0 0 0}\) for all others
}

Claim Size by Product


Claim Size by Product

Severity estimate of \(\mathbf{\$ 6 0 , 0 0 0}\) for Product B and \(\$ \mathbf{2 4 , 0 0 0}\) for all others

2 data points.


4 data points.

Claim Size by Product
\begin{tabular}{|cccccc|}
\hline Product & \begin{tabular}{c} 
25th \\
\%ile
\end{tabular} & Median & Mean & \begin{tabular}{c} 
75th \\
\%ile
\end{tabular} & \begin{tabular}{c} 
90th \\
\%ile
\end{tabular} \\
\hline A & 14,738 & 23,047 & 24,222 & 27,995 & 35,049 \\
\hline B & 46,333 & 59,952 & 60,119 & 66,669 & 72,812 \\
\hline C & 15,038 & 22,852 & 23,831 & 28,062 & 31,854 \\
\hline D & 7,333 & 17,956 & 24,383 & 30,177 & 46,827 \\
\hline
\end{tabular}


Which product might require more supporting capital?

Claim Size by Product
\begin{tabular}{|cccccc|}
\hline Product & \begin{tabular}{c} 
25th \\
\%ile
\end{tabular} & Median & Mean & \begin{tabular}{c} 
75th \\
\%ile
\end{tabular} & \begin{tabular}{c} 
90th \\
\%ile
\end{tabular} \\
\hline A & 14,738 & 23,047 & 24,222 & 27,995 & 35,049 \\
\hline B & 46,333 & 59,952 & 60,119 & 66,669 & 72,812 \\
\hline C & 15,038 & 22,852 & 23,831 & 28,062 & 31,854 \\
\hline D & 7,333 & 17,956 & 24,383 & 30,177 & 46,827 \\
\hline
\end{tabular}


It isn't immediately clear.

Claim Size by Product


Claim Size by Product


Claim Size by Product


\section*{Boxplot by Group}


\footnotetext{
Matejka, J., \& Fitzmaurice , G. (2017). Same Stats, Different Graphs... Autodesk Research.
}

Histogram by Group


Understanding the distribution matters.

Claim Size by Product


Claim Size by Product


Claim Size by Product


Claim Size by Product



Consider relevance.
```

t.bl_claims |>
ggplot(aes(product, incurred)) +
geom_bar(stat = "summary",
fun = "mean")

```

```

t.bl_claims |>
ggplot(aes(product, incurred)) +
geom_boxplot()

```
```

t.bl_claims |>
ggplot(aes(product, incurred)) +
geom_violin()

```
```

library (ggbeeswarm)
tbl_claims |>
ggplot(aes(product, incurred)) +
geom_beeswarm()

```



Consider relevance.
\begin{tabular}{|cccccc|}
\hline Dataset & Mean of \(\mathbf{x}\) & Mean of \(\mathbf{y}\) & Std. Dev. of \(\mathbf{x}\) & Std. Dev. of \(\mathbf{y}\) & Correlation of \(\mathbf{x}, \mathbf{y}\) \\
\hline A & 54.26 & 47.83 & 16.76 & 26.93 & -0.0641 \\
\hline B & 54.26 & 47.83 & 16.76 & 26.93 & -0.0641 \\
\hline C & 54.26 & 47.83 & 16.76 & 26.93 & -0.0641 \\
\hline D & 54.26 & 47.83 & 16.76 & 26.93 & -0.0641 \\
\hline
\end{tabular}




Wrapping up
- Visualization is useful for all of us
- Clarity matters
- Keep learning and experimenting!


This Photo by Unknown Author is licensed under CC BY-SA

Thank you!

Any questions?```


[^0]:    Showing 1 to 20 of 20 entries, 18 total columns

