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Background and Motivation
Two Questions

1. What is the statistical nature of our simulated 
percentiles? What can I say about the error bands 
around the percentiles, and are the error bands 
themselves a bit stretchy/blurry with uncertainty?

2. How many realizations should we run? The answer will 
depend on the context, but our decisions should be well-
informed by empirical evidence and solid theory, 
including the answer to question 1

Addressing these two questions will help guide practical 
decisions, and ensure sound advice to brokers and clients
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Background and Motivation
Sample Mean and CV

If we re-simulate any given model/metric using a different random seed, the key results will change… but they converge with high 
samples:

• Sample mean is well-understood and close to the theoretical mean – its CV is 
𝑇𝑟𝑢𝑒 𝐶𝑉

#𝑆𝑎𝑚𝑝𝑙𝑒𝑠
, so, e.g., re-simulating 1m realizations on 

a distribution that has CV 250% will typically produce a new mean within ≈0.25% of the previous one

• Sample standard deviation is well-understood but converges relatively slowly to the theoretical standard deviation

• Lognormal example below: 10k samples produces reliable estimates for the mean, but unreliable estimates for the CV, whereas 
500k samples converges well
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Background and Motivation
Sample Percentiles

• Sample percentiles aren’t discussed as much and can vary wildly! This will be our focus, with very interesting findings…

• Lognormal example below: 10k samples produces unreliable estimates for the tail stats, whereas 500k samples converges well
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Background and Motivation
Uncertainty Frameworks

So we can think of simulation uncertainty as having two levels:

1. First-Order Uncertainty: Any simulated metric (random variable) like gross losses, net losses, ceded to a contract, etc. has 
percentiles – i.e., a CDF

2. Second-Order Uncertainty: The simulated percentiles themselves have inherent uncertainty and will change if we re-simulate – 
i.e., our attempt at Error Bars using the imperfect information from our simulation
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2. Spoiler Alert: Key 
Takeaways



18

Key Takeaways

There is a well-known formula to estimate the CV upon re-simulation, but it uses 
the simulated gradient of the CDF around the percentile

The estimated CV of any simulated percentile itself varies on re-simulation with CV 
1

𝑂
 because the simulated gradients are noisy… Stay tuned for 𝑂!

Percentiles for RMS Cat XOL models have very high simulation uncertainty, 
whereas Quota Shares and Per Risk XOLs seem to converge quicker

If your cat reinsurance decision is driven by RMS tail statistics and isn’t diversified 
by region/peril then you will often need > 2m realizations!

https://en.wikipedia.org/wiki/Quantile#Estimating_quantiles_from_a_sample
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3. What’s the Deal with 
Second-Order Uncertainty?
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Second-Order Uncertainty
Volatility of Percentile Estimates: Known Distributions

• There is a well-known asymptotic formula: σ →
𝑝 1−𝑝

𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 𝐹−1′

𝑝 , where F(x) is the CDF of the underlying distribution, so F-1 is 

the graph below and F-1’ is just the gradient of the graph below at each percentile

• For high percentiles, our estimates are more reliable as the samples increase or as the gradient decreases

• Lognormal example below: Theory matches our experiment on Slide 13 above!
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Second-Order Uncertainty
Volatility of Percentile Estimates: Unknown Distributions

• But our simulations are crazy – they don’t have closed-form analytical distributions for 𝐹−1′
𝑝 !

• So we use one simulation to estimate the gradient at each percentile, focusing on its small neighborhood

• Lognormal example below to illustrate
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Second-Order Uncertainty
Volatility of Percentile Estimates: Unknown Distributions

• But our simulations are crazy – they don’t have closed-form analytical distributions for 𝐹−1′
𝑝 !

• So we use one simulation to estimate the gradient at each percentile, focusing on its small neighborhood

• Lognormal example below to illustrate the estimation at the 99.8th percentile
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Second-Order Uncertainty
Volatility of Percentile Estimates: Unknown Distributions

Instead of aiming for σ, we’ll aim for the 𝐶𝑉 =
𝜎

𝜇
 using the neighborhood of O observations around the percentile:

෢𝐶𝑉 →
𝑁𝑝 1 − 𝑝

𝑂
×

෣𝑋ℎ𝑖𝑔ℎ − ෣𝑋𝑙𝑜𝑤

෠𝑋
= 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 × 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 % 𝑖𝑛 𝑂𝑏𝑠 𝑅𝑒𝑔𝑖𝑜𝑛

The CV

• As N grows, the Multiplier grows but Uncertainty % typically shrinks quicker due to the zoom-in effect

• Lognormal example below: Although the Multiplier increased with more samples, the Uncertainty % decreased by far more; so the 
500k 99.8th percentile is more reliable than the 10k 99.8th, as expected!
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Second-Order Uncertainty
A New Framework

Instead of aiming for σ, we’ll aim for the 𝐶𝑉 =
𝜎

𝜇
 using the neighborhood of O observations around the percentile:

෢𝐶𝑉 →
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So we can think of simulation uncertainty as having three levels:

1. First-Order Uncertainty: Any simulated metric (random variable) like gross losses, net losses, ceded to a contract, etc. has 
percentiles – i.e., a CDF

2. Second-Order Uncertainty: The simulated percentiles themselves have inherent uncertainty and will change if we re-simulate – 
i.e., our attempt at Error Bars using the imperfect information from our simulation

3. Third-Order Uncertainty: The attempt at Second-Order Uncertainty (we’ll focus on the CV) will vary by simulation, depending on 
the Uncertainty % in the simulated neighborhood of observations around the percentile – i.e., the Stretchiness/Blurriness of the 
Error Bars
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What’s the Deal with Third-
Order Uncertainty?
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Third-Order Uncertainty
Recap and New Direction

• When simulating a random variable we realized that the resulting percentiles (First-Order Uncertainty: CDF) themselves have 
uncertainty in the sense that they will change on re-simulation – i.e., they have Second-Order Uncertainty (Error Bars)

• Luckily, though, we have a nice formula to calculate the CV of any simulated percentile:

෢𝐶𝑉 →
𝑁𝑝 1 − 𝑝

𝑂
×

෣𝑋ℎ𝑖𝑔ℎ − ෣𝑋𝑙𝑜𝑤

෠𝑋
= 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 × 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 % 𝑖𝑛 𝑂𝑏𝑠 𝑅𝑒𝑔𝑖𝑜𝑛

• But even that is uncertain, as it will change on re-simulation depending on the Uncertainty % in the neighborhood. So the natural 
question to ask is… How reliable is our ෢𝐶𝑉? That is, how much should we expect this ෢𝐶𝑉 to change each time we re-simulate? Or 
‘How stretchy/blurry are our error bars?’

We will find the CV of ෢𝑪𝑽 at any given percentile! This will be our measure of Third-Order Uncertainty, and the first place to look is in 
some simulated results on well-understood distributions
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Third-Order Uncertainty
Empirical Behavior: 10 Sims of a Lognormal Percentile’s CVs
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Third-Order Uncertainty
Empirical Behavior: 10 Sims of a Lognormal Percentile’s CVs

How much do the CV estimates 
vary by simulation? What is the 
CV of the CVs at each percentile?
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Third-Order Uncertainty
Empirical Behavior: 10 Sims of a Pareto Percentile’s CVs
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Third-Order Uncertainty
Key Results

1. The ෢𝑪𝑽 𝒐𝒇 𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒊𝒍𝒆 𝒑 →
𝑁𝑝 1−𝑝

𝑂
×

෣𝑋ℎ𝑖𝑔ℎ− ෣𝑋𝑙𝑜𝑤

෠𝑋
=

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 × 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 % 𝑖𝑛 𝑂𝑏𝑠 𝑅𝑒𝑔𝑖𝑜𝑛

2. The percentiles’ ෢𝑪𝑽s themselves vary across simulations 

due to the randomness in 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 % : 𝐂𝐕 ෢𝑪𝑽 ≈
𝟏

𝑶
 

regardless of the percentile or the distribution (Proof in 
Appendix), so ෢𝐶𝑉 is only reliable with many realizations and 
a big Observation Region on a well-behaved distribution

As an example, the error bands on the right might stretch 
up/down around 20% if I run a new simulation with O = 30!
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2. The percentiles’ ෢𝑪𝑽s themselves vary across simulations 

due to the randomness in 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 % : 𝐂𝐕 ෢𝑪𝑽 ≈
𝟏

𝑶
 

regardless of the percentile or the distribution (Proof in 
Appendix), so ෢𝐶𝑉 is only reliable with many realizations and 
a big Observation Region on a well-behaved distribution

As an example, the error bands on the right might stretch 
up/down around 20% if I run a new simulation with O = 30!
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Third-Order Uncertainty
Key Results

1. The ෢𝑪𝑽 𝒐𝒇 𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒊𝒍𝒆 𝒑 →
𝑁𝑝 1−𝑝

𝑂
×

෣𝑋ℎ𝑖𝑔ℎ− ෣𝑋𝑙𝑜𝑤

෠𝑋
=

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 × 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 % 𝑖𝑛 𝑂𝑏𝑠 𝑅𝑒𝑔𝑖𝑜𝑛

2. The percentiles’ ෢𝑪𝑽s themselves vary across simulations 

due to the randomness in 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 % : 𝐂𝐕 ෢𝑪𝑽 ≈
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regardless of the percentile or the distribution (Proof in 
Appendix), so ෢𝐶𝑉 is only reliable with many realizations and 
a big Observation Region on a well-behaved distribution

As an example, the error bands on the right might stretch 
up/down around 20% if I run a new simulation with O = 30!
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5. Cat, Quota Share and PPR 
Case Studies: How Reliable are 
Our Percentiles?
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How Reliable are Our Percentiles?
Two Questions in Practice

All results so far are asymptotic for well-behaved distributions – it’s unclear whether the results hold at all for our simulations in the 
sub-10m realization regime.

1. If the CV is small enough then it doesn’t really matter how reliable it is! That is, if the asymptotic Second-Order Uncertainty is 
≈0.5%, then I’m happy with my simulated results and don’t really care about my empirical or theoretical Second or Third-Order 
Uncertainty estimate.

2. If the CV isn’t small, then is it at least reliably close to ෢𝑪𝑽? In particular, if we re-simulate with a new seed:

i. Are the percentiles actually within around 2σ of the initially estimated CV?

ii. Are the new estimated CVs wildly different to the initial ones – i.e., way more than 
𝟏

𝑶𝒃𝒔 𝒊𝒏 𝑯𝒐𝒐𝒅
 off?
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How Reliable are Our Percentiles?
Quota Share and Prop Per Risk Using RMS Seem Good!
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How Reliable are Our Percentiles?
Workers’ Comp XOL incl. Cat (RMS) Might be Good!
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How Reliable are Our Percentiles?
High Excess Cat Using RMS is Problematic: Client 1
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How Reliable are Our Percentiles?
High Excess Cat Using RMS is Problematic: Client 2



58

How Reliable are Our Percentiles?
High Excess Cat Using RMS is Problematic: Clients 3 and 4
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6. Practical Implications and 
Recommendations
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Practical Implications and Recommendations

Ideally we would just simulate enough realizations so virtually all of our tail 
statistics more-or-less converge, but this seems impossible for our cat models in 
the sub-10m simulation regime

The estimated CV of any simulated percentile itself varies on re-simulation with CV 
1

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑
, so we should aim for 𝑂𝑏𝑠 >  100

If your cat reinsurance decision is driven by RMS tail statistics and isn’t diversified 
by region/peril then it is worthwhile simulating > 2m realizations
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Open Problems
Areas for Further Investigation and Improvement

• Recommended Realizations: More robust justification/s; including understanding the impact of book size, retention/limit, etc.

• Irreducibly Empirical? Is it even possible to make theory-grounded recommendations given the asymptotic results, our convoluted 
distributions, highly varied contracts & exposures, etc.? Maybe a deep theoretical understanding of RMS’s end-to-end modeling 
could be used to infer something?

• AIR Implications: Better understanding of the implications for AIR-based models that include non-cat but for which we run 10k 
realizations to perfectly exhaust the ‘catalog’ – e.g., does the a priori 0 simulation error for the cat component produce low overall 
simulation error?

• New Generation RMS: Will upcoming RMS releases change our recommendations – e.g., if they shift to a kind of ‘catalog’ like AIR

• Other Distributions and Contracts: More work and experiments on other theoretical distributions, and on casualty cat / cyber
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7. Appendices: Proof 
Outline and Further Details
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Appendices: Proof Outline and Further Details
1. Proof Outline and Thought Process

෣𝐶𝑉(෢𝑋𝑝) ≡ ෢𝐶𝑉 using the neighborhood of O observations in the neighborhood around the percentile:

1  ෢𝐶𝑉 →
𝑁𝑝 1−𝑝

𝑂
×

෣𝑋ℎ𝑖𝑔ℎ− ෣𝑋𝑙𝑜𝑤

෠𝑋

2  𝐶𝑉 ෢𝐶𝑉 →
1

𝑂

Proof of (1) is simple using the asymptotic formula for the standard deviation, applying the inverse function derivative rule, and estimating the gradient as the gradient of the line 
segment connecting the left-most point of the neighborhood to the right-most point

Proof of (2) relies on a handful of theorems, properties and techniques, but to give some intuition:

• Simulations can be thought of as coming from U(0,1) and then just taking the corresponding x when mapped onto the CDF of the distribution of interest

• 𝐶𝑉 ෢𝐶𝑉 → 𝐶𝑉 𝑅𝑎𝑛𝑔𝑒: ෣𝑋ℎ𝑖𝑔ℎ − ෣𝑋𝑙𝑜𝑤  because the Multiplier is a constant and 
1

෢𝑋𝑝
 is asymptotically independent of the gaps (per section 3.2 of 2017) and approaches a 

constant using the Delta Method or Slutsky’s Theorem… So we can just focus on the CV of Range

• For the Uniform, it is easily shown that 𝐶𝑉 𝑅𝑎𝑛𝑔𝑒: ෣𝑋ℎ𝑖𝑔ℎ − ෣𝑋𝑙𝑜𝑤 =
𝑆𝑎𝑚𝑝𝑙𝑒𝑠+1−𝑂𝑏𝑠 𝑖𝑛 𝐻𝑜𝑜𝑑

𝑂𝑏𝑠 𝑖𝑛 𝐻𝑜𝑜𝑑×(𝑆𝑎𝑚𝑝𝑙𝑒𝑠+2)
, which clearly approaches 

1

𝑂
. The proof follows straightforwardly from the 

fact that the Range is Beta where X is Uniform

• For other distributions, here are two possible intuitions before giving the rigorous proof:

1. The uncertainty (CV) in Range for any distribution is explained fully by the uncertainty (CV) in Range for the Uniform because of the first bullet in this section

2. In the neighborhood of the pth percentile, the gap until the next observation can be thought of as n samples of your RV all constantly 'trying' at the same time to hit a value around the neighborhood, 

each having 𝑓(𝑥) probability, and us waiting until one hits -- this is essentially an Exponential distribution with parameter 
1

𝑛𝑓(𝑥𝑝)
 by the scaling property. E.g. if n is 4 and f(x) is a half then it’s a wait time 

with expected value 2. Given that the gaps are asymptotically independent, Range is just the sum of these Exponentials, which has CV 
1

𝑂

The rigorous proof of (2) takes Theorem 1 from 2017 which runs roughly like my 2 above, and then the sum of these Exponentials is an Erlang that produces the CV of 
1

𝑂
. After 

writing all this, I found out that 2020 S2.1 notes historical framings that are similar to mine but stop at the σ rather than the CV

https://en.wikipedia.org/wiki/Quantile#Estimating_quantiles_from_a_sample
https://en.wikipedia.org/wiki/Inverse_function_rule
https://arxiv.org/abs/1702.05910
https://en.wikipedia.org/wiki/Delta_method
https://en.wikipedia.org/wiki/Slutsky's_theorem#Statement
https://en.wikipedia.org/wiki/Order_statistic#The_joint_distribution_of_the_order_statistics_of_the_uniform_distribution
https://arxiv.org/abs/1702.05910
https://onlinelibrary.wiley.com/doi/10.1111/insr.12338
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Appendices: Proof Outline and Further Details
2. Second-Order Uncertainty: Volatility of Percentile Estimates for Unknown Distributions

Instead of aiming for σ, we’ll aim for the 𝐶𝑉 =
𝜎

𝜇
 using the neighborhood of O observations around the percentile:

෢𝐶𝑉 →
𝑁𝑝 1 − 𝑝

𝑂
×

෣𝑋ℎ𝑖𝑔ℎ − ෣𝑋𝑙𝑜𝑤

෠𝑋
= 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 × 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 % 𝑖𝑛 𝑂𝑏𝑠 𝑅𝑒𝑔𝑖𝑜𝑛

The Multiplier

• Increases as N increases, because zooming in shrinks the domain over which the gradient is calculated

• Decreases as the number of Observations in the neighborhood increases, reflecting more credible data/smoothing

• Is highest in the middle of the distribution because #samples ≤ pth percentile is Bi(N,p)

The Uncertainty %

• Increases if the neighborhood is more volatile, which is partially caused by adding Observations to it (all else equal)

• Decreases if the neighborhood is less volatile, which is partially caused by increasing the number of realizations in the simulation 
so the neighborhood range clusters tighter with less uncertainty

• Is highest at sparse extreme regions and very low in the middle of the distribution (usually)
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Appendices: Proof Outline and Further Details
3i. Second-Order Uncertainty: Volatility of Percentile Estimates for some known Distributions

Instead of aiming for σ, we’ll aim for the 𝐶𝑉 =
𝜎

𝜇
 using the neighborhood of O observations around the percentile:

෢𝐶𝑉 →
𝑁𝑝 1 − 𝑝

𝑂
×

෣𝑋ℎ𝑖𝑔ℎ − ෣𝑋𝑙𝑜𝑤

෠𝑋
= 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 × 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 % 𝑖𝑛 𝑂𝑏𝑠 𝑅𝑒𝑔𝑖𝑜𝑛
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Appendices: Proof Outline and Further Details
3ii. Second-Order Uncertainty: Volatility of Percentile Estimates for some known Distributions

Instead of aiming for σ, we’ll aim for the 𝐶𝑉 =
𝜎

𝜇
 using the neighborhood of O observations around the percentile:

෢𝐶𝑉 →
𝑁𝑝 1 − 𝑝

𝑂
×

෣𝑋ℎ𝑖𝑔ℎ − ෣𝑋𝑙𝑜𝑤

෠𝑋
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Appendices: Proof Outline and Further Details
3iii. Second-Order Uncertainty: Volatility of Percentile Estimates for some known Distributions

Instead of aiming for σ, we’ll aim for the 𝐶𝑉 =
𝜎

𝜇
 using the neighborhood of O observations around the percentile:

෢𝐶𝑉 →
𝑁𝑝 1 − 𝑝

𝑂
×

෣𝑋ℎ𝑖𝑔ℎ − ෣𝑋𝑙𝑜𝑤

෠𝑋
= 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 × 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 % 𝑖𝑛 𝑂𝑏𝑠 𝑅𝑒𝑔𝑖𝑜𝑛
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Appendices: Proof Outline and Further Details
4i. Uncertainty Frameworks: Contextualizing Simulation Error

So we can think of simulation uncertainty as having two levels:

1. First-Order Uncertainty: Any simulated metric (random variable) like gross losses, net losses, ceded to a contract, etc. has 
percentiles – i.e., a CDF

2. Second-Order Uncertainty: The simulated percentiles themselves have inherent uncertainty and will change if we re-simulate – 
i.e., our attempt at Error Bars using the imperfect information from our simulation

And this can be contextualized within the following useful Error/Uncertainty decomposition:

• Process/Stochastic Error: The best we can do is model probabilities – we almost never predict metrics with certainty, even if we 
have the best data, model, and parameters; and we use simulations to represent the randomness

• Parameter Error: Even if our model structure and logic are perfect, our parameter selections are limited by the quality, quantity 
and projectibility of historical data & our parameter selection procedure/s

• Model Error: Even if we’ve perfectly selected parameters, the model inputs, structure and logic might not perfectly represent the 
dynamics of the thing being modeled

• Data and Assumed Constants Error: There may be errors in the data provided, or in the assumed constants (like inflation) that we 
use
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Appendices: Proof Outline and Further Details
4ii. Uncertainty Frameworks: Broader Considerations and Value-Add

The present focus on Simulation Uncertainty ignores whether our data and model are any good to begin with!

Minimizing Simulation Uncertainty is like carefully checking the spelling and grammar on an email

• It can’t fix the underlying reasoning, content, structure, messaging, style, etc.

• It occasionally reveals substantive issues, like when a typo or grammatical error changes the meaning of a sentence

• It shouldn’t be the case that one of the drivers of results/YOYs is the random seed that we happened to use

Think carefully about the other sources of uncertainty

• Data Error: Extensive data validation tests, YOY comparisons, outlier detections, system upgrades/reviews, etc.

• Parameter Error: Sensitivity tests on key parameters, bootstrapping, parameter uncertainty in vendor models, etc.

• Model Error: Alternative selection methodologies, model structures & types, levels of granularity, etc.

GC’s value prop is essentially to help clients navigate uncertainty

• Provide sensitivity tests, uncertainty bands, appropriate caveats/limitation, and rounded results

• Consider Cat Model adjustments – speak to the client and GC Model Evaluation

• Use brokers and GC’s market knowledge to inform uncertainty on execution risk, market capacity, pricing, etc.

https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
file://NA.ad.guycarp.com/currentroot/2021/NonClients/Goals/Op Ex Efficiency and Robustness/Simulation Uncertainty/Final Documentation (20221213)/comms and backups/John Major on Cat Model Param Uncertainty
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