
git tutorial

What we'll cover

• Why?

• Basic operations

• Moving to GitHub

• Branching (probably won’t have time)

Why?

4© Oliver Wyman

CAS TECHNOLOGY SURVEY

Alternatives

FILENAME E-MAIL PASSIVE
BACKUP

TRACK
CHANGES

Method 1: Filename as version control

Method 2:
E-mail as

version
control

"I think I sent it on
or about the 12th of
June. Maybe in the
morning. I know
that I'd just eaten a
burrito, but I can't
remember if it was a
breakfast burrito or
a regular burrito."

Method 3:
Passive
backup

Method 4: Track changes

Git to the rescue!

CAS Microlearning content

https://www.pathlms.com/
cas/courses/18181

Can’t get any cheaper than
free!

https://www.pathlms.com/cas/courses/18181
https://www.pathlms.com/cas/courses/18181

Prerequisites

• Git

• GUI Clients
• Github Desktop (GitHub)

• Sourcetree (Atlassian)

• Command Line Interface (Terminal)
• Gitbash

https://git-scm.com/
https://desktop.github.com/
https://www.sourcetreeapp.com/

Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes

6. Revert changes

7. Ignore

Exercise #1: Git Basics

1. Configuration
• git config --global user.name "<user
name>"

2. Create a repository
• git init

Changes not staged

Staged

Committed

git reset

IgnoredUntracked

git commit

git add git add

git checkout

git revert

git init

git at the command line

git --help

git --version

git init –h

git init --help

git status

git log

Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes

6. Revert changes

7. Ignore

Exercise #2: Local Version Control

Commit and Revert

1. Create a plain text file in any format (.txt, .R, .py, etc.)

2. Stage files
• git add -all

3. Commit your changes - Record changes to the repository
• git commit -m <msg>

4. Make a minor change and add and commit (one step)
• git commit -a -m <msg>

Exercise #2: Local Version Control
(continued)

Commit and Revert

5. Make a minor change and add and commit (one step);
then undo the revert
• git commit -a -m <msg>

• git revert

Changes not staged

Staged

Committed

git reset

IgnoredUntracked

git commit

git add git add

git checkout

git revert

File status

• When a file is first created it is not tracked.
• If you stage it, it will be tracked.

• If you commit it, after staging, that file will be tracked forever.

• If you ignore it, you won't see it again.

• Once a file is being tracked, changes will show as being "not staged
for commit"

Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes

6. Revert changes

7. Ignore

Changes not staged

Staged

Committed

git reset

IgnoredUntracked

git commit

git add git add

git checkout

git revert

Changes not staged

Staged

Committed

IgnoredUntracked

git add

Staged

Committed

git reset

Untracked

git add

Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes

6. Revert changes

7. Ignore

Changes not staged

Staged

Committed

IgnoredUntracked

git commit

git add

Stage vs. commit

• Stage
•I'm pretty sure that I'm done making changes.

•This is the set of changes that I'm planning to commit.

•Necessary step before committing

• Commit
•We're all good here. This is a unit of work and here's some commentary.

•(Almost) no turning back

•Generally a good idea to make sure that committed code works
without error. However, there may be exceptions (e.g. wireframe, bug for
someone else to review).

Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes

6. Revert changes

7. Ignore

Changes not staged

Staged

Committed

git reset

IgnoredUntracked

git commit

git add git add

git checkout

git revert

Changes not staged

Staged

Committed

IgnoredUntracked

git add

Changes not staged

Staged

Committed

IgnoredUntracked

git commit

git add

Visual metaphor for commits

Main

main

my_new_branch

1.1 1.2 1.3

main

test

dev

Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes

6. Revert changes

7. Ignore

Changes not staged

Staged

Committed

git reset

IgnoredUntracked

git commit

git add git add

git checkout

git revert

Changes not staged

Staged

Committed

IgnoredUntracked

git revert

Revert a commit

I actually don’t want to talk about this. I never use it and when I try to
use it for a demo, it’s actually complicated and requires some next
level syntax.

My approach: when I make a mistake, I’ll just find the correct version
and make changes in the current version of the project.

Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes

6. Revert changes

7. Ignore

Changes not staged

Staged

Committed

git reset

IgnoredUntracked

git commit

git add git add

git checkout

git revert

Changes not staged

Staged

Committed

IgnoredUntracked

Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes

6. Revert changes

7. Ignore

Moving to GitHub

Push

Pull

Exercise #3: Collaborating in the Cloud

Publish your repository to the Cloud

To collaborate with internal or external users, you will need
to publish your repository. The most popular cloud
repositories are GitHub (now owned by Microsoft) and
Bitbucket (Atlassian).

git remote add origin <REMOTE_URL>

Sets the new remote

git remote -v

Verifies the new remote URL`

Confirm that the repository is public

Collaborating in the Cloud: Forks and Clones

• A fork creates a completely independent copy of Git
repository.

• A clone creates a linked copy that will continue to
synchronize with the target repository

• Push your changes to the cloud

• Pull changes to your repository
• “Pull” v. “Pull Request”

Making a pull request

Exercise #5: Collaboration via forks (external)

You will work on a repository on the CAS GitHub site.

1. Navigate to:
https://github.com/casact/pull_request_tutorial

2. Fork the repository in the cloud. This will create a new
repository under your user name with the same name as
the original.

3. Clone the repository locally
• git clone <repo> <directory>

Exercise #5: Collaboration via forks (external)

4. Change your name in the file hello_pull_request.md,
commit and push
• git add

• git commit -m

• git push

5. If things look good, I will accept your changes via a pull
request in the cloud.

Branching

Branching

• Main or “clean” version of the code

• Branch for:
• Feature development

• Testing

• Debugging/hotfixing

Main

Main

Dev

Create a new branch

1. Open a terminal prompt and run
git status

git branch -v

git checkout –b my_new_branch

git branch -v

git status

2. Also explore how this looks in your IDE

main

my_new_branch

Make some changes and commit

1. Make some changes to your file

2. Open a terminal prompt and run
git status

git add my_file.py

git commit –m “Testing out this thing”

3. Also explore how this looks in your IDE

4. Now run this
git checkout main

5. You’re looking at the other branch!

main

my_new_branch

Merge development and main

1. Open a terminal prompt and run
git status

git checkout main

git merge my_new_branch

git branch -v

git status

2. Also explore how this looks in your IDE

main

my_new_branch

1.1 1.2 1.3

main

test

dev

	Default Section
	Slide 1: git tutorial
	Slide 2: What we'll cover

	git_why
	Slide 3: Why?
	Slide 4: CAS Technology survey
	Slide 5: Alternatives
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Git to the rescue!
	Slide 11

	git_init
	Slide 12: Prerequisites
	Slide 13: Basic git operations
	Slide 14: Exercise #1: Git Basics
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: git at the command line

	untracked
	Slide 22: Basic git operations
	Slide 23: Exercise #2: Local Version Control
	Slide 24: Exercise #2: Local Version Control (continued)
	Slide 25
	Slide 26
	Slide 27
	Slide 28: File status

	stage
	Slide 29: Basic git operations
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

	commit
	Slide 38: Basic git operations
	Slide 39
	Slide 40: Stage vs. commit
	Slide 41
	Slide 42
	Slide 43
	Slide 44

	diff_and_log
	Slide 45: Basic git operations
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Visual metaphor for commits
	Slide 55
	Slide 56
	Slide 57

	revert
	Slide 58: Basic git operations
	Slide 59
	Slide 60
	Slide 61: Revert a commit

	ignore
	Slide 62: Basic git operations
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69: Basic git operations

	github
	Slide 70: Moving to GitHub
	Slide 71
	Slide 72
	Slide 73
	Slide 74: Exercise #3: Collaborating in the Cloud
	Slide 75: Collaborating in the Cloud: Forks and Clones

	pull_request
	Slide 78: Making a pull request
	Slide 79: Exercise #5: Collaboration via forks (external)
	Slide 80: Exercise #5: Collaboration via forks (external)

	branching
	Slide 81: Branching
	Slide 82: Branching
	Slide 83
	Slide 84
	Slide 85: Create a new branch
	Slide 86
	Slide 87: Make some changes and commit
	Slide 88
	Slide 89: Merge development and main
	Slide 90
	Slide 91

