
git tutorial



What we'll cover

• Why?

• Basic operations

• Moving to GitHub

• Branching (probably won’t have time)



Why?
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Alternatives

FILENAME E-MAIL PASSIVE 
BACKUP

TRACK 
CHANGES



Method 1: Filename as version control



Method 2: 
E-mail as 

version 
control

"I think I sent it on 
or about the 12th of 
June. Maybe in the 
morning. I know 
that I'd just eaten a 
burrito, but I can't 
remember if it was a 
breakfast burrito or 
a regular burrito."



Method 3: 
Passive 
backup



Method 4: Track changes



Git to the rescue!



CAS Microlearning content

https://www.pathlms.com/
cas/courses/18181

Can’t get any cheaper than 
free!

https://www.pathlms.com/cas/courses/18181
https://www.pathlms.com/cas/courses/18181


Prerequisites

• Git

• GUI Clients
• Github Desktop (GitHub)

• Sourcetree (Atlassian)

• Command Line Interface (Terminal)
• Gitbash

https://git-scm.com/
https://desktop.github.com/
https://www.sourcetreeapp.com/


Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes 

6. Revert changes

7. Ignore



Exercise #1: Git Basics

1. Configuration
• git config --global user.name "<user 
name>"

2. Create a repository
• git init



Changes not staged

Staged

Committed

git reset

IgnoredUntracked

git commit

git add git add

git checkout

git revert

git init













git at the command line

git --help

git --version 

git init –h

git init --help 

git status

git log



Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes

6. Revert changes

7. Ignore



Exercise #2: Local Version Control

Commit and Revert

1. Create a plain text file in any format (.txt, .R, .py, etc.)

2. Stage files
• git add -all

3. Commit your changes - Record changes to the repository
• git commit -m <msg>

4. Make a minor change and add and commit (one step)
• git commit -a -m <msg>



Exercise #2: Local Version Control 
(continued)

Commit and Revert

5. Make a minor change and add and commit (one step); 
then undo the revert
• git commit -a -m <msg>

• git revert



Changes not staged

Staged

Committed

git reset

IgnoredUntracked

git commit

git add git add

git checkout

git revert







File status

• When a file is first created it is not tracked.
• If you stage it, it will be tracked.

• If you commit it, after staging, that file will be tracked forever.

• If you ignore it, you won't see it again.

• Once a file is being tracked, changes will show as being "not staged 
for commit"



Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes

6. Revert changes

7. Ignore



Changes not staged

Staged

Committed

git reset

IgnoredUntracked

git commit

git add git add

git checkout

git revert



Changes not staged

Staged

Committed

IgnoredUntracked

git add







Staged

Committed

git reset

Untracked

git add









Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes

6. Revert changes

7. Ignore



Changes not staged

Staged

Committed

IgnoredUntracked

git commit

git add



Stage vs. commit

• Stage
•I'm pretty sure that I'm done making changes.

•This is the set of changes that I'm planning to commit.

•Necessary step before committing

• Commit
•We're all good here. This is a unit of work and here's some commentary.

•(Almost) no turning back

•Generally a good idea to make sure that committed code works 
without error. However, there may be exceptions (e.g. wireframe, bug for 
someone else to review).











Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes

6. Revert changes

7. Ignore



Changes not staged

Staged

Committed

git reset

IgnoredUntracked

git commit

git add git add

git checkout

git revert



Changes not staged

Staged

Committed

IgnoredUntracked

git add











Changes not staged

Staged

Committed

IgnoredUntracked

git commit

git add





Visual metaphor for commits



Main



main

my_new_branch



1.1 1.2 1.3

main

test

dev



Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes

6. Revert changes

7. Ignore



Changes not staged

Staged

Committed

git reset

IgnoredUntracked

git commit

git add git add

git checkout

git revert



Changes not staged

Staged

Committed

IgnoredUntracked

git revert



Revert a commit

I actually don’t want to talk about this. I never use it and when I try to 
use it for a demo, it’s actually complicated and requires some next 
level syntax.

My approach: when I make a mistake, I’ll just find the correct version 
and make changes in the current version of the project.



Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes

6. Revert changes

7. Ignore



Changes not staged

Staged

Committed

git reset

IgnoredUntracked

git commit

git add git add

git checkout

git revert



Changes not staged

Staged

Committed

IgnoredUntracked











Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes

6. Revert changes

7. Ignore



Moving to GitHub



Push



Pull





Exercise #3: Collaborating in the Cloud

Publish your repository to the Cloud

To collaborate with internal or external users, you will need 
to publish your repository. The most popular cloud 
repositories are GitHub (now owned by Microsoft) and 
Bitbucket (Atlassian).

git remote add origin <REMOTE_URL>

# Sets the new remote

git remote -v

# Verifies the new remote URL`

Confirm that the repository is public



Collaborating in the Cloud: Forks and Clones

• A fork creates a completely independent copy of Git 
repository.

• A clone creates a linked copy that will continue to 
synchronize with the target repository

• Push your changes to the cloud

• Pull changes to your repository
• “Pull” v. “Pull Request”



Making a pull request



Exercise #5: Collaboration via forks (external)

You will work on a repository on the CAS GitHub site.

1. Navigate to: 
https://github.com/casact/pull_request_tutorial

2. Fork the repository in the cloud. This will create a new 
repository under your user name with the same name as 
the original.

3. Clone the repository locally
• git clone <repo> <directory>



Exercise #5: Collaboration via forks (external)

4. Change your name in the file hello_pull_request.md, 
commit and push
• git add

• git commit -m

• git push

5. If things look good, I will accept your changes via a pull 
request in the cloud.



Branching



Branching

• Main or “clean” version of the code

• Branch for:
• Feature development

• Testing

• Debugging/hotfixing



Main



Main

Dev



Create a new branch

1. Open a terminal prompt and run
git status 

git branch -v 

git checkout –b my_new_branch

git branch -v

git status

2. Also explore how this looks in your IDE



main

my_new_branch



Make some changes and commit

1. Make some changes to your file

2. Open a terminal prompt and run
git status 

git add my_file.py

git commit –m “Testing out this thing”

3. Also explore how this looks in your IDE

4. Now run this
git checkout main

5. You’re looking at the other branch!



main

my_new_branch



Merge development and main

1. Open a terminal prompt and run
git status 

git checkout main 

git merge my_new_branch

git branch -v

git status

2. Also explore how this looks in your IDE



main

my_new_branch



1.1 1.2 1.3

main

test

dev
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