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Motivation

• Risk classification: categorical variables with a large number of levels

• High cardinality can be a challenge in actuarial methods

• Higher likelihood of sparse data 
• Inherent relation between levels is ignored
• Unrealistic amount of computational resource



This Talk

• We present the method of categorical embedding

• Discuss several actuarial applications
• Single insurance risk
• Dependent insurance risks
• Pricing new risks



Discussion

• What is the current practice?

• Alternative strategies
• Credibility theory
• Generalized linear mixed-effects model
• Regularized regression 



Outline

• Overview of neural network

• Network in GLM

• Categorical embedding

• Applications



Overview of NN

• The concept of ANNS traces back to the 1940s, it is now a powerful
machine learning tool

• ANNs are created by combining multiple artificial neurons and 
represented by Input layer, Hidden layer, and Output layer.

• Input layer: input variables
• Hidden layer: learning
• Output layer: predicted value



Overview of NN

• Bias neuron
• Weights
• Net input
=bias + ∑(weight × input)
• Activation function
• Output (activations)
= ℎ(net input)



Deep Network



Overview of NN



Activation Function



NN in GLM
• Recall that in GLM

𝑦𝑦𝑖𝑖|𝒙𝒙𝑖𝑖 ~ Exp (𝜇𝜇𝑖𝑖 ,𝜙𝜙)
𝐸𝐸(𝑦𝑦𝑖𝑖|𝒙𝒙𝑖𝑖)=𝜇𝜇𝑖𝑖, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝑖𝑖|𝒙𝒙𝑖𝑖)=𝜙𝜙 𝜇𝜇𝑖𝑖𝑉𝑉(𝜇𝜇𝑖𝑖)

where 𝜇𝜇𝑖𝑖 = 𝜇𝜇(𝒙𝒙𝑖𝑖)
• The choice of the variance function drives many inference properties,

not the choice of the distribution.



NN in GLM
• We use the output from the feedforward network to model 𝜇𝜇(𝒙𝒙𝑖𝑖) 



NN in GLM



Categorical Embedding
• One-hot encoding



Categorical Embedding
• One-hot encoding

• Issues with neural networks
• Continuity concern
• High cardinality



Categorical Embedding
• The method maps each categorical variable into a real-valued 

representation in the Euclidean space.
• In the embedding space, the categories with similar effects are close to each 

other



Categorical Embedding
• The embeddings can be automatically learned by a neural network in 

the supervised training process.
• Add an embedding layer, an extra layer between the input layer and the 

hidden layer
• Treat the embedding matrix as the weight parameters of the embedding 

neurons



Categorical Embedding



Actuarial Applications

• In predictive models, it is one way to incorporate categorical variables
• Dimension reduction
• Variable selection

• Learned embeddings could be the interest.



Data
• The insurance claims dataset is obtained from the local government 

property insurance fund of Wisconsin
• We examine the building and contents insurance that covers damage to both 

physical structures and items inside
• There are over one thousand entities observed during years 2006-2013, 

resulting in 8,880 policy-year observations.



Data
• We consider a binary outcome that measures the frequency of 

insurance claims by peril



Rating Classes for A Single Risk

• Consider a single risk:
• Treat the open-peril property insurance as an umbrella policy
• Define the claim frequency as a risk measurement for the aggregate claims 

from all perils

• Train-test split to assess the performance



Rating Classes for A Single Risk



Rating Classes for A Single Risk

• Comparison between one-hot encoding and categorical embedding



Rating Classes for A Single Risk



Rating Classes for A Single Risk



Dependent Risks
• We consider a multivariate risk context

• Each peril is viewed as a single risk
• Let 𝑍𝑍𝑗𝑗 be the outcome for 𝑗𝑗th peril. Out interest is 𝑌𝑌 = (𝑍𝑍1,𝑍𝑍2,𝑍𝑍3)

• We are interested in quantity:
Pr 𝑍𝑍1,𝑍𝑍2,𝑍𝑍3 ≠ Pr 𝑍𝑍1 Pr 𝑍𝑍2 Pr 𝑍𝑍2

• We transform the modeling of 𝑌𝑌 to a multi-class classification, and 
consider a multi-output network for 𝑌𝑌



Dependent Risks
• We use dependence ratio to describe the relationship among perils



Dependent Risks
• The insurer’s retained loss under 1) stop loss; 2) Excess of loss



Pricing New Risks
• Suppose that the insurer has only provided coverage for water and 

other perils during years 2006-2011. Starting from year 2012, the 
insurer plans to offer fire coverage as well.

• We demonstrate the idea of transfer learning using the categorical 
variable county.

• Learn the embeddings from single peril: water or other
• Learn the embeedings from the joint bi-peril model: water and other

• Two comparisons
• One-hot encoding for ``county’’
• Arbitrary grouping for ``county’’



Pricing New Risks
• We use data in years 2012-2013 to do back-testing

• Fitted model using data in 2012



Pricing New Risks
• We use data in years 2012-2013 to do back-testing

• Test using data in 2013



Pricing New Risks
• Consider case where the counties are arbitrarily grouped
• We compare three methods in terms 

• 1) directly use embedding vectors as predictors
• 2) 3 groups of counties from clustering the embeddings
• 3) randomly assign counties into 3 groups, replicate 500 times

• Embeddings are learned from the joint model for water and other 
perils

• In-sample (AIC): 1) and 2) outperforms 3) 94% and 97% times respectively
• Hold-out (AUC): 1) and 2) outperforms 3) 95% and 63% times respectively



Summary

• Introduced the method of categorical embedding
• Discussed several actuarial applications
• Two distinctive aspects of the method

• The method is viewed as a way to incorporate categorical input variables in 
deep neural networks

• The neural network is viewed as a vehicle for computing the embeddings for 
categorical input variables
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