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Motivation

 Risk classification: categorical variables with a large number of levels

e High cardinality can be a challenge in actuarial methods

e Higher likelihood of sparse data
* Inherent relation between levels is ignored
e Unrealistic amount of computational resource



This Talk

 We present the method of categorical embedding

e Discuss several actuarial applications
e Single insurance risk
e Dependent insurance risks
* Pricing new risks



Discussion

 What is the current practice?

e Alternative strategies
e Credibility theory
e Generalized linear mixed-effects model
e Regularized regression



Outline

e Overview of neural network
e Network in GLM
e Categorical embedding

e Applications



Overview of NN

* The concept of ANNS traces back to the 1940s, it is now a powerful
machine learning tool

* ANNs are created by combining multiple artificial neurons and
represented by Input layer, Hidden layer, and Output layer.

* Input layer: input variables
e Hidden layer: learning
e Output layer: predicted value



Overview of NN

e Bias neuron
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Overview of NN

For the jth neuron in layer [:
® Net input = bias + ) (weight X input)
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where a:" is a bias term and wj;. is the weight.

® Qutput, known as activations:
[ l
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where h{)(-) is called activation function.



Activation Function

Examples of Nonlinear activation functions:

1
¢ Sigmoid/Logistic: h(u) =
g / g !(”) l _|_ Ei—ﬂ-
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® TanH/Hyperbolic Tangent: h(u) = — J
EM- _|_ E—H.

® RelLU (Rectified Linear Unit) h(u) = max{0,u} = {
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NN in GLM

e Recall that in GLM
Vilx; ~ Exp (4, @)
EQilx)=wi, Var(yilx;)=¢ w;V (1)
where p; = p(x;)

* The choice of the variance function drives many inference properties,
not the choice of the distribution.

Distribution Variance Function V (u)
Normal 1

Bernoulli (1 —p)
Poisson I

Gamma 1?

Tweedie P (p e (1,2))

Inverse Gaussian T




NN in GLM

e We use the output from the feedforward network to model u(x;)

Hidden
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NN in GLM

® \We use the output from the feedforward network to model i (x;)
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® 7i1,...,Tiq are engineered features
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Categorical Embedding

* One-hot encoding

One-hot encoding can be formulated as a function /i that maps the categorical variable into a binary

vector of length /K :
h:xvr—s 0= (0pcps---. 5;:,@3:)’-

where 0, ., . for k=1,.... K, is the Kronecker delta which equals 1 if 2 = ¢, and 0 otherwise.



Categorical Embedding

* One-hot encoding

One-hot encoding can be formulated as a function & that maps the categorical variable into a binary

vector of length /K :

h:xvr—s 0= (0pcps---. f—ir,c:K)’-

where 0, ., . for k=1,.... K, is the Kronecker delta which equals 1 if 2 = ¢, and 0 otherwise.

* |ssues with neural networks
e Continuity concern
e High cardinality



Categorical Embedding

* The method maps each categorical variable into a real-valued
representation in the Euclidean space.

* In the embedding space, the categories with similar effects are close to each
other

Be more specific, for data point with x; = ¢, we note:
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The dimension of embedding space i1s bounded between 1 and K — 1, I.e.
1 <d< K —1.



Categorical Embedding

* The embeddings can be automatically learned by a neural network in
the supervised training process.

 Add an embedding layer, an extra layer between the input layer and the
hidden layer

e Treat the embedding matrix as the weight parameters of the embedding
neurons

Y1k
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Categorical Embedding
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Actuarial Applications

* In predictive models, it is one way to incorporate categorical variables
e Dimension reduction
e Variable selection

e Learned embeddings could be the interest.



Data

* The insurance claims dataset is obtained from the local government
property insurance fund of Wisconsin

 We examine the building and contents insurance that covers damage to both
physical structures and items inside

 There are over one thousand entities observed during years 2006-2013,
resulting in 8,880 policy-year observations.

Variable Description

Entitylype Entity type of the policyholder (city, county, school, town, or village, or other)
County County code of the geographical region of the property (72 categories)
Coverage Amount of insurance coverage

Deductible  Amount of deductible




Data

 We consider a binary outcome that measures the frequency of
insurance claims by peril

Overall Entity Type

City County School Town Village Misc

Claim Probability 0.291 0.522 0.743 0.302 0.077 0.263 0.116
Peril Tvpe

Fire 0.158 0.333 0.457 0.133 0.044 0.138 0.057
Water 0.124 0.225 0.464  0.114 0.020 0.103 0.039
Other 0.116 0.206 0.362 0.145 0.023 0.068 0.037

Number of Obs 8 880 1.247 541 2.469 1.510 2.117 096




Rating Classes for A Single Risk

e Consider a single risk:
e Treat the open-peril property insurance as an umbrella policy

e Define the claim frequency as a risk measurement for the aggregate claims
from all perils

* Train-test split to assess the performance



Rating Classes for A Single Risk
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Rating Classes for A Single Risk

e Comparison between one-hot encoding and categorical embedding

One-hot Encoding Categorical Embedding
Simple Gini 41.534 (1.745) 45.204 (1.619)
One-hot Encoding 21.152 (2.050)

Categorical Embedding 3.049 (2.004)

I Standard errors are reported in parentheses.



Rating Classes for A Single Risk
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Rating Classes for A Single Risk




Dependent Risks

* We consider a multivariate risk context
e Each peril is viewed as a single risk
* Let Z; be the outcome for jth peril. Out interestis Y = (Z;, 2, Z3)

 We are interested in quantity:
Pr(Z,,Z,,7Z3) # Pr(Z,) Pr(Z;) Pr(Z;)

 We transform the modeling of Y to a multi-class classification, and
consider a multi-output network for Y

. (L)
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Dependent Risks

* We use dependence ratio to describe the relationship among perils

( ) PI’(Zl = 21, 4y = 29, 43 = 33)
21,29,23) =
AL#1, 22, 23 Pr(Zy = 21)Pr(Zy = 23)Pr(Z3 = z3)

Observed Association Fitted Value

Value Ratio Independent Dependent

(0.0.0) 4,745 1.450 1,687 4,757
(0,0,1) 410 0.830 431 401
(0,1,0) 444 0.849 478 453
(1.0,0) 557 0.963 599 550
(0,1,1) 102 1.264 116 101
(1.0,1) 157 1.810 143 152
(1,1,0) 178 1.862 176 179
(1,1,1) 165 11.597 128 164
\? — statistic 20.883 0.686




Dependent Risks

 The insurer’s retained loss under 1) stop loss; 2) Excess of loss

Stop loss : Ry = min{S, d, }
Excess of loss : Ry = max{S — d,,0}
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Pricing New Risks

e Suppose that the insurer has only provided coverage for water and
other perils during years 2006-2011. Starting from year 2012, the
insurer plans to offer fire coverage as well.

 We demonstrate the idea of transfer learning using the categorical
variable county.
e Learn the embeddings from single peril: water or other
e Learn the embeedings from the joint bi-peril model: water and other

 Two comparisons
e One-hot encoding for ““county”’
e Arbitrary grouping for county”’



Pricing New Risks

 We use data in years 2012-2013 to do back-testing

e Fitted model using data in 2012

Based on Embedding Cluster

Based on Embedding Matrix

Estimate Std. Error p-value Estimate Std. Error p-value
Learned from Water Peril
(Intercept) -2.557 0.855 0.003 (Intercept) -1.439 0.797 0.071
City 1.327 0.525 0.012 City 1.281 0.525 0.015
County 1.495 0.565 0.008 County 1.357 0.563 0.016
School -0.006 0.527 0.991 School -0.046 0.526 0.930
Town 1.328 0.654 0.042 Town 1.357 0.653 0.038
Village 1.345 0.530 0.011 Village 1.330 0.528 0.012
Coverage 0.889 0.109 0.000 Coverage 0.926 0.111 0.000
Deductible -0.485 0.095 0.000 Deductible -0.482 0.094 0.000
Region2 0.982 0.414 0.018 Embedding1l 1.430 0.744 0.055
Region3 1.120 0.399 0.005 Embedding?2 -0.389 0.283 0.169
\ 2-statistic 6.029 \2-statistic 6.150
Loglik -371.079 Loglik -372.769




Pricing New Risks

 We use data in years 2012-2013 to do back-testing

e Test using data in 2013

Embedding Cluster

Embedding Matrix

Water  Other Water+Other Water  Other Water+Other

Average 50.973 51.502 51.280 51.068 52.162 51.725
(2.906) (2.887) (2.878) (2.887) (2.829) (2.851)

County  20.892  21.393 22.640 20.504  23.622 22.496
(4.029) (3.981) (3.931) (4.044) (3.869) (3.904)

I Standard errors are reported in parentheses.



Pricing New Risks

e Consider case where the counties are arbitrarily grouped

 We compare three methods in terms

e 1) directly use embedding vectors as predictors
e 2) 3 groups of counties from clustering the embeddings

* 3) randomly assign counties into 3 groups, replicate 500 times
* Embeddings are learned from the joint model for water and other

perils
e In-sample (AIC): 1) and 2) outperforms 3) 94% and 97% times respectively

e Hold-out (AUC): 1) and 2) outperforms 3) 95% and 63% times respectively



Summary

* Introduced the method of categorical embedding
e Discussed several actuarial applications

* Two distinctive aspects of the method

e The method is viewed as a way to incorporate categorical input variables in
deep neural networks

e The neural network is viewed as a vehicle for computing the embeddings for
categorical input variables
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