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I Agenda

1. Options for checking and intervening
2. Correlations are tricky
3. BOP example

I Where to Intervene?

Historical Data

Point of evaluation
and intervention

+ Univariates

+ Normalization

Analytical
Process

Implementation
rocesses
Participate! But from an analytics
perspective, we want to make
sure we are giving our co-workers
good info to work from

Model
Output

Point of evaluation and
Point of evaluation and intervention
intervention « Fairness metrics
« Consider predictorsused ~ + Bottom line approach
+ Minimize chance of proxies
+ Control variables

Ensure the model is used
correctly, as intended
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Working from Knowledge

At the beginning of a modeling project, what is the univariate pattern

across protected classes, given the target objective?

Average model
predictions
should reflect the
same.

~No Severity
difference across
race?

Why? Should
we normalize or
reflect the
difference?

Different
frequencies
across gender?

Effects of correlation
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Effects of correlation

Attribute 2
identifies
three equal-
sized groups,
as well, but
splits the data
differently.

Averaging the
experience
gives a useful
spread in the
target.
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Effects of correlation

What if there
is a protected
class to keep
track of?

And there is a
difference in
the data
between
groups.

Effects of correlation

The uneven
distribution
changes the
averages.

Which group
is over or
underpriced
has flipped.

(Overpriced
LA
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Effects of correlation

Attribute 2 is
less
correlated
with the

Note the double-whammy in the

high freq group: the pre
D { lower
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group is over-represented ANI
i

protected
attribute.

But only
serves to
distort the
problem.

Effects of correlation — Lessons?

P

the distribution changes.

N

Excluding information and
being blind to the relevant
attributes does not help.

@

predictor.

4. Simple models distort more. It is instructive to see what happens if we look at
each attribute as a single-variable model, and then do a simple ensemble.

Averages do funny things as

It is not obvious ahead of time
the group impact for a given

I Effects of correlation — Lessons?
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I Effects of correlation — Lessons?
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Protected

BOP Example (Property coverage; Frequency target)

Using the Zip-level field “Average Family Income” as our measure of
bias. Lower incomes areas show higher property frequencies.

1. Naive GLM - 10 predictors; no use
of an income field.

2. Controlled GLM — added income
field to control for its effect.

3. Normalized GLM — first normalized
the data to remove the variation in

frequency across income; then fit the

10-predictor GLM.

Note: these results are specific to one book of business for one target and should not be seen as generalizable.
These GLMs were created quickly as illustrations, not as the best possible models of the data.

BOP Example (Property coverage; Frequency target)

Interestingly, the Controlled and Normalized GLMs give surprisingly

different results.

In the graph we compare model
predictions record by record.

Remember, normalizing data gives

100% credibility to the univariate pattern.

AvgFamily ~ Exposure  Univariate  Controlled

Income Distribution  FreqRel  GLM Freq Rel
0t0 65,464 20% 1212 1130
65,4650 69,771 10% 1.098 1059
69,7210 73,236 10% 1042 0993
73,237 or more 60% 1,000 1.000

Controlled v Normalized 6LV
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I BOP Example (Property coverage; Frequency target)

Does the Controlled GLM indicate a problem with the Naive GLM?
One approach is to see if other fields lost predictive power.

Naive GLM___Controlled GLM
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Predictors 9 and 7 had the largest
drop, but nothing eye-popping.

Mean Absolute | Mean Absolute
SHAP Values | SHAP Values

Features
Predictor9

When included, Income had a low Predictor2
influence on the model. Predictorl 0.0096 0.0095 -0.0001
Predictord 0.0070 0.0070 0.0000
) . PredictorS 0.0060 0.0060 0.0000
There’s always more than just Predictor10 0.0051 0.0051 0.0000
the numbers. Do you get Predictor? 0.0045 0.0042 -0.0003
more curious when you note Predictor3 0002 00082 0000
Pred7 is Protection Class? —edictors 0005 00043 | 0oo0d

ve Family Income na 0.0031 na

Predictor6 0.0028 0.0028 0.0000
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I BOP Example (Property coverage; Frequency target)

Does the Controlled GLM indicate a problem with the Naive GLM?
Another approach is look at the changes in the fitted coefficients.

Again, nothing dramatic Expo st
. Buiding and contents | 40.9%
pops, butlet's look more Sodngonty | 150
closely at the two predictors Contentsonly | 445%
contents|_1.2%

already identified — a

Building/Contents Indicator | 2 Rel G
" unknown 11% | 0553 | 0948 | 0935 | 1626 | La
and Protection Class. 02(best) 264 | 087 | oos | oon | osms | o7
3 271% | 1000 | 1000 | 1000 | 1000 | oow
Hmmm...areas with the worst 4 inex | oot [EEREEEEEE 100 0.1%
- s 108% | 1080 aae| 127 | 1sx
protection class rating see higher 6 (worst) wox | 102 N 15 s

predicted frequencies when we
naively ignore income.
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I BOP Example (Property coverage; Frequency target)

Are the differences here large? No.
Are the differences statistically significant? Not even close.

Should you leave here today thinking I've shown some pattern that
holds in general for other books of business? Please, no.

If you do this analysis and see something like this, is it worth thinking

more about? |think so. | i
unknown 11% | 0553 | 0948 | 0935 | 1626 | Lax
02(best) 26% | 0871 | oss | os: | oses | o7
3 271% | 1000 | 1000 | 1000 | 1000 | oow
Hmmm...areas with the worst : :2 ZZ Zg il 12 ig: ‘71159;
protection class rating see higher 6 (worst) wox | 102 N 15 s

predicted frequencies when we
naively ignore income.
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I BOP Example (Property coverage; Frequency target)

Does the Controlled GLM indicate a problem with the Naive GLM?
How about the model output? Do the predictions show anything?

The negative (left) end of the chart
is when the Naive GLM prediction is
lower than the Controlled GLM

prediction.
Overall, the predictions are quite T
similar. This is good. i .

Naive v Controlled GLM
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I BOP Example (Property coverage; Frequency target)

Does the Controlled GLM indicate a problem with the Naive GLM?
How about the model output? Do the predictions show anything?

With model output, you can filter
down to the group we are interested

Nai

trelled GLM

in checking.

This shows that lower income areas  * ™

see a higher frequency prediction at = -

a disproportionate rate when a H

naive approach is used. l_ ‘
Big? No. There? Yes.

(in this book, this example...) .

20

I BOP Example (Property coverage; Frequency target)

Thoughts on working through this example:

« Checking the correlation with Income wouldn’t have been sufficient.

SHAP SHAP Change | Change in Rels

Predictor8  14.8% 0.0039 (second  +0.0004 (biggest One level out of 10 saw a 2% move in

lowest) increase) relativity. Nothing systematic.
Protection 14.7%  0.0045 -0.0003 (second  And yes, an interesting, though small,
Class biggest decrease) movement in the relativites.

State 11.0% 0.0028 (lowest) No change One state shifted 2%.

Building/ Not even 0.0162 (second -0.0005 (biggest One level dropped 2%.

Contents  top 3 highest) decrease)

+ Checking multiple measures — correl, SHAP, model output distributions —
gives much more context.

+ In the end, this requires thought. Doubtful about using automatic measures.
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I Questions?

Christopher Cooksey
Senior Director of Advanced Analytics

ccooksey@guidewire.com

Guidewire Software
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