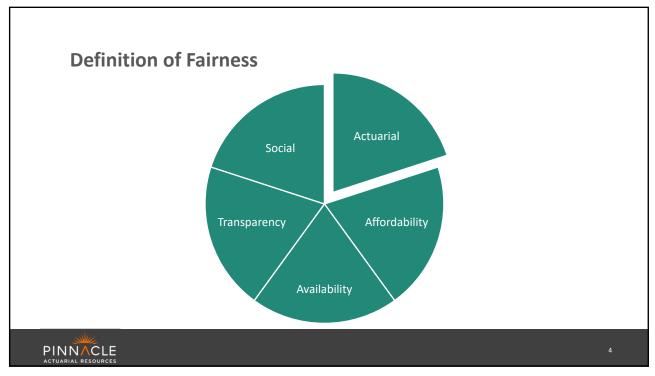


Agenda

- Introduction
- Methods for Measuring Potential Bias
 - Data Required
 - Analytical Methods
- Parting Thoughts



Definitions of Fairness – Actuarial Fairness

- State Rating Laws
- Casualty Actuarial Society Statement of Principles Regarding Property and Casualty Insurance Ratemaking
- Actuarial Standard of Practice No. 53
- American Academy of Actuaries Actuarial Standard of Practice No. 12

A rate is reasonable and not excessive, inadequate, or unfairly discriminatory if it is an <u>actuarially sound estimate of the expected value of all future costs associated</u> with an individual risk transfer.

5

5

Proposed Colorado Regulation 3 CCR 702-4

- Governance and Risk Management Framework Requirements for <u>Life Insurance</u>
 <u>Carriers</u>' Use of External Consumer Data and Information Sources [ECDIS],
 Algorithms, and Predictive Models
- Establishes the requirements for a Life Insurance company's internal risk
 management framework necessary to ensure that the life insurers' use of external
 consumer data and information sources, algorithms, and predictive models does
 not result in unfairly discriminatory insurance practices.

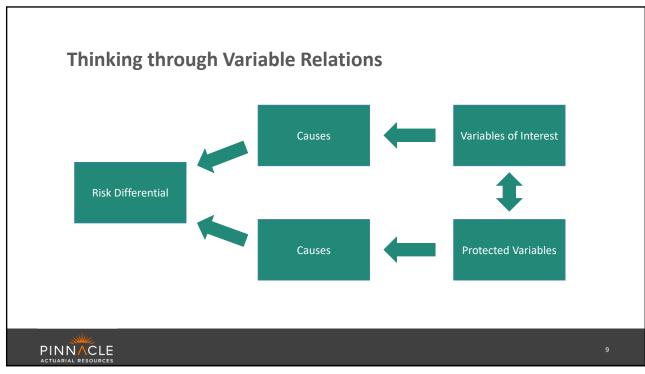
Methods for Measuring Potential Bias

PINNACLE ACTUARIAL RESOURCES

7

7

Defining Bias – Discriminatory Effects What if I find something What if I am using **Prohibited from using** that is perfectly correlated to the protected characteristic? something that is protected characteristics partially correlated to in rating the protected characteristic? protected characteristic, so technically I am not But I am ending up in the prohibited from using the protected characteristic, so I am violating the spirit of the them in rating PINNACLE ACTUARIAL RESOURCES



Exploring Effects via Simulated Data

- Consider the following scenario
 - Two differentiating factors of claim frequency, uniform severity
 - One Well Proxied by Territory (Urban/Rural, Urban has higher freq)
 - One Well Proxied by Race (Black/non-Black, Black has higher freq)
 - Territory and Race are strongly correlated
 - We model using Territory to predict chance of claim arising, and apply the uniform severity to the predictions

PINNACLE ACTUARIAL RESOURCES

10

Model vs. Truth – What is the Territory Relativity

- Each of the two risk differentials: +25%
- Achievable through territory (urban/rural) as proxy, mathematically:
 - Differential 1: +11.8%
 - Differential 2: +5.9%

	Proportion of		Actual Pure	Actual Pure
Territory	Book	Pred Pure Prem	Prem - Period 1	Prem - Period 2
Rural	50%	581	581	584
Urban	50%	687	687	683
Total Book	100%	634	634	633
	Urban Relativity	1.183	1.183	1.169

11

11

Implicit Differential by Race

- The implicit differential here is due to
 - Higher representation of Blacks in the urban area
 - The ability of territory to capture some of the "Race related effects"

	Proportion of		Actual Pure	Actual Pure
Race	Book	Pred Pure Prem	Prem - Period 1	Prem - Period 2
non-Black	50%	607	580	579
Black	50%	662	688	689
Total Book 100%		634	634	634
Implicit Racial Relativity		1.091	1.185	1.190

12

Data

- Capture existing external data
 - Postal code or census level
 - Individual level
- Imputation prediction based on location and name
 - BISG
 - BIFSG
- Collect additional data
 - Ask insured

PINNACLE
ACTUARIAL RESOURCES

13

13

Data Consistency

Census vs. BISG

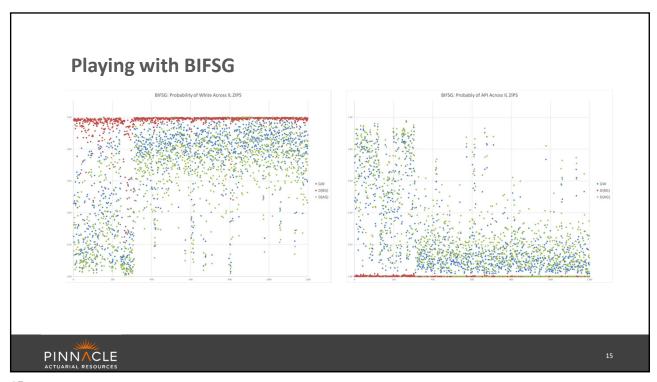
BISG	vs.	BIFSG
RIESG		

	BISG				BIFSG		
Census	Black	Not Black	Total	BISG	Black	Not Black	Total
Black	5.9%	4.7%	10.6%	Black	3.8%	6.8%	10.6%
Not Black	<u>4.9%</u>	<u>84.5%</u>	90.4%	Not Black	<u>1.1%</u>	<u>88.3%</u>	<u>89.4%</u>
Total	10.9%	89.1%		Total	4.9%	95.1%	

While overall consistency may look good, individual consistency may show different results

PINNACLE ACTUARIAL RESOURCES

14



Data Framework

- The data question can be answered
- The answer is not going to be 100% accurate, but accuracy can grow over time
- The real question will be how the accuracy of each method ultimately impacts the analysis results

PINNACLE ACTUARIAL RESOURCES

16

Model Fairness

The latest research in model fairness and model debiasing is introducing an additional component to the concept of model bias that transcends the purely statistical context. The central theme in this additional dimension of bias detection and bias mitigation is attempting to provide practitioners of analytics with mechanisms and mathematical constructs to minimize the social inequalities that their models may capture through data, and ensure that the model does not unfairly discriminate against certain protected classes.

Independence	Separation	Sufficiency
$\hat{Y} \perp A$	$\hat{Y} \perp A Y$	$Y \perp A \hat{Y}$

A - protected attribute

Y - observed value of target variable

Ŷ - predicted value of target variable

17

17

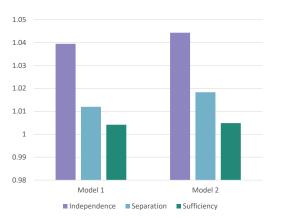
Model Fairness - Colloquially Speaking

- Independence
 - The model should predict equally regardless of the protected attribute
- Separation
 - If I look at the good outcomes (or bad), the model should predict equally regardless of the protected attribute
- Sufficiency
 - If I look at all the people predicted to have good outcome (or bad), the actual amount of good (or bad) outcome should match regardless of the protected attribute

18

Example – Fairness Metrics

- In the approach described in Steinberg, D., et al. (2020), the authors propose a way of checking this independence.
- The intuition behind this method is that the closer to 1.0 the metrics are the better. When all metrics are close to 1.0 then it means that from the perspective of a predictive model there are no meaningful differences between subgroups.



Steinberg, Daniel, Alistair Reid, Simon O'Callaghan. ``Fairness Measures for Regression via Probabilistic Classification''

PINNACLE ACTUARIAL RESOURCES

19

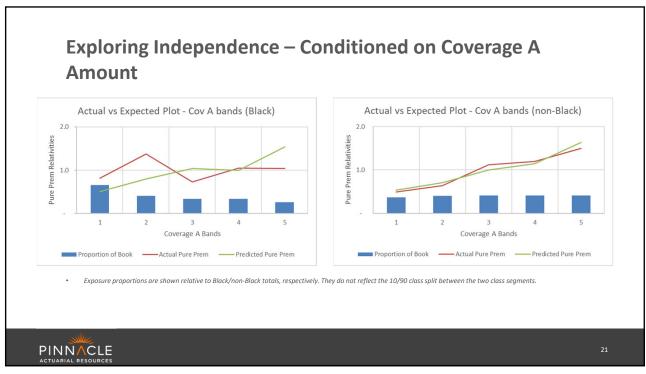
19

Exploring Independence

- With respect to independence, the discussion of fairness often pulls in these two directions
 - How much are you predicting for each class
 - How accurate are you in predicting within each class

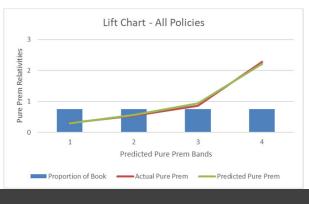
	Total	Black	non-Black
Proportion of Book	100%	10%	90%
Actual Pure Prem	586	577	588
Predicted Pure Prem	586	512	596

20



Exploring Sufficiency – Using the Lift Chart View

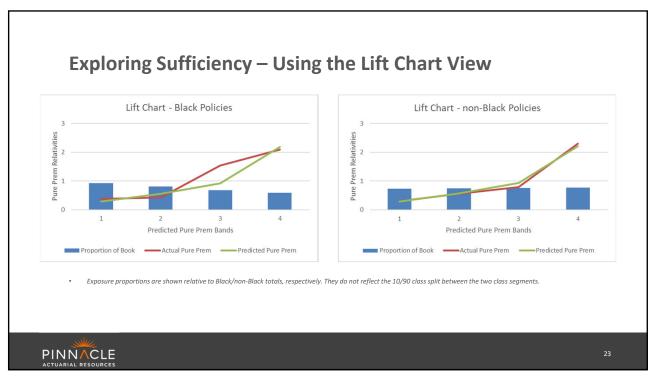
 The Lift Chart lines up the data based on predicted values, creating bins of comparable predicted values



22

22

PINNACLE ACTUARIAL RESOURCES



Exploring Separation

 Here, we start with a comparable actual outcome, and study how the model predicts for each class

	Predicted Pure Premium				
Actual Experience	Total	Black	Non-Black	Difference	
No Loss	574	507	582	-13%	
Small/Moderate Pure Prem	700	569	718	-21%	
Large Pure Prem	1,004	673	1,035	-35%	

24

Parting Thoughts

25

25

Practical Implications of Mitigating Potential Bias

- Impacts the ability to satisfy other fairness criteria (e.g., actuarial)
- There is no black and white answer, there is a gray area and regulators/legislators/judiciary will have to decide what is acceptable
- Will the requirements be industry-wide or company-specific
- There are potential unknown consequences of this decision
 - Impact on individual companies could be different depending on the specifics of the company
 - Broad solutions could create additional challenges

26

A Parting Thought

- American Academy of Actuaries Actuarial Standard of Practice No. 1 –
 "Introductory Actuarial Standard of Practice"
 - There are situations where applicable law (statutes, regulations, and other legally binding authority) may require the actuary to deviate from the guidance of an ASOP. Where requirements of law conflict with the guidance of an ASOP, the requirements of law shall govern (3.1.5)

2

27

Thank You

Gary Wang

309.807.2348

gwang@pinnacleactuaries.com

