OliverWyman

GPT-3 AND THE ACTUARIAL LANDSCAPE

An Overview of Large Language Models and Applications

CAS RPM Seminar March 2023

A business of Marsh McLennan

CONFIDENTIALITY

Our clients' industries are extremely competitive, and the maintenance of confidentiality with respect to our clients' plans and data is critical. Oliver Wyman rigorously applies internal confidentiality practices to protect the confidentiality of all client information.

Similarly, our industry is very competitive. We view our approaches and insights as proprietary and therefore look to our clients to protect our interests in our proposals, presentations, methodologies, and analytical techniques. Under no circumstances should this material be shared with any third party without the prior written consent of Oliver Wyman.

© Oliver Wyman

MEET THE SPEAKERS

OLIVIER BROWN, FCAS, MAAA

P&C Insurance Practice: Principal Olivier.Brown@oliverwyman.com

Olivier Brown leads P&C Actuarial Innovation within Oliver Wyman's Actuarial practice. Olivier helps P&C insurers modernize their actuarial functions. He has worked with many insurers to improve their pricing sophistication, ratemaking, reserving, and underwriting analytics.

HUGO LATENDRESSE, FCAS

P&C Insurance Practice: Senior Manager Hugo.Latendresse@oliverwyman.com

Hugo Latendresse is a Senior Manager in Oliver Wyman's Actuarial practice. He specializes in machine learning and automation solutions designed to improve insurance processes. Hugo has seven years of predictive analytics experience in pricing, reserving, claims, and underwriting.

SABRINA TAN, ACAS

P&C Insurance Practice: Consultant Sabrina.Tan@oliverwyman.com

Sabrina Tan is a Consultant in Oliver Wyman's Actuarial practice. She provides P&C actuarial consulting services to a variety of insurance organizations. She has worked on various projects in predictive analytics, process improvement, pricing, and reserving.

OVERVIEW

Intro to Natural Language Processing

Actuarial Applications

3

INTRO TO NATURAL LANGUAGE PROCESSING

RECENT KEY INNOVATIONS HAVE ACCELERATED ADVANCEMENTS IN NLP

Rule-based systems to simple statistical models

- First application of natural language processing (NLP) was for machine translation
- Initial rule-based models required significant manual coding
- Machine learning and statistical models (N-grams, Markov models) and the first recurrent neural networks such as long short-term memory models replaced hardcoded rules.

Attention, transformers, and large language models

- The attention mechanism along with transformer architecture enable state-of-the-art performance on language tasks and efficient process of large datasets
- Ability to consider context in texts increased the ability to produce human-like texts

Use of neural networks for language modeling

- Initial uses of neural networks for next word prediction
- First representations of words with dense vectors called *word embeddings* and algorithms capable of learning them efficiently (Word2Vec)

Generative pre-trained transformers (GPT)

- OpenAl releases first version of GPT language model (2018), with GPT-2 and GPT-3 released each year thereafter
- ChatGPT, fined-tuned on GPT-3.5, launched in 2022

Source: https://medium.com/nlplanet/a-brief-timeline-of-nlp-bc45b640f07d

ACCESS TO POWERFUL RESOURCES ENABLE LARGE LANGUAGE MODELS

NLP has achieved groundbreaking results through LLMs, enabled by various modern technology

Increasing availability of text data from the internet

Development of powerful **computational resources** (GPUs and TPUs)

Frameworks for developing neural networks (TensorFlow and PyTorch)

Advances in **ML algorithms** (transformers and attention)

	Number of parameters	Size of training dataset (Quantity of text)	Compute resources used for training
BERT	110M	16GB	
GPT	117M	40GB	
ROBERTA	125M	160GB	
GPT-2	1.5B	800GB	
GPT-3	175B	45TB	3,600+ GPU days 330+ MWh

THE BUILDING BLOCKS OF GPT

Linear Regression Model Using Formulas

MODEL Structure	$Y = \beta_0 + \beta_1 * X$	
COST FUNCTION	Cost = Σ(predicted – actual)^2 = 10.7476	
FORMULAS FOR β COEFFICIENTS	Slope $\beta_1 = (n * \Sigma(x^*y) - \Sigma(x) * \Sigma(y)) / (n * \Sigma(x^2) - (\Sigma(x))^2) = 10.11$ Intercept $\beta_0 = (\Sigma(y) - \beta_1 * \Sigma X) / N = 5.15$	
RESULTING MODEL	Y = 10.11 * X + 5.15	

Without those formulas,

How can we find the coefficients?

REGRESSION VS CLASSIFICATION

REGRESSION VS CLASSIFICATION

SINGLE-LABEL VS MULTI-LABEL CLASSIFICATION

Single-Label Classification

Multi-Label Classification Training Data Example

Petal Length	Petal Width	Sepal Length	Species
5.4	3.9	1.3	Setosa
4.5	2.3	1.3	Setosa
4.4	3.2	1.3	Setosa
4.8	3.0	1.4	Setosa
5.1	3.8	1.6	Setosa
4.6	3.2	1.4	Setosa
5.3	3.7	1.5	Setosa
5.0	3.3	1.4	Setosa
7.0	3.2	4.7	Versicolor
6.4	3.2	4.5	Versicolor
6.9	3.1	4.9	Versicolor
5.6	2.7	4.2	Versicolor
5.7	3.0	4.2	Versicolor
5.7	2.9	4.2	Versicolor
6.2	2.9	4.3	Versicolor
5.1	2.5	3.0	Versicolor
5.7	2.8	4.1	Versicolor
6.3	2.5	5.0	Virginica
6.5	3.0	5.2	Virginica
6.2	3.4	5.4	Virginica
5.9	3.0	5.1	Virginica

Multi-Classification Training Data Example

NEURAL NETWORKS

Multi-Layer Perceptron

BUT WHAT ABOUT PREDICTING WORDS?

NEXT WORD PREDICTION

Fundamentally, GPT-3 and ChatGPT are neural networks that constantly give a probability to what should be the next outputted word. That's why ChatGPT types one word at a time!

First Step: Tokenization

- First step of NLP any model is to convert text into numbers, or "tokens".
- GPT-3's tokenizer assign integers to chunks of characters.
- It's a one-to-one mapping, fixed mapping.
 - In the input layer, "exactly" will always be mapped to the number 3446
 - In the output layer, 3446 will always be mapped to "exactly"

Classification Problem

- Next word prediction becomes a classification problem
- Input: series of tokens (a sentence)
- Output: probability distribution over all tokens
- Vocab size of GPT-3 = 50,257
- The problem becomes a classification problem with 50,257 labels

Example: Tokenization of an Input

SUMMARIZING MEANING AND REDUCING DIMENSIONALITY WITH WORD EMBEDDINGS

How to quantify meanings of words?

- Token IDs cannot be used as-is.
- Word Embedding: a large vector assigned to each token
- Values in the vector are initially assigned at random

Word Embedding Examples

Token	Token ID	One-Hot Encoded Vector (50,000 dimensions)	Word Embedding Vector (fewer dimensions)
round	35634	(0, 0, 0, 0, 0, 0,, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,, 0, 0, 0, 0, 0)	(0.932, 0.321, 0.456, 0.571, 0.984,, 0.654)
ball	1894	(0, 0, 0, 0, 0, 0,, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,, 0, 0, 0, 0, 0)	(0.524, 0.329, 0.132, 0.134, 0.952,, 0.213)
net	3262	(0, 0, 0, 0, 0, 0,, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,, 0, 0, 0, 0, 0)	(0.187, 0.818, 0.118, 0.901, 0.347,, 0.221)

REPRESENTING ORDER OF WORDS WITH POSITIONAL ENCODING

Network nodes need to consider multiple tokens at once. How to do that?

A naïve approach of simply taking an average or a sum of all word embedding vectors would be wrong for two reasons.

• First, obvious reason: the order of the tokens need to be considered.

Solution: Positional Encoding (see below)

• Second, less obvious reason: some words "care" more about each other than others.

Solution: Self-Attention (see next slides)

Token	Word Embedding		Positional Encoding		The resulting vectors represent both the meaning and position of tokens.
Name	(0.638, 0.759, 0.905, 0.243, 0.189,, 0.900)	+	(0, 1, 0, 1, 0,, 0)	=	(0.638, 1.759, 0.905, 1.243, 0.189,, 0.900)
the	(0.655, 0.325, 0.599, 0.91, 0.49,, 0.726)	+	(0.031, 1.000, 0.003, 1.000, 0,, 0)	=	(0.686, 1.324, 0.602, 1.909, 0.490,, 0.726)
capital	(0.082, 0.326, 0.622, 0.418, 0.136,, 0.344)	+	(0.062, 0.998, 0.000, 1.000, 0,, 0)	=	(0.144, 1.324, 0.622, 1.418, 0.136,, 0.344)
of	(0.194, 0.294, 0.796, 0.07, 0.726,, 0.56)	+	(0.094, 0.995, 0.000, 1.000, 0,, 0)	=	(0.288, 1.289, 0.796, 1.07, 0.726,, 0.560)
Peru	(0.825, 0.943, 0.828, 0.611, 0.912,, 0.962)	+	(0.125, 0.992, 0.000, 1.000, 0,, 0)	=	(0.95, 1.935, 0.828, 1.611, 0.912,, 0.962)

ATTENTION IS ALL YOU NEED

Self-Attention is the mechanism used by transformer models to weigh the importance of difference words in a sentence or piece of text based on their relationships to other words.

Motivation for Self-Attention

"I can enjoy almost any music genre, but I was never enthusiastic about heavy _____."

"I run instead of lifting, because my apartment building's gym doesn't have heavy _____."

In the two sentences above:

- The words "music" and "lifting" give a lot of meaning to the token "heavy", since those tokens help specify the context.
- The words "enthusiastic" and "apartment", however are not very useful in finding out what is "heavy".

Therefore, we want the next word predictions to highly depend on "music" and "lifting" and not so much on "enthusiastic" and "apartment".

CREATING KEYS, QUERIES, AND VALUES TO ALLOW SELF-ATTENTION CALCULATION

COMBINING KEYS, QUERIES, AND VALUES IN SELF-ATTENTION

	A. Key	B. Query	C. Value	D. Unnormalized Weights	E. Normalized Weights	F. New Representation of "Peru"
Preceding Tokens	Key Matrix x Previous Representation	Query Matrix x Previous Representation	Value Matrix x Previous Representation	Key x "Peru" Query	softmax(D.)	weighted average of C.
The	(0.177, 0.544,)	(0.258, 0.482,)	(0.885, 0.857,)	1.798	14%	
capital	(0.228, 0.291,)	(0.022, 0.887,)	(0.579, 0.423,)	2.501	29%	
of	(0.517, 0.684,)	(0.618, 0.217,)	(0.174, 0.136,)	0.421	4%	- (0.530, 0.749,)
Peru	(0.329, 0.567,)	(0.092, 0.151,)	(0.432, 0.932,)	3.113	53%	

• Matrices used to obtain keys, queries, and values are common to all tokens.

• They are initialized at random and trained using gradient descent.

Value: vector describing information each token has to offer

 $\langle\!\langle\!\rangle\rangle$

TRANSFORMER ARCHITECTURE EXAMPLE

Source: chat.openai.com/chat

TRANSFORMER ARCHITECTURE EXAMPLE

GPT IS CAPABLE OF ZERO-SHOT LEARNING

Update weights of pre-trained model by training on a dataset specific to the desired task Model is given a few demonstrations of the task as conditioning, but no weight updates are allowed

Same as few-shot but only one demonstration is allowed No demonstrations are allowed – the model is only given a natural language description of the task

Source: https://arxiv.org/pdf/2005.14165.pdf

ADDING REINFORCEMENT LEARNING LAYERS AND A MODERATION API ENABLES THE TRANSITION FROM GPT TO CHATGPT

S

Fine-tune GPT-3.5

ChatGPT focused language model that has been fine-tuned on conversational data such as short, informal sentences and specific conversational conventions.

Train a reward model

A labeler ranks possible responses to prompts, and this data is used to train a reward model to determine the final response.

Use reinforcement learning to optimize reward An agent learns to choose the best response to a prompt by receiving feedback in the form of the rewards from step 2.

 \bigcirc

Moderation endpoint

A separate language model is used to classify text as whether they violate content policy by being "sexual, hateful, violent, or promoting self-harm".

Sources: https://openai.com/blog/chatgpt/ https://openai.com/blog/new-and-improved-content-moderation-tooling/

T ACTUARIAL APPLICATIONS

GPT-ENABLED TOOLS CAN HELP ACTUARIES EXECUTE THEIR WORK (1/3)

Fitting a model using GitHub Copilot

In _	1	 ⊽# The target variable is target_total_claim_amount
	2	# Split the data into train and test
	3	<pre>X = df.drop('target_total_claim_amount', axis=1)</pre>
	4	<pre>y = df['target_total_claim_amount']</pre>
	5	X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
	6	
In _	1	# Fit an XGBoost model
	2	kab model - yab XGRPagpesson(objective="pag-squapederpor" random state=42)

Out 14 🗸	• XGBRegressor
	<pre>XGBRegressor(base_score=None, booster=None, callbacks=None,</pre>

GitHub Copilot $ imes$	G	\$ —	8
Accept solution			GitH
<pre>xgb_model = xgb.XGBRegressor(objective="reg:squarederror",</pre>			16 Col
n_estimators=10, seed=123)			pilot
xgb_model.fit(X_train, y_train)			
#%%			Ren
# Predict on test set			notel
<pre>y_pred = xgb_model.predict(X_test)</pre>			Host
#%%			
Accept solution			Data
<pre>xgb_model = xgb.XGBRegressor(objective='reg:squarederror',</pre>			base
n_estimators=1000)			
xgb_model.fit(X_train, y_train)			SciVi
#%%			8
# Evaluate the model			÷
<pre>y_pred = xgb_model.predict(X_test)</pre>			Votific
rmse = np.sqrt(mean_squared_error(y_test, y_pred))			ations
Accept solution			
<pre>model = xgb.XGBRegressor(objective ='reg:squarederror',</pre>			
<pre>colsample_bytree = 0.3, learning_rate = 0.1,</pre>			
<pre>max_depth = 5, alpha = 10, n_estimators = 10</pre>))		
<pre>model.fit(X_train, y_train)</pre>			
#%%			
# Make predictions			
preds = model.predict(X_test)			
Accept solution			
Accept solution			

3

GPT-ENABLED TOOLS CAN HELP ACTUARIES EXECUTE THEIR WORK (2/3)

An entire modeling process using ChatGPT and Copilot

- To build a model for predicting the target_total_claim_amount based on the given features, you can follow these general steps:
 - 1. Load the data: Load the data into your preferred data analysis tool. This can be done using various libraries such as pandas in Python.
 - Explore the data: Analyze the dataset to identify the types of variables, number of missing values, and possible outliers. You can visualize the data to get a better understanding of the relationships between variables.
 - Clean the data: Clean and preprocess the data by handling missing values, outliers, and encoding categorical variables. You can use techniques like one-hot encoding for categorical variables, and scaling for continuous variables.

	1. Lo	ad the data						
In 2 1 2	<pre># Load data from data folder df = pd.read_csv('.\\data\\rpm_2023_sample_data.csv')</pre>							
In 3 1	df.h	ead()						
Out 3 ~	< - <	S rows 🗸 > 刘 S rows × 6 columns						
	÷	feature_monthly_premium_auto ÷	feature_income ÷	feature_coverage ÷	feature_location_cod			
	Θ	94	0.0	Extended	Suburban			
	1	108	48767.0	Premium	Suburban			
	2	71	14072.0	Basic	Suburban			
	3	93	28812.0	Extended	Urban			
	4	67	0.0	Basic	Suburban			
	2. Ex	plore the data						
In 4 1 2	# Ch df.d	eck data types types						

- in python, how do I plot histograms of numerical variables with overlaying line that shows average target variable in each bin?
- You can use the `matplotlib` library to create a histogram of numerical variables in Python. Here's an example code that shows how to create a histogram with an overlaying line that shows the average target variable in each bin:

python	🗂 Copy code
import pandas as pd	
import matplotlib.pyplot as plt	
# Create some sample data	
df = pd.DataFrame({'x': [2, 3, 4, 5, 6, 7, 8, 9, 10],	
'y': [4, 6, 5, 8, 7, 6, 5, 9, 10]})	
# Calculate the average target variable in each bin	
bins = 5	
<pre>bin_means, bin_edges, _ = plt.hist(df['x'], bins=bins, alpha=0.5, la</pre>	abel='Histogram'
<pre>bin_centers = 0.5 * (bin_edges[1:] + bin_edges[:-1])</pre>	
y = []	
for i in range(bins):	
<pre>y.append(df.loc[(df['x'] > bin_edges[i]) & (df['x'] <= bin_edges</pre>	;[i + 1]), 'y'].
# Plot the histogram and overlaying line	
<pre>plt.plot(bin_centers, y, '-o', color='r', label='Mean')</pre>	
plt.legend()	
plt.show()	

GPT-ENABLED TOOLS CAN HELP ACTUARIES EXECUTE THEIR WORK (3/3)

Using ChatGPT to debug code

GPT OPENS THE DOOR TO INNOVATIVE SOLUTIONS FOR SEVERAL INSURANCE PROCESSES

т	Т
0	0

Webscraping for commercial lines underwriting

Streamline quoting process by automating capture of potential policyholder information

Analysis of unstructured claims data Classify/label unstructured data in claims to gather insights from documents such as medical reports

г	٦
\checkmark	

Summarizing and searching policy contracts Identify key provisions and search to identify specific clauses or provisions

Fraud detection

Analyze data from alternative sources to identify potential risks through detection of anomalies

Customer service

Chatbots powered by GPT models can understand natural language and provide personalized responses

Actuarial communication and report generation

Generate text to support actuarial analyses and draft reports

LIMITATIONS

GPT-SPECIFIC LIMITATIONS

- GPT-3 is proprietary. It would be expensive to use the API in production if thousands of requests are made per day
- Insurance data often private and data can be sensitive/restricted
- Output of a general purpose LLM can rarely be used as-is. Additional layers have to be built. Classification into specific categories, checks for model inaccuracy, conversion of model output (English sentences) into tabular data

CHATGPT LIMITATIONS

- ChatGPT can be confidently wrong; the system can write "plausible-sounding but incorrect or nonsensical answers"
- Can be sensitive to the phrasing of the prompt
- Models do not ask clarifying questions when a prompt is unclear and instead guesses the intent of the user
- It is possible for the model to respond to "harmful instructions or exhibit biased behavior"
- Supervision and adjustments are often needed

GENERAL LIMITATIONS OF LLMS

- LLMs are computationally expensive to train and run and require vast amounts of resources
- Explainability and interpretability: can be considered a black box since these models are highly complex
- Can perpetuate biases present in the data they are trained on, which can lead to unfair or inaccurate predictions
- Requires high level of technical expertise to implement, maintain and use

4 AI: SOFTWARE 2.0

SOFTWARE IS EATING THE WORLD, AI IS EATING SOFTWARE

"

The "classical stack" of **Software 1.0** is what we're all familiar with — it is written in languages such as Python, C++, etc. It consists of explicit instructions to the computer written by a programmer. By writing each line of code, the programmer identifies a specific point in program space with some desirable behavior. [...]

In contrast, **Software 2.0** is written in much more abstract, human unfriendly language, such as the weights of a neural network. [...]

Software (1.0) is eating the world, and now AI (Software 2.0) is eating software.

ANDREJ KARPATHY

Founding Member of OpenAl Former Director of Al at Tesla

HOWEVER...

- Applying AI to insurance and actuarial problems does not happen automatically.
- There is a lot of work needed to convert our industry to Software 2.0.
- Who will do this work?
- We think actuaries are ideally suited to lead this work.

Source: https://karpathy.medium.com/software-2-0-a64152b37c35

WHERE TO START?

Modern software development practices are the foundation; Actuaries can learn a lot from the software world

Design: "Simplicity is the ultimate sophistication" One should fall in love with the problem rather than any given solution. Once the problem is understood, drafts should be presented to users before rushing to the development phase.	Agility: Learn to "fail fast" and adapt It is essential to interact frequently with end users and adjust the trajectory based on their feedback.	 ✓ – ✓ – O – Testing: Foresee bugs and defects before users Automatic and timely testing of the whole code base for compliance with expected behavior should be in place.
Version Control: Keep track of all changesAllow collaborative development by tracking changes of individual contributors and setting frameworks for integration.	Modularity: Reduce work duplication Maximize code understandability and reusability by spreading functionalities into independent components.	Continuous Integration: Scale the collaboration Frequent integration of all new code that compose the application, leveraging automated testing and building functionalities.

Put together, these best practices ensure that code will remain easy to understand and maintain over time. It makes it easier to implement new functionality and integrate new technologies.

We've seen exponential growth in the complexity of machine learning models, which is largely attributable to the use of deep learning techniques.

Transformer models, including GPTs, have resulted in breakthrough performance on NLP tasks; the process of "selfattention" has been pivotal to this breakthrough.

These breakthroughs impact all fields of work, including insurance and actuarial work.

Converting our industry to a Software 2.0 world will require a lot of work. Actuaries are well suited to lead this work but need to modernize their skillset.

QUALIFICATIONS, ASSUMPTIONS, AND LIMITING CONDITIONS

This report is for the exclusive use of the Oliver Wyman client named herein. This report is not intended for general circulation or publication, nor is it to be reproduced, quoted, or distributed for any purpose without the prior written permission of Oliver Wyman. There are no third-party beneficiaries with respect to this report, and Oliver Wyman does not accept any liability to any third party.

Information furnished by others, upon which all or portions of this report are based, is believed to be reliable but has not been independently verified, unless otherwise expressly indicated. Public information and industry and statistical data are from sources we deem to be reliable; however, we make no representation as to the accuracy or completeness of such information. The findings contained in this report may contain predictions based on current data and historical trends. Any such predictions are subject to inherent risks and uncertainties. Oliver Wyman accepts no responsibility for actual results or future events.

The opinions expressed in this report are valid only for the purpose stated herein and as of the date of this report. No obligation is assumed to revise this report to reflect changes, events, or conditions, which occur subsequent to the date hereof.

All decisions in connection with the implementation or use of advice or recommendations contained in this report are the sole responsibility of the client. This report does not represent investment advice nor does it provide an opinion regarding the fairness of any transaction to any and all parties. In addition, this report does not represent legal, medical, accounting, safety, or other specialized advice. For any such advice, Oliver Wyman recommends seeking and obtaining advice from a qualified professional.

A business of Marsh McLennan