
A business of Marsh McLennan

GPT-3 and the
actuarial landscape
An Overview of Large Language Models and Applications

CAS RPM Seminar
March 2023

CONFIDENTIALITY
Our clients’ industries are extremely competitive, and the maintenance of confidentiality with respect to our clients’ plans and data is critical.
Oliver Wyman rigorously applies internal confidentiality practices to protect the confidentiality of all client information.

Similarly, our industry is very competitive. We view our approaches and insights as proprietary and therefore look to our clients to protect our
interests in our proposals, presentations, methodologies, and analytical techniques. Under no circumstances should this material be shared with any
third party without the prior written consent of Oliver Wyman.

© Oliver Wyman

3© Oliver Wyman

MEET THE SPEAKERS

Olivier Brown, FCAS, MAAA Hugo Latendresse, FCAS Sabrina Tan, ACAS
P&C Insurance Practice: Principal
Olivier.Brown@oliverwyman.com

P&C Insurance Practice: Senior Manager
Hugo.Latendresse@oliverwyman.com

P&C Insurance Practice: Consultant
Sabrina.Tan@oliverwyman.com

Olivier Brown leads P&C Actuarial Innovation
within Oliver Wyman’s Actuarial practice. Olivier
helps P&C insurers modernize their actuarial
functions. He has worked with many insurers to
improve their pricing sophistication, ratemaking,
reserving, and underwriting analytics.

Hugo Latendresse is a Senior Manager in Oliver
Wyman’s Actuarial practice. He specializes
in machine learning and automation solutions
designed to improve insurance processes. Hugo
has seven years of predictive analytics
experience in pricing, reserving, claims, and
underwriting.

Sabrina Tan is a Consultant in Oliver Wyman’s
Actuarial practice. She provides P&C actuarial
consulting services to a variety of insurance
organizations. She has worked on various
projects in predictive analytics, process
improvement, pricing, and reserving.

4© Oliver Wyman

OVERVIEW

Intro to Natural
Language Processing

The Building
Blocks of GPT

Actuarial Applications

AI: Software 2.0 Recap

1 2 3

4 5

Intro to
Natural language processing

1

6© Oliver Wyman

RECENT KEY INNOVATIONS HAVE ACCELERATED ADVANCEMENTS IN NLP

2000-2017

2017

2018+

PRE-2000

Use of neural networks for language modeling

• Initial uses of neural networks for next word
prediction

• First representations of words with dense vectors
called word embeddings and algorithms capable
of learning them efficiently (Word2Vec)

Rule-based systems to simple statistical models

• First application of natural language processing (NLP)
was for machine translation

• Initial rule-based models required significant
manual coding

• Machine learning and statistical models (N-grams,
Markov models) and the first recurrent neural networks
such as long short-term memory models replaced hard-
coded rules.

Attention, transformers, and large language models

• The attention mechanism along with transformer
architecture enable state-of-the-art performance on
language tasks and efficient process of large datasets

• Ability to consider context in texts increased the ability
to produce human-like texts

Generative pre-trained transformers (GPT)

• OpenAI releases first version of GPT language
model (2018), with GPT-2 and GPT-3 released
each year thereafter

• ChatGPT, fined-tuned on GPT-3.5, launched in 2022
Source: https://medium.com/nlplanet/a-brief-timeline-of-nlp-bc45b640f07d

7© Oliver Wyman

Number of
parameters

Size of
training dataset

(Quantity of text)

Compute
resources used

for training

BERT 110M 16GB

GPT 117M 40GB

RoBERTA
125M 160GB

GPT-2
1.5B 800GB

GPT-3 175B 45TB
3,600+

GPU days
330+ MWh

ACCESS TO POWERFUL RESOURCES ENABLE LARGE LANGUAGE MODELS

NLP has achieved groundbreaking results through LLMs, enabled by
various modern technology

Increasing availability of text data from the internet

Advances in ML algorithms (transformers and attention)

Development of powerful computational resources
(GPUs and TPUs)

Frameworks for developing neural networks
(TensorFlow and PyTorch)

Source: https://huggingface.co/transformers/v2.4.0/pretrained_models.html

The building blocks of GPT
2

9© Oliver Wyman

MACHINE
LEARNING 101:
GRADIENT DESCENT

10© Oliver Wyman

Y = β0 + β1 * X

Cost = Σ(predicted – actual)^2

Slope
β1 = (n * Σ(x*y) – Σ(x) * Σ(y)) / (n * Σ(x^2) - (Σ(x))^2)

Intercept
β0 = (Σ(y) - β1 * ΣX) / N

MACHINE LEARNING 101: GRADIENT DESCENT

Linear Regression Model Using Formulas

Model
Structure

Cost
Function

Formulas
for β
coefficients

11© Oliver Wyman

MACHINE LEARNING 101: GRADIENT DESCENT

Linear Regression Model Using Formulas

Y = β0 + β1 * X

Cost = Σ(predicted – actual)^2 = 10.7476

Slope
β1 = (n * Σ(x*y) – Σ(x) * Σ(y)) / (n * Σ(x^2) - (Σ(x))^2) = 10.11

Intercept
β0 = (Σ(y) - β1 * ΣX) / N = 5.15

Model
Structure

Cost
Function

Formulas
for β
coefficients

12© Oliver Wyman

MACHINE LEARNING 101: GRADIENT DESCENT

Linear Regression Model Using Formulas

Y = β0 + β1 * X

Cost = Σ(predicted – actual)^2 = 10.7476

Slope
β1 = (n * Σ(x*y) – Σ(x) * Σ(y)) / (n * Σ(x^2) - (Σ(x))^2) = 10.11

Intercept
β0 = (Σ(y) - β1 * ΣX) / N = 5.15

Y = 10.11 * X + 5.15

Model
Structure

Cost
Function

Formulas
for β
coefficients

Resulting
Model

13© Oliver Wyman

MACHINE LEARNING 101: GRADIENT DESCENT

Linear Regression Model Using Formulas

Without those formulas,

How can we find the coefficients?

Y = β0 + β1 * X

Cost = Σ(predicted – actual)^2 = 10.7476

Slope
β1 = (n * Σ(x*y) – Σ(x) * Σ(y)) / (n * Σ(x^2) - (Σ(x))^2) = 10.11

Intercept
β0 = (Σ(y) - β1 * ΣX) / N = 5.15

Y = 10.11 * X + 5.15

Model
Structure

Cost
Function

Formulas
for β
coefficients

Resulting
Model

14© Oliver Wyman

MACHINE LEARNING 101: GRADIENT DESCENT

Linear Regression Model Using Gradient Descent

Y = β0 + β1 * X

Cost = Σ(predicted – actual)^2

None!

Model
Structure

Cost
Function

Formulas
for β
coefficients

15© Oliver Wyman

MACHINE LEARNING 101: GRADIENT DESCENT

Linear Regression Model Using Gradient Descent

Y = β0 + β1 * X

Cost = Σ(predicted – actual)^2

None!

Model
Structure

Cost
Function

Formulas
for β
coefficients

16© Oliver Wyman

MACHINE LEARNING 101: GRADIENT DESCENT

Linear Regression Model Using Gradient Descent

Y = β0 + β1 * X

Cost = Σ(predicted – actual)^2

None!

Model
Structure

Cost
Function

Formulas
for β
coefficients

17© Oliver Wyman

MACHINE LEARNING 101: GRADIENT DESCENT

Linear Regression Model Using Gradient Descent

Y = β0 + β1 * X

Cost = Σ(predicted – actual)^2

None!

Y = 10.11 * X + 5.15

Through the two coefficients, the model “remembers” the data.

Model
Structure

Cost
Function

Formulas
for β
coefficients

Resulting
Model

18© Oliver Wyman

REGRESSION VS CLASSIFICATION

Linear Regression Multivariate Linear Regression Logistic Regression

Prediction Y can be any number Prediction Y can be any number Prediction Y is between 0 and 1

Example: predict the sell price of a house using one
variable (such as square footage)

Example: predict the sell price of a house
using multiple variables (square footage, year
of construction, etc.)

Example: predict whether a flower is of a certain
species based on petal length and width

Y = β0 + β1 * X

Sum of squared error
Σ(predicted – actual)^2

Y = β0 + β1*X 1 + β2*X 2 + β2*X 2 + β3*X 3 + …

Sum of squared error
Σ(predicted – actual)^2

Model
Structure

Cost
Function

Y = 1 / (1 + exp(-(β0 + β1*X 1 + β2*X 2 + …)))

Y = sigmoid(β0 + β1*X 1 + β2*X 2 + …)

Cross-entropy
Σ(-(actual * log(predicted) + (1 - actual) * log(1 - predicted)))

Model
Structure

Cost
Function

Model
Structure

Cost
Function

19© Oliver Wyman

REGRESSION VS CLASSIFICATION

Linear Regression Multivariate Linear Regression Logistic Regression

β
linearX

Input Output Input Layer Output

Square Footage House Price

X1

X2

X3

β
sigmoid

Prob(Setosa)

Petal Length

Petal Width

Sepal Length

Input Layer Output

X1

X2

X3

β
linear

House Price

Square Footage

Year of Construction

Distance from City Center

Y = β0 + β1 * X Y = β0 + β1*X 1 + β2*X 2 + β2*X 2 + β3*X 3 + …
Model
Structure

Y = 1 / (1 + exp(-(β0 + β1*X 1 + β2*X 2 + …)))

Y = sigmoid(β0 + β1*X 1 + β2*X 2 + …)
Model
Structure

Model
Structure

20© Oliver Wyman

SINGLE-LABEL VS MULTI-LABEL CLASSIFICATION

Single-Label Classification Multi-Label Classification Training
Data Example

Multi-Classification Training Data Example

X1

X2

X3
β

sigmoid

X1

X2

X3

β
sigmoid

β
sigmoid

β
sigmoid

Prob(Setosa)

Prob(versicolor)

Prob(virginica)

Prob(Setosa)

Petal Length Petal Width Sepal Length Species
5.4 3.9 1.3 Setosa
4.5 2.3 1.3 Setosa
4.4 3.2 1.3 Setosa
4.8 3.0 1.4 Setosa
5.1 3.8 1.6 Setosa
4.6 3.2 1.4 Setosa
5.3 3.7 1.5 Setosa
5.0 3.3 1.4 Setosa
7.0 3.2 4.7 Versicolor
6.4 3.2 4.5 Versicolor
6.9 3.1 4.9 Versicolor
5.6 2.7 4.2 Versicolor
5.7 3.0 4.2 Versicolor
5.7 2.9 4.2 Versicolor
6.2 2.9 4.3 Versicolor
5.1 2.5 3.0 Versicolor
5.7 2.8 4.1 Versicolor
6.3 2.5 5.0 Virginica
6.5 3.0 5.2 Virginica
6.2 3.4 5.4 Virginica
… … … …

5.9 3.0 5.1 Virginica

Petal Length

Petal Width

Sepal Length

Petal Length

Petal Width

Sepal Length

Y = sigmoid(β0 + β1* X 1 + β2* X 2 + …)

Y1 = sigmoid(β 1 0 + β 1 1* X 1 + β 1 2* X 2 + …)

Y2 = sigmoid(β 2 0 + β 2 1* X 1 + β 2 2* X 2 + …)

Y3 = sigmoid(β 3 0 + β 3 1* X 1 + β 3 2* X 2 + …)

Model
Structure

Model
Structure

Input Layer Output Input Layer Output Layer

21© Oliver Wyman

NEURAL NETWORKS

X1

X2

X3

β
sigmoid

β
sigmoid

β
sigmoid

β
sigmoid

β
sigmoid

β
sigmoid

β
sigmoid

β
sigmoid

β
sigmoid

β
sigmoid

β
sigmoid

Prob(Setosa)

Prob(versicolor)

Prob(virginica)

Petal Length

Petal Width

Sepal Length

Multi-Layer Perceptron

The number of nodes in the hidden layer
is chosen by the modeler.

Model
Structure

Cross-entropy
Σ(-(actual * log(predicted) + (1 - actual) * log(1 - predicted)))

Cost
Function

All β parameters are initially set a random.
The model adjusts those parameters
to minimize the cost function.

Model
Parameters

Input Layer Hidden Layer #1 Hidden Layer #2 Output Layer

22© Oliver Wyman

BUT WHAT ABOUT
PREDICTING WORDS?

23© Oliver Wyman

NEXT WORD PREDICTION

Fundamentally, GPT-3 and ChatGPT are neural networks that constantly give a probability to what should be
the next outputted word. That’s why ChatGPT types one word at a time!

First Step: Tokenization

• First step of NLP any model is to convert text
into numbers, or “tokens”.

• GPT-3’s tokenizer assign integers to chunks
of characters.

• It’s a one-to-one mapping, fixed mapping.
– In the input layer, “exactly” will always

be mapped to the number 3446
– In the output layer, 3446 will always

be mapped to “exactly”

Classification Problem

• Next word prediction becomes
a classification problem

• Input: series of tokens (a sentence)

• Output: probability distribution over
all tokens

• Vocab size of GPT-3 = 50,257

• The problem becomes a classification
problem with 50,257 labels

Example: Tokenization of an Input

Source: https://platform.openai.com/tokenizer

24© Oliver Wyman

SUMMARIZING MEANING AND REDUCING DIMENSIONALITY WITH WORD EMBEDDINGS

How to quantify meanings of words?

• Token IDs cannot be used as-is.

• Word Embedding: a large vector assigned to each token

• Values in the vector are initially assigned at random

Word Embedding Examples

Token Token ID One-Hot Encoded Vector (50,000 dimensions) Word Embedding Vector (fewer dimensions)

round 35634 (0, 0, 0, 0, 0, 0, …, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, …, 0, 0, 0, 0, 0) (0.932, 0.321, 0.456, 0.571, 0.984, …, 0.654)

ball 1894 (0, 0, 0, 0, 0, 0, …, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, …, 0, 0, 0, 0, 0) (0.524, 0.329, 0.132, 0.134, 0.952, …, 0.213)

net 3262 (0, 0, 0, 0, 0, 0, …, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, …, 0, 0, 0, 0, 0) (0.187, 0.818, 0.118, 0.901, 0.347, …, 0.221)

25© Oliver Wyman

REPRESENTING ORDER OF WORDS WITH POSITIONAL ENCODING

Network nodes need to consider multiple tokens at once. How to do that?

Token Word Embedding Positional Encoding
The resulting vectors represent both the
meaning and position of tokens.

Name (0.638, 0.759, 0.905, 0.243, 0.189, …, 0.900) + (0, 1, 0, 1, 0, ..., 0) = (0.638, 1.759, 0.905, 1.243, 0.189, …, 0.900)

the (0.655, 0.325, 0.599, 0.91, 0.49, …, 0.726) + (0.031, 1.000, 0.003, 1.000, 0, ..., 0) = (0.686, 1.324, 0.602, 1.909, 0.490, …, 0.726)

capital (0.082, 0.326, 0.622, 0.418, 0.136, …, 0.344) + (0.062, 0.998, 0.000, 1.000, 0, ..., 0) = (0.144, 1.324, 0.622, 1.418, 0.136, …, 0.344)

of (0.194, 0.294, 0.796, 0.07, 0.726, …, 0.56) + (0.094, 0.995, 0.000, 1.000, 0, ..., 0) = (0.288, 1.289, 0.796, 1.07, 0.726, …, 0.560)

Peru (0.825, 0.943, 0.828, 0.611, 0.912, …, 0.962) + (0.125, 0.992, 0.000, 1.000, 0, ..., 0) = (0.95, 1.935, 0.828, 1.611, 0.912, …, 0.962)

A naïve approach of simply taking an average or a sum of all word embedding vectors would be wrong for two reasons.

• First, obvious reason: the order of the tokens need to be considered.

Solution: Positional Encoding (see below)

• Second, less obvious reason: some words “care” more about each other than others.

Solution: Self-Attention (see next slides)

26© Oliver Wyman

ATTENTION IS ALL YOU NEED

Self-Attention is the mechanism used by transformer models to weigh the importance of difference words in
a sentence or piece of text based on their relationships to other words.

Motivation for Self-Attention

“I can enjoy almost any music genre, but I was never enthusiastic about heavy ____.”

“I run instead of lifting, because my apartment building’s gym doesn’t have heavy ____.”

In the two sentences above:

• The words “music” and “lifting” give a lot of meaning to the token “heavy”, since those tokens help specify the context.

• The words “enthusiastic” and “apartment”, however are not very useful in finding out what is “heavy”.

Therefore, we want the next word predictions to highly depend on “music” and “lifting” and not so much on “enthusiastic” and “apartment”.

27© Oliver Wyman

CREATING KEYS, QUERIES, AND VALUES TO ALLOW SELF-ATTENTION CALCULATION

“The capital of Peru ____”

(1.909, 0.490, …)

(1.418, 0.136, …)

(0.288, 1.289, …)

(0.295, 1.935, …)

Tokenizing and Encoding

Key Vectors

(0.177, 0.544, …)

(0.228, 0.291, …)

(0.517, 0.684, …)

(0.329, 0.567, …)

Query Vectors

(0.258, 0.482, …)

(0.022, 0.887, …)

(0.618, 0.217, …)

(0.092, 0.151, …)

Value Vectors

(0.885, 0.857, …)

(0.579, 0.423, …)

(0.174, 0.136, …)

(0.432, 0.932, …)

Multiply by Query Matrix

(0.733, 0.875, …)

(0.213, 0.464, …)

(0.533, 0.285, …)

(0.530, 0.749, …)

28© Oliver Wyman

COMBINING KEYS, QUERIES, AND VALUES IN SELF-ATTENTION

A. Key B. Query C. Value
D. Unnormalized

Weights E. Normalized Weights
F. New Representation

of “Peru”

Preceding
Tokens

Key Matrix x Previous
Representation

Query Matrix x Previous
Representation

Value Matrix x Previous
Representation Key x “Peru” Query softmax(D.) weighted average of C.

The (0.177, 0.544, …) (0.258, 0.482, …) (0.885, 0.857, …) 1.798 14%

(0.530, 0.749, …)
capital (0.228, 0.291, …) (0.022, 0.887, …) (0.579, 0.423, …) 2.501 29%

of (0.517, 0.684, …) (0.618, 0.217, …) (0.174, 0.136, …) 0.421 4%

Peru (0.329, 0.567, …) (0.092, 0.151, …) (0.432, 0.932, …) 3.113 53%

• Matrices used to obtain keys, queries, and values are common to all tokens.

• They are initialized at random and trained using gradient descent.

Queries: vector describing what each token cares about

Keys: vector describing what each token can inform about

Value: vector describing information each token has to offer

29© Oliver Wyman

TRANSFORMER ARCHITECTURE EXAMPLE

Source: chat.openai.com/chat

30© Oliver Wyman

TRANSFORMER ARCHITECTURE EXAMPLE

Why actuaries

6398

(0.391, 0.555, …)

(0.983, 0.546, …)

(0.000, 1.000, ...)

(0.031, 1.000, ...)

(0.062, 0.998, ...)

Word Embedding Positional Encoding
(0.574, 1.564, …)

(0.422, 1.555, …)

(0.983, 0.546, …)

(0.574, 0.564, …)

(0.574, 1.564, …)

(0.422, 1.555, …)

(0.983, 0.546, …) 39%, 41%, 20%

89%, 11%

100%(0.105, 0.145, …)

(0.398, 0.531, …)

(0.601, 0.929, …)

Keys and queries weightingValue Vectors

(0.105, 0.145, …)

(0.137, 0.187, …)

(0.324, 0.460, …)

+ =

=

Token ID Probability

1 0.000144

2 0.006597

… …

6398 0.134031

… …

Act

x
(0.963, 0.394, …)

(0.012, 0.384, …)

(0.971, 0.410, …)

(0.963, 0.394, …)

(0.012, 0.384, …)

(0.971, 0.410, …)

Tokenizer
Why actuaries

Multi-Layer Perceptron

Token ID Value

1 0.0923

2 0.3241

… …

6398 4.9319

… …

Linear Layer
Sample from
distributionSoftmax Tokenizer

Self-Attention

43840

3166

5195

Source: arxiv.org/pdf/1706.03762.pdf

31© Oliver Wyman

Update weights of pre-trained
model by training on a dataset
specific to the desired task

Model is given a few
demonstrations of the
task as conditioning,
but no weight updates
are allowed

Same as few-shot but
only one demonstration
is allowed

No demonstrations are
allowed – the model is only
given a natural language
description of the task

Few-shot learners

GPT IS CAPABLE OF ZERO-SHOT LEARNING

Zero-shot learnersONE-shot learnersFine-tuning

Prompt
“Can you tell me a joke
about a cat and a dog?”

Source: https://arxiv.org/pdf/2005.14165.pdf

32© Oliver Wyman

1
Fine-tune GPT-3.5
ChatGPT focused language model that has been fine-tuned on
conversational data such as short, informal sentences and specific
conversational conventions.

2
Train a reward model
A labeler ranks possible responses to prompts, and this data is used
to train a reward model to determine the final response.

3
Use reinforcement learning to optimize reward
An agent learns to choose the best response to a prompt by receiving
feedback in the form of the rewards from step 2.

4
Moderation endpoint
A separate language model is used to classify text as whether they violate
content policy by being “sexual, hateful, violent, or promoting self-harm”.

2

4 3

1

ADDING REINFORCEMENT LEARNING LAYERS AND A MODERATION API ENABLES THE
TRANSITION FROM GPT TO CHATGPT

Sources:
https://openai.com/blog/chatgpt/
https://openai.com/blog/new-and-improved-content-moderation-tooling/

Actuarial applications
3

34© Oliver Wyman

GPT-ENABLED TOOLS CAN HELP ACTUARIES EXECUTE THEIR WORK (1/3)
Fitting a model using GitHub Copilot

35© Oliver Wyman

GPT-ENABLED TOOLS CAN HELP ACTUARIES EXECUTE THEIR WORK (2/3)
An entire modeling process using ChatGPT and Copilot

36© Oliver Wyman

GPT-ENABLED TOOLS CAN HELP ACTUARIES EXECUTE THEIR WORK (3/3)
Using ChatGPT to debug code

37© Oliver Wyman

Analysis of unstructured claims data
Classify/label unstructured data in claims to

gather insights from documents such as medical
reports

Summarizing and searching policy contracts
Identify key provisions and search to identify

specific clauses or provisions

Fraud detection

Analyze data from alternative sources to identify
potential risks through detection of anomalies

Customer service

Chatbots powered by GPT models can
understand natural language and provide

personalized responses

Actuarial communication and report generation

Generate text to support actuarial analyses
and draft reports

Webscraping for commercial lines underwriting
Streamline quoting process by automating

capture of potential policyholder information

GPT OPENS THE DOOR TO INNOVATIVE SOLUTIONS FOR SEVERAL INSURANCE PROCESSES

38© Oliver Wyman

LIMITATIONS

GPT-Specific Limitations ChatGPT Limitations General Limitations of LLMs

• GPT-3 is proprietary. It would be expensive
to use the API in production if thousands of
requests are made per day

• Insurance data often private and data can
be sensitive/restricted

• Output of a general purpose LLM can rarely
be used as-is. Additional layers have to be
built. Classification into specific categories,
checks for model inaccuracy, conversion
of model output (English sentences)
into tabular data

• ChatGPT can be confidently wrong;
the system can write “plausible-sounding
but incorrect or nonsensical answers”

• Can be sensitive to the phrasing
of the prompt

• Models do not ask clarifying questions
when a prompt is unclear and instead
guesses the intent of the user

• It is possible for the model to respond
to “harmful instructions or exhibit
biased behavior”

• Supervision and adjustments are often
needed

• LLMs are computationally expensive
to train and run and require vast amounts
of resources

• Explainability and interpretability: can be
considered a black box since these models
are highly complex

• Can perpetuate biases present in the data
they are trained on, which can lead to unfair
or inaccurate predictions

• Requires high level of technical expertise
to implement, maintain and use

Source: https://openai.com/blog/chatgpt

AI: Software 2.0
4

40© Oliver Wyman

SOFTWARE IS EATING THE WORLD, AI IS EATING SOFTWARE

The “classical stack” of Software 1.0 is what we’re all familiar with — it is
written in languages such as Python, C++, etc. It consists of explicit
instructions to the computer written by a programmer. By writing each
line of code, the programmer identifies a specific point in program space
with some desirable behavior. […]

In contrast, Software 2.0 is written in much more abstract, human
unfriendly language, such as the weights of a neural network. […]

Software (1.0) is eating the world, and now AI (Software 2.0) is eating
software.

ANDREJ KARPATHY
Founding Member of OpenAI
Former Director of AI at Tesla

• Applying AI to insurance and actuarial problems does not happen
automatically.

• There is a lot of work needed to convert our industry to Software
2.0.

• Who will do this work?

• We think actuaries are ideally suited to lead this work.

However…

Source: https://karpathy.medium.com/software-2-0-a64152b37c35

41© Oliver Wyman

WHERE TO START?
Modern software development practices are the foundation; Actuaries can learn a lot from the software world

Agility: Learn to “fail fast” and adapt

It is essential to interact frequently with end users and
adjust the trajectory based on their feedback.

Testing: Foresee bugs and defects before users

Automatic and timely testing of the whole code base for
compliance with expected behavior should be in place.

Version Control: Keep track of all changes

Allow collaborative development by tracking changes of
individual contributors and setting frameworks for

integration.

Modularity: Reduce work duplication

Maximize code understandability and reusability by
spreading functionalities into independent components.

Continuous Integration: Scale the collaboration

Frequent integration of all new code that compose the
application, leveraging automated testing and building

functionalities.

Design: “Simplicity is the ultimate sophistication”

One should fall in love with the problem rather than any
given solution. Once the problem is understood, drafts

should be presented to users before rushing to the
development phase.

Put together, these best practices ensure that code will remain easy to understand and maintain over time. It makes it easier to
implement new functionality and integrate new technologies.

RECAP
5

43© Oliver Wyman

RECAP

We've seen exponential growth in the complexity of machine learning models, which is largely attributable to the use
of deep learning techniques.

Transformer models, including GPTs, have resulted in breakthrough performance on NLP tasks; the process of "self-
attention" has been pivotal to this breakthrough.

These breakthroughs impact all fields of work, including insurance and actuarial work.

Converting our industry to a Software 2.0 world will require a lot of work. Actuaries are well suited to lead this work
but need to modernize their skillset.

QUESTIONS

QUALIFICATIONS, ASSUMPTIONS, AND LIMITING CONDITIONS
This report is for the exclusive use of the Oliver Wyman client named herein. This report is not intended for general circulation or publication, nor is it
to be reproduced, quoted, or distributed for any purpose without the prior written permission of Oliver Wyman. There are no third-party beneficiaries
with respect to this report, and Oliver Wyman does not accept any liability to any third party.

Information furnished by others, upon which all or portions of this report are based, is believed to be reliable but has not been independently verified,
unless otherwise expressly indicated. Public information and industry and statistical data are from sources we deem to be reliable; however, we make
no representation as to the accuracy or completeness of such information. The findings contained in this report may contain predictions based on
current data and historical trends. Any such predictions are subject to inherent risks and uncertainties. Oliver Wyman accepts no responsibility for
actual results or future events.

The opinions expressed in this report are valid only for the purpose stated herein and as of the date of this report. No obligation is assumed to revise
this report to reflect changes, events, or conditions, which occur subsequent to the date hereof.

All decisions in connection with the implementation or use of advice or recommendations contained in this report are the sole responsibility of the
client. This report does not represent investment advice nor does it provide an opinion regarding the fairness of any transaction to any and all parties.
In addition, this report does not represent legal, medical, accounting, safety, or other specialized advice. For any such advice, Oliver Wyman
recommends seeking and obtaining advice from a qualified professional.

A business of Marsh McLennan

	Slide Number 1
	Slide Number 2
	Meet the speakers
	OVERVIEW
	Slide Number 5
	RECENT KEY INNOVATIONS HAVE ACCELERATED ADVANCEMENTS IN NLP
	Access to powerful resources enable Large language models
	Slide Number 8
	Machine �learning 101: Gradient descent
	Machine learning 101: Gradient descent
	Machine learning 101: Gradient descent
	Machine learning 101: Gradient descent
	Machine learning 101: gradient descent
	Machine learning 101: gradient descent
	Machine learning 101: gradient descent
	Machine learning 101: gradient descent
	Machine learning 101: gradient descent
	Regression vs classification
	Regression vs classification
	Single-label vs multi-label classification
	Neural Networks
	But what about �predicting words?
	Next word prediction
	Summarizing meaning and Reducing dimensionality with Word Embeddings
	Representing order of words with Positional encoding
	Attention is all you need
	Creating keys, queries, and values to allow self-attention calculation
	Combining keys, queries, and values in self-attention
	transformer architecture Example
	transformer architecture Example
	GPT is capable of zero-shot learning
	Adding reinforcement learning layers and a moderation api enables the transition from gpt to chatgpt
	Slide Number 33
	gpt-enabled tools Can help actuaries execute their work (1/3)�Fitting a model using GitHub Copilot
	gpt-enabled tools Can help actuaries execute their work (2/3)�An entire modeling process using ChatGPT and Copilot
	gpt-enabled tools Can help actuaries execute their work (3/3)�Using ChatGPT to debug code
	GPT OPENS THE DOOR TO innovative solutions FOR several insurance processes
	LIMITATIONS
	Slide Number 39
	Software is eating the world, ai is eating software
	Where to start?�Modern software development practices are the foundation; Actuaries can learn a lot from the software world
	Slide Number 42
	RECAP
	Slide Number 44
	Slide Number 45
	Slide Number 46

