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RECENT KEY INNOVATIONS HAVE ACCELERATED ADVANCEMENTS IN NLP

2000-2017

2017

2018+

PRE-2000

Use of neural networks for language modeling

• Initial uses of neural networks for next word 
prediction

• First representations of words with dense vectors 
called word embeddings and algorithms capable 
of learning them efficiently (Word2Vec)

Rule-based systems to simple statistical models

• First application of natural language processing (NLP) 
was for machine translation 

• Initial rule-based models required significant 
manual coding

• Machine learning and statistical models (N-grams, 
Markov models) and the first recurrent neural networks 
such as long short-term memory models replaced hard-
coded rules.

Attention, transformers, and large language models

• The attention mechanism along with transformer 
architecture enable state-of-the-art performance on 
language tasks and efficient process of large datasets

• Ability to consider context in texts increased the ability 
to produce human-like texts

Generative pre-trained transformers (GPT)

• OpenAI releases first version of GPT language 
model (2018), with GPT-2 and GPT-3 released 
each year thereafter

• ChatGPT, fined-tuned on GPT-3.5, launched in 2022
Source: https://medium.com/nlplanet/a-brief-timeline-of-nlp-bc45b640f07d
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Number of 
parameters

Size of 
training dataset 

(Quantity of text)

Compute 
resources used 

for training

BERT 110M 16GB

GPT 117M 40GB

RoBERTA
125M 160GB

GPT-2
1.5B 800GB

GPT-3 175B 45TB
3,600+ 

GPU days
330+ MWh

ACCESS TO POWERFUL RESOURCES ENABLE LARGE LANGUAGE MODELS

NLP has achieved groundbreaking results through LLMs, enabled by 
various modern technology

Increasing availability of text data from the internet

Advances in ML algorithms (transformers and attention)

Development of powerful computational resources 
(GPUs and TPUs)

Frameworks for developing neural networks 
(TensorFlow and PyTorch)

Source: https://huggingface.co/transformers/v2.4.0/pretrained_models.html



The building blocks of GPT
2
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MACHINE 
LEARNING 101: 
GRADIENT DESCENT
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Y = β0 + β1 * X

Cost = Σ(predicted – actual)^2

Slope
β1 = (n * Σ(x*y) – Σ(x) * Σ(y)) / (n * Σ(x^2) - (Σ(x))^2)

Intercept 
β0 = (Σ(y) - β1 * ΣX) / N

MACHINE LEARNING 101: GRADIENT DESCENT

Linear Regression Model Using Formulas

Model 
Structure

Cost 
Function

Formulas 
for β
coefficients
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MACHINE LEARNING 101: GRADIENT DESCENT

Linear Regression Model Using Formulas

Y = β0 + β1 * X

Cost = Σ(predicted – actual)^2 = 10.7476

Slope
β1 = (n * Σ(x*y) – Σ(x) * Σ(y)) / (n * Σ(x^2) - (Σ(x))^2)  = 10.11

Intercept
β0 = (Σ(y) - β1 * ΣX) / N = 5.15

Model 
Structure

Cost 
Function

Formulas 
for β
coefficients



12© Oliver Wyman

MACHINE LEARNING 101: GRADIENT DESCENT

Linear Regression Model Using Formulas

Y = β0 + β1 * X

Cost = Σ(predicted – actual)^2 = 10.7476

Slope
β1 = (n * Σ(x*y) – Σ(x) * Σ(y)) / (n * Σ(x^2) - (Σ(x))^2)  = 10.11

Intercept 
β0 = (Σ(y) - β1 * ΣX) / N = 5.15

Y = 10.11 * X + 5.15

Model 
Structure

Cost 
Function

Formulas 
for β
coefficients

Resulting 
Model
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MACHINE LEARNING 101: GRADIENT DESCENT

Linear Regression Model Using Formulas

Without those formulas,

How can we find the coefficients? 

Y = β0 + β1 * X

Cost = Σ(predicted – actual)^2 = 10.7476

Slope
β1 = (n * Σ(x*y) – Σ(x) * Σ(y)) / (n * Σ(x^2) - (Σ(x))^2)  = 10.11

Intercept
β0 = (Σ(y) - β1 * ΣX) / N = 5.15

Y = 10.11 * X + 5.15

Model 
Structure

Cost 
Function

Formulas 
for β
coefficients

Resulting 
Model



14© Oliver Wyman

MACHINE LEARNING 101: GRADIENT DESCENT

Linear Regression Model Using Gradient Descent

Y = β0 + β1 * X

Cost = Σ(predicted – actual)^2

None!

Model 
Structure

Cost 
Function

Formulas 
for β
coefficients
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Cost = Σ(predicted – actual)^2
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Structure

Cost 
Function

Formulas 
for β
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MACHINE LEARNING 101: GRADIENT DESCENT

Linear Regression Model Using Gradient Descent

Y = β0 + β1 * X

Cost = Σ(predicted – actual)^2

None!

Model 
Structure

Cost 
Function

Formulas 
for β
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MACHINE LEARNING 101: GRADIENT DESCENT

Linear Regression Model Using Gradient Descent

Y = β0 + β1 * X

Cost = Σ(predicted – actual)^2

None!

Y = 10.11 * X + 5.15

Through the two coefficients, the model “remembers” the data.

Model 
Structure

Cost 
Function

Formulas 
for β
coefficients

Resulting 
Model
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REGRESSION VS CLASSIFICATION

Linear Regression Multivariate Linear Regression Logistic Regression

Prediction Y can be any number Prediction Y can be any number Prediction Y is between 0 and 1

Example: predict the sell price of a house using one 
variable (such as square footage)

Example: predict the sell price of a house 
using multiple variables (square footage, year 
of construction, etc.)

Example: predict whether a flower is of a certain 
species based on petal length and width 

Y = β0 + β1 * X

Sum of squared error
Σ(predicted – actual)^2

Y = β0 + β1*X 1 +  β2*X 2 + β2*X 2 + β3*X 3 + …

Sum of squared error
Σ(predicted – actual )^2

Model 
Structure

Cost 
Function

Y = 1 / (1 + exp(-(β0 + β1*X 1 +  β2*X 2 + …)))

Y = sigmoid(β0 + β1*X 1 +  β2*X 2 + …)

Cross-entropy
Σ(-(actual * log(predicted) + (1 - actual) * log(1 - predicted)))

Model 
Structure

Cost 
Function

Model 
Structure

Cost 
Function
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REGRESSION VS CLASSIFICATION

Linear Regression Multivariate Linear Regression Logistic Regression

β
linearX

Input Output Input Layer Output

Square Footage House Price

X1

X2

X3

β
sigmoid

Prob(Setosa)

Petal Length

Petal Width

Sepal Length

Input Layer Output

X1

X2

X3

β
linear

House Price

Square Footage

Year of Construction

Distance from City Center

Y = β0 + β1 * X Y = β0 + β1*X 1 +  β2*X 2 + β2*X 2 + β3*X 3 + …
Model 
Structure

Y = 1 / (1 + exp(-(β0 + β1*X 1 +  β2*X 2 + …)))

Y = sigmoid(β0 + β1*X 1 +  β2*X 2 + …)
Model 
Structure

Model 
Structure
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SINGLE-LABEL VS MULTI-LABEL CLASSIFICATION

Single-Label Classification Multi-Label Classification Training
Data Example

Multi-Classification Training Data Example

X1

X2

X3
β

sigmoid

X1

X2

X3

β
sigmoid

β
sigmoid

β
sigmoid

Prob(Setosa)

Prob(versicolor)

Prob(virginica)

Prob(Setosa)

Petal Length Petal Width Sepal Length Species
5.4 3.9 1.3 Setosa
4.5 2.3 1.3 Setosa
4.4 3.2 1.3 Setosa
4.8 3.0 1.4 Setosa
5.1 3.8 1.6 Setosa
4.6 3.2 1.4 Setosa
5.3 3.7 1.5 Setosa
5.0 3.3 1.4 Setosa
7.0 3.2 4.7 Versicolor
6.4 3.2 4.5 Versicolor
6.9 3.1 4.9 Versicolor
5.6 2.7 4.2 Versicolor
5.7 3.0 4.2 Versicolor
5.7 2.9 4.2 Versicolor
6.2 2.9 4.3 Versicolor
5.1 2.5 3.0 Versicolor
5.7 2.8 4.1 Versicolor
6.3 2.5 5.0 Virginica
6.5 3.0 5.2 Virginica
6.2 3.4 5.4 Virginica
… … … …

5.9 3.0 5.1 Virginica

Petal Length

Petal Width

Sepal Length

Petal Length

Petal Width

Sepal Length

Y = sigmoid(β0 + β1* X 1 +  β2* X 2 + …)

Y1 = sigmoid(β 1 0 + β 1 1* X 1 +  β 1 2* X 2 + …)

Y2 = sigmoid(β 2 0 + β 2 1* X 1 +  β 2 2* X 2 + …)

Y3 = sigmoid(β 3 0 + β 3 1* X 1 +  β 3 2* X 2 + …)

Model 
Structure

Model 
Structure

Input Layer Output Input Layer Output Layer
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NEURAL NETWORKS

X1

X2

X3

β
sigmoid

β
sigmoid

β
sigmoid

β
sigmoid

β
sigmoid

β
sigmoid

β
sigmoid

β
sigmoid

β
sigmoid

β
sigmoid

β
sigmoid

Prob(Setosa)

Prob(versicolor)

Prob(virginica)

Petal Length

Petal Width

Sepal Length

Multi-Layer Perceptron

The number of nodes in the hidden layer 
is chosen by the modeler.

Model 
Structure

Cross-entropy
Σ(-(actual * log(predicted) + (1 - actual) * log(1 - predicted)))

Cost 
Function

All β parameters are initially set a random.
The model adjusts those parameters 
to minimize the cost function. 

Model 
Parameters

Input Layer Hidden Layer #1 Hidden Layer #2 Output Layer
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BUT WHAT ABOUT 
PREDICTING WORDS?
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NEXT WORD PREDICTION

Fundamentally, GPT-3 and ChatGPT are neural networks that constantly give a probability to what should be 
the next outputted word. That’s why ChatGPT types one word at a time!

First Step: Tokenization

• First step of NLP any model is to convert text 
into numbers, or “tokens”.

• GPT-3’s tokenizer assign integers to chunks 
of characters. 

• It’s a one-to-one mapping, fixed mapping. 
– In the input layer, “exactly” will always 

be mapped to the number 3446
– In the output layer, 3446 will always 

be mapped to “exactly”

Classification Problem

• Next word prediction becomes 
a classification problem

• Input: series of tokens (a sentence)

• Output: probability distribution over 
all tokens

• Vocab size of GPT-3 = 50,257

• The problem becomes a classification 
problem with 50,257 labels

Example: Tokenization of an Input

Source: https://platform.openai.com/tokenizer
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SUMMARIZING MEANING AND REDUCING DIMENSIONALITY WITH WORD EMBEDDINGS

How to quantify meanings of words? 

• Token IDs cannot be used as-is.

• Word Embedding: a large vector assigned to each token

• Values in the vector are initially assigned at random

Word Embedding Examples

Token Token ID One-Hot Encoded Vector (50,000 dimensions) Word Embedding Vector (fewer dimensions)

round 35634 (0, 0, 0, 0, 0, 0, …, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, …, 0, 0, 0, 0, 0) (0.932, 0.321, 0.456, 0.571, 0.984, …, 0.654)

ball 1894 (0, 0, 0, 0, 0, 0, …, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, …, 0, 0, 0, 0, 0) (0.524, 0.329, 0.132, 0.134, 0.952, …, 0.213)

net 3262 (0, 0, 0, 0, 0, 0, …, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, …, 0, 0, 0, 0, 0) (0.187, 0.818, 0.118, 0.901, 0.347, …, 0.221)
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REPRESENTING ORDER OF WORDS WITH POSITIONAL ENCODING

Network nodes need to consider multiple tokens at once. How to do that?

Token Word Embedding Positional Encoding
The resulting vectors represent both the 
meaning and position of tokens. 

Name (0.638, 0.759, 0.905, 0.243, 0.189, …, 0.900) + (0, 1, 0, 1, 0, ..., 0) = (0.638, 1.759, 0.905, 1.243, 0.189, …, 0.900)

the (0.655, 0.325, 0.599, 0.91, 0.49, …, 0.726) + (0.031, 1.000, 0.003, 1.000, 0, ..., 0) = (0.686, 1.324, 0.602, 1.909, 0.490, …, 0.726)

capital (0.082, 0.326, 0.622, 0.418, 0.136, …, 0.344) + (0.062, 0.998, 0.000, 1.000, 0, ..., 0) = (0.144, 1.324, 0.622, 1.418, 0.136, …, 0.344)

of (0.194, 0.294, 0.796, 0.07, 0.726, …, 0.56) + (0.094, 0.995, 0.000, 1.000, 0, ..., 0) = (0.288, 1.289, 0.796, 1.07, 0.726, …, 0.560)

Peru (0.825, 0.943, 0.828, 0.611, 0.912, …, 0.962) + (0.125, 0.992, 0.000, 1.000, 0, ..., 0) = (0.95, 1.935, 0.828, 1.611, 0.912, …, 0.962)

A naïve approach of simply taking an average or a sum of all word embedding vectors would be wrong for two reasons.

• First, obvious reason: the order of the tokens need to be considered. 

Solution: Positional Encoding (see below)

• Second, less obvious reason: some words “care” more about each other than others. 

Solution: Self-Attention (see next slides)
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ATTENTION IS ALL YOU NEED

Self-Attention is the mechanism used by transformer models to weigh the importance of difference words in 
a sentence or piece of text based on their relationships to other words.

Motivation for Self-Attention

“I can enjoy almost any music genre, but I was never enthusiastic about heavy ____.”

“I run instead of lifting, because my apartment building’s gym doesn’t have heavy ____.”

In the two sentences above:

• The words “music” and “lifting” give a lot of meaning to the token “heavy”, since those tokens help specify the context. 

• The words “enthusiastic” and “apartment”, however are not very useful in finding out what is “heavy”.

Therefore, we want the next word predictions to highly depend on “music” and “lifting” and not so much on “enthusiastic” and “apartment”.



27© Oliver Wyman

CREATING KEYS, QUERIES, AND VALUES TO ALLOW SELF-ATTENTION CALCULATION

“The capital of Peru ____”

(1.909, 0.490, …)

(1.418, 0.136, …)

(0.288, 1.289, …)

(0.295, 1.935, …)

Tokenizing and Encoding

Key Vectors

(0.177, 0.544, …)

(0.228, 0.291, …)

(0.517, 0.684, …)

(0.329, 0.567, …)

Query Vectors

(0.258, 0.482, …)

(0.022, 0.887, …)

(0.618, 0.217, …)

(0.092, 0.151, …)

Value Vectors

(0.885, 0.857, …)

(0.579, 0.423, …)

(0.174, 0.136, …)

(0.432, 0.932, …)

Multiply by Query Matrix

(0.733, 0.875, …)

(0.213, 0.464, …)

(0.533, 0.285, …)

(0.530, 0.749, …)
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COMBINING KEYS, QUERIES, AND VALUES IN SELF-ATTENTION

A. Key B. Query C. Value
D. Unnormalized 

Weights E. Normalized Weights
F. New Representation 

of “Peru”

Preceding 
Tokens

Key Matrix x Previous 
Representation

Query Matrix x Previous 
Representation

Value Matrix x Previous 
Representation Key x “Peru” Query softmax(D.) weighted average of C.

The (0.177, 0.544, …) (0.258, 0.482, …) (0.885, 0.857, …) 1.798 14%

(0.530, 0.749, …)
capital (0.228, 0.291, …) (0.022, 0.887, …) (0.579, 0.423, …) 2.501 29%

of (0.517, 0.684, …) (0.618, 0.217, …) (0.174, 0.136, …) 0.421 4%

Peru (0.329, 0.567, …) (0.092, 0.151, …) (0.432, 0.932, …) 3.113 53%

• Matrices used to obtain keys, queries, and values are common to all tokens. 

• They are initialized at random and trained using gradient descent. 

Queries: vector describing what each token cares about

Keys: vector describing what each token can inform about

Value: vector describing information each token has to offer
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TRANSFORMER ARCHITECTURE EXAMPLE

Source: chat.openai.com/chat
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TRANSFORMER ARCHITECTURE EXAMPLE

Why actuaries

6398

(0.391, 0.555, …)

(0.983, 0.546, …)

(0.000, 1.000, ...)

(0.031, 1.000, ...)

(0.062, 0.998, ...)

Word Embedding Positional Encoding
(0.574, 1.564, …)

(0.422, 1.555, …)

(0.983, 0.546, …)

(0.574, 0.564, …)

(0.574, 1.564, …)

(0.422, 1.555, …)

(0.983, 0.546, …) 39%, 41%, 20%

89%, 11%

100%(0.105, 0.145, …)

(0.398, 0.531, …)

(0.601, 0.929, …)

Keys and queries weightingValue Vectors

(0.105, 0.145, …)

(0.137, 0.187, …)

(0.324, 0.460, …)

+ =

=

Token ID Probability

1 0.000144

2 0.006597

… …

6398 0.134031

… …

Act

x
(0.963, 0.394, …)

(0.012, 0.384, …)

(0.971, 0.410, …)

(0.963, 0.394, …)

(0.012, 0.384, …)

(0.971, 0.410, …)

Tokenizer
Why actuaries

Multi-Layer Perceptron

Token ID Value

1 0.0923

2 0.3241

… …

6398 4.9319

… …

Linear Layer
Sample from 
distributionSoftmax Tokenizer

Self-Attention

43840

3166

5195

Source: arxiv.org/pdf/1706.03762.pdf
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Update weights of pre-trained 
model by training on a dataset 
specific to the desired task

Model is given a few 
demonstrations of the 
task as conditioning, 
but no weight updates 
are allowed

Same as few-shot but 
only one demonstration 
is allowed

No demonstrations are 
allowed – the model is only 
given a natural language 
description of the task

Few-shot learners

GPT IS CAPABLE OF ZERO-SHOT LEARNING

Zero-shot learnersONE-shot learnersFine-tuning

Prompt
“Can you tell me a joke 
about a cat and a dog?”

Source: https://arxiv.org/pdf/2005.14165.pdf
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1
Fine-tune GPT-3.5
ChatGPT focused language model that has been fine-tuned on 
conversational data such as short, informal sentences and specific 
conversational conventions.

2
Train a reward model
A labeler ranks possible responses to prompts, and this data is used 
to train a reward model to determine the final response. 

3
Use reinforcement learning to optimize reward 
An agent learns to choose the best response to a prompt by receiving 
feedback in the form of the rewards from step 2.

4
Moderation endpoint 
A separate language model is used to classify text as whether they violate 
content policy by being “sexual, hateful, violent, or promoting self-harm”.

2

4 3

1

ADDING REINFORCEMENT LEARNING LAYERS AND A MODERATION API ENABLES THE 
TRANSITION FROM GPT TO CHATGPT

Sources:
https://openai.com/blog/chatgpt/
https://openai.com/blog/new-and-improved-content-moderation-tooling/



Actuarial applications
3
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GPT-ENABLED TOOLS CAN HELP ACTUARIES EXECUTE THEIR WORK (1/3)
Fitting a model using GitHub Copilot
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GPT-ENABLED TOOLS CAN HELP ACTUARIES EXECUTE THEIR WORK (2/3)
An entire modeling process using ChatGPT and Copilot



36© Oliver Wyman

GPT-ENABLED TOOLS CAN HELP ACTUARIES EXECUTE THEIR WORK (3/3)
Using ChatGPT to debug code 
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Analysis of unstructured claims data
Classify/label unstructured data in claims to 

gather insights from documents such as medical 
reports

Summarizing and searching policy contracts
Identify key provisions and search to identify 

specific clauses or provisions

Fraud detection

Analyze data from alternative sources to identify 
potential risks through detection of anomalies

Customer service

Chatbots powered by GPT models can 
understand natural language and provide 

personalized responses 

Actuarial communication and report generation

Generate text to support actuarial analyses 
and draft reports

Webscraping for commercial lines underwriting
Streamline quoting process by automating 

capture of potential policyholder information

GPT OPENS THE DOOR TO INNOVATIVE SOLUTIONS FOR SEVERAL INSURANCE PROCESSES
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LIMITATIONS

GPT-Specific Limitations ChatGPT Limitations General Limitations of LLMs

• GPT-3 is proprietary. It would be expensive 
to use the API in production if thousands of 
requests are made per day

• Insurance data often private and data can 
be sensitive/restricted

• Output of a general purpose LLM can rarely 
be used as-is. Additional layers have to be 
built. Classification into specific categories, 
checks for model inaccuracy, conversion 
of model output (English sentences) 
into tabular data

• ChatGPT can be confidently wrong; 
the system can write “plausible-sounding 
but incorrect or nonsensical answers”

• Can be sensitive to the phrasing 
of the prompt

• Models do not ask clarifying questions 
when a prompt is unclear and instead 
guesses the intent of the user

• It is possible for the model to respond 
to “harmful instructions or exhibit 
biased behavior”

• Supervision and adjustments are often 
needed

• LLMs are computationally expensive 
to train and run and require vast amounts 
of resources

• Explainability and interpretability: can be 
considered a black box since these models 
are highly complex

• Can perpetuate biases present in the data 
they are trained on, which can lead to unfair 
or inaccurate predictions

• Requires high level of technical expertise 
to implement, maintain and use

Source: https://openai.com/blog/chatgpt



AI: Software 2.0
4
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SOFTWARE IS EATING THE WORLD, AI IS EATING SOFTWARE

The “classical stack” of Software 1.0 is what we’re all familiar with — it is 
written in languages such as Python, C++, etc. It consists of explicit 
instructions to the computer written by a programmer. By writing each 
line of code, the programmer identifies a specific point in program space 
with some desirable behavior. […]

In contrast, Software 2.0 is written in much more abstract, human 
unfriendly language, such as the weights of a neural network. […]

Software (1.0) is eating the world, and now AI (Software 2.0) is eating 
software.

ANDREJ KARPATHY
Founding Member of OpenAI
Former Director of AI at Tesla

• Applying AI to insurance and actuarial problems does not happen 
automatically. 

• There is a lot of work needed to convert our industry to Software 
2.0.

• Who will do this work?

• We think actuaries are ideally suited to lead this work.

However…

Source: https://karpathy.medium.com/software-2-0-a64152b37c35    
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WHERE TO START?
Modern software development practices are the foundation; Actuaries can learn a lot from the software world

Agility: Learn to “fail fast” and adapt

It is essential to interact frequently with end users and 
adjust the trajectory based on their feedback.

Testing: Foresee bugs and defects before users

Automatic and timely testing of the whole code base for 
compliance with expected behavior should be in place.

Version Control: Keep track of all changes

Allow collaborative development by tracking changes of 
individual contributors and setting frameworks for 

integration.

Modularity: Reduce work duplication

Maximize code understandability and reusability by 
spreading functionalities into independent components.

Continuous Integration: Scale the collaboration

Frequent integration of all new code that compose the 
application, leveraging automated testing and building 

functionalities.

Design: “Simplicity is the ultimate sophistication”

One should fall in love with the problem rather than any 
given solution. Once the problem is understood, drafts 

should be presented to users before rushing to the 
development phase.

Put together, these best practices ensure that code will remain easy to understand and maintain over time. It makes it easier to
implement new functionality and integrate new technologies. 
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We've seen exponential growth in the complexity of machine learning models, which is largely attributable to the use 
of deep learning techniques.

Transformer models, including GPTs, have resulted in breakthrough performance on NLP tasks; the process of "self-
attention" has been pivotal to this breakthrough.

These breakthroughs impact all fields of work, including insurance and actuarial work.

Converting our industry to a Software 2.0 world will require a lot of work. Actuaries are well suited to lead this work 
but need to modernize their skillset.
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