Understanding the Impacts of Climate Change and How to Balance Models and Historical Weather Data in Ratemaking

Michael Tine, CPCU, ARe Senior Director, Client Development

Dan Ward, PhD Director, Model Development

March 2023

The Innovation and Technology Leader in Catastrophe Risk Modeling

Karen Clark & Company invests substantial resources to develop the software, models, and databases discussed herein. This document contains proprietary and confidential information intended for the exclusive use of Karen Clark & Company clients who are subject to the terms and conditions of the non-disclosure and confidentiality provisions of the RiskInsight[®] license agreement.

©2023 Karen Clark & Company. All rights reserved. This document may not be reproduced, in whole or part, or transmitted in any form without the express written consent of Karen Clark & Company.

RiskInsight is a registered trademark of Karen Clark & Company.

Agenda

- Sampling Bias in Company Historical Losses and First-Generation Catastrophe Models
- Next-Generation Modeling Overview Severe Convective Storm and Wildfire
- Climate Change Shifting Geography of Loss Potential
 - Making Historical Losses Less Credible
- Replacing Historical Data with Next-Generation Model Output
 - Reduce Bias for Ratemaking at Higher Resolution

Severe Convective Storm – Historical Biases and Inaccuracies Affecting Ratemaking and Modeling

The Innovation and Technology Leader in Catastrophe Risk Modeling

1) Collect Available Data

	То	rnado	Repo	orts (<mark>CSV</mark>)) (Raw Torr	nado CSV)(?)					
ime	Loca	ation	Cou	nty Sta	te Lat Lon		Comment	ts				
41	4 NNW SALISBU	JRY	ROWAN	NC	3572 8051	EF1 TORNADO 6.5 N OF SA	CONFIRMED 4 ISBURY. (GS	.5 NNW TO P)	, ,			
545	6 ESE COOLEEM	IEE	DAVIDSON	I NC	3578 8046	EFØ TORNADO OF COOLEEME	CONFIRMED 6 NC. (GSP)	MILES ES	E			
545				Wind Re	eports (<mark>CS\</mark>	/) (Raw W	(ind CSV)	(?)				
700	Time S	Speed	Loca	ation C	ounty St	ate Lat Lo	on	Com	ment	ts		
	1335 U	INK	WNW POW POINT	ULLS CURR	ITUCK NC	3616 75	POSSIBLE HOUSES D. ROAD	TORNADO. AMAGED. B IN VICIN	TREES OATS B	DOWN. 5 LOWN ACROSS 8500 BLOCK		
103	1540 U	INK	GAL				OF CARAT	UKE HWY.	(AKQ)			
	1600 U	INK	1 55			Hail Rop	erte (<mark>CS</mark>)	í) (Bev	Hai			
108			T	ime Siz	e Locatio	on Cou	unty St	ate Lat	Lon	(C	Comments	
10	1601 U	INK INK	6 S 17	20 100	4 N COLUME	BIA RICHLAN	D SC	3410	8090	QUARTER SIZE AND POWER LI AT SANDHILLS	HAIL ALONG WIT NES DOWN AT THE	H TREES VILLAGE
	1612 1	INK	1 . 17	24 100	ELYRIA	LORAIN	он	4138	8211	NICKEL TO QU	ARTER SIZE HAIL	(CLE)
810	1615 U	INK	HIL	35 100	NATURAL BRIDGE	ROCKBRI	DGE VA	3763	7955	ESTIMATED QU	ARTER SIZE HAIL	(RNK)
	1630 U	INK	FLO	00 175	FAIRFIELD	ROCKERI	DGE VA	3788	7930	(RNK)		
813	1630 U	INK	NEW 18 1 SI	03 100	5 SE ROCKBRIDGE BATHS	ROCKBRI	DGE VA	3785	7936	BETWEEN MILE SOUTHBOUND O	MARKER 196 AND N INTERSTATE 81	195 (RNK)
	1040 0	min.	SALI 18	10 100	PATRICK	CHESTER	FIELD SC	3458	8004	QUARTER SIZE	HAIL REPORTED	BY
	1645 U	INK	SALI 18	15 100	BURI TNGTO		F NC	8605	7945	(RAH))	
1825	1645 U	INK	1 N 18	18 175	BURLINGTO	I ALAMANO	E NC	608	7945	MULTIPLE REP HAIL IN BURL	ORTS OF GOLF BA INGTON (RAH)	LL SIZE
	1645 U	INK	3 N 18	30 175	1 S ORANGEBURG	ORANGEE	URG SC	48	8087	GOLF BALL SI FIRE STATION AND PROSPERI SHERIFF. (CA	ZE HAIL REPORTE 4 AT ROWESVILL TY DRIVE. REPOR E)	D AT E ROAD TED BY
	1700 U	INK	2 NF 19	00 100	SUMMERTON	CLARENO	ON SC	3 56	8035	1 INCH HAIL FURSE RD. (C	REPORTED BY SHE AE)	RIFF ON
	_		19	05 100	SANFORD	LEE	NC	35 8	7918	(RAH)		
			19	28 425	7 NE MANNI	ING CLARENE	ON SC	33	8013	SOFTBALL SIZ NORTH BREWIN DAMAGE TO RO	E HAIL AT HWY 3 GTON ROAD CAUSI OFS AND VEHICLE	01 AND NG S. (CAE)
			19	30 175	2 WSW HENDERSON	VANCE	NC	363	7845	1.75 INCH HA	IL NEAR HENDERS	ON (RAH)
			19	35 175	TURBEVTLLE		ON SC	3389	8002	GOLF BALL SI	ZED HAIL REPORT	ED BY

Time	Size	Location	County	State	Lat	Lon	Comments
1720	100	4 N COLUMBIA	RICHLAND	SC	3410	8090	QUARTER SIZE HAIL ALONG WITH TREES AND POWER LINES DOWN AT THE VILLAGE AT SANDHILLS. (CAE)
1724	100	ELYRIA	LORAIN	ОН	4138	8211	NICKEL TO QUARTER SIZE HAIL (CLE)
1735	100	NATURAL BRIDGE	ROCKBRIDGE	VA	3763	7955	ESTIMATED QUARTER SIZE HAIL (RNK)

2) Calculate Statistics and Fit Distributions to Peril Parameters

3) Simulation Creates Random Events

....

They Use Inaccurate Historical Statistics, and...

- 1. Obtain tornado, hail, and wind reports since 1950
- 2. Augment the data for missing reports, population bias, etc.
- 3. Calculate statistics on tornado path lengths, path widths, hail stone size, etc.
- 4. Randomly generate hypothetical tornadoes, hail swaths, and wind using parameterized distributions
- 5. Arbitrarily group these isolated occurrences into 'events'

They Use Historical Hail Reports Focused Around Population (Amarillo, TX Example), and...

There Are Geographical Biases in Hail Reporting

There Are Geographical Biases in Hail Reporting, and...

KC &CO The Innovation and Technology Leader in Catastrophe Risk Modeling

A Significant Percentage of SCS Losses Occur Outside of "Numbered Cat" Events and Loss Estimates

Event (2019-05-16 to 2019-05-17)							
IA	\$	105,400,000					
IL	\$	437,100,000					
IN	\$	121,050,000					
TOTAL-US	\$	663,550,000					
Event (2019-05-17 to 2019-05-18)							
ТХ	\$	100,670,000					

A Significant Percentage of SCS Losses Occur Outside of "Numbered Cat" Events and Loss Estimates, and...

Remainder: \$251,000,000 SCS Losses Outside of Designated Cat States

KC &CO The Innovation and Technology Leader in Catastrophe Risk Modeling

Reported Claims/Hazard Have Gaps, Especially When Looking at County or Lower

Wildfire – Does History Represent Current and Future Risk Relevant to Ratemaking and Modeling?

The Innovation and Technology Leader in Catastrophe Risk Modeling

KCC Fire Footprint – Caldor Fire

KCC Fire Footprint – Dixie Fire

Even in Historically Active Areas, Gaps Exist in Wildfire Historical Data – Affects Hazard and Loss Trending

Large areas of the western United States are at risk from fires but have not experienced a wildfire in recent history

Both the Area Burned and the Fire Frequency Have Increased since 1980

- In California the annual area burned has increased by 300% since 1980
- In 1980 it was typical to have 5 fires larger than 10,000 acres in a year – now the norm is 15 such fires per year

Solving Issues of Bias in Historical Loss Data Using Next-Generation, Physics-Based Catastrophe Models

The Innovation and Technology Leader in Catastrophe Risk Modeling

- Research the **physics** underlying severe convective events
- Determine the **atmospheric variables** that best correlate with reported hail, tornadoes, and straight-line winds
- Develop a physical model of SCS events
- Reproduce actual losses for over 300 historical events
 - Verify event footprints
 - Validate damage functions
- Generate a stochastic catalog of hypothetical events

- Rising warm air → updrafts
- Sinking cool air → downdrafts
- Wind shear influences processes leading to organized storm cells

SCS Environment = Convection + Shear + Rotation

Atmospheric Parameters Required for Modeling Tornado/Wind

Instability Parameters:

- Convective Available Potential Energy (CAPE)
- Convective Inhibition (CIN)

• Shear Parameters:

- Wind Velocities
- Vertical Wind Shear (SHEAR)
- Storm Relative Helicity (SRH)
- Lifted Condensation Level (LCL)

Validation of Footprints: Event Footprint and Reported Tornadoes and Wind Gusts for May 2011 Event

The Innovation and Technology Leader in Catastrophe Risk Modeling

KC &⊆o

- North American Regional Reanalysis (NARR)
 - 1979 present
 - precipitation, wind, temp, pressure, etc.
 - 45 vertical layers
 - KCC has archives 20Tb of data
- High Resolution Rapid Refresh Model (HRRR)
 - 2018 present
 - precipitation, wind, temp, pressure, etc.
 - Hourly update cycle
 - 10x resolution increase over NARR

Hail Formation

- Updrafts bring water past the freezing line
- Supercooled water droplets nucleate and freeze to form "Hail Embryos"
- Hail embryos grow until the can no longer be held aloft by the updraft
- Hail falls out, but can be caught back up into the updraft continuing to grow
- Hail finally falls to ground

Advanced Hail Detection - MESH Combines Radar and NWP to Distinguish Hail from Heavy Rain

Data Sources-Hail

NEXRAD Radars

- 5-minute data archived since 1995
- ~1 km resolution
- Radar Reflectivity- size and concentration of particles
- Multi-Radar/Multi-Sensor System (MRMS)
 - 2018 present
 - multiple radars, satellites, surface observations, upper air observations, numerical weather prediction (NWP), etc.
 - "Maximum Estimated Size of Hail" (MESH)

Over 300 historical events were validated

Relative Proportion of Large vs Small Hail by Simulated Intensity

Using Numerical Weather Prediction to Generate Stochastic Events

- Weather Research and Forecasting Model (WRF) can be used to model hypothetical weather
- WRF simulates the **atmosphere**:
 - Wind (3 components)
 - Temperature
 - Pressure
 - Humidity

$$\begin{split} \partial_t U + m_x \left[\partial_x (Uu) + \partial_y (Vu)\right] + \partial_\eta (\Omega u) \\ &+ (m_x/m_y)(\alpha/\alpha_d) \left[\mu_d(\partial_x \phi' + \alpha_d \partial_x p' + \alpha'_d \partial_x \overline{p}) + \partial_x \phi(\partial_\eta p' - \mu'_d)\right] = F_U \\ \partial_t V + m_y \left[\partial_x (Uv) + \partial_y (Vv)\right] + (m_y/m_x) \partial_\eta (\Omega v) \\ &+ (m_x m_y/m_y) \left[\partial_x (Uw) + \partial_y (Vw)\right] + \partial_\eta (\Omega w) \\ &- m_y^{-1} g(\alpha/\alpha_d) \left[\partial_\eta p' - \overline{\mu}_d (q_v + q_c + q_r)\right] + m_y^{-1} \mu'_d g = F_W \\ \partial_t \mu'_d + m_x m_y \left[\partial_x U + \partial_y V\right] + m_y \partial_\eta \Omega = 0 \\ \partial_t \phi' + \mu_d^{-1} \left[m_x m_y (U\partial_x \phi + V\partial_y \phi) + m_y \Omega_\eta \phi - m_y gW\right] = 0. \\ \partial_t \Theta + m_x m_y \left[\partial_x (U\theta) + \partial_y (V\theta)\right] + m_y \partial_\eta (\Omega \theta) = F_\Theta \\ \partial_t Q_m + m_x m_y \left[\partial_x (U\theta) + \partial_y (Vq_m)\right] + m_y \partial_\eta (\Omega q_m) = F_{Q_m}. \\ F_{U_{cor}} &= \frac{m_x}{m_y} \left[fV + \frac{uV}{r_e} \tan \psi \right] - \frac{uW}{r_e} - eW \cos \alpha_r \\ F_{V_{cor}} &= \frac{m_y}{m_x} \left[-fU - \frac{uU}{r_e} \tan \psi - \frac{vW}{r_e} + eW \sin \alpha_r \right] \\ F_{W_{cor}} &= +e(U \cos \alpha_r - (m_x/m_y)V \sin \alpha_r) + \left(\frac{uU + (m_x/m_y)vV}{r_e} \right) \\ R_{V_{adv}}^t &= -m_x \left[\partial_x (Uu) + \partial_y (Vu)\right] + m_y \partial_\eta (\Omega u) \\ R_{V_{adv}}^t &= -m_x m_y \left[\partial_x U + \partial_y V + m_y \partial_\eta \Omega \\ R_{\Theta_{adv}}^t &= -m_x m_y \left[\partial_x (U\theta) + \partial_y (V\theta)\right] - m_y \partial_\eta (\Omega \theta) \\ R_{W_{adv}}^t &= -(m_x m_y/m_y) \left[\partial_x (Uw) + \partial_y (Vw)\right] + \partial_\eta (\Omega w) \\ R_{\Phi_{adv}}^t &= -m_x m_y \left[\partial_x (U\theta) + \partial_y (V\theta)\right] - m_y \partial_\eta (\Omega \theta) \\ R_{W_{adv}}^t &= -(m_x m_y/m_y) \left[\partial_x (Uw) + \partial_y (Vw)\right] + \partial_\eta (\Omega w) \\ R_{\Phi_{adv}}^t &= -m_x m_y \left[\partial_x (U\theta) + \partial_y (V\theta)\right] - m_y \partial_\eta (\Omega \theta) \\ R_{\Phi_{adv}}^t &= -m_x m_y \left[\partial_x (U\theta) + \partial_y (V\theta)\right] - m_y \partial_\eta (\Omega \theta) \\ R_{\Phi_{adv}}^t &= -m_x m_y \left[\partial_x (U\theta) + \partial_y (V\theta)\right] - m_y \partial_\eta (\Omega \theta) \\ R_{\Phi_{adv}}^t &= -m_x m_y \left[\partial_x (U\theta) + \partial_y (V\theta)\right] - m_y \partial_\eta (\Omega \theta) \\ R_{\Phi_{adv}}^t &= -m_x m_y \left[\partial_x (U\theta) + \partial_y (V\theta)\right] - m_y \partial_\eta (\theta) \\ R_{\Phi_{adv}}^t &= -m_x m_y \left[\partial_x (U\theta) + \partial_y (V\theta)\right] - m_y \partial_\eta (\theta) \\ R_{\Phi_{adv}}^t &= -m_x m_y \left[\partial_x (U\theta) + \partial_y (V\theta)\right] - m_y \partial_\eta (\theta) \\ R_{\Phi_{adv}}^t &= -m_x m_y \left[\partial_x (U\theta) + \partial_y (V\theta)\right] - m_y \partial_\eta (\theta) \\ R_{\Phi_{adv}}^t &= -m_x m_y \left[\partial_x (U\theta) + \partial_y (V\theta)\right] - m_y \partial_\eta (\theta) \\ R_{\Phi_{adv}}^t &= -m_x m_y \left[\partial_x (U\theta) + \partial_y (V\theta)\right] + \partial_y (\theta) \\ R_{\Phi_{adv}}^t &= -m_x m_y \left[\partial_x (U\theta) + \partial_y (\theta) + \partial_y (\theta)\right] \\ R_{\Phi_{adv}}^t &= -m_x m_y \left[\partial_x (U\theta) + \partial_y (\theta) + \partial_y (\theta)\right] \\ R_{\Phi$$

- Stochastic Kinetic Energy Backscatter Scheme (SKEBS): Apply random perturbations in a physically realistic way
 - Unresolved energy at fine-scale would 'backscatter' into the simulation
 - Recapture fine-scale energy
 - Generate event variations

Create New Stochastic Tornado/Wind Footprints

The Innovation and Technology Leader in Catastrophe Risk Modeling

CONFIDENTIAL

500 mi

© KCC RiskInsight®, Mapbox, OpenStreetMap (60505:1250)PA

The Innovation and Technology Leader in Catastrophe Risk Modeling

Validate Models with \$ Billions of High-Resolution and Verified Insurer Claims Data

KC &CO The Innovation and Technology Leader in Catastrophe Risk Modeling

How Insurers Can Independently Verify the Accuracy of the Model

КС &^{со}

CONFIDENTIAL

© 2023 Karen Clark & Company

KCC SCS Daily Live Events Process Continuously Captures SCS Activity

• KCC automatically downloads and archives ~30 GB of data per day to support SCS Live Events

Climate Change is Shifting the Geography of Loss Potential

The Innovation and Technology Leader in Catastrophe Risk Modeling

The Intergovernmental Panel on Climate Change (IPCC) Assessment Reports (AR)

	Frequency	Severity	Confidence
Hurricanes	No change	Increase	High
Coastal Flooding	Increase	Increase	High
Wildfires*	Increase	Increase	High
Inland Flooding*	Increase	Increase	Medium
Winter Storms	Uncertain	Increase	Medium
Severe Convective Storms	Uncertain	Uncertain	Low

*Impacts of climate change on these hazards is highly region-dependent

KCC Fire Footprint – Caldor Fire

Previously Burnet

Both the Area Burned and the Fire Frequency Have Increased since 1980

- In California the annual area burned has increased by 300% since 1980
- In 1980 it was typical to have 5 fires larger than 10,000 acres in a year – now the norm is 15 such fires per year

Area Burned (California)

Fire Counts (California)

Vapor Pressure Deficit (VPD): Capacity of an airmass to hold moisture beyond what is available in the atmospheric environment

Increases directly with warming air temperature

The Innovation and Technology Leader in Catastrophe Risk Modeling

KC

Vapor Pressure Deficit Projected to Increase with Future Warming in Middle-to-High Emissions Scenarios

Geographic Variability in VPD Trend and Increase in Wildfires

California California Wildfire EP ■ 2050 SSP1-1.9 ■ 2050 SSP2-4.5 ■ 2050 SSP5-8.5 Loss (\$b) Increase Relative 2 SSP1-1.9 2050 Vapor Pressure Deficit **Projected Trend** 5 10 20 50 Return Period 1 250 100 5 20 50 Return Period (years) 0 Texas Texas Wildfire EP (hPa) SSP2-4.5 Increase Relative to Reference Period ■ 2050 SSP1-1.9 ■ 2050 SSP2-4.5 ■ 2050 SSP5-8.5 Loss (\$b) -3 5 10 20 50 SSP5-8.5 **Return Period** 5 10 20 50 100 250 Return Period (years)

КС &⊆о

250

100

100

250

Shift in Tornado Activity Toward Dixie Alley

Major Southeast SCS Events in 2020

KC

Three Reasons Why the Southeast Experienced Above-Average SCS Activity in 2020

A deep, anomalous pressure trough dipped down into the Southeast creating frontal boundaries providing the forcing mechanism for severe thunderstorms further south than normal.

A much stronger than normal jet stream was positioned over the Southeast. The anomalous weather pattern (in red) increased vertical wind shear which led to more intense storms.

Sea surface temperatures off the coast of Florida were well above normal. March 2020 had the warmest sea surface temperatures ever recorded in the Gulf of Mexico. The entire spring was notable for record warmth for Florida and the Gulf Coast.

Florida – SCS EP Curve

Southeast US – SCS EP Curve

- Historical hazard and loss data isn't reliable for predicting future loss potential, particularly at finer resolutions
- This lack of reliability makes it difficult, if not impossible, to appropriately use for ratemaking
 - This same lack of reliability has caused issues for first-generation, statistical-based models
- This historical data can, however, be used to validate models to be used
 - Ensure reported hazards occur within the modeled footprints and over recent time
 - Ensure reported losses occur within the modeled footprints and over recent time

- Instead, we suggest using next-generation, physics-based modeled Average Annual Loss (AAL) as the baseline for formulating rates by state, by region, etc.
 - Avoid SCS biases caused by population and reporting inaccuracies as well as consider impacts from a changing climate
 - Avoid Wildfire biases caused by rapid impacts from a changing climate

- Seasonal volatility should likely also be considered in risk loads for both SCS and Wildfire
 - Single events, even large ones, won't cause a loss the size of large hurricanes
 - Active seasons, however, can cause even larger annual losses that need to be considered in risk loads (e.g. 2020)

- Future climate models should likely also be considered in risk loads for Wildfire
 - Wildfire loss potential is changing rapidly from the VPD impacts evidenced in the changing climate

Questions?

<u>Contact Info:</u> Michael Tine <u>mtine@kcc.us.com</u> 703-625-1289 (mobile)

The Innovation and Technology Leader in Catastrophe Risk Modeling