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Scripts and dataframe available on Github
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R Preamble (to replicate the results)

library(tidyverse)
library(xaringan)
library(xaringanthemer)
library(kableExtra)
library(DT)
library(dplyr)
library(ggplot2)
library(kableExtra)
library(scales)
library(MASS)
library(gamlss)

load('Data/df2.Rda"')
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e Penalties and a priori risks.



Reference

The first part of the presentation is
based on Sections 1-3 of:

J.-P. Boucher (2022). Bonus-Malus Scale Models:
Creating Artificial Past Claims History. Annals of
Actuarial Science, 1-27.

Annals of Actuarial Science (2022), 1-27
doi:10.1017/S1748499522000100 AY: Institute

and Faculty

ORIGINAL RESEARCH PAPER B ki

Bonus-Malus Scale models: creating artificial past claims
history

Jean-Philippe Boucher

Chaire Co-operators en analyse des risques actuariels, Departement de mathematiques, Université du Québec a Montréal,
Montreal, Canada
E-mail: boucher.jean-philippe@uqam.ca

(Received 04 January 2022; revised 09 June 2022; accepted 24 June 2022)

Abstract

In recent papers, Bonus-Malus Scales (BMS) estimated using data have been considered as an alternative to
longitudinal data and hierarchical data approaches to model the dependence between different contracts
for the same insured. Those papers, however, did not discuss in detail how to construct and understand
BMS models, and many of the BMS’s basic properties were not discussed. The first objective of this paper
is to correct this situation by explaining the logic behind BMS models and by describing those properties.
More particularly, we will explain how BMS models are linked with simple count regression models that
have covariates associated with the past claims experience. This study could help actuaries to understand
how and why they should use BMS models for experience rating. The second objective of this paper is to
create artificial past claims history for each insured. This is done by combining recent panel data theory
with BMS models. We show that this addition significantly improves the prediction capacity of the BMS
and provides a temporary solution for insurers who do not have enough historical data. We apply the BMS
model to real data from a major Canadian insurance company. Results are analysed deeply to identify
specific aspects of the BMS model.



Data used

Farm insurance database (in the published paper)

» We used farm insurance data from a major insurance company in Canada;
e We were able to use contracts from 2014 to 2019;
e Past claims from 1999 to 2014 were available.

Farm data cannot be shared..

Instead, we illustrate our models with fictive car insurance data.
Using the dataframe df2.Rdaq;

Possible to replicate the results of this presentation;

Available on my github page (reference at the end).
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Classic insurance database

policy_no veh.num renewal_date start_date end_date risk_expo freq_payment year_veh sex year_k

8352232 1 2018-03-23 2017-03-23 3218'03' 1 1 2013 M
8045623 1 2018-07-31  2017-07-31 %818'07' 1 1 2012 M
8137137 1 2018-02-12 2017-02-12 121018'02' 1 12 2012 F
6590411 1 2012-05-08 2011-05-08 (2)212'05' T 12 2007 M
6652522 1 2014-05-24 2013-05- 2014-0>- T T 2009 F
24 23
2017-05-

6926801 1 2017-06-01 2016-06-01 2] 1 1 2009 M




Summary of the dataset

Basic statistics

Nb. of Claims Nb. of obs. % of obs. Total exposition % of exposition
O 105,050 83.8% 100,614 83.5%
1 17,734 14.1% 17,246 14.3%
2 2,339 1.9% 2,505 1.9%
3 240 0.2% 237 0.2%
4 25 0.0% 25 0.0%
5 1 0.0% 1 0.0%
6 1 0.0% 1 0.0%
Mean 0.185

Variance 0.203




Available covariates

Many fictional covariates are available in the dataframe. For illustration, we will however only focus on 4
(fictional) covariates to model the number of claims:

Column Values

car_color ("Other", "Red")

territory ("Rural", "Suburban", "Urban")
language ("English", "French")

food ("Other", "Vegan", "Vegetarian")




Basis of covariates selection

Possible techniques

e Minimume-bias techniques (..old);

e Generalized linear models and GLM-net (Ridge and Lasso);
e Random Forests;

e Neural Networks;

e etc.

Literature review (from actuarial sciences):

e Denuit, M, Hainaut, D. & Trufin, J. (2019), Springer Nature:
o Effective statistical learning methods for actuaries I: GLMs and Extensions,
o Effective statistical learning methods for actuaries II: Tree-Based Methods and Extensions,
o Effective statistical learning methods for actuaries Ill: Neural Networks and Extensions,
o« Wuthrich, M. V., & Merz, M. (2023). Statistical foundations of actuarial learning and its applications.



Prior ratemaking

Poisson distribution

Commonly, the starting point for the modeling the number of claims is the Poisson distribution:

i — N\

Pr[N; = ni| X;] = , with \; = exp(X5).

With E[N;| = \;, this form of ratemaking is usually called a priori ratemaking. In this framework, the actuary
does not consider the past claim experience of the insureds.

Alternatives

To correct the equidispersion of the Poisson or other problems, the most popular alternatives to the Poisson
are:

e Negative binomial (NB2 or NB]J);

e Poisson-inverse gaussian (P1G2 or PIGT);
e Poisson-lognormal (PLN2 or PLNT);

e Zero-Inflated distributions.



Predictive ratemaking

Conditional expected value

The insurer is also interested in a premium that considers past contracts:

E[N;r|ni, .- snir-1, X; 1.0-1)]-

Problem with cross-section data

» We suppose an independance between each line of the dataset;
» We do not directly observe the claim experience of an insured for his 2nd, 3rd, ..., contracts.

Classic assumption (Bihlmann, 1967)

We suppose that each insured has his own random heterogeneity component (usually noted ©®) that affects
all his insurance contracts.



Gamma heterogeneity

If we suppose that N;|© = 0 ~ Poisson(\;0), with © ~ gamma(a, ™ = a), we have:

00 )‘29 n,—\;0 a
Pr[N; =n] = / ( )n'e Fo(éa) 0 le=2%qp
0 .

Negative binomial 2 distribution

It can be shown that the Poisson-gamma leads to the NB2, having the following probability function:

Pr[N; = n| = (ajL:_l)()\iia)a()‘i)ia)n

Moments

2

X
The NB2 has and expected value of E[N;] = A; and a variance Var|[N;| = \; + -, which means that the NB2
allows for overdispersion.



Bayesian approach

The addition of an heterogeneity term leads to the famous credibility models of Buhlmann or Buhlmann-
Straub (exam C, or STAM).

Predictive premium

It becomes possible to express the predictive premium based on the past number of claims n, and the past
values of \:

T—1
o+ Zt:l Nt
T—1
a + Zt:l Ait

ENirlnig, . nir—1, Xir) = Air

Even if the actuary cannot directly observe the average predictive value with the data, he is able to compute
predictive premiums at the cost of making the constact random effect assumption.



R scripts: Poisson GLM

Split data

db.train <- df2 %>% filter(Type=='TRAIN')
db.test <- df2 %>% filter(Type=='TEST')

Poisson GLM

score.nbclaim <- as.formula(NbClaims ~ car_color + need_glasses + territory + language + food + off:
Poisson <- glm(score.nbclaim, family=poisson(link=1log), data=db.train)



R scripts: Negative Binomial 2

Packages to use
You can directly estimate the parameters by maximum likelihood by maximising the log-probability, or you
can use R packages. The MASS package (or the gamlss, for example) can be used to estimate the

parameters of a NB2 distribution:

library(MASS)

nb2.MASS <- glm.nb(score.nbclaim, data=db.train)



Comparison

(Intercept)
car_colorRed
need_glassesYes
territorySuburban
territoryUrban
languageFrench
foodVegan
foodVegetarian

‘o

Poisson
-1.5186
-0.0215

0.1213
-0.0792
-0.1242
0.2584
-0.1015
-0.1963

NA

NB2
-1.5173
-0.0212

0.1216
-0.0789
-0.1245
0.2586
-0.1027
-0.1971
21244




Prediction quality on the test set

Even if it is not the objective of this presentation, we can compare the fit and the prediction quality of the
Poisson and the Negative Binomial 2. For the training set, the loglikelihood is used and a logarithmic score
($LS$) is used on the test set:

LS = =) log(Pr(N; = n;| X;))
i1

Computation

db.test$pred <- predict(Poisson, newdata=db.test, type="response")
logs.Poisson <- -sum(dpois(db.test$NbClaims, db.test$pred, log=TRUE))
11.Poisson <- logLik(Poisson)

db.test$pred <- predict(nb2.MASS, newdata=db.test, type="response")

alpha <- 1/nb2.MASS$theta

tau <- 1/nb2.MASS$theta

11 <- lgamma(db.test$NbClaims + alpha) - lgamma(alpha) - lgamma(db.test$NbClaims+1) + alpha*log(tau
logs.NB2 <- -sum(11)

11.NB2 <- logLik(nb2.MASS)



Comparison of models

Results

Log-likelihood (Train) Logarithmic Score (Test)
Poisson -44 858.44 19,319.22
Negative Binomial 2 -44718.43 19,549.53




Predictive ratemaking

Distribution of the heterogeneity

Based on the baysian model, by fitting a Negative Binomial distribution (NB2) on claim counts data, we
know that the heterogeneity of our portfolio © is following a gamma(a = 1.6654, 7 = a = 1.6654).

Predictive premiums

The predictive premium of an insured with n; , = Zf:_ll n;t past claims,and A; 4 = tT:_ll Ai ¢ as the sum of
past g priori premiums, is equal to:
a+ S g, 1.6654 + n;,
EIN;r|ni1,...,nir—1, Xir| = N =

_ i,T
a + Z;&r:ll >\i,t 1.6654 + )‘i,o

In STAM exam, we were able to analyse in details this equation.



Practical use

However, even if the Poisson-gamma model is theoretically correct, and even studied in the preliminary
exames, this predictive rating approach is almost never used in practice:

: : : T-1 . :
 There is not weight in thl n; . That means that a claim from 10 or 20 years ago will have the same
impact of the premium that an accident that was claimed last year;

e The value of Zf:_ll Ait depend on the estimated values of B, and should then be computed each year.

That means that insurers should keep all past covariates X, ¢, fromt¢ =1,...,T of all their insureds. For
new insureds, this is even more complicated.



Bonus-malus scales

To compute predictive premiums, actuaries have created Bonus-Malus Scales (BMS) models. BMS are class
systems where the insured's level £ increases or decreases only by the number of claims.

Structure of the BMS (example with 6 levels)

Level Relativities
6 1.296
5 1197
4 1141
3 1.017
2 0.986

1 0.879




Transition rules

A BMS is defined by its number of levels and by its transition rules. If we suppose a BMS with 6 levels (from 1
to 6), we can than create a BMS having the following rules:

e Anew insured has an entry level 1;
e The BMS level of an insured without claim will be lowered by 1 (-1);
e The BMS level of an insured will increase by the number of claims times 2 (+2).

We then can summarize the transition rule system as:

Level at time t+], if x claims

Starting Level (time t) x=0 x=1 x=2 x>3
1 1 3 4 6
2 1 3 5 6
3 2 4 6 6
4 3 5 §) 6
5 4 6 6 6
6 5 6 6 6




Transition matrix

This means that for a specific distribution, for example a Poisson or a NB2 distribution, it becomes possible

to construct the transition matrix from time t to time t + 1.

Level at time t

O U0 N NN

Pr(N=0)
Pr(N=0)

o O O

0
0]
Pr(N=0)

Level at time t+1

3 4
Pr(N=1) O

0 Pr(N=1)

O 0
Pr(N=0) 0

O Pr(N=0)

O 0

Pr(N>2)
Pr(N>1)
Pr(N=>1)
Pr(N>0)
Pr(N>0)
Pr(N>0)




Calibration of the BMS

Covariates and risk characteristics

We can use the dataset of this example. We suppose an insured with some specific risk characteristics, for
example, the insured might drive a black car, be an English speaker, be vegan, etc.

We will suppose a Poisson distribution, this insured has the following a priori premium: A = 0.2532.

Heterogeneity
For simplicity, we will suppose two kinds of drivers, meaning the following distribution for O:
Proportion t0° A0
Good driver 66.7% 0.75 0.1899

Bad driver 33.3% 1.50 0.3798




Transition matrix for each type of drivers

With the mean parameter of the Poisson distribution, it becomes possible to compute the transition matrix
for both insured:

Good driver (0.1899) Bad driver (0.3798)
827% 00% 157% 00% 15%  01% 68.4% 00% 260% 00% 49% 0.7%
827% 00% 00% 157% 00% 16% 68.4% 00% 00% 260% 00% 56%
00% 827% 00% 00% 157% 16% 00% 684% 00% 00% 260% 56%
00% 00% 827% 00% 00% 17.3% 00% 00% 684% 00% 00% 31.6%
00% 00% 00% 827% 00% 173% 00% 00% 00% 684% 00% 31.6%

0.0% 00% 00% 00% 827% 17.3% 0.0% 00% 0.0% 0.0% 684% 31.6%




Stationnary matrix for each type of drivers

The long-term distribution of insured within the levels of the BMS can also be computed, where the initial
BMS level at time t = 1 does not have any impact.

Good driver (0.1899) Bad driver (0.3798)
577% 121% 146% 67% 58% 32% 240% M1% 162% 146% 171% 171%
577% 121% 146% 67% 58% 32% 240% T11% 162% 146% 171% 171%
577% 121% 146% 67% 58% 32% 240% 1% 162% 146% 171% 171%
577% 121% 146% 67% 58% 32% 240% T11% 162% 146% 171% 171%
577% 121% 146% 67% 58% 32% 240% 1% 162% 146% 171% 171%

577% 121% 146% 6.7% 58% 3.2% 24.0% 111% 162% 14.6% 171% 171%




BMS Relativities

Posterior distribution

Knowing the a priori distribution of the heterogeneity ©, and the stationary distribution within the levels of

the BMS for all types of drivers, we can compute the posterior distribution of ®, conditional on the level £:
Pr|L = ¢|Good driver| Pr[Good driver|

Pr|L = ¢|Good driver| Pr[Good driver| + Pr[L = /¢|Bad driver] Pr|Bad driver]

= 1 — Pr[Bad driver|L = /]

Pr[Good driver|L = /] =

Conditional expectation

With the posterior distribution of ©, the BMS relativity of each level can be computed with the conditional
expectation:

r¢ = E[O|L = £] = 0.75 x Pr[Good driver|L = /] 4+ 1.50 x Pr[Bad driver|L = /]



Simple calculations with our numerical example lead to:

1 2
Good driver 82.8% 68.6%
Bad driver 17.2% 31.4%

BMS relativity 87.9% 98.6%

BMS Level
3 4
64.3% 47.9%
35.7% 52.1%
101.7% 1M4.1%

5 6
40.4% 27.2%
59.6% 72.8%
119.7% 129.6%




Computation of relativities

The results can be generalized with continuous heterogeneity, where it can be shown that BMS relativities
are computed using:

[, 611,(20)g(6)db
Jy Te(A0)g(6)do

ry = Jforl =1,...,4,4.-

where;

« g(0) is the prior heterogeneity distribution;
o II,(A0) is the £ line component of II(Af), the stationary distribution of insured of mean 6.



Summary of the BMS

Characteristics of the BMS

To calculate the relativities, the actuary must select the characteristics of the BMS. Different choices will lead
to different values of relativitiesry, £ =1, ..., Loz

e The maximum number of levels £,,,, of the BMS;

e The value of the penalty for each claim, i.e. the penalty structure of the BMS (ex: -1/+2);

e Other transition rules (for example: 3-5 years without claim automatically gives the largest discount);
» The entry level for new insureds.

Selection of the best BMS

A variety of methods has been developed in the scientific literature to select the best BMS:

e The coefficient of variation;
e The mean-square error of prediction;
e The elasticity of the BMS.



For more details

Denuit, M., Maréchal, X., Pitrebois, S., & Walhin, J. F. Lemaire, J. (1995). Bonus-malus systems in

(2007). Actuarial modelling of claim counts: Risk automobile insurance (Vol. 19). Springer science &
classification, credibility and bonus-malus systems. business media.

John Wiley & Sons.

Actuarial
Modelling

of Claim Counts ‘

. Bonus-Malus Systems in
.| Automobile Insurance

Jean Lemaire

Michel Denuit « Xavier Maréchal « Sandra Pitrebois » fean-Frangois Walhin

WWILEY

Springer Science+ Business Media, LLC
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Actual insurance database

Insureds (or even vehicles) are observed over time. Here, the dataframe df2.Rda contains 25,078 vehicles
each observed for 5 years.

policy_no veh.num renewal_date start_date end_date risk_expo freq_payment year_veh sex year_k

6000274 1 2011-02-03 2010-02- 2011-02- 1.0 12 2000 F
03 02

6000274 1 2012-02-03 2011-02-03 (2)212'02' 1.0 12 2000 F

6000274 1 2013-02-03 2012-02-  2013-02- 1.0 12 2000 F
03 02

6000274 1 2014-02-03 A0l 02| 20l 1.0 12 2000 F
03 02

6000274 1 2015-02-03 2014-02-  2014-12- 0.9 12 2000 F
03 28

6000517 1 2011-04-11 2010-04-11 A0 1.0 12 2006 M

10




Claim count for panel data

Families of models

We have to suppose a form of dependance between all contracts of the same insured/vehicle. For count
distributions, panel data modeling admits 3 families (see Molenberghs & Verbeke, 2005):

e Transition models (for example: time series for count data);
 Marginal approach (for example: Generalized Estimating Equations - GEE);,
e Conditional approach with random effects.



Conditional approach

General form

In actuarial science, the conditional approach is the most popular approach. It that can be seen as a
generalization of the heterogeneity approach seen earlier:

PI‘[Ni,l =M1y N T — ’l’LzT / (H PI‘ it — nM@]) g(H)dO
Deg

t=1

The Poisson-gamma model revisited

A conditional Poisson distribution, with gamma random effects leads to the multivariate negative binomial
distribution (MVNB), a generalization of the NB2 distribution:

T , T _ZtT:I it
i)™\ Ty i + @)
Pr [N’Ll nz,la-“aNi,T:ni,T] — (H n .| tFl(a) Z)\zt+a .
=1 bt Zz LAt +a

1=1




Posterior ratemaking

As for cross-section data, we are interested to compute the predictive premium. The predictive premium of
: . T-1 . T-1 . : . .
an insured with thl n;: past claims, and thl )\i,t as the sum of past a priori premiumes, is equal to:

T—1
o+ thl ;¢
T—1 ‘
a + Zt:l )‘i,t

E[N;r

Mily-ee,MiT—1, XiT| = NiT

This result is similar to what we obtained for the predictive premium of a NB2 distribution.

Same problems

: : . : T-1
For the same reasons why the NB2 was not used in practice (no weight in thl n;t, and the need to use
past A; 4, for example), another approach has to be used in practice.

As before, by knowing the distribution of the random effects ©, the Bonus-Malus Scale models can be an
interesting solution...



Predictive distribution

Even if the situation is similar, cross-section data and panel data models are not the same.
Joint distribution

The joint distribution for all the contracts of the same insured can be rewritten as:
PI'[Ni,l = MNi1y--- 7Ni,T = ni,T] = PI'[NZ',l = ni,l] X PI'[NZ',Q = ni,ﬂni,l] X ... X PI'[Nz‘,T = ni,T\ni,l, “e 7ni,T—1]

That means that the distribution the predictive distribution Pr|N;; = n;4|n;1,...,n;;1] is already used in
the modeling and thus, a predictive premium is already computed in the underlying model.

Assumption

We do not need to only rely on the assumption of the constant heterogeneity term to ccompute the

predictive premium (even more for large longitudinal dataset - as for the farm insurance dataset used in the
published papers).



Empirical analysis

We can indeed verify empirically the values of the predictive premiums (as a percentage of the average
frequency).

0.0% (1)

179.8 % (6)

2 s5- 0.0% (2) 150.6 % (43) 197.0% (115)

3

g4 0.0% (1) 203.8% (180) 160.5 % (410)

5

2 3- 1471 % (33) 175.3 % (683) 142.2% (1210)
2- 169.1 % (418) 177.2 % (1382) 181.6 % (2341) 114.5 % (3038)
1- 153.9 % (3394 ) 135.6 % (5699 ) 122.8 % (6795) 87.6 % (7276)
0- 93.2% (25078) 103.2 % (21232) 90.9 % (17665 ) 82.2% (15029) 61.7 % (12991)

i 2 3 4 5

Contract nb.



Bonus-Malus scales

BMS are still interesting for actuaries and insurers:

 Advanced panel data models based on random effects, hierachical copulas, etc. cannot be easily used
for ratemaking in practice;

e The penalty structure of BMS are well-known by many insurers, brokers, regulators and insureds, and
easy to explain/understand;

« BMS allow complex penalty structure that might be difficult to implement with classic statistical
models:

o Fast-track for forgiveness (ex: for example: 3-5 years without claim automatically gives the largest
discount);

o Multi-vehicules penalty structure;

o Multi-products penalty structure;

o etc.

e There is a large scientific literature on BMS that can be used.



The challenge with BMS

The problem is not on the BMS itself, but on how BMS can now be estimated with the current
longitudinal/hierarchical data of insurers:

« We do not have to rely on the long-term behaviour of the insureds, based on the heterogeneity
distribution;

« BMS relativities have to be estimated directly with the data;

e Adirect comparison between BMS premiums and data can be done.

Boucher & Inoussa (2014) were the first to be interested in adapting the Bonus-Malus Scales approach to the
new databases of insurers.

In the following slides, a link between the classic GLM approach and the BMS is proposed to better
understand how actuaries can estimated all the BMS parameters.



Using past informations as covariates

Instead of using the bayesian approach, with an unknown risk profile that be updated after each contract,
many insurers directly include past claims information as covariate in the p mean parameter of the count

distribution.

For example, for an insured with 1T’ years of experience, some actuaries use:

i T = €XpP (XZ(,TB + Y1nir-1 + Yeny 2+ .. +’71nz',1)

Sum of past claims

This means a large amount of parameters 71, . . ., Y.. (One of) the purpose of statistics is to summarize
information. One classic approach is instead to use a summary of past claims. For example, we can use:

pip = exp(Xi, 6+ ;)

where n; o is the number of all past claims for insured 7.



New insureds and insureds with experience

The problem with the last approach is that we cannot differentiate new insureds from insureds with many
years of experience: both types of insureds have n; o = 0. Instead, we should use:

Wi = exp(Xg’Tﬁ + Y1Kie + Y2Mie)
where, for insured 1:

T-1 : .
° Nje = thl n;: is the number of all past claims;

* Kio = Z:ll I(n;; = 0) is the sum of policy periods without claims.

This allows us to differentiate new insureds from insureds with many years of experience.

This model is called the Kappa-N model.



Fitting the Kappa-N model

The Kappa-N model can be used with any distribution. The Poisson Kappa-N and the NB2 Kappa-N are
presented below:

Add past information

data <- df2 %>%
mutate(ind.0 = (NbClaims == 0)) %>%
arrange(policy_no, veh.num, renewal_date) %>%
group_by(policy_no, veh.num) %>%
mutate(contract.no = row_number(),
past.n = cumsum(NbClaims)- NbClaims,
past.kappa = cumsum(ind.0) - ind.0) %>%
ungroup()

Split data

db.train <- data %>% filter(Type=='TRAIN')
db.test <- data %>% filter(Type=='TEST')



Poisson Kappa-N and NB2 Kappa-N models

Fitting models

score.nbclaim <- as.formula(NbClaims ~ car_color + need_glasses + territory + language + food + pas:
Poisson <- glm(score.nbclaim, family=poisson(link=1log), data=db.train)
nb2 .MASS <- glm.nb(score.nbclaim, data=db.train)



Poisson Kappa-N and NB2 Kappa-N

models

(Intercept)
car_colorRed
need_glassesYes
territorySuburban
territoryUrban
languageFrench
foodVegan
foodVegetarian
past.n

past.kappa

~ ~

a

Poisson

-1.5651
-0.025]1
0.1001
-0.0734
-0.1174
0.2284
-0.0047
-0.0272
0.1976
-0.1101
NA

NB2(MASS)

-1.5641
-0.0257
0.1006
-0.0730
-0.1180
0.2290
-0.0062
-0.0283
0.2004
-0.1101
2.4866




Estimated parameters

The mean parameter of the Poisson and the NB2 distribution was defined as:

it = eXP(Xf,tﬁ + Y1Kie + Y2Mie)

Results for the fictive car insurance dataset:

For the Poisson distribution, we obtained:

d ’71 = 0.1976,
. 3,=—0.1101.

Results for the Farm dataset (in the published papers):

For the Poisson distribution, we obtained:

. 7, =0.0935;
. 7, =—0.0238.



Rewriting the model

We can rewrite the Kappa-N model with the following steps:

1- Instead of using K;.« as a covariate, we used a slightly modified transformation: 100 — & .

» The negative value in front of k; « helps to understand that high values of contracts without claim

should decrease the premium;
e The value of 100 will be used as the entry level for insureds without experience.

Nt = exp( X1,B" + 71(100 = r5.) + 12

2- We factor out the parameter ~; to obtain:

Ait = €xp (Xz{tﬂ* + 7 (100 — Kio T ﬁ”z-)) = exp (XZ' B+ 71£i,t>
) 71 )

where the parameter ¢, ; = (100 — Kje+ %nz.) can be seen as a claim score.



Penalty structure

With the mean parameter:

Ait = €xp (X;tﬁ* + qflﬁi,t), where £; ; = (100 — Kio+ Eni,.)
Y fyl

Details

1) For new insured, without insured experience, we have n; , = 0, and Kie = 0, which means an initial claim
score of 100.

2) Each year without claim decrease his claim score by 1.

3) Each claim increases the claim score by ¥ = % = 3.93, called the jump-parameter:
1

e One claim equals =~ W years without claims;

o U = 8‘}%5’ = 1.79 for the fictive car insurance dataset.




Penalty structure (2)

With the mean parameter:

Ait = €xp (X;tﬁ* + 7161-,,5), where £; ; = (100 — Kio+ Eni,.)
Y fyl

Details

4) The penalty for a claim is equal to:
« exp(0.1101 x 1.79) — 1 = 21.78% for the fictive car insurance dataset.

5) Each year without claim decreases the premium by:

e 1 —exp(—0.1101) = 10.4% for the fictive car insurance dataset.



Problem of the Kappa-N models

One obvious problem with the Kappa-N models is the possible extreme values of 4; ;. For the fictive dataset,
we have:

1) Maximum value of n; «: 8.
2) Maximum value for ¢; ;: 114.4

e Resultsin a premium almost 4 times higher than the premium for a new insured,;
e It would take 14 consecutive years without claim for this insured to have the same premium as a new

insured.

3) Minimum value for ¢; +: 96.

e Discount of 35%.



A possible solution

One solution could be to limit the value of ¢; ; in the modeling.
For example, we can limit ¢; 7 to be between 95 and 110, meaning £min = 98 and {0, = 105:
e Instead of ¥; 7 = 114.4, an insured would have ¢; 7 = 105

o ..but it would however still need him 14 consecutive years without claim to reach level 100!

e Instead of ;7 = 96, the insured without claim would have ¢; 7 = 98

o ..but it means that he could claim without having any surcharge!



A better solution

Instead of:

e limiting the claim score ¢;; for the current contract¢ =T,

« we could limit the value of the claim score ¢;; but for all past contractst =1,...,T.

Simple illustration

What happens to the claim score with a jump parameter ¥ = 3.

Number of claims at time (t)

1 2 5 6 7 8
Insured 1 0 0 0 O O O O
Insured 2 2 0 1 0 0 0 2 0
Insured 3 4 1 2 0 O O O O

10




How to limit the claim score
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Kappa-N model becomes a BMS model

By limiting the claim score for all past contracts, the Kappa-N model becomes a Bonus-Malus Scale Model.
The claim score of insured ¢ at time T, ¢; 7, can now be seen as a BMS level.

A BMS without limits £, — —00 and e — 00 is a Kappa-N model.

Joint Distribution of all contracts

The joint distribution can now be expressed as the product of simple count distributions (with mean that
depends on the Bonus-Malus level):

&,2] X ... X PI‘[NZ',T = nz‘,Twz‘,T]

PI‘[Ni,l = MNi1y--- ,Nz‘,T == ni,T] = PI‘[NZ‘,l = ni,l\&-,l] X PI‘[NZ',Q = N2
where the markovian property of the BMS level can be used with:

iy = min(max(£;t1 — I(nit—1 = 0) + ¥ X N1, Lmin), maz)



Impact of the structural parameters of the BMS

To summarize, the BMS level ¢; ; depends on:
1- The jump parameter ¥;

2- The minimum limit £,n;

3- The maximum limit £,,,,..

Changing one of these three structural parameters will also changes the value of ¢; ;, which means that the
mean parameter of the count distribution of IV; ; will change.

BMS level path

It is important to understand that for each combinaison of the structural parameters W, £, and £pqz, the
whole experience of each insured must be recomputed to obtain the correct BMS levels ¢; ;.



Impact: example

Choice of structural parameters

With ¥ =3¢, . =95 ¢, = 110:
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Impact: example

Choice of structural parameters

With® =4.¢, . =92 ¢ = 112:
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Parameters inference

Regresion parameters

For any insurance database, when the structural parameters are set, we can now compute the Bonus-Malus
level of all contracts of each insured. We then apply a simple regression model with mean:

Mg = exp( X[ B + by )
and estimate the parameters (3, y; and other parameters from the distribution (a dispersion parameter for

example). The classic GLM package can be used for a Poisson, and the MASS package for the negative
binomial.

Structural parameters

When the structural parameters ¥, ¢,,.;,, and £,,,,.. are selected, it is easy to estimate the parameters of the
BMS model.

But finding the best values of ¥, ¢,,,;,, and £,,,,. cannot be done directly. Even if we limit the strutural
parameters to be integer, computing all possibilities might be too long.



For small dataset

For a small dataset such as the one used in this presentation, we can simply test all possibles values of the
structural parameters.

Psi <- seq(1, 10, length.out = 10)

ell.min <- seq(96, 99, length.out = 4)

ell.max <- seq(101, 120, length.out = 20)

grid <- expand.grid(ell.max = ell.max, ell.min = ell.min, Psi = Psi)
grid$l1Poisson <- NA

grid$11INB2 <- NA

for(ii in 1:nrow(grid)){

data <- set.BMS_levels(ell.max=grid[ii,1], ell.min=grid[ii,2], Psi=grid[ii,3], db.train)
PoissonBMS <- glm(score.nbclaim, family=poisson(link=1log), data=data)
nb2BMS <- glm.nb(score.nbclaim, data=data)

grid[ii, 4] <- logLik(PoissonBMS)

grid[ii,5] <- logLik(nb2BMS)
t
print(grid[grid$11Poisson==max(grid$11Poisson),])
print(grid[grid$11INB2==max(grid$11NB2),])

The best BMS model, for the Poisson and the NB2 distributions, is £ine: = 104, £ = 96, ¥ = 2.



Proposed algorithm

For real insurance data, testing all possibilities is too long. A proposed iterative technique based on profile
log-likelihood works as follow:

Initial step:

We set K(O) — —oo and E(O) — 00 (this represents the Kappa-N model). We can then directly estimate a

min max

first estimate of the jump ¥ = ¥,

Forstepk=1,...:

e With & = ¥ -1 and 4,,;, = Zg:;ll), we estimate all possible BMS models for any value of £,,,,..

o We choose zﬁ,’iﬁw = £, from the best BMS model.

. _ k . .
e With¥ = ¥k gndye, . — Eq(nzw we estimate all possible BMS models for any value of £,,;,.

o We choose ff_rlfz)n = ¥min from the best BMS model.
o With lipaz = zﬁ,’f@ and £pin = Zfszn we estimate all possible BMS models for any value of W.

o We choose ¥*) = ¥ from the best BMS model.

We repeat these steps until we reach convergence.



Results obtained with the fictive dataset (Poisson)

Poisson Poisson Kappa-N Poisson BMS (104/96/+2)

(Intercept) -1.5186 -1.5651 -12.3672
car_colorRed -0.0215 -0.025T -0.0217
need_glassesYes 0.1213 0.1001 0.0986
territorySuburban -0.0792 -0.0734 -0.0745
territoryUrban -0.1242 -0.M74 -0.1167

languageFrench 0.2584 0.2284 0.2275

foodVegan -0.1015 -0.0047 -0.0070
foodVegetarian -0.1963 -0.0272 -0.0268
K NA 0.1976 0.1180

Yo NA -0.1101 NA




Analyzing the model

Expected number of claims

The mean of the BMS model can then be expressed as:
Ait =€xp (Xz{,tﬁ* + ’71£i,t> = exp (Xz{,tﬁ* + 71£i,t> =TI x r(£y)
where:

o II;; = exp (X;tﬁ*) is the base premium that depends on covariates for the contract t of insured ¢,

. r([z-,t) = exp('ylfi,t) is the BMS relativity that depends on the BMS level E,-,t the contract t of insured .

Prior and posterior ratemaking

As opposed to classic BMS calibration, all parameters of the mean are estimated simulatenously:

i) the B from the covariates (for the 1I; ; component),
i) the «; for the predictive ratemaking (for the r(ﬁi,t) component).



Graph of BMS relativities
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Fitting and predictive quality

Log-likelihood (Training set)

A correction, such as the AIC/BIC, must be applied for each model because they do not have he same

number of parameters.

Standard Kappa-N BMS
Poisson -44,858.44 -44,461.88 -44.4477.66
Negative Binomial 2 -44.718.43 -44 352.62 -44,340.49
Logarithmic Score (Test set)
Standard Kappa-N BMS
Poisson 19,319.22 19,169.51 19,160.35
Negative Binomial 2 19,549.53 19,539.31 19,542.47




Distribution over the BMS levels (training dataset)
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Distribution over the BMS levels (test dataset)
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Part | - Ratemaking with Cross-Section Data

e Basic count distributions
» Credibility Models and Predictive Ratemaking
e Bonus-Malus Scales Models

Part Il - Ratemaking with Panel Data

e Families of Count Distributions
e Observed Predictive Premiums
e Bonus-Malus Scales Models Revisited

Part Ill - Actual Challenges

e Entry levels and new insureds
e Penalties and a priori risks
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Abstract

In recent papers, Bonus-Malus Scales (BMS) estimated using data have been considered as an alternative to
longitudinal data and hierarchical data approaches to model the dependence between different contracts
for the same insured. Those papers, however, did not discuss in detail how to construct and understand
BMS models, and many of the BMS’s basic properties were not discussed. The first objective of this paper
is to correct this situation by explaining the logic behind BMS models and by describing those properties.
More particularly, we will explain how BMS models are linked with simple count regression models that
have covariates associated with the past claims experience. This study could help actuaries to understand
how and why they should use BMS models for experience rating. The second objective of this paper is to
create artificial past claims history for each insured. This is done by combining recent panel data theory
with BMS models. We show that this addition significantly improves the prediction capacity of the BMS
and provides a temporary solution for insurers who do not have enough historical data. We apply the BMS
model to real data from a major Canadian insurance company. Results are analysed deeply to identify
specific aspects of the BMS model.



Joint distribution

We already mentioned that the joint distribution of all claim counts of each insured 7 =1,...,m can be
expressed as:

PI'[NZ',l =M1y 7Ni,T = ni,T] = PI'[NZ',l = n’i,lwi,l] X PI'[NZ',Q = ni,2|€i,2] X ... X PI'[NZ'7T = ni,Twi,T]
where the markovian property of the BMS level can be used with:

¢,y = min(max({; ;1 — I(nit—1 =0) + ¥ X 141, lnin), bmaz)

New insureds

We have a problem with Pr[Ni,l = ni,l\li,l]: thos insureds at time t = 1 are not always new drivers, but often
new insureds in the company or new insured in the database. For the first contract at ¢t = 1, we do not have

£; o nor m; .
The major problem with past claims rating refers to the availability of past information:

e Insurers are not able to obtain past information from other insurers;
e Insurers are also often unable to use information from their own old contracts (modification of their

operating systems, when past databases are simply erased or are no longer useful, etc.).



Timeline

The figure bellow illustrates the situation, where the timeline is divided in two sections:

i) The Past Claims Information section: the time period where past claims information is available to
compute n; , and K; o, Or the Bonus-Malus level.

i) The Artificial Information section, from the date of the first insurance contract of insured 7) to 7-1.( ).

When the available past claims information is short, experience rating models might be difficult to estimate
because the amount of information needed to compute the bonus-malus level, for example, is too small.

TIL(o) DRI DR (1) .« e DR (2)

N AN _/
~ ~

Artificial Information Past Claims Information



Artificial claim history

In the actuarial literature, two methods have been proposed to generate an artificial past claims history:

1- Average outcome

The first method is to suppose that all unobserved years of experience of insured 7 involve an average
expected number of claims f,.

This implies a corrected version of n; , and k; , for each insured, and consequently a new value of ¢; ; for all £.

2- Most probable outcome

The second method is to suppose that each unobserved year of experience would be considered a year
without claims, simply because is the most probable outcome.

This assumption simplifies greatly the computation and the estimation of the BMS because it means using
the first method with i, = 0 for all insureds.
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Article

Multiple Bonus—Malus Scale Models for Insureds of

Different Sizes

Jean-Philippe Boucher

Departement de Mathematiques, Université du Québec a Montréal, Montréal, QC J3H 5T6, Canada;
boucher.jean-philippe@ugam.ca

Abstract: How to consider the a priori risks in experience-rating models has been questioned in the
actuarial community for a long time. Classic past-claim-rating models, such as the Buhlmann-Straub
credibility model, normalize the past experience of each insured before applying claim penalties.
On the other hand, classic Bonus-Malus Scales (BMS) models generate the same surcharges and the
same discounts for all insureds because the transition rules within the class system do not depend on
the a priori risk. Despite the quality of prediction of the BMS models, this experience-rating model
could appear unfair to many insureds and regulators because it does not recognize the initial risk
of the insured. In this paper, we propose the creation of different BMSs for each type of insured
using recursive partitioning methods. We apply this approach to real data for the farm insurance
product of a major Canadian insurance company with widely varying sizes of insureds. Because the
a priori risk can change over time, a study of the possible transitions between different BMS models is
also performed.

Keywords: claim count; ratemaking; bonus-malus systems; recursive partitioning




Size of each Farm

Remember the predictive expected premium for the Poisson-gamma model:

T-1
a + Z _1 Nt
E[Ni,T|ni,1a e ,ni,T—l,Xz‘,T] = Air tT—ll :
o+ thl )\'L',t

or the weights in the Buhlmann-Straub model, where the random variables were normalised by the a priori

. N;
risk: V¢ = 77—
? it

That means that the experience of an insured is normalized when it is used in predictive ratemaking. BMS
models does not do that: the penalty for a claim does not depend on the a priori risk.

Farm insurance

This caused a problem in farm insurance where large farms can be penalized twice:

e Intheir a priori risk;
e With the BMS structure (because they claim more).



Bonus-Malus vs. size of the farm
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Bonus-Malus vs. size of the farm
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Partitioning the portfolio

A proposed solution to deal with farms of different sizes was to divide the portfolio into groups. Groups of

farms of similar sizes could be created, and each group would have their own experience-rating model, with
its own a priori rating parameters and its own structural BMS parameters.

Farms could then be more equitably rated, and more correctly rewarded and penalized, as their size would
be directly taken into account when performing past claims rating.

Recursive algorithm

To find the best way to group similar farms, a recursive algorithm was proposed.



Partitioning the portfolio by the size
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Conclusion

 Bonus-Malus Scales models are already in use in many countries;

» Because of how insurance datasets are now constructed, the current way to calibrate BMS has to be
changed;

» We show that iterative GLM approaches can be used to estimate BMS models.

« BMS are really flexible and allows penalty structures that cannot be supposed easily by other models
and distributions;

e Despite its simplicity, it has been shown to out-performm many more advanced models;
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