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On my github page, you can find:

this presentation;
all R script codes used;
the dataframe df2.Rda.

https://github.com/J-PBoucher

Scripts and dataframe available on Github

https://github.com/J-PBoucher/CAS_SanDiego2023
https://github.com/J-PBoucher


library(tidyverse)
library(xaringan)
library(xaringanthemer)
library(kableExtra)
library(DT)
library(dplyr)
library(ggplot2)
library(kableExtra)
library(scales)
library(MASS)
library(gamlss)

load('Data/df2.Rda')

R Preamble (to replicate the results)



Part I - Ratemaking with Cross-Section Data
Basic Count Distributions;

Credibility Models and Predictive Ratemaking;

Bonus-Malus Scales Models.

Part II - Ratemaking with Panel Data
Families of Count Distributions;

Observed Predictive Premiums;

Bonus-Malus Scales Models Revisited.

Part III - Actual Challenges
Entry levels and new insureds;

Penalties and a priori risks.

Summary of the presentation



The first part of the presentation is
based on Sections 1-3 of:

J.-P. Boucher (2022). Bonus-Malus Scale Models:

Creating Artificial Past Claims History. Annals of

Actuarial Science, 1-27.

Reference



Farm insurance database (in the published paper)
We used farm insurance data from a major insurance company in Canada;

We were able to use contracts from 2014 to 2019;

Past claims from 1999 to 2014 were available.

Farm data cannot be shared...
Instead, we illustrate our models with fictive car insurance data.

Using the dataframe df2.Rda;

Possible to replicate the results of this presentation;

Available on my github page (reference at the end).

Data used
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policy_no veh.num renewal_date start_date end_date risk_expo freq_payment year_veh sex year_b

8352232 1 2018-03-23 2017-03-23
2018-03-

22
1 1 2013 M 1

8045623 1 2018-07-31 2017-07-31
2018-07-

30
1 1 2012 M

8137137 1 2018-02-12 2017-02-12
2018-02-

11
1 12 2012 F 1

6590411 1 2012-05-08 2011-05-08
2012-05-

07
1 12 2007 M

6652522 1 2014-05-24
2013-05-

24

2014-05-

23
1 1 2009 F

6926801 1 2017-06-01 2016-06-01
2017-05-

31
1 1 2009 M 1

Classic insurance database



Basic statistics

Nb. of Claims Nb. of obs. % of obs. Total exposition % of exposition

0 105,050 83.8% 100,614 83.5%

1 17,734 14.1% 17,246 14.3%

2 2,339 1.9% 2,305 1.9%

3 240 0.2% 237 0.2%

4 25 0.0% 25 0.0%

5 1 0.0% 1 0.0%

6 1 0.0% 1 0.0%

Mean 0.185

Variance 0.203

Summary of the dataset



Many fictional covariates are available in the dataframe. For illustration, we will however only focus on 4

(fictional) covariates to model the number of claims:

Column Values

car_color ("Other", "Red")

territory ("Rural", "Suburban", "Urban")

language ("English", "French")

food ("Other", "Vegan", "Vegetarian")

Available covariates



Possible techniques
Minimum-bias techniques (...old);

Generalized linear models and GLM-net (Ridge and Lasso);

Random Forests;

Neural Networks;

etc.

Literature review (from actuarial sciences):
Denuit, M., Hainaut, D. & Trufin, J. (2019), Springer Nature:

Effective statistical learning methods for actuaries I: GLMs and Extensions,

Effective statistical learning methods for actuaries II: Tree-Based Methods and Extensions,

Effective statistical learning methods for actuaries III: Neural Networks and Extensions,

Wüthrich, M. V., & Merz, M. (2023). Statistical foundations of actuarial learning and its applications.

Basis of covariates selection



Poisson distribution
Commonly, the starting point for the modeling the number of claims is the Poisson distribution:

With , this form of ratemaking is usually called a priori ratemaking. In this framework, the actuary

does not consider the past claim experience of the insureds.

Alternatives
To correct the equidispersion of the Poisson or other problems, the most popular alternatives to the Poisson

are:

Negative binomial (NB2 or NB1);

Poisson-inverse gaussian (PIG2 or PIG1);

Poisson-lognormal (PLN2 or PLN1);

Zero-Inflated distributions.

Prior ratemaking

Pr[Ni = ni|Xi] =  , with   λi = exp(X ′
i
β).

λ
ni

i
e−λi

ni!

E[Ni] = λi



Conditional expected value
The insurer is also interested in a premium that considers past contracts:

Problem with cross-section data
We suppose an independance between each line of the dataset;

We do not directly observe the claim experience of an insured for his 2nd, 3rd, ..., contracts.

Classic assumption (Bühlmann, 1967)
We suppose that each insured has his own random heterogeneity component (usually noted ) that affects

all his insurance contracts.

Predictive ratemaking

E[Ni,T |ni,1, . . . , ni,T−1,Xi,(1:T−1)].

Θ



If we suppose that , with , we have:

Negative binomial 2 distribution
It can be shown that the Poisson-gamma leads to the NB2, having the following probability function:

Moments

The NB2 has and expected value of  and a variance , which means that the NB2

allows for overdispersion.

Gamma heterogeneity

Ni|Θ = θ ∼ Poisson(λiθ) Θ ∼ gamma(α, τ = α)

Pr[Ni = n] = ∫
∞

0

θα−1e−αθdθ
(λiθ)ne−λiθ

n!

αα

Γ(α)

Pr[Ni = n] = ( )( )
α

( )
n

α + n − 1

n

α

λi + α

λi

λi + α

E[Ni] = λi V ar[Ni] = λi +
λ2
i

α



The addition of an heterogeneity term leads to the famous credibility models of Buhlmann or Buhlmann-

Straub (exam C, or STAM).

Predictive premium
It becomes possible to express the predictive premium based on the past number of claims , and the past

values of  :

Even if the actuary cannot directly observe the average predictive value with the data, he is able to compute

predictive premiums at the cost of making the constact random effect assumption.

Bayesian approach

n

λ

E[Ni,T |ni,1, . . . , ni,T−1,Xi,T ] = λi,T

α +∑
T−1
t=1 ni,t

α +∑
T−1
t=1 λi,t



Split data

db.train <- df2 %>% filter(Type=='TRAIN')
db.test <- df2 %>% filter(Type=='TEST')

Poisson GLM

score.nbclaim <- as.formula(NbClaims ~ car_color + need_glasses + territory + language + food + offs
Poisson   <- glm(score.nbclaim, family=poisson(link=log), data=db.train)

R scripts: Poisson GLM



Packages to use
You can directly estimate the parameters by maximum likelihood by maximising the log-probability, or you

can use R packages. The MASS package (or the gamlss, for example) can be used to estimate the

parameters of a NB2 distribution:

library(MASS)

nb2.MASS <- glm.nb(score.nbclaim, data=db.train)

R scripts: Negative Binomial 2



Comparison

Poisson NB2

(Intercept) -1.5186 -1.5173

car_colorRed -0.0215 -0.0212

need_glassesYes 0.1213 0.1216

territorySuburban -0.0792 -0.0789

territoryUrban -0.1242 -0.1245

languageFrench 0.2584 0.2586

foodVegan -0.1015 -0.1027

foodVegetarian -0.1963 -0.1971

` ` NA 2.1244

Results

α



Even if it is not the objective of this presentation, we can compare the fit and the prediction quality of the
Poisson and the Negative Binomial 2. For the training set, the loglikelihood is used and a logarithmic score
($LS$) is used on the test set:

Computation

db.test$pred <- predict(Poisson, newdata=db.test, type="response") 
logs.Poisson <- -sum(dpois(db.test$NbClaims, db.test$pred, log=TRUE))
ll.Poisson <- logLik(Poisson)

db.test$pred <- predict(nb2.MASS, newdata=db.test, type="response") 
alpha <- 1/nb2.MASS$theta
tau <- 1/nb2.MASS$theta
ll <- lgamma(db.test$NbClaims + alpha) - lgamma(alpha) - lgamma(db.test$NbClaims+1) + alpha*log(tau)
logs.NB2 <- -sum(ll)
ll.NB2 <- logLik(nb2.MASS)

Prediction quality on the test set

LS = −
m

∑
i=1

log(Pr(Ni = ni|Xi))



Results

Log-likelihood (Train) Logarithmic Score (Test)

Poisson -44,858.44 19,319.22

Negative Binomial 2 -44,718.43 19,549.53

Comparison of models



Distribution of the heterogeneity
Based on the baysian model, by fitting a Negative Binomial distribution (NB2) on claim counts data, we

know that the heterogeneity of our portfolio  is following a gamma( , ).

Predictive premiums

The predictive premium of an insured with  past claims, and  as the sum of

past a priori premiums, is equal to:

In STAM exam, we were able to analyse in details this equation.

Predictive ratemaking

Θ α = 1.6654 τ = α = 1.6654

ni,∙ = ∑
T−1
t=1 ni,t λi,∙ = ∑

T−1
t=1 λi,t

E[Ni,T |ni,1, . . . , ni,T−1,Xi,T ] = λi,T = λi,T

α +∑
T−1
t=1 ni,t

α +∑
T−1
t=1 λi,t

1.6654 + ni,∙

1.6654 + λi,∙



However, even if the Poisson-gamma model is theoretically correct, and even studied in the preliminary

exams, this predictive rating approach is almost never used in practice:

There is not weight in . That means that a claim from 10 or 20 years ago will have the same

impact of the premium that an accident that was claimed last year;

The value of  depend on the estimated values of , and should then be computed each year.

That means that insurers should keep all past covariates , from  of all their insureds. For

new insureds, this is even more complicated.

Practical use

∑
T−1

t=1
ni,t

∑
T−1

t=1 λi,t β

Xi,t t = 1, … , T



To compute predictive premiums, actuaries have created Bonus-Malus Scales (BMS) models. BMS are class

systems where the insured's level  increases or decreases only by the number of claims.

Structure of the BMS (example with 6 levels)

Level Relativities

6 1.296

5 1.197

4 1.141

3 1.017

2 0.986

1 0.879

Bonus-malus scales

ℓ



A BMS is defined by its number of levels and by its transition rules. If we suppose a BMS with  levels (from 1

to 6), we can than create a BMS having the following rules:

A new insured has an entry level ;

The BMS level of an insured without claim will be lowered by 1 (-1);

The BMS level of an insured will increase by the number of claims times 2 (+2).

We then can summarize the transition rule system as:

Level at time t+1, if x claims

Starting Level (time t) x=0 x=1 x=2 x>3

1 1 3 4 6

2 1 3 5 6

3 2 4 6 6

4 3 5 6 6

5 4 6 6 6

6 5 6 6 6

Transition rules

6

1



This means that for a specific distribution, for example a Poisson or a NB2 distribution, it becomes possible

to construct the transition matrix from time  to time .

Level at time t+1

Level at time t 1 2 3 4 5 6

1 Pr(N=0) 0 Pr(N=1) 0 Pr(N=2) Pr(N>2)

2 Pr(N=0) 0 0 Pr(N=1) 0 Pr(N>1)

3 0 Pr(N=0) 0 0 Pr(N=1) Pr(N>1)

4 0 0 Pr(N=0) 0 0 Pr(N>0)

5 0 0 0 Pr(N=0) 0 Pr(N>0)

6 0 0 0 0 Pr(N=0) Pr(N>0)

Transition matrix

t t + 1



Covariates and risk characteristics
We can use the dataset of this example. We suppose an insured with some specific risk characteristics, for

example, the insured might drive a black car, be an English speaker, be vegan, etc.

We will suppose a Poisson distribution, this insured has the following a priori premium: .

Heterogeneity
For simplicity, we will suppose two kinds of drivers, meaning the following distribution for :

Proportion ` ` ` `

Good driver 66.7% 0.75 0.1899

Bad driver 33.3% 1.50 0.3798

Calibration of the BMS

λ = 0.2532

Θ

θ λθ



Good driver (0.1899)

82.7% 0.0% 15.7% 0.0% 1.5% 0.1%

82.7% 0.0% 0.0% 15.7% 0.0% 1.6%

0.0% 82.7% 0.0% 0.0% 15.7% 1.6%

0.0% 0.0% 82.7% 0.0% 0.0% 17.3%

0.0% 0.0% 0.0% 82.7% 0.0% 17.3%

0.0% 0.0% 0.0% 0.0% 82.7% 17.3%

Bad driver (0.3798)

68.4% 0.0% 26.0% 0.0% 4.9% 0.7%

68.4% 0.0% 0.0% 26.0% 0.0% 5.6%

0.0% 68.4% 0.0% 0.0% 26.0% 5.6%

0.0% 0.0% 68.4% 0.0% 0.0% 31.6%

0.0% 0.0% 0.0% 68.4% 0.0% 31.6%

0.0% 0.0% 0.0% 0.0% 68.4% 31.6%

With the mean parameter of the Poisson distribution, it becomes possible to compute the transition matrix

for both insured:

Transition matrix for each type of drivers



Good driver (0.1899)

57.7% 12.1% 14.6% 6.7% 5.8% 3.2%

57.7% 12.1% 14.6% 6.7% 5.8% 3.2%

57.7% 12.1% 14.6% 6.7% 5.8% 3.2%

57.7% 12.1% 14.6% 6.7% 5.8% 3.2%

57.7% 12.1% 14.6% 6.7% 5.8% 3.2%

57.7% 12.1% 14.6% 6.7% 5.8% 3.2%

Bad driver (0.3798)

24.0% 11.1% 16.2% 14.6% 17.1% 17.1%

24.0% 11.1% 16.2% 14.6% 17.1% 17.1%

24.0% 11.1% 16.2% 14.6% 17.1% 17.1%

24.0% 11.1% 16.2% 14.6% 17.1% 17.1%

24.0% 11.1% 16.2% 14.6% 17.1% 17.1%

24.0% 11.1% 16.2% 14.6% 17.1% 17.1%

The long-term distribution of insured within the levels of the BMS can also be computed, where the initial

BMS level at time  does not have any impact.

Stationnary matrix for each type of drivers

t = 1



Posterior distribution
Knowing the a priori distribution of the heterogeneity , and the stationary distribution within the levels of

the BMS for all types of drivers, we can compute the posterior distribution of , conditional on the level :

Conditional expectation
With the posterior distribution of , the BMS relativity of each level can be computed with the conditional

expectation:

BMS Relativities

Θ
Θ ℓ

Pr[Good driver|L = ℓ] =

= 1 − Pr[Bad driver|L = ℓ]

Pr[L = ℓ|Good driver] Pr[Good driver]

Pr[L = ℓ|Good driver] Pr[Good driver] + Pr[L = ℓ|Bad driver] Pr[Bad driver]

Θ

rℓ = E[Θ|L = ℓ] = 0.75 × Pr[Good driver|L = ℓ] + 1.50 × Pr[Bad driver|L = ℓ]



Simple calculations with our numerical example lead to:

BMS Level

1 2 3 4 5 6

Good driver 82.8% 68.6% 64.3% 47.9% 40.4% 27.2%

Bad driver 17.2% 31.4% 35.7% 52.1% 59.6% 72.8%

BMS relativity 87.9% 98.6% 101.7% 114.1% 119.7% 129.6%

Results



The results can be generalized with continuous heterogeneity, where it can be shown that BMS relativities

are computed using:

where:

 is the prior heterogeneity distribution;

 is the  line component of , the stationary distribution of insured of mean .

Computation of relativities

rℓ =    , for ℓ = 1, . . . , ℓmax.
∫

∞

0 θΠℓ(λθ)g(θ)dθ

∫
∞

0 Πℓ(λθ)g(θ)dθ

g(θ)
Πℓ(λθ) ℓ Π(λθ) λθ



Characteristics of the BMS
To calculate the relativities, the actuary must select the characteristics of the BMS. Different choices will lead
to different values of relativities :

The maximum number of levels  of the BMS;
The value of the penalty for each claim, i.e. the penalty structure of the BMS (ex: -1/+2);
Other transition rules (for example: 3-5 years without claim automatically gives the largest discount);
The entry level for new insureds.

Selection of the best BMS
A variety of methods has been developed in the scientific literature to select the best BMS:

The coefficient of variation;
The mean-square error of prediction;
The elasticity of the BMS.

Summary of the BMS

rℓ, ℓ = 1, . . . , ℓmax

ℓmax



Denuit, M., Maréchal, X., Pitrebois, S., & Walhin, J. F.

(2007). Actuarial modelling of claim counts: Risk

classification, credibility and bonus-malus systems.

John Wiley & Sons.

Lemaire, J. (1995). Bonus-malus systems in

automobile insurance (Vol. 19). Springer science &

business media.

For more details
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Insureds (or even vehicles) are observed over time. Here, the dataframe df2.Rda contains 25,078 vehicles

each observed for 5 years.

policy_no veh.num renewal_date start_date end_date risk_expo freq_payment year_veh sex year_b

6000274 1 2011-02-03
2010-02-

03

2011-02-

02
1.0 12 2000 F

6000274 1 2012-02-03 2011-02-03
2012-02-

02
1.0 12 2000 F

6000274 1 2013-02-03
2012-02-

03

2013-02-

02
1.0 12 2000 F

6000274 1 2014-02-03
2013-02-

03

2014-02-

02
1.0 12 2000 F

6000274 1 2015-02-03
2014-02-

03

2014-12-

28
0.9 12 2000 F

6000517 1 2011-04-11 2010-04-11
2011-04-

10
1.0 12 2006 M 1

Actual insurance database



Families of models
We have to suppose a form of dependance between all contracts of the same insured/vehicle. For count
distributions, panel data modeling admits 3 families (see Molenberghs & Verbeke, 2005):

Transition models (for example: time series for count data);
Marginal approach (for example: Generalized Estimating Equations - GEE);
Conditional approach with random effects.

Claim count for panel data



General form
In actuarial science, the conditional approach is the most popular approach. It that can be seen as a

generalization of the heterogeneity approach seen earlier:

The Poisson-gamma model revisited
A conditional Poisson distribution, with gamma random effects leads to the multivariate negative binomial

distribution (MVNB), a generalization of the NB2 distribution:

Conditional approach

Pr[Ni,1 = ni,1, . . . ,Ni,T = ni,T ] = ∫
DΘ

(
T

∏
t=1

Pr[Ni,t = ni,t|θ]) g(θ)dθ.

Pr[Ni,1 = ni,1, . . . ,Ni,T = ni,T ] = (
T

∏
t=1

) ( )
α

(
T

∑
i=1

λi,t + α)
−∑T

t=1 ni,t

.
(λi,t)

ni,t

ni,t!

Γ(∑T

t=1 ni,t + α)

Γ(α)

α

∑
T

i=1 λi,t + α



As for cross-section data, we are interested to compute the predictive premium. The predictive premium of

an insured with  past claims, and  as the sum of past a priori premiums, is equal to:

This result is similar to what we obtained for the predictive premium of a NB2 distribution.

Same problems

For the same reasons why the NB2 was not used in practice (no weight in , and the need to use

past , for example), another approach has to be used in practice.

As before, by knowing the distribution of the random effects , the Bonus-Malus Scale models can be an

interesting solution...

Posterior ratemaking

∑
T−1
t=1 ni,t ∑

T−1
t=1 λi,t

E[Ni,T |ni,1, . . . , ni,T−1,Xi,T ] = λi,T .
α +∑

T−1
t=1 ni,t

α +∑
T−1
t=1 λi,t

∑
T−1
t=1 ni,t

λi,t

Θ



Even if the situation is similar, cross-section data and panel data models are not the same.

Joint distribution
The joint distribution for all the contracts of the same insured can be rewritten as:

That means that the distribution the predictive distribution  is already used in

the modeling and thus, a predictive premium is already computed in the underlying model.

Assumption
We do not need to only rely on the assumption of the constant heterogeneity term to ccompute the

predictive premium (even more for large longitudinal dataset - as for the farm insurance dataset used in the

published papers).

Predictive distribution

Pr[Ni,1 = ni,1, . . . , Ni,T = ni,T ] = Pr[Ni,1 = ni,1] × Pr[Ni,2 = ni,2|ni,1] × … × Pr[Ni,T = ni,T |ni,1, … , ni,T−1]

Pr[Ni,t = ni,t|ni,1, … , ni,t−1]



We can indeed verify empirically the values of the predictive premiums (as a percentage of the average

frequency).

Empirical analysis



BMS are still interesting for actuaries and insurers:

Advanced panel data models based on random effects, hierachical copulas, etc. cannot be easily used
for ratemaking in practice;
The penalty structure of BMS are well-known by many insurers, brokers, regulators and insureds, and
easy to explain/understand;
BMS allow complex penalty structure that might be difficult to implement with classic statistical
models:

Fast-track for forgiveness (ex: for example: 3-5 years without claim automatically gives the largest
discount);
Multi-vehicules penalty structure;
Multi-products penalty structure;
etc.

There is a large scientific literature on BMS that can be used.

Bonus-Malus scales



The problem is not on the BMS itself, but on how BMS can now be estimated with the current
longitudinal/hierarchical data of insurers:

We do not have to rely on the long-term behaviour of the insureds, based on the heterogeneity
distribution;
BMS relativities have to be estimated directly with the data;
A direct comparison between BMS premiums and data can be done.

Boucher & Inoussa (2014) were the first to be interested in adapting the Bonus-Malus Scales approach to the
new databases of insurers.

In the following slides, a link between the classic GLM approach and the BMS is proposed to better
understand how actuaries can estimated all the BMS parameters.

The challenge with BMS



Instead of using the bayesian approach, with an unknown risk profile that be updated after each contract,

many insurers directly include past claims information as covariate in the  mean parameter of the count

distribution.

For example, for an insured with  years of experience, some actuaries use:

Sum of past claims
This means a large amount of parameters . (One of) the purpose of statistics is to summarize

information. One classic approach is instead to use a summary of past claims. For example, we can use:

where  is the number of all past claims for insured .

Using past informations as covariates

μ

T

μi,T = exp(X ′
i,T β + γ1ni,T−1 + γ2ni,T−2+. . . +γ1ni,1)

γ1, … , γa

μi,t = exp(X ′
i,tβ + γni,∙)

ni,∙ i



The problem with the last approach is that we cannot differentiate new insureds from insureds with many

years of experience: both types of insureds have . Instead, we should use:

where, for insured :

 is the number of all past claims;

 is the sum of policy periods without claims.

This allows us to differentiate new insureds from insureds with many years of experience.

This model is called the Kappa-N model.

New insureds and insureds with experience

ni,∙ = 0

μi,T = exp(X ′
i,T β + γ1κi,∙ + γ2ni,∙)

i

ni,∙ = ∑
T−1
t=1 ni,t

κi,∙ = ∑
T−1
t=1 I(ni,t = 0)



The Kappa-N model can be used with any distribution. The Poisson Kappa-N and the NB2 Kappa-N are

presented below:

Add past information

data <- df2 %>%
  mutate(ind.0 = (NbClaims == 0)) %>%
  arrange(policy_no, veh.num, renewal_date) %>%
  group_by(policy_no, veh.num) %>%
  mutate(contract.no = row_number(),
         past.n = cumsum(NbClaims)- NbClaims, 
         past.kappa = cumsum(ind.0) - ind.0) %>%
  ungroup()

Split data

db.train <- data %>% filter(Type=='TRAIN')
db.test <- data %>% filter(Type=='TEST')

Fitting the Kappa-N model



Fitting models

score.nbclaim <- as.formula(NbClaims ~ car_color + need_glasses + territory + language + food + past
Poisson   <- glm(score.nbclaim, family=poisson(link=log), data=db.train)
nb2.MASS <- glm.nb(score.nbclaim, data=db.train)

Poisson Kappa-N and NB2 Kappa-N models



Poisson NB2(MASS)

(Intercept) -1.5651 -1.5641

car_colorRed -0.0251 -0.0257

need_glassesYes 0.1001 0.1006

territorySuburban -0.0734 -0.0730

territoryUrban -0.1174 -0.1180

languageFrench 0.2284 0.2290

foodVegan -0.0047 -0.0062

foodVegetarian -0.0272 -0.0283

past.n 0.1976 0.2004

past.kappa -0.1101 -0.1101

` ` NA 2.4866

Poisson Kappa-N and NB2 Kappa-N models

α



The mean parameter of the Poisson and the NB2 distribution was defined as:

Results for the fictive car insurance dataset:
For the Poisson distribution, we obtained:

 = ;

 = .

Results for the Farm dataset (in the published papers):
For the Poisson distribution, we obtained:

 = ;

 = .

Estimated parameters

λi,t = exp(X ′
i,tβ + γ1κi,∙ + γ2ni,∙)

γ̂1 0.1976
γ̂2 −0.1101

γ̂1 0.0935
γ̂2 −0.0238



We can rewrite the Kappa-N model with the following steps:

1- Instead of using  as a covariate, we used a slightly modified transformation: .

The negative value in front of  helps to understand that high values of contracts without claim

should decrease the premium;

The value of  will be used as the entry level for insureds without experience.

2- We factor out the parameter  to obtain:

where the parameter  can be seen as a .

Rewriting the model

κi,∙ 100 − κi,∙

κi,∙

100

λi,t = exp(X ′
i,tβ

∗ + γ1(100 − κi,∙) + γ2ni,∙)

γ1

λi,t = exp(X ′
i,tβ

∗ + γ1 (100 − κi,∙ + ni,∙)) = exp(X ′
i,tβ

∗ + γ1ℓi,t)
γ2

γ1

ℓi,t = (100 − κi,∙ + ni,∙)
γ2

γ1
claim score



With the mean parameter:

Details
1) For new insured, without insured experience, we have , and , which means an initial claim

score of 100.

2) Each year without claim decrease his claim score by 1.

3) Each claim increases the claim score by , called the jump-parameter:

One claim equals  years without claims;

 for the fictive car insurance dataset.

Penalty structure

λi,t = exp(X ′
i,tβ

∗ + γ1ℓi,t), where ℓi,t = (100 − κi,∙ + ni,∙)
γ2

γ1

ni,∙ = 0 κi,∙ = 0

Ψ = = 3.93
γ̂2

γ̂1

≈ Ψ

Ψ = = 1.790.1976
0.1101



With the mean parameter:

Details
4) The penalty for a claim is equal to:

 for the fictive car insurance dataset.

5) Each year without claim decreases the premium by:

 for the fictive car insurance dataset.

Penalty structure (2)

λi,t = exp(X ′
i,tβ

∗ + γ1ℓi,t), where ℓi,t = (100 − κi,∙ + ni,∙)
γ2

γ1

exp(0.1101 × 1.79) − 1 = 21.78%

1 − exp(−0.1101) = 10.4%



One obvious problem with the Kappa-N models is the possible extreme values of . For the fictive dataset,

we have:

1) Maximum value of : 8.

2) Maximum value for : 114.4

Results in a premium almost 4 times higher than the premium for a new insured;

It would take 14 consecutive years without claim for this insured to have the same premium as a new

insured.

3) Minimum value for : 96.

Discount of .

Problem of the Kappa-N models

ℓi,t

ni,∙

ℓi,t

ℓi,t

35%



One solution could be to limit the value of  in the modeling.

For example, we can limit  to be between 95 and 110, meaning  and :

Instead of , an insured would have 

...but it would however still need him 14 consecutive years without claim to reach level 100!

Instead of , the insured without claim would have 

...but it means that he could claim without having any surcharge!

A possible solution

ℓi,t

ℓi,T ℓmin = 98 ℓmax = 105

ℓi,T = 114.4 ℓi,T = 105

ℓi,T = 96 ℓi,T = 98



Instead of:

limiting the claim score  for the current contract ,

we could limit the value of the claim score  but for all past contracts .

Simple illustration
What happens to the claim score with a jump parameter .

Number of claims at time (t)

1 2 3 4 5 6 7 8 9 10

Insured 1 0 0 0 0 0 0 0 0 0 0

Insured 2 2 0 1 0 0 0 2 0 1 0

Insured 3 4 1 2 0 0 0 0 0 0 0

A better solution

ℓi,t t = T

ℓi,t t = 1, … , T

Ψ = 3



How to limit the claim score



How to limit the claim score



How to limit the claim score



By limiting the claim score for all past contracts, the Kappa-N model becomes a Bonus-Malus Scale Model.

The claim score of insured  at time , , can now be seen as a BMS level.

A BMS without limits  and  is a Kappa-N model.

Joint Distribution of all contracts
The joint distribution can now be expressed as the product of simple count distributions (with mean that

depends on the Bonus-Malus level):

where the markovian property of the BMS level can be used with:

Kappa-N model becomes a BMS model

i T ℓi,T

ℓmin → −∞ ℓmax → ∞

Pr[Ni,1 = ni,1, . . . , Ni,T = ni,T ] = Pr[Ni,1 = ni,1|ℓi,1] × Pr[Ni,2 = ni,2|ℓi,2] × … × Pr[Ni,T = ni,T |ℓi,T ]

ℓi,t = min(max(ℓi,t−1 − I(ni,t−1 = 0) + Ψ × ni,t−1, ℓmin), ℓmax)



To summarize, the BMS level  depends on:

1- The jump parameter ;

2- The minimum limit ;

3- The maximum limit .

Changing one of these three structural parameters will also changes the value of , which means that the

mean parameter of the count distribution of  will change.

BMS level path
It is important to understand that for each combinaison of the structural parameters  and , the

whole experience of each insured must be recomputed to obtain the correct BMS levels .

Impact of the structural parameters of the BMS

ℓi,t

Ψ
ℓmin

ℓmax

ℓi,t

Ni,t

Ψ, ℓmin ℓmax

ℓi,t



Choice of structural parameters
With :

Impact: example

Ψ = 3, ℓmin = 95, ℓmax = 110



Choice of structural parameters
With :

Impact: example

Ψ = 4, ℓmin = 92, ℓmax = 112



Regresion parameters
For any insurance database, when the structural parameters are set, we can now compute the Bonus-Malus

level of all contracts of each insured. We then apply a simple regression model with mean:

and estimate the parameters ,  and other parameters from the distribution (a dispersion parameter for

example). The classic GLM package can be used for a Poisson, and the MASS package for the negative

binomial.

Structural parameters
When the structural parameters  and  are selected, it is easy to estimate the parameters of the

BMS model.

But finding the best values of  and  cannot be done directly. Even if we limit the strutural

parameters to be integer, computing all possibilities might be too long.

Parameters inference

λi,t = exp(X ′
i,tβ

∗ + γ1ℓi,t),

β γ1

Ψ, ℓmin ℓmax

Ψ, ℓmin ℓmax



For a small dataset such as the one used in this presentation, we can simply test all possibles values of the

structural parameters.

Psi     <- seq(1, 10, length.out = 10)
ell.min <- seq(96, 99, length.out = 4)
ell.max <- seq(101, 120, length.out = 20)
grid <- expand.grid(ell.max = ell.max, ell.min = ell.min, Psi = Psi)
grid$llPoisson <- NA
grid$llNB2 <- NA

for(ii in 1:nrow(grid)){
  data         <- set.BMS_levels(ell.max=grid[ii,1], ell.min=grid[ii,2], Psi=grid[ii,3], db.train)
  PoissonBMS   <- glm(score.nbclaim, family=poisson(link=log), data=data)
  nb2BMS       <- glm.nb(score.nbclaim, data=data)
  grid[ii,4] <- logLik(PoissonBMS)
  grid[ii,5] <- logLik(nb2BMS)
}
print(grid[grid$llPoisson==max(grid$llPoisson),])
print(grid[grid$llNB2==max(grid$llNB2),])

The best BMS model, for the Poisson and the NB2 distributions, is .

For small dataset

ℓmax = 104, ℓmax = 96, Ψ = 2



For real insurance data, testing all possibilities is too long. A proposed iterative technique based on profile

log-likelihood works as follow:

Initial step:

We set  and  (this represents the Kappa-N model). We can then directly estimate a

first estimate of the jump .

For step :

With  and , we estimate all possible BMS models for any value of .

We choose  from the best BMS model.

With  and , we estimate all possible BMS models for any value of .

We choose  from the best BMS model.

With  and , we estimate all possible BMS models for any value of .

We choose  from the best BMS model.

We repeat these steps until we reach convergence.

Proposed algorithm

ℓ
(0)
min

→ −∞ ℓ
(0)
max → ∞

Ψ(0) = Ψ

k = 1, . . .

Ψ = Ψ(k−1) ℓmin = ℓ
(k−1)
min

ℓmax

ℓ
(k)
max = ℓmax

Ψ = Ψ(k−1) ℓmax = ℓ
(k)
max ℓmin

ℓ
(k)
min

= ℓmin

ℓmax = ℓ
(k)
max ℓmin = ℓ

(k)
min

Ψ

Ψ(k) = Ψ



Poisson Poisson Kappa-N Poisson BMS (104/96/+2)

(Intercept) -1.5186 -1.5651 -13.3672

car_colorRed -0.0215 -0.0251 -0.0217

need_glassesYes 0.1213 0.1001 0.0986

territorySuburban -0.0792 -0.0734 -0.0745

territoryUrban -0.1242 -0.1174 -0.1167

languageFrench 0.2584 0.2284 0.2275

foodVegan -0.1015 -0.0047 -0.0070

foodVegetarian -0.1963 -0.0272 -0.0268

` ` NA 0.1976 0.1180

` ` NA -0.1101 NA

Results obtained with the fictive dataset (Poisson)

γ1

γ2



Expected number of claims
The mean of the BMS model can then be expressed as:

where:

 is the base premium that depends on covariates for the contract  of insured ;

 is the BMS relativity that depends on the BMS level  the contract  of insured .

Prior and posterior ratemaking
As opposed to classic BMS calibration, all parameters of the mean are estimated simulatenously:

i) the  from the covariates (for the  component),

ii) the  for the predictive ratemaking (for the  component).

Analyzing the model

λi,t =exp(X ′
i,tβ

∗ + γ1ℓi,t) = exp(X ′
i,tβ

∗ + γ1ℓi,t) = Πi,t × r(ℓi,t)

Πi,t = exp(X ′
i,tβ

∗) t i

r(ℓi,t) = exp(γ1ℓi,t) ℓi,t t i

β Πi,t

γ1 r(ℓi,t)



Graph of BMS relativities



Log-likelihood (Training set)
A correction, such as the AIC/BIC, must be applied for each model because they do not have he same
number of parameters.

Standard Kappa-N BMS

Poisson -44,858.44 -44,461.88 -44,447.66

Negative Binomial 2 -44,718.43 -44,352.62 -44,340.49

Logarithmic Score (Test set)

Standard Kappa-N BMS

Poisson 19,319.22 19,169.51 19,160.35

Negative Binomial 2 19,549.53 19,539.31 19,542.47

Fitting and predictive quality



Distribution over the BMS levels (training dataset)



Distribution over the BMS levels (test dataset)



Part I - Ratemaking with Cross-Section Data
Basic count distributions

Credibility Models and Predictive Ratemaking

Bonus-Malus Scales Models

Part II - Ratemaking with Panel Data
Families of Count Distributions

Observed Predictive Premiums

Bonus-Malus Scales Models Revisited

Part III - Actual Challenges
Entry levels and new insureds

Penalties and a priori risks



This part of the presentation is based
on Section 4 of:

J.-P. Boucher (2022). Bonus-Malus Scale Models:

Creating Artificial Past Claims History. Annals of

Actuarial Science, 1-27.

Reference



We already mentioned that the joint distribution of all claim counts of each insured  can be

expressed as:

where the markovian property of the BMS level can be used with:

New insureds
We have a problem with : thos insureds at time  are not always new drivers, but often

new insureds in the company or new insured in the database. For the first contract at , we do not have

 nor .

The major problem with past claims rating refers to the availability of past information:

Insurers are not able to obtain past information from other insurers;

Insurers are also often unable to use information from their own old contracts (modification of their

operating systems, when past databases are simply erased or are no longer useful, etc.).

Joint distribution

i = 1, … , m

Pr[Ni,1 = ni,1, . . . , Ni,T = ni,T ] = Pr[Ni,1 = ni,1|ℓi,1] × Pr[Ni,2 = ni,2|ℓi,2] × … × Pr[Ni,T = ni,T |ℓi,T ]

ℓi,t = min(max(ℓi,t−1 − I(ni,t−1 = 0) + Ψ × ni,t−1, ℓmin), ℓmax)

Pr[Ni,1 = ni,1|ℓi,1] t = 1
t = 1

ℓi,0 ni,0



The figure bellow illustrates the situation, where the timeline is divided in two sections:

i) The Past Claims Information section: the time period where past claims information is available to

compute  and , or the Bonus-Malus level.

ii) The Artificial Information section, from the date of the first insurance contract of insured ) to .

When the available past claims information is short, experience rating models might be difficult to estimate

because the amount of information needed to compute the bonus-malus level, for example, is too small.

Timeline

ni,∙ κi,∙

i τ
(1)
i



In the actuarial literature, two methods have been proposed to generate an artificial past claims history:

1- Average outcome

The first method is to suppose that all unobserved years of experience of insured  involve an average

expected number of claims .

This implies a corrected version of  and  for each insured, and consequently a new value of  for all .

2- Most probable outcome

The second method is to suppose that each unobserved year of experience would be considered a year

without claims, simply because is the most probable outcome.

This assumption simplifies greatly the computation and the estimation of the BMS because it means using

the first method with  for all insureds.

Artificial claim history

i
~μi

ni,∙ κi,∙ ℓi,t t

~μi = 0



This part of the presentation is based
on:

J.-P. Boucher (2022). Multiple Bonus-Malus Scale

Models for Insureds of Different Sizes. Risks, 10(8),

152.

Reference



Remember the predictive expected premium for the Poisson-gamma model:

or the weights in the Buhlmann-Straub model, where the random variables were normalised by the a priori

risk: .

That means that the experience of an insured is normalized when it is used in predictive ratemaking. BMS

models does not do that: the penalty for a claim does not depend on the a priori risk.

Farm insurance
This caused a problem in farm insurance where large farms can be penalized twice:

In their a priori risk;

With the BMS structure (because they claim more).

Size of each Farm

E[Ni,T |ni,1, . . . , ni,T−1,Xi,T ] = λi,T

α +∑
T−1
t=1 ni,t

α +∑
T−1
t=1 λi,t

Yi,t =
Ni,t

Wi,t



Bonus-Malus vs. size of the farm



Bonus-Malus vs. size of the farm



A proposed solution to deal with farms of different sizes was to divide the portfolio into groups. Groups of

farms of similar sizes could be created, and each group would have their own experience-rating model, with

its own a priori rating parameters and its own structural BMS parameters.

Farms could then be more equitably rated, and more correctly rewarded and penalized, as their size would

be directly taken into account when performing past claims rating.

Recursive algorithm
To find the best way to group similar farms, a recursive algorithm was proposed.

Partitioning the portfolio



Partitioning the portfolio by the size



Bonus-Malus Scales models are already in use in many countries;

Because of how insurance datasets are now constructed, the current way to calibrate BMS has to be

changed;

We show that iterative GLM approaches can be used to estimate BMS models.

BMS are really flexible and allows penalty structures that cannot be supposed easily by other models

and distributions;

Despite its simplicity, it has been shown to out-perform many more advanced models;

Conclusion



You can check the website of the Co-operators

Chair in Actuarial Risk Analysis (CARA) for:

recent publications,
research projects;
MSc and PhD fundings,
etc.:

https://chairecara.uqam.ca/en/

Website of the research Chair

https://chairecara.uqam.ca/en/
https://chairecara.uqam.ca/en/


On my github page, you can find:

this presentation;
all R script codes used;
the dataframe df2.Rda.

https://github.com/J-PBoucher

Github

https://github.com/J-PBoucher/CAS_SanDiego2023
https://github.com/J-PBoucher
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