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Overview
We propose a flexible Mixture-of-Experts (MoE) framework for modelling
claim frequency and severity, and for ratemaking, reserving and risk
selection.

We showcase a few case studies to demonstrate the flexibility and wide
applicability of the framework.

Our model has been implemented in Julia and R as open-source packages,
readily available for a variety of applications.

Joint work by the  at the University of
Toronto: Spark Tseung, Prof. Tsz Chai (Samson) Fung, Prof. Andrei Badescu,
and Prof. X. Sheldon Lin.

actuarial science research group

Visit  for more!https://actsci.utstat.utoronto.ca/
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Motivation
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Actuaries: GLM Is Great!
GLM is simple yet powerful.

GLM is easy to implement.

GLM is interpretable and accessible.

However, GLM can fail miserably in
insurance applications, because real data
do not satisfy GLM assumptions.

6



GLM Fails when…
Claim frequency distribution is zero-inflated.

There is an excess probability of zero claims.

Example: Australian auto insurance data (ausprivauto040) in CASDatasets
( ), GLM fit vs. empirical.Dutang and Charpentier 2020
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GLM Fails when…
Claim severity distribution is multimodal and/or heavy-tailed.

Observations are censored and/or truncated.

Example: French auto
insurance data (freMTPLsev) in
CASDatasets (

).
Dutang and

Charpentier 2020
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Insurance Data Are Heterogeneous
Policyholders’ risk profiles are different even within the same portfolio of,
e.g. auto insurance or home insurance.

One way to capture such heterogeneity is to use a mixture model.

Example: Modelling claim frequency with a 3-component Poisson mixture.
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Covariates Are Important
Policyholders’ information, or covariates, are predictive of their risk profiles.

We may use regression to classify policyholders into different risk groups,
and model each of these more homogeneous groups separately.

Example: A Poisson mixture model combined with logistic regression.
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MoE = Regression + Mixture
Here is an example on how to incorporate covariates into the Mixture-of-
Experts (MoE) framework.

Based on the covariates, we first classify policyholders into different latent
risk groups with a logistic regression.

Within each risk group, we model the response (frequency or severity) with
an appropriate distribution.
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MoE: Flexible and Powerful
The MoE framework can catch three patterns: regression, dependence, and
distributional.

For example, it offers a much better fit to data compared with GLM, as it can
capture the nonlinear relationship between covariates and losses.

Example: Australian auto insurance data (ausprivauto040) in CASDatasets (
). Analyzed in ( ), LRMoE provides a better fit than GLM.

Dutang and
Charpentier 2020 Badescu et al. 2021
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MoE: Flexible and Powerful
Example: French auto insurance data (freMTPLsev) in CASDatasets (

). Analyzed in ( ), LRMoE can provide good fit
to data exhibiting multimodality.

Dutang and
Charpentier 2020 Tseung et al. 2021

13

file:///Users/tristinchris/Documents/code/CAS-RPM-2023-Presentation/index.html?print-pdf#/references
file:///Users/tristinchris/Documents/code/CAS-RPM-2023-Presentation/index.html?print-pdf#/references


A Crash Course on (LR)MoE
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Model Setup
Let  denote the covariates for policyholder   for  

.
= ( , , … ,xi xi0 xi1 xiP)T i

i = 1, 2, … , n
Based on the covariates, policyholder   is classified into one of     latent risk
classes by a logit gating function

where  are the regression coefficients for latent
class .

i g

( ; ) = , j = 1, 2, … , g,πj xi αj
exp( )∑P

k=0 αjkxik

exp( )∑g
=1j ′ ∑P

0k = α kj ′ xik

= ( , , … ,αj αj0 αj1 αjP)T

j
Given the assignment of latent class   , the response
variables  are modelled by an expert distribution function    with
parameters . Note that it does not depend on the covariates.

j ∈ {1, 2, … , g}
yi ( ; )fj yi φj

φj
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Example: 3-Component LRMoE
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Simpler, Still Powerful
While our LRMoE framework is simpler (does not consider covariates in the
distribution function), it is still flexible and powerful.

Formally speaking ( ),Fung, Badescu, and Lin 2019b

LRMoE is dense in the class of (univariate and multivariate) frequency
and severity distributions.

LRMoE is theoretically guaranteed to be flexible and powerful!

Indeed, actuaries may prefer simpler models (like LRMoE) in practice for
their interpretability and ease of implementation.

Other advantages: (easier) estimation, tail-catching, capture multi-modality
and dependency

18

file:///Users/tristinchris/Documents/code/CAS-RPM-2023-Presentation/index.html?print-pdf#/references


Applications in Actuarial
Modelling
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Overview
We will consider several applications of LRMoE on real insurance data.

We aim to demonstrate the following desirable features and potential use
cases of our framework for actuarial modelling.

Fitting both frequency and severity data with much better results.

Modelling correlated claim frequency in a single framework.

Dealing with censored/truncated data due to policy limits/deductibles.

Extending to other problems such as insurance risk selection, claims
reserving and IBNR prediction.
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1. Frequency and Severity
Our introductory examples on the Australian (ausprivauto040) and French
(freMTPLsev) auto insurance datasets have already demonstrated the superior
fitting performance of LRMoE compared to GLM.

Australian: 3 components of Poisson

French: 6 components of zero-inflated Lognormal

Question: What expert functions (distributions) should one use?

22



Theory vs Practice
In theory, LRMoE is flexible with suitable choices of expert functions.

Our package currently supports:

Frequency: Binomial, Negative Binomial, Poisson, Gamma Count

Severity: Burr, Gamma, Inverse Gaussian, Lognormal, Weibull

…and the zero-inflated version of all of the above!

In practice, the choice of expert functions depends on the following:

Preliminary Analysis: Let the dataset speak for itself.

Domain Knowledge: Models are more powerful when combined with
actuaries’ discretion.

Trial and Error: It never hurts to do some experimentation!

Computational Constraints: Sometimes it may be worthwhile to sacrifice
some fitting performance for a faster workflow.
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2. Modelling Correlated Claims
Frequency
( ) considers fitting LRMoE to the claim frequency
of two correlated lines: Third-Party Liability (TPL) and Car Damages (CD).
Fung, Badescu, and Lin 2019a

We consider a European major insurer’s portfolio with 18k policyholders.

Empirically, the two coverages are correlated with Kendall’s  = 0.241, so it
may not be appropriate to assume independence.

τ

CD coverage is over-dispersed, and both TPL and CD are right-skewed and
heavy-tailed, which renders Poisson a poor modelling choice.

We fit (zero-inflated, ZI-) Negative Binomial (NB) GLM as benchmark models.

We use the Erlang-Count (EC) experts for LRMoE, which will make our model
theoretically flexible. Five components are used based on the Bayesian
Information Criterion (BIC).
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Empirical vs Fitted Distributions
LRMoE with EC experts outperforms both NB GLM and ZINB GLM in terms of fitting the chi-square statistic and the
log-likelihood.

TPL Empirical Fitted CD Empirical Fitted

NB ZINB LRMoE NB ZINB LRMoE

0 16971 16975.06 16976.66 16965.19 0 14182 14177.32 14205.6 14188.88

1 991 972.64 969.88 1001.73 1 2499 2498.57 2386.71 2484.87

2 48 65.9 66.81 40.75 2 752 810.45 883.92 777.23

3 3 4.95 5.14 7.31 3 359 307.02 333.24 317.83

4 5 0.41 0.45 2.82 4 129 125.77 127.56 155.43

5+ 1 0.04 0.05 1.2 5 66 54.19 49.51 64.01

6 22 24.22 19.46 22.04

7 7 11.15 7.74 6.52

8+ 3 10.3 5.26 2.19

81.31 70.61 5.66 22.59 33.88 11.13

loglik -4224.94 -4213.99 -4208.77 loglik -13279.18 -13204.95 -13178.68

χ 2 χ 2
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Correlation and Higher Moments
The LRMoE model produces a fitted Kendall’s  = 0.240 (vs empirical value 0.241), which indicates the dependence
is well captured.

Besides, LRMoE also captures the higher-order moments of the two coverages better than the benchmark models.

TPL Empirical Fitted CD Empirical Fitted

NB ZINB LRMoE NB ZINB LRMoE

mean 0.062 0.062 0.062 0.062 mean 0.34 0.34 0.34 0.34

% diff 0.01% 0.00% 0.16% % diff -0.01% -0.04% -0.01%

variance 0.069 0.068 0.068 0.069 variance 0.649 0.669 0.644 0.65

% diff -2.15% -1.86% -0.43% % diff 3.08% -0.81% 0.22%

skewness 5.084 4.522 4.544 5.096 skewness 3.265 3.672 3.305 3.261

% diff -11.05% -10.62% 0.24% % diff 12.45% 1.22% -0.13%

kurtosis 40.248 26.386 26.755 41.938 kurtosis 16.509 23.063 17.988 16.399

% diff -34.44% -33.53% 4.20% % diff 39.70% 8.96% -0.67%

τ
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Comparing Sample Policyholders
Policyholder A: Lots of undesirable risk characteristics but no claims are
observed during the contract period.

Policyholder B: An average risk profile with 1 CD claim.

Policyholder C: Relatively desirable risk characteristics but eventually had 1
TPL and 2 CD claims during the contract period.
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3. Application to Risk Selection
In a working technical report, we apply risk selection approach to a real
dataset from a major Canadian automobile insurer.

We consider a portfolio from 2014 to 2020.

We re-fit the LRMoE model every half year, and select the top 5% most risky
policyholders to cede to a risk-sharing pool, based on

Covariates only: using heuristic rules on covariates such as driver/vehicle
age, car class, etc.

Covariates + claim history: using the predicted mean of the response
adjusted by claim history.

We compare which losses are identified and how much is saved by
eliminating the losses generated by the risky policyholders.

We will see LRMoE outperforms by a huge margin!
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Covariates Only
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Covariates + Claim History

30



Comparison of Cumulative Cashflow
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4. Data Censoring and Truncation
Data censoring and truncation are common in insurance data, e.g. due to
policy limits and deductibles, as well as the observation times for incurred but
not reported (IBNR) claims.

Parameter estimation becomes more involved when data are censored
and/or truncated, but the underlying idea remains the same.

( ) first derived an algorithm for estimating the
parameters of LRMoE with censored and/or truncated data, and presented
two applications:

Fung, Badescu, and Lin 2021b

Fitting reporting delay (censored data), and

Ratemaking in the presense of policy deductibles (truncated data).

( ) presented a more comprehensive
framework for applying LRMoE to the prediction of IBNR claims with a case
study on a real dataset from a major European automobile insurer.

Fung, Badescu, and Lin 2021a
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So!ware Implementations
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Fitting LRMoE to Real Data
As a mixture-based model, parameter estimation for LRMoE can be done by
the Expectation-Conditional-Maximization (ECM) algorithm.

( ) contains an illustration of fitting LRMoE to
frequency data.
Fung, Badescu, and Lin 2019a

( ) focuses on estimation from censored and/or
truncated data.
Fung, Badescu, and Lin 2021b

A general introduction to the E(C)M algorithm can be found in (
). A general introduction to finite mixture

models can be found in ( ).

Geoffrey J.
McLachlan and Krishnan 2007

Geoffrey J. McLachlan, Lee, and Rathnayake 2019

Implementing the estimation involves some customization based on the
selection of experts functions, as well as modifications based on the presence
of censored and/or truncated data.
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We Have Already Built the Wheels!
Our research group has developed two so#ware packages for LRMoE, which
are open-source and readily available for use on real datasets (

) and ( ).
Tseung et al.

2020 Tseung et al. 2021

For working with large real datasets. For the research community.
# Installation1
using Pkg2
Pkg.add("LRMoE")3

4
# Using the package5
using LRMoE6

# Installation1
library(devtools)2
install_github("UofTActuarial/LRMoE")3

4
# Using the package5
library(LRMoE)6

It is not difficult to interface with Python via packages like PyJulia (
) and rpy2 ( ).

Arakaki
et al. 2022 github repository
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Package Highlights
Our so#ware packages offer several new distinctive features which are
motivated by various actuarial applications and mostly cannot be achieved
using existing packages for mixture models.

A wider coverage on frequency and severity distributions and their zero-
inflated variants;

The flexibility to vary classes of distributions across components;

Parameter estimation under data censoring and truncation;

A collection of insurance ratemaking and reserving functions; and

Model selection and visualization tools.

While LRMoE(.jl) was initially developed for actuarial application, our packages
also allow for customized expert functions for various modelling problems
within and beyond the insurance context.
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Live Demo!
We will see LRMoE.jl in action, including model fitting to real dataset, model
comparison and interpretation.

Reproducible code available on 

Check out the complete documentation:  / 

github

Julia R
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Summary
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Summary
GLM is popular with actuaries, but it may fail on complex insurance datasets.

We introduced the LRMoE framework for insurance frequency and severity
data, as well as many other applications.

Our proposed model is shown to provide superior performance on various
datasets and modelling problems.

We have developed two so#ware packages for LRMoE, which are open-
source and readily available for use on real applications.

Many potential extensions and applications for LRMoE are still ongoing…
Keep an eye on our latest !publications and presentations

Our research group is always looking for collaborations. Please 
 if you have interesting and challenging problems to solve!

reach out to
us
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