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Abstract: In this project, we model and predict state-specific wildfire losses in the 
United States using a combination of Bayesian dynamic models. In particular, the 
wildfire frequencies are modeled by a Bayesian multi-scale Dynamic Count 
Mixture Model (DCMM), which is capable of capturing a number of stylized 
features of wildfire data, including zero-inflation, over-dispersion compared to the 
Poisson distribution, and the time-varying patterns. Further, the DCMM is able to 
incorporate spatial dependence of different states, and thus improves the 
forecasting performance for individual states, especially those with low historical 
frequencies. Then we apply the predictive distribution of future wildfire loss to 
price wildfire catastrophe (CAT) bonds with different characteristics, and evaluate 
their hedging effectiveness for insurers in different states. We find that although 
using CAT bonds as a hedging tool may slightly increase the expected liability of 
an insurance portfolio due to bond premiums, the strategy can substantially 
reduce the variability risk and tail risk. Therefore, we conclude that CAT bond is a 
valuable tool of risk mitigation for insurers. Finally, for index-based CAT bonds 
whose payoffs are linked to wildfire losses in a larger area than that the insurer 
operates in, their hedging efficiencies are still acceptable. Therefore, it may be 
beneficial for insurers, especially those operates in areas with less frequent yet 
more volatile wildfire losses, to issue index-based CAT bonds, which are likely to 
be less expensive but much more liquid than indemnity bonds written directly on 
their liabilities. 

Key words and phrases: Bayesian dynamic model; mixture model; counting 
process; wildfire loss; catastrophe bond  
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1. Introduction 

In the wake of climate changes and human activities, wildfires have caused mounting 
damages over recent years, especially among the western states in the United States. 
Fifteen billion-dollar wildfire disasters have occurred in the U.S. since 2000. The financial 
losses are mainly caused by damage to homes and infrastructure. Beyond direct financial 
losses, wildfires further trigger indirect costs that can affect federal and state budget, public 
health, and natural environment. In 2018, wildfires in California alone had resulted in about 
$150 billion (direct and indirect) losses, accounting for roughly 1.5% of California’s annual 
gross domestic product (Wang, et al. 2021). Nationwide, the annualized economic burden 
due to wildfires is estimated to be as large as $350 billion (Thomas, et al. 2017). 

Insurance has naturally emerged as a financial tool for mitigating and managing wildfire 
risks. Insurance provides not only protection from economic hardships for property 
owners, but also incentives for ex ante risk reduction activities. Nevertheless, due to limited 
market capacity in the private insurance sector, the continually growing wildfire losses may 
significantly impact the availability of wildfire insurance. Another effective strategy for 
mitigating wildfire losses is through such innovative financial instruments as catastrophe 
(CAT) bonds. Multi-peril CAT bonds can be used to finance wildfire losses, but they may 
leave a significant degree of basis risk to insurers, that is, the payoffs received by the 
insurer may not be perfectly correlated with their actual losses due to wildfires. Wildfire-
specific CAT bonds did not exist in the capital market until recently. Two pure California 
wildfire CAT bonds were issued in 2020: SD Re Ltd. (Series 2020-1) with a size of $90 million 
and Power Protective Re Ltd. (Series 2020-1) with a size of $50 million.1 However, a 
comprehensive framework for modeling and pricing wildfire risk remains untouched in the 
actuarial literature, which may undermine the applications of such insurance-linked 
instruments for managing wildfire losses. 

The purpose of this paper is two-fold. Firstly, we study the wildfire losses across different 
contiguous states of the U.S. over time by deploying an innovative Bayesian framework 
constituted by multi-variate count-valued time series processes and dynamic generalized 
linear models. The suggested Bayesian framework can incorporate spatial correlations of 
both the wildfire frequency and severity among different states, and accommodate the 
stylized facts that wildfire data are zero-inflated and heavy-tailed. Another advantage of 
using the proposed Bayesian framework is that, with a reasonable choice of prior 
distribution, the associated predictive distribution will be robust to outliers when data are 
scarce. It is also noteworthy that Bayesian framework has a dynamic nature, and the 
predictive distribution will be updated as new observations arrive, suitable for the purposes 
of continuous risk monitoring and dynamic risk pricing. 

 

1 Source: https://www.artemis.bm/deal-directory/sd-re-ltd-series-2020-1/ and https://www.artemis.bm/deal-directory/power-
protective-re-ltd-series-2020-1/ 

https://www.artemis.bm/deal-directory/sd-re-ltd-series-2020-1/
https://www.artemis.bm/deal-directory/power-protective-re-ltd-series-2020-1/
https://www.artemis.bm/deal-directory/power-protective-re-ltd-series-2020-1/
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Secondly, capitalized on the aforementioned wildfire loss models, we will propose a 
sophisticated yet transparent framework for pricing wildfire insurance-linked securities. In 
particular, we have special interests in studying the following fundamental questions in 
wildfire risk management: 

1. How would the prices of wildfire-linked CAT bonds vary with the bond 
characteristics, such as the loss trigger and the exhaustion point? 

2. What is the basis risk inherent in index-based CAT bonds? 
3. What is the impact of spatial dependence on pricing wildfire CAT bonds? 

Bearing the two aforementioned practical goals in mind, the rest of this paper will proceed 
as follows. Section 2 contains a description of the wildfire data we are going to use in this 
current paper, which are retrieved from the Spatial Hazard Events and Losses Database 
(SHELDUS).2 An innovative and sophisticated modeling framework will be proposed in 
Section 3 to capture the unique features exhibited in the SHELDUS wildfire data. Section 4 
summarizes the implementation of the proposed framework and outlines the results. 
Applications of the model’s results in studying CAT bonds will be examined in Section 5. 
Then in Section 6, we extend the applications of our models to a reinsurance analysis. 
Section 7 focuses on modeling and predicting the county-level wildfire losses in California 
where the occurrences of wildfires are very frequent. Section 8 contains our conclusions. 

2. A description of the wildfire data in SHELDUS 

SHELDUS is a comprehensive hazard database maintained by the Center for Emergency 
Management and Homeland Security at Arizona State University. The latest version of 
SHELDUS data tracks the occurrence and loss records of numerous perils—including 
wildfires in particular—occurred across the U.S. from 1960 to 2019. The wildfire data in 
SHELDUS are compiled from the event records of the National Centers for Environmental 
Information (NOAA).3 Compared to other wildfire data sets commonly used for 
environmental modeling purposes, the SHELDUS database is more suitable for insurance 
studies because it contains the direct financial loss associated with the wildfire events. 

In the SHELDUS data, each hazard record consists of environmental information such as 
disaster occurrence month, year, state, and duration, as well as damage information such 
as financial losses on crops and properties, human injuries, and fatalities. Figure 1 displays 
the nation-wise aggregate wildfire frequency and the crop and property losses per year 
recorded in the SHELDUS data. For a fair comparison, financial losses are adjusted 
according to the Consumer Price Index with the year 2019 being the base period. We 
observe that the annual number of wildfire occurrences across the country started to grow 
dramatically since the mid-1990s and reached a peak around 2010. Although the number 
of wildfires seemed to decrease over the past few years, it is still very high compared to 

 

2 Source: https://cemhs.asu.edu/sheldus 

3 Source https://www.ncdc.noaa.gov/IPS/sd/sd.html. 

https://cemhs.asu.edu/sheldus
https://www.ncdc.noaa.gov/IPS/sd/sd.html
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the period before 2000. Consequently, there is also an apparent increase in annual 
aggregate wildfire losses over time, and an extremal wildfire loss record is observed in 
2018. The wildfire loss pattern observed generally coincides with the one reported from the 
insurance industry (Webb and Xu 2018).  

Figure 1. The nation-wise total number of wildfire occurrences per year (left) and the natural logarithm of annual 
aggregate loss (right) from 1960 to 2019. 

  

Another important feature of wildfires in the U.S. is that their occurrence frequencies vary 
significantly across different territories. Table 1 summarizes the decennial wildfire 
frequencies among the 45 unique states reported in the SHELDUS data. The top six states 
having the greatest number of wildfires occurring from 1960 to 2019 are California, 
Colorado, Montana, New Mexico, Texas, and Washington. It is noted that California 
consistently had the greatest number of wildfires among different year intervals, yet 
wildfires became noticeably more frequent in Colorado during the past two decades. In 
Montana, there was a peak number of 120 wildfires in 1990s, but the number seemed to 
decline over recent years. In Texas and Washington, a significant growth in wildfire 
occurrence was observed in the 2010s, with the numbers approximately tripled the ones in 
2000s. 

We note that a few outliers appear in Table 1. For instance, there were 100 wildfires in North 
Carolina in the 1980s. This is due to a massive wildfire that started off on May 5, 1986, in 
the Pender County. The fire lasted for 11 days and grew to 73,000 acres, spreading the 
whole state, before it was controlled.4 100 counties in the state were affected and reported 
the fires separately. SHELDUS recorded the occurrence of wildfires at the county level, so 
there were 100 wildfire records for North Carolina in 1986. In SHELDUS data, we also 
observed that South Carolina recorded the most wildfires in a single month in March 1985.5 
The number of wildfires was also quite large in the following month. Moreover, a series of 

 

4 Source: https://www.wect.com/story/31902417/massive-pender-county-wildfire-started-30-years-ago/. 

5 Source: https://www.state.sc.us/forest/firesign.htm. 

https://www.wect.com/story/31902417/massive-pender-county-wildfire-started-30-years-ago/
https://www.state.sc.us/forest/firesign.htm
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destructive wildfires occurred in Texas in 2011. In particular, 47.3% of all acreage burned 
in the U.S. in 2011 was burned in Texas. The fires had been particularly severe due to the 
2011 Southern U.S. drought that covered the state, and was exacerbated by the unusual 
convergence of strong winds, unseasonably warm temperatures, and low humidity.6  

A summary of the decennial wildfire frequencies among the states recorded in the 
SHELDUS data, and the shaded entries represent the top six states having most wildfire 
occurrences. 

Figure 2 displays the annual wildfire frequencies as well as the corresponding crop and 
property losses for the top six most wildfire states outlined above. In general, the 
occurrences of wildfires are highly volatile over time with rather complex dependencies 
existing among different states. Therefore, flexible modeling framework must be adopted 
in order to obtain satisfactory predictions of future wildfire losses. 

3. Spatial-Temporal modeling of aggregate wildfire losses 

In this section, we aim to put forth a modeling framework based on Bayesian dynamic 
state-space models (West and Harrison 2006) for predicting state-specific wildfire losses. It 
is noted that separate frequency and severity modeling is commonly viewed as the best 
practice in the context of property and casualty insurance (Klugman, Panjer and Willmot 
2012). Thus we generalize the classical Bayesian state-space models with the well-known 
“two-part” structure (Frees 2009). Specifically, the wildfire frequency will be studied using 
a novel Bayesian Dynamic Count Mixture Model (DCMM) proposed in (Berry and West 
2020), and the loss severity will be fitted by a Bayesian Dynamic Linear Model (DLM). The 
class of predictive Bayesian state-space models have been shown to be useful in a wide 
range of time-series contexts. In the context of wildfire modeling particularly, the merits of 
adopting the Bayesian state-space models include the following. First, Bayesian state-space 
models can cope with many nonstandard data features such as zero-inflation and over-
dispersion in wildfire frequency and heavy-tailed pattern in wildfire severity. Second, the 
embedded Bayesian approach implicitly captures the uncertainties surrounding the point 
estimates. As such, interval prediction of future wildfire losses can be constructed. Third, 
Bayesian methods are more suitable for estimating models with complex structures, such 
as multi-level regression models (McElreath 2018) and the state-space models presented 
in this paper. The multi-step predictive distribution of wildfire losses can be simulated 
efficiently via the state-space updating algorithm, without resorting to MCMC or other 
computationally intensive algorithms. 

  

 

6 Source: https://en.wikipedia.org/wiki/2011_Texas_wildfires. 

https://en.wikipedia.org/wiki/2011_Texas_wildfires
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Table 1. A summary of the decennial wildfire frequencies among the states recorded in the SHELDUS data; shaded 
entries represent the top six states having most wildfire occurrences. 

State 1960–1969 1970–1979 1980–1989 1990–1999 2000–2009 2010–2019 Total Ranking 
Alabama 0 0 0 0 0 2 2 42 
Alaska 0 6 0 4 34 9 53 19 
Arizona 0 0 0 0 11 34 45 23 

Arkansas 0 0 0 0 5 25 30 28 
California 50 23 14 86 285 296 754 1 
Colorado 0 0 0 1 73 94 168 4 

Connecticut 1 0 0 0 0 0 1 44 
Delaware 8 0 0 0 2 0 10 36 

Florida 0 0 0 95 33 20 148 8 
Georgia 0 0 0 0 31 108 139 9 
Guam 0 0 0 0 1 0 1 44 
Hawaii 0 0 0 0 12 11 23 30 
Idaho 10 0 0 15 17 84 126 11 
Illinois 0 0 0 0 2 4 6 40 
Iowa 0 0 0 0 1 5 6 40 

Kansas 0 0 0 2 3 16 21 31 
Kentucky 0 0 0 13 0 2 15 34 
Louisiana 0 0 0 0 0 21 21 31 
Maryland 48 0 0 0 1 0 49 21 
Michigan 0 0 0 3 9 5 17 33 

Minnesota 0 1 36 0 4 6 47 22 
Missouri 0 0 0 0 18 19 37 24 
Montana 0 2 11 120 19 4 156 6 
Nebraska 0 0 0 1 1 26 28 29 
Nevada 0 0 0 0 0 33 33 25 

New Jersey 33 0 0 4 4 10 51 20 
New Mexico 0 4 0 43 31 80 158 5 

New York 63 0 1 1 4 0 69 16 
North Carolina 0 0 100 0 1 9 110 13 
North Dakota 0 0 0 0 4 7 11 35 

Oklahoma 0 0 0 0 38 39 77 15 
Oregon 0 0 0 3 35 22 60 17 

Pennsylvania 0 0 0 0 4 5 9 37 
Puerto Rico 0 0 0 0 54 64 118 12 

South Carolina 46 0 99 0 1 6 152 7 
South Dakota 0 0 0 7 2 0 9 37 

Tennessee 0 0 0 0 0 2 2 42 
Texas 0 0 1 5 132 432 570 2 
Utah 0 0 0 1 6 123 130 10 

Virgin Islands 0 0 0 0 7 0 7 39 
Virginia 0 0 2 16 9 5 32 27 

Washington 0 12 0 12 29 117 170 3 
West Virginia 0 9 0 45 1 2 57 18 

Wisconsin 0 0 18 73 7 7 105 14 
Wyoming 0 0 0 0 14 19 33 25 
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Figure 2. The annual wildfire frequencies (in bar plots) as well as the corresponding crop and property losses (in 
dot plots) for the top six most wildfire states: California, Colorado, Georgia, New Mexico, Texas, and Washington. 
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3.1 The single-scale DCMM frequency model 

To facilitate the introduction of the proposed modeling framework, in this part of the paper 
we should focus on state-level, monthly wildfire data. However, the proposed framework 
can be applied to study any data with different levels of granularity in space and time. The 
Bayesian DCMM for frequency modeling is first introduced. Let us begin with the so-called 
single-scale models in which the wildfire frequencies of individual states are model 
independently, without utilizing information from the other states. In the actuarial 
literature, Poisson processes have been a prevalent model choice for studying the 
occurrence of insurance events. When it comes to modeling wildfires, some territories may 
have high probabilities of zero wildfire event over time. Classical Poisson models must be 
modified in order to account for the highly zero-inflated structure presented in wildfire data. 
Suppose that there are in total 𝑁𝑁 states and 𝑇𝑇 months in the sample, and let 𝑛𝑛𝑖𝑖,𝑡𝑡 be the 
number of wildfires occurred in state 𝑖𝑖 at time 𝑡𝑡. The wildfire frequency is assumed to follow 
a mixture of Bernoulli and (over-dispersed) Poisson distributions. Formally, define the 
binary series 𝑧𝑧𝑖𝑖,𝑡𝑡 = 𝟏𝟏�𝑛𝑛𝑖𝑖,𝑡𝑡 > 0�, where 𝟏𝟏(⋅) is the indicator function. The distributions of 𝑧𝑧𝑖𝑖,𝑡𝑡 
is given by: 

𝑧𝑧𝑖𝑖,𝑡𝑡 ∼ Ber�𝜋𝜋𝑖𝑖,𝑡𝑡�, 

where Ber�𝜋𝜋𝑖𝑖,𝑡𝑡� denotes the Bernoulli distribution with 𝜋𝜋𝑖𝑖,𝑡𝑡 being the probability that 𝑧𝑧𝑖𝑖,𝑡𝑡 =
1, i.e., ℙ�𝑧𝑧𝑖𝑖,𝑡𝑡 = 1� = 𝜋𝜋𝑖𝑖,𝑡𝑡. Conditional on the Bernoulli variable 𝑧𝑧𝑖𝑖,𝑡𝑡, the distribution of 𝑛𝑛𝑖𝑖,𝑡𝑡 is 
then specified as 

𝑛𝑛𝑖𝑖,𝑡𝑡|𝑧𝑧𝑖𝑖,𝑡𝑡 = �
0, if 𝑧𝑧𝑖𝑖,𝑡𝑡 = 0,

1 + 𝑥𝑥𝑖𝑖,𝑡𝑡,   𝑥𝑥𝑖𝑖,𝑡𝑡 ∼ Poi�𝜇𝜇𝑖𝑖,𝑡𝑡�, if 𝑧𝑧𝑖𝑖,𝑡𝑡 > 0,
 

where Poi�𝜇𝜇𝑖𝑖,𝑡𝑡� denotes the Poisson distribution with mean 𝜇𝜇𝑖𝑖,𝑡𝑡. In the model above, the 
Bernoulli variable 𝑧𝑧𝑖𝑖,𝑡𝑡 characterizes the probability of not having any wildfire in state 𝑖𝑖 at 
time 𝑡𝑡, and given the occurrence of wildfire, the shifted Poisson variable 𝑛𝑛𝑖𝑖,𝑡𝑡 captures the 
distribution of wildfire frequency. 

The parameters in the two distributions above, 𝜋𝜋𝑖𝑖,𝑡𝑡 and 𝜇𝜇𝑖𝑖,𝑡𝑡, are fitted separately by a 
transformed linear state-space model: 

  

�
logit�𝜋𝜋𝑖𝑖,𝑡𝑡� = 𝑭𝑭𝑖𝑖,𝑡𝑡,𝜋𝜋

⊤  𝝃𝝃𝑖𝑖,𝑡𝑡 , with 𝝃𝝃𝑖𝑖,𝑡𝑡 = 𝛤𝛤𝑖𝑖,𝑡𝑡,𝜋𝜋 𝝃𝝃𝑖𝑖,𝑡𝑡−1 + 𝝎𝝎𝑖𝑖,𝑡𝑡 ,
𝑙𝑙𝑙𝑙𝑙𝑙�𝜇𝜇𝑖𝑖,𝑡𝑡� = 𝑭𝑭𝑖𝑖,𝑡𝑡,𝜇𝜇

⊤  𝜽𝜽𝑖𝑖,𝑡𝑡, with 𝜽𝜽𝑖𝑖,𝑡𝑡 = 𝛤𝛤𝑖𝑖,𝑡𝑡,𝜇𝜇 𝜽𝜽𝑖𝑖,𝑡𝑡−1 + 𝜼𝜼𝑖𝑖,𝑡𝑡.
 

(1) 

Equation (1) includes a pair of generalized linear models (GLM). First, the logit function 
logit(⋅) maps the probability 𝜋𝜋𝑖𝑖,𝑡𝑡 ∈ (0,1) to the real line (−∞,∞), and the log function log(⋅) 
maps the (positive) Poisson mean 𝜇𝜇𝑖𝑖,𝑡𝑡 ∈ (0,∞) to the real line (−∞,∞). These two functions 
are commonly used link functions in the context of GLM, which connect bounded variables 
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of interest, 𝜋𝜋𝑖𝑖,𝑡𝑡 and 𝜇𝜇𝑖𝑖,𝑡𝑡, to the linear regression components, 𝐅𝐅𝑖𝑖,𝑡𝑡,𝜋𝜋
⊤  𝛏𝛏𝑖𝑖,𝑡𝑡 and 𝐅𝐅𝑖𝑖,𝑡𝑡,𝜇𝜇

⊤  𝛉𝛉𝑖𝑖,𝑡𝑡, 
respectively. In the above formulas, 𝐅𝐅𝑖𝑖,𝑡𝑡,𝜋𝜋 and 𝐅𝐅𝑖𝑖,𝑡𝑡,𝜇𝜇 denote vectors of known values of 
predictor variables, 𝛏𝛏𝑖𝑖,𝑡𝑡 and 𝛉𝛉𝑖𝑖,𝑡𝑡 are time-varying latent state vectors for capturing the 
dynamics of 𝑧𝑧𝑖𝑖,𝑡𝑡 and 𝑛𝑛𝑖𝑖,𝑡𝑡, respectively, and 𝛤𝛤𝑖𝑖,𝑡𝑡,𝜋𝜋 and 𝛤𝛤𝑖𝑖,𝑡𝑡,𝜇𝜇 are evolution matrices for specifying 
structural changes of the state vectors over time, to be specified by the model user 
depending on the modeling task at hand. When the data have no significant trend, 
seasonality or cyclic behavior, then evolution matrices 𝛤𝛤𝑖𝑖,𝑡𝑡,𝜋𝜋 and 𝛤𝛤𝑖𝑖,𝑡𝑡,𝜇𝜇 can be as simple as 
identity matrices, and the corresponding state vectors are simply random walk processes. 
Otherwise, appropriate functional forms for the evolution matrices will be chosen to 
capture the time series pattern presented in data. Finally, 𝛚𝛚𝑖𝑖,𝑡𝑡 and 𝛈𝛈𝑖𝑖,𝑡𝑡 are independent 
stochastic vectors of error terms with (conditional) zero means and covariance matrices 
𝐊𝐊𝑖𝑖,𝜔𝜔,𝑡𝑡, 𝐊𝐊𝑖𝑖,𝜂𝜂,𝑡𝑡, respectively. 

The proposed DCMM is capable of handling rather intricate wildfire dynamics. For instance, 
the embedded Bernoulli component accommodates the zero-inflation issue encountered in 
wildfire data, and the dynamic nature of 𝜋𝜋𝑖𝑖,𝑡𝑡 and 𝜇𝜇𝑖𝑖,𝑡𝑡 can address the time-varying variability 
in wildfire frequency. If the observed wildfire data are over-dispersed relative to the 
conditional Poisson model, a random effect can be further added to the Poisson state-space 
model to make the forecast distributions more accurate in terms of capturing extremal 
observations. Specifically, the Poisson state-space model is extended to 

 log�𝜇𝜇𝑖𝑖,𝑡𝑡� = 𝐅𝐅𝑖𝑖,𝑡𝑡,𝜇𝜇
⊤  𝛉𝛉𝑖𝑖,𝑡𝑡 + 𝑟𝑟𝑖𝑖,𝑡𝑡 ,   with 𝛉𝛉𝑖𝑖,𝑡𝑡 = 𝛤𝛤𝑖𝑖,𝑡𝑡,𝜇𝜇 𝛉𝛉𝑖𝑖,𝑡𝑡−1 + 𝛈𝛈𝑖𝑖,𝑡𝑡 , 

(2) 

where 𝑟𝑟𝑖𝑖,𝑡𝑡 is a time-𝑡𝑡 specific, independent, zero-mean random effect for state 𝑖𝑖. The 
extended Poisson model (2) recognizes the time-𝑡𝑡 individual and unpredictable variation 
above the time-dependent component 𝐅𝐅𝑖𝑖,𝑡𝑡,𝜇𝜇

⊤  𝛉𝛉𝑖𝑖,𝑡𝑡. 

3.2 The multi-scale DCMM frequency model 

Several empirical studies have suggested that the occurrences of wildfires are closely 
related to climate change and human activities, thus the wildfire frequencies across 
different states may share some common patterns over time. Taking into account the 
dependencies of wildfire occurrences among different states might help improve the 
modeling and predictive accuracy of wildfire frequencies for individual states. To this end, 
a set of common factors 𝛟𝛟𝑡𝑡 are introduced into the feature vectors 𝐅𝐅𝑖𝑖,𝑡𝑡,𝜋𝜋 in Equation (1) so 
as to account for the common drivers of wildfires such as seasonal effects and other 
stochastic effects not explained by the state-specific covariates. Now the feature vectors in 
(1) become 

𝐅𝐅𝑖𝑖,𝑡𝑡,𝜋𝜋 = �𝐟𝐟𝑖𝑖,𝑡𝑡,𝜋𝜋 𝛟𝛟𝑡𝑡�
⊤  and  𝐅𝐅𝑖𝑖,𝑡𝑡,𝜇𝜇 = �𝐟𝐟𝑖𝑖,𝑡𝑡,𝜇𝜇 𝛟𝛟𝑡𝑡�

⊤, 

(3) 
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where 𝐟𝐟𝑖𝑖,𝑡𝑡,𝜋𝜋 and 𝐟𝐟𝑖𝑖,𝑡𝑡,𝜇𝜇 contain respectively the state-specific covariates in the Bernoulli and 
Poisson regressions, and 𝛟𝛟𝑡𝑡 contains the common factors. The impact of these common 
factors are specific to each state, captured by the state vectors 𝛏𝛏𝑖𝑖,𝑡𝑡 and 𝛉𝛉𝑖𝑖,𝑡𝑡. To summarize, 
the multi-scale DCMM frequency model considered in this project is formulated as 

�
logit�𝜋𝜋𝑖𝑖,𝑡𝑡� = 𝐅𝐅𝑖𝑖,𝑡𝑡,𝜋𝜋

⊤  𝛏𝛏𝑖𝑖,𝑡𝑡, with 𝛏𝛏𝑖𝑖,𝑡𝑡 = 𝛤𝛤𝑖𝑖,𝑡𝑡,𝜋𝜋 𝛏𝛏𝑖𝑖,𝑡𝑡−1 + 𝛚𝛚𝑖𝑖,𝑡𝑡,
log�𝜇𝜇𝑖𝑖,𝑡𝑡� = 𝐅𝐅𝑖𝑖,𝑡𝑡,𝜇𝜇

⊤  𝛉𝛉𝑖𝑖,𝑡𝑡 + 𝑟𝑟𝑖𝑖,𝑡𝑡 , with 𝛉𝛉𝑖𝑖,𝑡𝑡 = 𝛤𝛤𝑖𝑖,𝑡𝑡,𝜇𝜇 𝛉𝛉𝑖𝑖,𝑡𝑡−1 + 𝛈𝛈𝑖𝑖,𝑡𝑡 ,
 

(4) 

with the regressors 𝐅𝐅𝑖𝑖,𝑡𝑡,𝜋𝜋 and 𝐅𝐅𝑖𝑖,𝑡𝑡,𝜇𝜇 given in Equation (3). 

In principle, the common factors 𝛟𝛟𝑡𝑡 could be latent and are implied jointly by the models 
(4) of all states. Nevertheless, simultaneously estimating all state-specific models is 
computationally onerous, or even prohibitive if the dimension of 𝛟𝛟𝑡𝑡 is large. Further, 
estimating the common latent factors itself is a very challenging problem. As a remedy of 
this computation issue, (Berry and West 2020) proposed to approximate the latent factors 
by a set of observable factors. For example, 𝛟𝛟𝑡𝑡 could be variables representing some 
common patterns of the whole system. In our case, 𝛟𝛟𝑡𝑡 could be the observed 
meteorological variables of the whole nation or a geographical region consisting of 
multiple states. Alternatively, 𝛟𝛟𝑡𝑡 could be some systematic factors extracted from the 
national or regional wildfire frequency data. As will be detailed in Section 4, in this research 
we will let 𝛟𝛟𝑡𝑡 be the seasonal effects extracted from the regional wildfire frequencies. 

After specifying the common factors 𝛟𝛟𝑡𝑡, they are simply treated as observable variables in 
the state-specific models. As a result, one can estimate Model (4) for each state separately. 
This greatly reduces the computational burden of the analysis, and allows us to increase 
the number of local models conveniently. For instance, one can jointly model the wildfire 
loss of counties instead of states, when related data are available. Finally, the Bayesian 
state space algorithm is used to estimate the proposed model. In a nutshell, with the (user-
specified) initial prior distribution of 𝛏𝛏𝑖𝑖,0, 𝛉𝛉𝑖𝑖,0, and 𝛟𝛟0, the posterior distributions of these 
parameters are updated recursively when 𝑧𝑧𝑖𝑖,𝑡𝑡 and 𝑛𝑛𝑖𝑖,𝑡𝑡 are observed for each 𝑖𝑖 and 𝑡𝑡. The 
predictive distributions of 𝑧𝑧𝑖𝑖,𝑇𝑇+𝑘𝑘 and 𝑛𝑛𝑖𝑖,𝑇𝑇+𝑘𝑘 can then be calculated (via simulation) for each 
state 𝑖𝑖 and forecast horizon 𝑘𝑘. For details about the estimation algorithm, we refer to (Berry 
and West 2020) and Chapter 4 of (Prado and West 2010). 

3.3 The DLM loss severity model 

We propose to use a Bayesian DLM to model wildfire losses. Specifically, let 𝑦𝑦𝑖𝑖,𝑡𝑡 be the 
average wildfire claim amount for state 𝑖𝑖 at time 𝑡𝑡 and 𝐅𝐅𝑖𝑖,𝑡𝑡,𝑦𝑦 be the corresponding covariate 
vector, the severity processes are given by: 

𝑔𝑔�𝑦𝑦𝑖𝑖,𝑡𝑡� = 𝐅𝐅𝑖𝑖,𝑡𝑡,𝑦𝑦
⊤  𝛃𝛃𝑖𝑖,𝑡𝑡 , with 𝛃𝛃𝑖𝑖,𝑡𝑡 = 𝚪𝚪𝑖𝑖,𝑡𝑡,𝛽𝛽 𝛃𝛃𝑖𝑖,𝑡𝑡−1 + 𝛆𝛆𝑖𝑖,𝑡𝑡 , 𝑖𝑖 = 1, . . . ,𝑁𝑁, 
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where 𝑔𝑔(⋅) is a link function (such as the log-link function). The DLM loss severity model 
will be estimated using a Bayesian state space algorithm similar to the DCMM frequency 
model. 

4. Implementation and results 

In this section we apply the models introduced in Section 3 to study the SHELDUS wildfire 
data. As we have seen in Table 1, some states have only few wildfires over the whole 
sample. Therefore, we leave out the states with 15 or fewer wildfires shown in Table 1, as 
these states have small risk exposure to wildfire, and might cause numerical problems in 
the estimation procedure due to excessive zeros in their samples. We also leave out Puerto 
Rico as it is a Caribbean island and unincorporated U.S. territory so both its geographical 
and socioeconomic conditions may be rather different from the other states. Further, as 
can be seen in Figure 2, for many states there have been only few records (or even no 
record) of wildfire over the first few decades. Therefore, the first few decades of the sample 
does not seem to be relevant in predicting future wildfire occurrence, and to make things 
worse, numerical issues may arise when (almost) all data points are zero. Therefore, in this 
research we consider the data from 1989 onward, and so each state is left with 372 
observations (January 1989 to December 2019). The DCMM frequency model is 
implemented via the Python package PyBATS,7 and the DLM loss severity model is 
implemented via the Python package PyDLM.8 

4.1 Data pre-processing and set-up 

After cleaning the data, we are left with 32 states. Before the analysis, we further divide the 
remaining states into two groups based on their geographic locations: the Western region 
(including the West and Southwest regions)9 and the Eastern region (including the 
Northeast, Southeast, and Midwest regions). The Western (resp. Eastern) Region consists 
of 15 (resp. 17) states. The compositions of the two groups are summarized in Table 2. 

Table 2. States in the Western and Eastern regions. 

Western Region Eastern Region 
Alaska Arizona California Colorado Arkansas Florida Georgia Kansas 
Hawaii Idaho Montana Nevada Louisiana Maryland Michigan Minnesota 

New 
Mexico 

Oklahoma Oregon Texas Missouri Nebraska New 
Jersey 

New York 

Utah Washington Wyoming  North 
Carolina 

South 
Carolina 

Virginia West 
Virginia 

    Wisconsin    

 

7 Source: https://lavinei.github.io/pybats. 

8 Source: https://pydlm.github.io/pydlm_user_guide.html. 

9 The definition of major regions in the United States can be found on 
https://www.ducksters.com/geography/us_states/us_geographical_regions.php. 

https://lavinei.github.io/pybats
https://pydlm.github.io/pydlm_user_guide.html
https://www.ducksters.com/geography/us_states/us_geographical_regions.php
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The empirical application proceeds as follows: 

1. We construct the two region level time series data by aggregating the corresponding 
state level data. 

2. For each region, we extract the common factors from the regional data. At this step, we 
apply a separate Bayesian Dynamic Generalized Linear model (DGLM) to the regional 
data, and extract the first 6 harmonic seasonal factors from the DGLM model. Intuitively 
speaking, harmonic functions consist of Fourier functions which represent the periodic 
fluctuations. The linear combinations of the harmonic functions are then used to 
represent the seasonal effects embedded in the data. For detailed discussions of 
harmonic factors and the Fourier representation of seasonality, we refer to (West and 
Harrison 2006). 

3. After obtaining the harmonic seasonal factors, we treat them as observed and use them 
as known regressors in the corresponding state-specific models (4) for predicting state 
level wildfire frequencies. 

For each state, we use the first 15 years of data to estimate the model. Then, we perform 
out-of-sample forecasts from 1 month to 12 months on a rolling window basis over the 
remaining 16 years (2004 to 2019) of data. Specifically, at the first step, we estimate the 
model using data from January 1989 to December 2003, and perform monthly out-of-
sample forecasts of wildfire frequencies from January 2004 to December 2009. As the 
second step, we update the data by one month, estimate the model using data from 
January 1989 to January 2005, and perform monthly out-of-sample forecasts from 
February 2005 to January 2010. We continue this process until the final step, where we fit 
the model using data from January 1989 to December 2018, and perform monthly out-of-
sample forecasts from January 2019 to December 2019. 

Finally, in this project, we rely solely on the historical wildfire data to predict their future 
patterns. The reason we exclude exogenous covariates, such as climate data, is threefold. 
First, there are plenty of climate variables that could potentially affect the occurrence of 
wildfire, and thus should be considered as predictors. However, due to the sample size 
restriction, it is not possible to simultaneously include all these variables in the model. 
Therefore, appropriate variable selection and/or dimension reduction techniques should be 
applied to the (large) set of covariates, before the model can be estimated. Second, we 
found that the harmonic seasonal factors can already capture the wildfire patterns quite 
well, and the inclusion of climate variables (such as average or maximum/minimum of 
monthly temperature and precipitation) can only marginally improve, or sometimes even 
deteriorate, the forecasting performance of the model. In other words, the inclusion of 
exogenous climate variables could lead to over-fitting and introduce extra noise into the 
model. Third, in the presence of exogenous covariates, it is more difficulty to conduct 
forecasting analysis, because we have to “predict the predictors” before predicting the 
wildfire frequencies. This is a difficult task because climate variables themselves are hard 
to project. Nevertheless, we note that there are also advantages of including exogenous 
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variables. The most important advantage is probably that including these variables enables 
one to analyze their cross-sectional correlation with wildfire occurrence, and hence allows 
one to evaluate the impact of climate or socioeconomic activities on wildfire. Moreover, the 
inclusion of exogenous variables may be useful for insurance practices. For instance, 
various actuarial societies in North America have jointly proposed the Actuarial Climate 
Index (ACI)10 recently. The ACIs are aggregate climate indices measured at 12 regions in 
North America from 1961 to 2020 at the monthly frequency. These indices are related to 
various insurance-related events, such as crop yields and natural perils and hazards, and 
could potentially be used to design and price weather-linked derivatives. Therefore, the 
inclusion of the ACI may shed light on the pricing of wildfire-linked CAT bond or 
(re)insurance practices on wildfire. We leave the inclusion of exogenous variables to future 
research. 

4.2 Wildfire frequency forecasting 

First, we display the 1-month and the 12-month out-of-sample forecast for the Western and 
the Eastern regions in Figure 3. Further, in order to examine the long-term forecast 
performance of the DCMM model, we show the 5-year forecast from January 2020 to 
December 2024 for both regions in the leftmost column of Figure 3. From the figure, we 
can see that much more wildfires (6.52 wildfires per month on average) have occurred in 
the Western region than the Eastern region (1.77 wildfire per month on average) over the 
sample. Hence, the Western region is more heavily exposed to wildfire risk. The high 
number of wildfire frequency also leads to smoother estimation of both the mean forecast 
and the 99% credible intervals for the Western region. Further, the occurrence of wildfire 
exhibits clear seasonal patterns, with most wildfires occurring in the summers and falls. 
More importantly, solely based on historical frequencies, the DCMM is able to capture the 
time-varying patterns of wildfire frequencies in both regions and the 99% credible intervals 
cover most of the observations for both the 1-month and 12-month forecasts. Furthermore, 
we can see that the model is learning from past data in generating future forecasts, thanks 
to its dynamic feature. For example, a larger observation will lead to both larger mean 
forecasts and wider credible intervals in the next period. The forecasting results are rather 
similar with other forecasting horizons. Finally, the 5-year forecasts of the two regions are 
rather different: The projected frequency of the Western region is increasing over time, 
while the one of the Eastern region is decreasing. The opposite forecasts reflect the 
diverging historical pattern embedded in the regional data. 

Next, we look at the state-specific models. As illustrations, Figure 4 and Figure 6 display 
the 1-month and 12-month out-of-sample forecasts, as well as the long-term forecasts for 
California, Colorado, Oregon, and Texas from the Western region, and Florida and Georgia 
from the Eastern region. Among the states we select, California and Texas (resp. Florida 
and Georgia) are the top 2 states with the most wildfires over the sample of January 1989 
to December 2019 in the Western (resp. Eastern) region. Colorado and Oregon are the 

 

10 Source: https://actuariesclimateindex.org/home/. 

https://actuariesclimateindex.org/home/
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states of interest for existing wildfire CAT bonds. Again, we see that the model produces 
smoother forecasts and clearer seasonal patterns for the states with more historical 
wildfires, such as California and Texas. Moreover, the 99% credible intervals are able to 
cover most of the observations, especially for the 1-month forecast. One exception is Texas 
over 2011, where the wildfire frequency was extraordinarily high compared to the former 
and the later years. The DCMM model failed to capture this abnormality, as there were no 
similar historical observations to learn from. However, we see that the model responded 
by producing wider credible intervals in the following year, with the magnitude comparable 
to the outliers. In later years, the realized wildfire frequencies reduced to the average level, 
and thus the model predictions. 
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Figure 3. The 1-step (left) and 12-step (mid) mean out-of-sample forecast and the 99% credible intervals, and the 5-year forecasts into the future (right) for the 
Western region (upper panel) and the Eastern region (lower panel). 
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Figure 4. The 1-step (left) and 12-step (mid) mean out-of-sample forecast and the 99% credible intervals, and the 5-year forecasts into the future (right) for 
California (upper panel) and Colorado (lower panel). 
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Figure 5. The 1-step (left) and 12-step (mid) mean out-of-sample forecast and the 99% credible intervals, and the 5-year forecasts into the future (right) for 
Oregon (upper panel) and Texas (lower panel). 
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Figure 6. The 1-step (left) and 12-step (mid) mean out-of-sample forecast and the 99% credible intervals, and the 5-year forecasts into the future (right) for Florida 
(upper panel) and Georgia (lower panel). 
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After examining the figures of the representative states, we now turn to a more 
comprehensive evaluation of the predictive accuracy of the model. First, we look at the 
Mean Absolute Deviation (MAD). The MAD for state 𝑖𝑖 and forecast horizon 𝑘𝑘 is given by: 

MAD𝑖𝑖,𝑘𝑘 =
1

𝑇𝑇𝑘𝑘 − 𝑡𝑡𝑘𝑘 + 1
��𝑛𝑛𝑖𝑖,𝑡𝑡 − 𝑛𝑛�𝑖𝑖,𝑡𝑡,𝑘𝑘�
𝑇𝑇𝑘𝑘

𝑠𝑠=𝑡𝑡𝑘𝑘

, 

(5) 

where 𝑡𝑡𝑘𝑘 and 𝑇𝑇𝑘𝑘 are the first and the last time point of the 𝑘𝑘-month ahead out-of-sample 
forecasts, respectively, and 𝑛𝑛�𝑖𝑖,𝑡𝑡,𝑘𝑘 is the 𝑘𝑘-month-ahead mean forecast of 𝑛𝑛𝑖𝑖,𝑡𝑡. For instance, 
for 𝑘𝑘 = 1, we perform the out-of-sample forecast from January 2005 to January 2019. 
Hence, we have 𝑡𝑡𝑘𝑘 = 181 (the 181𝑠𝑠𝑠𝑠 observation) and 𝑇𝑇𝑘𝑘 = 361. The MADs are calculated for 
the two regions as well, where we aggregate the wildfire frequencies 𝑛𝑛𝑖𝑖,𝑡𝑡 over all relevant 
states for each 𝑡𝑡, and obtain the fitted frequency using the regional model. 

Table 3 shows the MADs for the two regions over the 12 out-of-sample forecast horizons. 
We see that the Western region has larger MADs. This is not surprising, as the Western 
region has overall a much higher number of wildfires over the sample. Further, the MADs 
are slightly increasing over the forecasting horizon. Table 4 and Table 5 display the state-
specific MADs for the Western and the Eastern region, respectively. We see that the state-
specific MADs are in general very small, which indicates a satisfying forecasting 
performance of the proposed model. Moreover, similar to the regional level results, the 
MADs tend to be larger for states with larger number of wildfires. 

  



Spatial-Temporal Modeling of Wildfire Losses with Applications in Insurance-Linked Securities Pricing 

Casualty Actuarial Society Research Paper 20 

Table 3. The Mean Absolute Deviation (MAD) for the whole Western and the Eastern regions over the out-of-sample 
forecasting horizons k = 1, 2, ..., 12 months. 

k Western Region Eastern Region 

1 8.01 2.57 

2 8.23 2.59 

3 8.38 2.63 

4 8.58 2.68 

5 8.66 2.67 

6 8.74 2.65 

7 8.75 2.69 

8 8.81 2.69 

9 8.62 2.71 

10 8.73 2.70 

11 8.93 2.75 

12 9.14 2.80 

4.3 Wildfire loss severity forecasting 

In this subsection we fit the DLM loss severity model introduced in Section 3.3 to the 
observed losses in the SHELDUS data. For each state 𝑖𝑖 and time 𝑡𝑡, 𝑦𝑦𝑖𝑖,𝑡𝑡 is equal to 0 if there 
was no wildfire in that month, or the logarithm of the aggregate reported property damage 
(adjusted to 2019 price level) divided by the number of wildfire otherwise. Similar to the 
DCMM model, we only rely on historical wildfire severity and monthly seasonal factors to 
forecast their future values. Nevertheless, differing from the multi-scale specification on 
frequency modeling, we fit the severity data of each state or region separately. The joint 
modeling of wildfire severity (which consist of excessive zeros and low frequency but very 
large positive numbers) is a challenging task in itself, and is left for future research. 

Since the single-scale dynamic linear model is a mature model and has been applied in 
numerous studies, we briefly illustrate its goodness-of-fit and the forecasting performance 
with the two regions and California and Texas. The results of other states are qualitatively 
similar. First, Figure 7 displays the fitted (forward filtered) mean and 99% credible intervals 
and the 5-year forecast of the average log wildfire severity of the Western and the Eastern 
region, respectively. Several observations can be made. First, there are a moderate degree 
of seasonal effect in the severity series, but not as strong as that of the frequency data. 
Second, the 99% credible intervals are sufficient to cover most of the non-zero damages, 
but the intervals are not wide enough to include 0. This is not surprising since the dynamic 
linear model does not have a separate component to account for the excessive zeros. 
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Further, it assumes a Gaussian distribution of the log severity, and is thus not able to 
capture the excessive volatility in the data. 

Figure 8 displays the in-sample fits and 5-year forecasts for California and Texas, 
respectively. Overall we see very similar goodness-of-fit and patterns in projections 
compared to the regional level. Also, the average log damages are higher in California than 
in Texas. This could be due to differences in landscape, population density, or price level. 
A model including related regressors would be helpful to better understand such cross-
sectional relationships. However, as stated before, such forecasting is difficult when the 
number of regressors is large. Therefore, we leave this topic for future research. 
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Table 4. The Mean Absolute Deviation (MAD) of the Western states over the out-of-sample forecasting horizons k = 
1, 2, ..., 12 months. 

𝑘𝑘 AK AZ CA CO HI ID MT NV 
1 0.69 0.39 2.30 1.28 0.20 0.70 0.58 0.41 
2 0.69 0.40 2.25 1.29 0.20 0.70 0.60 0.40 
3 0.70 0.40 2.30 1.29 0.20 0.70 0.59 0.41 
4 0.70 0.40 2.29 1.30 0.20 0.70 0.59 0.41 
5 0.72 0.40 2.31 1.30 0.19 0.70 0.59 0.40 
6 0.71 0.40 2.34 1.32 0.19 0.70 0.58 0.40 
7 0.70 0.41 2.35 1.31 0.20 0.72 0.53 0.40 
8 0.70 0.41 2.33 1.32 0.19 0.73 0.55 0.41 
9 0.69 0.40 2.30 1.30 0.19 0.73 0.54 0.39 
10 0.67 0.40 2.40 1.30 0.19 0.72 0.54 0.40 
11 0.68 0.40 2.43 1.30 0.19 0.72 0.54 0.40 
12 0.69 0.40 2.38 1.30 0.19 0.71 0.54 0.40 
𝑘𝑘 NM OK OR TX UT WA WY  
1 1.94 0.78 0.52 3.85 1.24 1.06 0.36  
2 1.94 0.80 0.52 3.86 1.22 1.06 0.36  
3 1.96 0.79 0.52 3.88 1.19 1.05 0.36  
4 1.95 0.80 0.52 3.95 1.23 1.06 0.36  
5 1.93 0.80 0.53 3.96 1.22 1.06 0.36  
6 1.92 0.80 0.54 3.98 1.23 1.07 0.35  
7 1.93 0.78 0.53 3.94 1.21 1.07 0.35  
8 1.92 0.79 0.52 3.97 1.27 1.09 0.36  
9 1.87 0.77 0.53 3.93 1.21 1.06 0.36  
10 1.88 0.76 0.52 3.91 1.22 1.06 0.36  
11 1.89 0.77 0.51 3.93 1.23 1.05 0.35  
12 1.88 0.78 0.50 3.93 1.19 1.04 0.36  
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Table 5, The Mean Absolute Deviation (MAD) of the Eastern states over the out-of-sample forecasting horizons 

𝑘𝑘 AR FL GA KS LA MD MI MN MO 
1 0.33 0.48 0.98 0.16 0.26 0.04 0.13 0.13 0.31 
2 0.33 0.49 0.99 0.16 0.25 0.04 0.13 0.12 0.31 
3 0.34 0.49 1.00 0.16 0.27 0.04 0.13 0.13 0.32 
4 0.33 0.49 1.01 0.16 0.26 0.04 0.13 0.12 0.31 
5 0.32 0.47 1.02 0.16 0.26 0.04 0.13 0.12 0.30 
6 0.32 0.44 1.02 0.16 0.25 0.04 0.13 0.12 0.30 
7 0.32 0.44 1.02 0.16 0.25 0.04 0.13 0.12 0.30 
8 0.32 0.43 1.02 0.16 0.25 0.04 0.13 0.12 0.30 
9 0.32 0.43 1.02 0.16 0.25 0.04 0.13 0.12 0.30 
10 0.32 0.43 1.02 0.16 0.25 0.04 0.13 0.12 0.30 
11 0.32 0.43 1.03 0.16 0.25 0.04 0.13 0.12 0.30 
12 0.31 0.43 1.03 0.15 0.25 0.04 0.13 0.12 0.29 
𝑘𝑘 NE NJ NY NC SC VA WV WI  
1 0.23 0.14 0.05 0.09 0.08 0.23 0.35 0.48  
2 0.23 0.14 0.05 0.09 0.08 0.23 0.36 0.49  
3 0.24 0.14 0.06 0.09 0.08 0.23 0.34 0.51  
4 0.23 0.14 0.05 0.09 0.08 0.22 0.34 0.49  
5 0.23 0.14 0.05 0.09 0.08 0.22 0.31 0.49  
6 0.23 0.14 0.05 0.09 0.08 0.22 0.29 0.48  
7 0.23 0.14 0.05 0.09 0.08 0.22 0.30 0.47  
8 0.23 0.14 0.05 0.09 0.08 0.22 0.29 0.46  
9 0.23 0.14 0.05 0.09 0.08 0.22 0.28 0.47  
10 0.23 0.14 0.05 0.09 0.08 0.21 0.28 0.46  
11 0.24 0.14 0.05 0.09 0.08 0.21 0.28 0.45  
12 0.23 0.14 0.05 0.09 0.08 0.21 0.29 0.44  
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5. Applications in insurance-linked securities pricing 

In this section we perform the hedging practice of wildfire risk with catastrophe bonds. We 
first introduce the wildfire CAT bond payoff structure and the pricing methods. The 
(random) aggregate loss in state i up to forecast horizon k is given by: 

𝐿𝐿𝑖𝑖,𝑘𝑘 = �𝑛𝑛𝑖𝑖,𝑇𝑇+𝑢𝑢

𝑘𝑘

𝑢𝑢=1

× 𝑦𝑦𝑖𝑖,𝑇𝑇+𝑢𝑢, 

(6) 

where 𝑇𝑇 is the last observation in the sample. The distribution of 𝐿𝐿𝑖𝑖,𝑘𝑘 can be obtained via 
simulation using the predictive distributions of claim frequencies and average claim 
amounts in Equation (6). Typical CAT bonds are usually priced at spreads over LIBOR, and 
the loss of principal is determined by a pre-specified loss trigger and an exhaustion point 
(Zhu 2017). For example, consider a CAT bond written on the aggregate wildfire loss in 
state 𝑖𝑖 over 𝑘𝑘 months. Denote by 𝑝𝑝𝑖𝑖,𝑘𝑘, 𝐵𝐵𝑖𝑖,𝑘𝑘,1, and 𝐵𝐵𝑖𝑖,𝑘𝑘,2 the bond price, loss trigger, and 
exhaustion point, respectively. If 𝐿𝐿𝑖𝑖,𝑘𝑘 is less than 𝐵𝐵𝑖𝑖,𝑘𝑘,1, then the return to investor at maturity 
time 𝑘𝑘 is given by: 

𝑅𝑅𝑖𝑖,𝑘𝑘 = 𝑝𝑝𝑖𝑖,𝑘𝑘 + 𝐼𝐼𝑖𝑖,𝑘𝑘,     with   𝐼𝐼𝑖𝑖,𝑘𝑘 = 𝑝𝑝𝑖𝑖,𝑘𝑘�𝑒𝑒𝑟𝑟 − 1 + 𝑙𝑙𝑖𝑖,𝑘𝑘�, 

where 𝐼𝐼𝑖𝑖,𝑘𝑘 is the interest plus spread premium, with 𝑟𝑟 the LIBOR rate11 and 𝑙𝑙𝑖𝑖,𝑘𝑘 the spread 
premium rate. On the other hand, if 𝐿𝐿𝑖𝑖,𝑘𝑘 is larger than 𝐵𝐵𝑖𝑖,𝑘𝑘,1, then the time 𝑘𝑘 return to the 
investor will be given by 

𝑅𝑅𝑖𝑖,𝑘𝑘 = 𝑝𝑝𝑖𝑖,𝑘𝑘 �1 − 𝑓𝑓�𝐿𝐿𝑖𝑖,𝑘𝑘��+ 𝐼𝐼𝑖𝑖,𝑘𝑘 , 

with the loss ratio 𝑓𝑓�𝐿𝐿𝑖𝑖,𝑘𝑘� given by: 

𝑓𝑓�𝐿𝐿𝑖𝑖,𝑘𝑘� = max�0, min�𝐿𝐿𝑖𝑖,𝑘𝑘 − 𝐵𝐵𝑖𝑖,𝑘𝑘,1,𝐵𝐵𝑖𝑖,𝑘𝑘,2 − 𝐵𝐵𝑖𝑖,𝑘𝑘,1��/�𝐵𝐵𝑖𝑖,𝑘𝑘,2 − 𝐵𝐵𝑖𝑖,𝑘𝑘,1�. 

In other words, the principal payment will be reduced when 𝐿𝐿𝑖𝑖,𝑘𝑘 > 𝐵𝐵𝑖𝑖,𝑘𝑘,1. Moreover, when 
the aggregate loss exceeds the exhaustion point, the investor will not receive any principal 
at maturity. However, the interest and spread premium will be paid regardless of the 
realized loss. In the existing literature, there are several pricing methods of CAT bonds. 
Specifically, let li,k = 𝐸𝐸𝐏𝐏�𝑓𝑓�𝐿𝐿𝑖𝑖,𝑘𝑘�� be the expected loss ratio under the physical measure 𝐏𝐏, 
the methods to calculate 𝑙𝑙𝑖𝑖,𝑘𝑘 include: 

𝒍̃𝒍𝒊𝒊,𝒌𝒌 = 𝒃𝒃𝟎𝟎 + 𝒃𝒃𝟏𝟏𝒍𝒍𝒊𝒊,𝒌𝒌, 

(7) 

 

11 For ease of exposition, we assume that the LIBOR is constant at 𝑟𝑟 for any maturity in this proposal. 
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𝒍̃𝒍𝒊𝒊,𝒌𝒌 = 𝒃𝒃𝟎𝟎 + 𝒃𝒃𝟏𝟏𝒍𝒍𝒊𝒊,𝒌𝒌 + 𝒃𝒃𝟐𝟐𝒍𝒍𝒊𝒊,𝒌𝒌𝟐𝟐 , 

(8) 

𝒍̃𝒍𝒊𝒊,𝒌𝒌 = 𝒍𝒍𝒊𝒊,𝒌𝒌 + 𝒃𝒃𝟎𝟎�𝒍𝒍𝒊𝒊,𝒌𝒌�𝟏𝟏 − 𝒍𝒍𝒊𝒊,𝒌𝒌�, 

(9) 

𝒍̃𝒍𝒊𝒊,𝒌𝒌 =  𝒃𝒃𝟎𝟎 𝒍𝒍𝒊𝒊,𝒌𝒌
𝒃𝒃𝟏𝟏 . 

(10) 

Figure 7. The fitted mean and the 99% credible intervals (left), and the 5-year forecasts (right) of the average log 
property damage of wildfire for the Western (upper panel) and Eastern region (lower panel). 
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Figure 8. The fitted mean and the 99% credible intervals (left), and the 5-year forecasts (right) of the average log 
property damage of wildfire for California (upper panel) and Texas (lower panel). 
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Formula (7) is the linear premium principle, which assumes that the spread consists of a 
fixed level 𝑏𝑏0 plus a multiple 𝑏𝑏1 of the expected loss. Although the linear premium principle 
has the simplest form and cannot capture any nonlinear dependency, it is easy to interpret 
and thus widely accepted by the industry. Formulas (8) to (10) are extensions of the linear 
premium principle, along different directions. Formula (8) is a quadratic extension to the 
linear principle, which includes an additional multiple 𝑏𝑏2 of the square of the expected loss. 
Formula (9) is the pricing approach originally developed by the ILS fund Fermat Capital 
(Trottier, Charest and others 2018). The parameter 𝑏𝑏0 can be interpreted as a kind of 
“insurance-linked security Sharpe ratio.” Finally, Formula (10) is introduced by (Major and 
Kreps 2002). It assumes that the spread is a power function of the expected loss, and thus 
allows for nonlinear dependencies between the expected loss and the spread. 

5.1 Wildfire risk hedging analysis 

To calculate the spread premium for given state 𝑖𝑖 and horizon 𝑘𝑘, we need to compute the 
predictive distribution of 𝐿𝐿𝑖𝑖,𝑘𝑘 and the coefficients. As an illustration, we let 𝑘𝑘 = 12 (1 year), 
and focus on three Western states: California, Colorado, and Oregon in this report. Results 
for other states and regions can be obtained using the same method, and are available 
upon request. Figure 9 displays the predictive distribution of 𝐿𝐿𝑖𝑖,𝑘𝑘 for the three states. The 
distribution of the total aggregate loss of the three states are also shown in Figure 9(d). 
From the figure, it is clear that the predictive distributions of the 1-year aggregate loss are 
all heavily skewed to the right. In other words, while the predictive loss is small or moderate 
in most of the scenarios, there are a number of scenarios in which the predictive loss is 
huge. In order to gain a better insight of the main part of the distributions, we show the 
truncate the predictive distributions shown in Figure 9 at the 95% quantile, and display the 
truncated distributions in Figure 10. Even for the truncated distributions, we observe a very 
obvious skewness: there is a large probability of having no loss, and non-negligible 
probabilities of having rather higher losses. We also report their mean, standard deviation, 
coefficient of variation, skewness, and the 95%, 99% and the 99.5% quantiles in Table 6. 

The skewness of a sample 𝑥𝑥𝑛𝑛, 𝑛𝑛 = 1, . . . ,𝑁𝑁 is defined as 
∑ (𝑥𝑥𝑛𝑛−𝜇𝜇)3𝑛𝑛

𝜎𝜎3
, where 𝜇𝜇 and 𝜎𝜎 are the 

mean and the standard deviation of the sample, respectively. From the statistics, we see 
that the loss distributions have rather heavy tails. Take California for example, the 95% 
quantile is more than 3 times larger than the mean forecast, and the 99.5% quantile is 30 
times larger. Hence, without any risk mitigation, an insurance company assuming wildfire 
risk in California may need to pay 30 times more than expected. This number is 28.3 for 
Colorado and 38.1 for Oregon. Therefore, it is crucially important for insurance companies 
to have options to transfer their risk exposures, for example, through reinsurance or CAT 
bonds. Next, we proceed to the determination of the coefficients in the pricing formulas (7) 
to (10). (Zhu 2017) estimates these coefficients using the CAT bonds data from the quarterly 
and annual reports published by Lane Financial LLC.12 We will rely on these estimated 
coefficients, which are reported in Table 7, for the analysis in this project. 

 

12 http://www.lanefinancialllc.com/. 

http://www.lanefinancialllc.com/
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Table 6. Summary statistics of the 1-year future aggregate wildfire loss in California, Colorado, Oregon, and the 
total of the three states. 

Statistics (in 
$billions) 

Mean St.D. C.V. Skewness 95% Quantile 99% Quantile 99.5% Quantile 

California 12.89 65.55 5.09 14.21 44.15 224.89 391.80 
Colorado 0.91 4.28 4.71 13.00 3.46 15.94 25.71 
Oregon 0.08 0.50 6.66 14.67 0.23 1.62 3.05 

Total 13.87 65.73 4.74 14.14 47.54 226.20 394.26 

Figure 9. The predictive distribution of 1-year aggregate wildfire loss in California, Colorado, Oregon, and the total 
of the three states. 

 

  



Spatial-Temporal Modeling of Wildfire Losses with Applications in Insurance-Linked Securities Pricing 

Casualty Actuarial Society Research Paper 29 

Table 7. The coefficient values of the pricing formulas Equations (7) to (10). 

Pricing Formula (7) (8) (9) (10) 
𝑏𝑏0 3.14 3.63 0.43 5.27 
𝑏𝑏1 1.98 0.85  0.33 
𝑏𝑏2  0.32   

Given the simulated aggregate loss from the dynamic Bayesian models and the estimated 
coefficients, we calculate the spread premium rates using the expected loss ratio of 
California, Colorado, Oregon, and the aggregate loss of the three states. In the calculation, 
we consider two payoff structures of the CAT bond. In the first structure, we let 𝐵𝐵1 (the 
trigger point) and 𝐵𝐵2 (the exhaustion point) be the 90% and 99% quantiles of the 
corresponding loss, respectively. In other words, the principal repayment of each CAT bond 
will start to decrease when the realized underlying loss is higher than its 90% quantile, and 
will be reduced to zero when the realized loss exceed its 99% quantile. In the second 
structure, we let 𝐵𝐵1 and 𝐵𝐵2 be the 95% and the 99% quantiles, respectively. In this case, only 
the more extreme risk will be covered. 

The two structures above resemble a typical CAT bond, as the investors will receive the full 
principal repayment in most of the scenarios, and will only assume the tail risk. Given this 
setup, the spread premium rates 𝑙𝑙𝑖𝑖,𝑘𝑘 are shown in Table 8. First, we see that the premium 
rate varies substantially with the pricing formulas, ranging from 0.08% to 5.55%. This is not 
surprising, because the pricing formulas are fundamentally different. For example, while 
the Formula (7) is linear in the expected loss ratio, Formula (10) relies on the 𝑏𝑏1-th moment 
of the expected loss ratio, and is thus highly nonlinear in the expected loss. Second, the 
premium rates are almost identical across locations. This is because the setup of the CAT 
bond is identical for all locations (based on the same quantiles), and thus their expected 
loss ratios are rather similar: They range from 2.46% to 2.82% for the first payoff structure, 
and from 2.00% to 2.67% for the second structure. 

The spread premium rate 𝑙𝑙𝑖𝑖,𝑘𝑘 (in terms of %) for a CAT bond written on the 1-year future 
aggregate wildfire loss in California, Colorado, Oregon, and the total of the three states 
calculated using the 4 pricing formulas. 

Table 8. The spread premium rate 𝒍̃𝒍i,k (in terms of %) for a CAT bond written on the 1-year future aggregate wildfire 
loss in California, Colorado, Oregon, and the total of the three states calculated using the 4 pricing formulas. 

(B1,B2) (90%,99%) (95%,99%) 

Pricing Formula (7) (8) (9) (10) (7) (8) (9) (10) 

California 3.19  3.65  0.10  5.57  3.18  3.64  0.08  5.54  
Colorado 3.20  3.65  0.10  5.58  3.18  3.65  0.08  5.55  
Oregon 3.19  3.65  0.09  5.56  3.18  3.64  0.08  5.54  

Total 3.19  3.65  0.10  5.57  3.18  3.65  0.08  5.55  
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Figure 10. The truncated predictive distribution (at the 95% quantile) of 1-year aggregate wildfire loss in California, 
Colorado, Oregon, and the total of the three states. 

 

Given the spread premium rates, we are finally able to calculate the payoff of the CAT bond, 
and evaluate their effectiveness in wildfire risk reduction. In this analysis, we assume that 
there is a representative insurer in each state that assumes all the wildfire risk in that state. 
In other words, for the representative insurer in California, the expected claim amount over 
the next year is $11.73 billion, and the 99% quantile is $202.87 billion, etc. For each insurer, 
we consider CAT bonds with the two payoff structures discussed above. Further, we 
compare the hedge effectiveness of the CAT bond with two hedging amount: we assume 
that the insurer can choose to write a CAT bond with principal equal to either the 95% or 
the 99% quantile of its 1-year future loss. To summarize, we evaluate the hedging 
effectiveness of the CAT bond under 4 scenarios, where the insurer writes a CAT bond with: 

1. Face value equal to the 95% quantile of its 1-year future loss and (𝐵𝐵1,𝐵𝐵2) =
(90%, 99%) quantiles. 

2. Face value equal to the 95% quantile of its 1-year future loss and (𝐵𝐵1,𝐵𝐵2) =
(95%, 99%) quantiles. 

3. Face value equal to the 99% quantile of its 1-year future loss and (𝐵𝐵1,𝐵𝐵2) =
(90%, 99%) quantiles. 
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4. Face value equal to the 99% quantile of its 1-year future loss and (𝐵𝐵1,𝐵𝐵2) =
(95%, 99%) quantiles. 

The summary statistics of the simulated 1-year hedged loss for each insurer are shown in 
Table 9. For illustrative purpose, we only report the results using the linear pricing formula 
(7). Results using other pricing formulas are qualitatively similar, and are available upon 
request. Several observations can be drawn from the hedging results. First, the hedged 
loss in general has a higher mean value than the unhedged loss shown in Table 6, due to 
the premium that the insurer has to pay to the investors. Second, and more importantly, 
the standard deviation and the 99% and the 99.5% quantiles of the hedged loss are much 
smaller than the unhedged loss, indicating much lower volatility and tail risk for the hedged 
loss. This is also the case for the 95% quantile for all scenarios except scenario 2. Therefore, 
if the insurer is regulated to set the 99.5% value-at-risk of its future loss over the one year 
horizon as the minimum capital, then hedging with the CAT bonds could substantially 
reduce its capital requirement. This is because in Scenario 2, the principal payments just 
starts to reduce when the loss exceeds its predicted 95% quantile, and thus the insurer does 
not receive sufficient compensation at the 95% to offset the premium it pays. Third, the 
skewness of the hedged loss is in general higher than that of the unhedged loss for all 
states. This indicates that the hedged loss still has a heavy tail. This is not surprising 
because the CAT bonds only mitigate the tail risk, and did not change the main part of the 
loss distribution. Also, the magnitude of the skewness is larger because the the hedged 
loss has a higher expectation and a lower standard deviation than the unhedged loss. 
Finally, the coefficient of variation of the hedged losses are smaller than the unhedged ones 
in all cases. To summarize, while writing the CAT bond moderately increases the mean loss 
(and thus the liability) of the insurer, it can substantially reduce the volatility and the tail 
risk. 

Table 9. Summary statistics of the hedged loss over the 1-year horizon in California, Colorado, and Oregon under the 
4 scenarios 

State Scenario Mean St.D. C.V. Skewness 95% Quantile 99% Quantile 99.5% Quantile 
California 1 13.06 62.82 4.81 16.10 39.87 173.51 345.28 

2 13.32 62.99 4.73 15.96 45.40 173.51 345.28 
3 13.90 48.68 3.50 21.69 24.76 25.99 179.73 
4 15.19 49.15 3.24 21.00 38.81 50.50 179.71 

Colorado 1 0.92 3.92 4.24 14.33 3.10 12.61 22.38 
2 0.95 3.94 4.16 14.13 3.57 12.61 22.38 
3 0.98 2.84 2.90 20.77 1.92 2.02 10.36 
4 1.08 2.89 2.68 19.59 2.97 3.92 10.36 

Oregon 1 0.08 0.48 6.24 15.41 0.21 1.40 2.83 
2 0.08 0.48 6.16 15.35 0.24 1.40 2.83 
3 0.09 0.37 4.23 20.75 0.12 0.12 1.49 
4 0.09 0.37 3.90 20.40 0.21 0.28 1.49 
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5.2 Basis risk analysis 

In Section 5.1, we evaluated the hedging effectiveness using indemnity CAT bonds. In other 
words, the CAT bonds are written on the risk specific to the insurer, and their payoffs are 
perfectly linked to the realized loss of the insurer. In this subsection, we relax this 
assumption and examine the hedging effectiveness of index-based CAT bonds. 
Specifically, we now assume that the trigger point and exhaustion point of all CAT bonds 
are based on the predictive distribution of the total loss of the three states combined. In 
this case, the CAT bond payments are no longer perfectly related to the realized loss of 
each insurer. Instead, they are related to an “index,” which is assumed to be the total loss 
of the three states in this case. When hedging with such index-based bonds, the insurers 
are bearing basis risk, i.e., the risk of mismatch between the CAT bond payments and their 
realized loss. 

Similar to Section 5.1, we consider 4 scenarios with different face values and (𝐵𝐵1,𝐵𝐵2). Note 
that, although now (𝐵𝐵1,𝐵𝐵2) are related to the total loss, the face value is still assumed to be 
based on their own liability. This resembles the situation in reality, where insurers are free 
to determine how much CAT bond they want to purchase/issue. The summary statistics of 
the hedged loss using the index-based bonds are shown in Table 10. Compared to the 
benchmark case in Table 9, all numbers are larger, indicating a worse hedging result. The 
magnitude of increase ranges from 10% to 20%, which seems to be reasonable, especially 
for Colorado and Oregon, where the risk exposures are low. For these states, the frequency 
of wildfire is much more volatile and has more zeros than California, and thus more difficult 
to predict. As a result, the CAT bond written solely on the loss of one of these states may 
be less liquid and more expensive, because they are riskier and only relevant to agents 
exposed to wildfire risk specific in this state (which may not be many). Therefore, a 10% to 
20% margin in exchange of issuing an index-based CAT bond, which is more liquid and 
less expensive, might be a reasonable choice of many insurers. 

Table 10. Summary statistics of the hedged loss over the 1-year horizon in California, Colorado, and Oregon with 
CAT bonds in the presence of basis risk. 

State Scenario Mean St.D. C.V. Skewness 95% Quantile 99% Quantile 99.5% Quantile 
California 1 13.06 67.36 5.16 14.72 44.54 217.26 387.84 

2 13.32 67.33 5.05 14.73 44.72 217.25 388.74 
3 13.92 72.57 5.21 11.40 48.51 220.23 387.91 
4 15.21 72.05 4.74 11.67 49.34 220.45 389.50 

Colorado 1 0.93 4.26 4.60 12.68 3.50 15.93 25.67 
2 0.95 4.28 4.51 12.70 3.53 15.95 25.79 
3 0.99 4.56 4.61 8.44 3.80 16.00 25.47 
4 1.08 4.60 4.24 8.83 3.85 16.16 26.05 

Oregon 1 0.08 0.50 6.57 14.59 0.23 1.62 3.05 
2 0.08 0.50 6.46 14.59 0.23 1.62 3.06 
3 0.08 0.54 6.51 11.21 0.27 1.64 3.07 
4 0.09 0.54 5.80 11.47 0.27 1.65 3.09 
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5.3 Single-Scale model 

Up to now, the prediction of wildfire frequencies are based on the multi-scale DCMM model 
(4), in which spatial dependence is accounted for via the common factors 𝛟𝛟𝑡𝑡. In this 
subsection, we evaluate the importance of spatial dependence by repeating the analysis 
using state-specific, independent DCMM models (Model (1) without the common factor). 
The resulting 1- to 12-month MADs are collected in Appendix 9. In general, the MADs are 
larger with independent DCMM models, which indicates that incorporating the spatial 
dependence helps increase the predictive accuracy. 

The summary statistics of the unhedged and hedged 1-year loss are reported in Table 11 
and Table 12, respectively. Compared to the benchmark results in Section 5.1, we see that 
the predictive distributions of the 1-year loss, both hedged and unhedged, have higher 
means, and are more volatile in all states. Hence, incorporating the spatial dependence has 
a substantial impact on the prediction of future loss and the hedging results. Based on the 
predictive accuracy measure, it seems that the results with spatial dependence are more 
credible. 

Table 11. Summary statistics of the 1-year future aggregate wildfire loss in California, Colorado, Oregon, and the 
total of the three states using single-scale models. 

State Mean St.D. C.V. Skewness 95% Quantile 99% Quantile 99.5% Quantile 
California 13.64 68.37 5.01 13.93 48.13 236.27 413.23 
Colorado 1.19 5.70 4.81 13.13 4.43 20.17 34.63 
Oregon 0.14 1.07 7.66 17.21 0.37 2.86 5.46 

Total 14.97 68.60 4.58 13.78 52.83 238.33 413.77 

Table 12. Summary statistics of the hedged loss over the 1-year horizon in California, Colorado, and Oregon with 
CAT bonds of different characteristics using single-scale models. 

State Scenario Mean St.D. C.V. Skewness 95% Quantile 99% Quantile 99.5% Quantile 
California Bond 1 13.89 63.54 4.58 15.12 43.64 189.92 366.88 

Bond 2 14.17 63.74 4.50 14.97 49.65 189.91 366.87 
Bond 3 14.83 47.69 3.22 20.91 27.22 28.59 185.67 
Bond 4 16.23 48.28 2.97 20.09 42.22 55.16 185.64 

Colorado Bond 1 1.20 5.24 4.36 14.40 3.97 15.91 30.36 
Bond 2 1.23 5.26 4.27 14.22 4.57 15.91 30.36 
Bond 3 1.27 3.88 3.06 20.16 2.45 2.58 15.20 
Bond 4 1.39 3.94 2.83 19.15 3.82 5.02 15.19 

Oregon Bond 1 0.14 1.04 7.28 17.85 0.34 2.51 5.11 
Bond 2 0.14 1.04 7.20 17.81 0.38 2.51 5.11 
Bond 3 0.16 0.85 5.25 22.38 0.20 0.21 2.71 
Bond 4 0.17 0.85 4.89 22.20 0.35 0.46 2.71 

6. Reinsurance analysis 

Reinsurance is a traditional approach to transfer climate risk for insurers, and it is currently 
a more widely used. Here, we will extend the applications of the fitted models described in 
Section 4 to evaluate the hedge effectiveness of stop-loss reinsurance products. In 
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particular, we will calculate the actuarially fair premium for a stop-loss reinsurance with 
different thresholds, as well as the summary statistics of the reinsured liabilities. Stop-loss 
reinsurance caps the loss of an insurer at a fixed level (Kaas, et al. 2008). Formally, for state 
𝑖𝑖, a stop-loss reinsurance with threshold 𝑠𝑠 pays 𝑃𝑃𝑖𝑖 = 𝐿𝐿𝑖𝑖 − 𝑠𝑠 to the insurer if the total 
insurance loss over a given time period (typically, 1 year) 𝐿𝐿𝑖𝑖 is larger than 𝑠𝑠, and 𝑃𝑃𝑖𝑖 = 0 
otherwise. The actuarially fair premium of the reinsurance is given by: 

𝑝𝑝𝑖𝑖 = 𝑒𝑒−𝑟𝑟𝐸𝐸[𝑃𝑃𝑖𝑖], 

(11) 

i.e., the expected present value of the reinsurance payment. The end-of-year net reinsured 
loss (after paying the premium) of the insurer is thus: 

𝐿𝐿�𝑖𝑖 = �𝐿𝐿𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑒𝑒𝑟𝑟, if 𝐿𝐿𝑖𝑖 < 𝑠𝑠,
𝑠𝑠 + 𝑝𝑝𝑖𝑖𝑒𝑒𝑟𝑟, if 𝐿𝐿𝑖𝑖 ≥ 𝑠𝑠. 

(12) 

In this analysis, we will discuss two scenarios of reinsurance with different stop-loss 
thresholds for each state: 

Stop-loss threshold equals 95% of its 1-year predicted loss. 

Stop-loss threshold equal 99% of its 1-year predicted loss. 

For simplicity, we leave out the subscripts 𝑖𝑖 and 𝑘𝑘 from the symbols. The actuarially fair 
premiums of the reinsurance, as well as the summary statistics of the net reinsured losses 
of three states are shown in Table 13. We see that for each state the reinsurance premium 
with a lower stop-loss level is more expensive, which is intuitive. Moreover, the means of 
the reinsured losses are the same in both scenarios. This is because the actuarially fair 
premium is used. Specifically, the expected end-of-year net reinsured loss is given by: 

𝐸𝐸[𝐿𝐿�𝑖𝑖] = 𝐸𝐸[𝐿𝐿𝑖𝑖 − 𝑃𝑃𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑒𝑒𝑟𝑟]
= 𝐸𝐸�𝐿𝐿𝑖𝑖 − 𝑃𝑃𝑖𝑖 + 𝐸𝐸[𝑃𝑃𝑖𝑖]�
= 𝐸𝐸[𝐿𝐿𝑖𝑖] − 𝐸𝐸[𝑃𝑃𝑖𝑖] + 𝐸𝐸[𝑃𝑃𝑖𝑖]
= 𝐸𝐸[𝐿𝐿𝑖𝑖].

 

In other words, the expected reinsured loss is identical to the expected unreinsured loss if 
the reinsurance has an actuarially fair premium. The expected reinsured and unreinsured 
losses will be different if another premium principle is used. Further, comparing between 
the two scenarios, we see that the reinsured losses are less volatile and have lower 95% 
and 99% quantiles under Scenario 1 in which the stop-loss threshold is lower. Finally, 
compared to the hedged loss using CAT bonds, the reinsured losses in general are less 
volatile, have a smaller coefficient of variation, but higher 95% and 99% quantiles. 
Therefore, there is no universal conclusion that can be made about which risk mitigating 
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strategy is more appealing than the other, and the choice between two should depend on 
the availability of the products and an insurer’s choice of the selection criteria. 

Table 13. Summary statistics of the hedged loss over the 1-year horizon in California, Colorado, and Oregon with 
stop-loss reinsurance. 

State Scenario Reinsurance Price Mean St.D. C.V. Skewness 95% Quantile 99.5% Quantile 
California 1 6.76 12.84 11.11 0.87 2.50 50.76 50. 76 

2 3.17 12.84 29.02 2.26 5.37 47.17 219.50 
Colorado 1 0.45 0.91 0.88 0.97 2.50 3.91 3.91 

2 0.19 0.91 2.18 2.39 5.21 3.64 16.12 
Oregon 1 0.05 0.08 0.57 0.75 2.88 0.28 0.28 

2 0.02 0.08 0.21 2.74 6.04 0.25 1.64 

7. Case Study: California county-level data 

In this section, we apply the analysis in Sections 4 and 5 to the county-level data of 
California. Similarly, monthly data from January 1989 are used, and counties with 15 
historical wildfires or fewer are excluded. After cleaning the data, we are left with 11 
counties, which are summarized in Table 14. 

Table 14. Counties in California with the numbers in the brackets are the number of wildfires that occurred during 
January 1989 to December 2019. 

County 
El Dorado (16) Kern (22) Los Angeles (21) Mariposa (17) 

Orange (23) Riverside (99) San Bernardino (105) San Diego (77) 
Shasta (17) Tulare (15) Ventura (17)  

The 1- and the 12-month out-of-sample forecasts for the three more wildfire counties: San 
Diego, Riverside, and San Bernardino, are shown in Figure 11 and Figure 12. We see that, 
compared to the state-level data, the county-level frequencies are much lower, with the 
most non-zero number of claims being one or two. More importantly, similar to the state-
level analysis, the 95% credible intervals produced by the DCMM are able to include most 
of the realized historical frequencies for the three counties shown. The mean absolute 
deviance of the counties in California over the 1- to 12-month out-of-sample forecast 
horizons are shown in Table 15. The in-sample fit and the 5-year forecast of the average 
log property damage of wildfire for the three counties are displayed in Figure 13. We see 
that the average log damages are concentrated between 8 and 15, or equivalently between 
$3,000 and $3.27 million losses for the three counties reported. Furthermore, all historical 
observations are within the 95% credible intervals generated by the proposed DCMM.
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Figure 11. The 1-step (left) and 12-step (mid) mean out-of-sample forecast and the 99% credible intervals, and the 5-year forecasts into the future 
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Figure 12. The 1-step (left) and 12-step (mid) mean out-of-sample forecast and the 99% credible intervals, and the 5-year forecasts into the future (right) for San 
Bernardino. 
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Table 15. The Mean Absolute Deviation (MAD) of the counties in California over the out-of-sample forecasting 
horizons k=1,2,...,12 months. 

𝑘𝑘 El Dorado Kern Los Angeles Mariposa Orange Riverside 
1 0.16 0.18 0.37 0.22 0.20 0.59 
2 0.16 0.18 0.37 0.22 0.20 0.58 
3 0.16 0.18 0.37 0.22 0.19 0.57 
4 0.16 0.18 0.37 0.22 0.19 0.57 
5 0.16 0.19 0.37 0.22 0.19 0.57 
6 0.17 0.18 0.37 0.22 0.19 0.57 
7 0.17 0.19 0.38 0.22 0.19 0.57 
8 0.17 0.18 0.37 0.22 0.19 0.57 
9 0.17 0.18 0.35 0.21 0.19 0.57 
10 0.18 0.18 0.38 0.21 0.19 0.57 
11 0.17 0.18 0.38 0.21 0.19 0.57 
12 0.17 0.18 0.38 0.21 0.19 0.57 
𝑘𝑘 San Bernardino San Diego Shasta Tulare Ventura  
1 0.64 0.43 0.17 0.19 0.18  
2 0.64 0.43 0.17 0.19 0.18  
3 0.65 0.42 0.17 0.20 0.18  
4 0.64 0.42 0.17 0.20 0.18  
5 0.64 0.42 0.17 0.20 0.19  
6 0.64 0.42 0.17 0.20 0.18  
7 0.64 0.42 0.17 0.20 0.19  
8 0.65 0.42 0.17 0.19 0.19  
9 0.65 0.42 0.17 0.18 0.18  
10 0.65 0.41 0.16 0.17 0.18  
11 0.64 0.41 0.16 0.17 0.18  
12 0.65 0.41 0.16 0.18 0.18  

Figure 14 and Figure 15 display the original and the truncated (at 95% quantile) predictive 
distribution of the 1-year aggregate loss for each of the three counties. The corresponding 
summary statistics are shown in Table 16. We see that the loss distributions are rather 
different across counties. In particular, all summary statistics reported (mean, standard, 
and 95% and 99% quantiles) for Riverside are lower than 10% of those of San Diego. This 
is because the Cedar fire,13 which occurred in October 2003 in San Diego and has caused 
$1.5 billion property damage (adjusted to 2019 price level), boosted the predicted future 
loss of San Diego. 

Next, we perform the hedging analysis described in Sections 5.1 and 5.2 on the county-
level loss data. In particular, the four scenarios in Section 5.1 are considered, in which the 
insurer writes an indemnity CAT bond with different face values and triggers. The hedged 
results of the three counties are shown in Table 17. Similar to the state-level analysis, we 
see that hedging with the indemnity CAT bond will lead to higher mean loss because of the 
premium paid by the insurer. However, the volatility of losses is substantially  

 

13 Source: https://en.wikipedia.org/wiki/Cedar_Fire. 

https://en.wikipedia.org/wiki/Cedar_Fire
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Figure 13. The fitted mean and the 99% credible intervals (left), and the 5-year forecasts (right) of the average log 
property damage of wildfire for San Diego (upper panel), Riverside (middle panel), and San Bernardino (lower 
panel). 
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Figure 14. The predictive distribution of 1-year aggregate wildfire loss in San Diego, Riverside, San Bernardino, and 
the total of the three states. 
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Figure 15. The truncated (at 95% quantile) predictive distribution of 1-year aggregate wildfire loss in San Diego, 
Riverside, San Bernardino, and the total of the three states. 

reduced. Namely, we see smaller standard deviations, and much smaller 99% quantiles, 
especially in Scenarios 3 and 4 where the face value of the CAT bond is equal to 99% of the 
projected 1-year loss in each county. Next, we take the basis risk into account, and consider 
index-based CAT bonds written on the total loss of the three counties combined. The 
hedged results in the presence of basis risk are shown in Table 18. Again, similar to the 
state-level analysis, we see that the presence of basis risk increases the standard deviations 
and the quantiles of hedged losses, and thus leads to a worse hedging results. This is 
especially the case for Scenarios 3 and 4, when the face value of the CAT bond is higher. 
In particular, the 99% loss quantiles for Riverside and San Bernardino have increased by 15 
times for Scenario 3. Therefore, our analysis indicates that while index-based CAT bonds 
can have a reasonable mean hedging performance (in terms of mean and standard 
deviation), the inherent basis risk leads to much worse hedging results for the tail risk and 
for counties with lower aggregate losses. 

Finally, we repeat the analysis in Section 5.3, and compare the unhedged and hedged loss 
predicted by the single-scale models with the previous predictions using the multi-scale 
model. The unhedged summary statistics of each county predicted by the single-scale 
models are shown in Table 19, and the hedged results are shown in Table 20. Again, the 
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results are qualitatively similar to the state-level analysis. Specifically, we see that the 
single-scale models predict (much) higher losses, whether hedged or unhedged. This is 
especially the case for the loss quantiles of Riverside and San Bernardino, which have lower 
historical losses. Hence, incorporating the spatial dependence has a substantial benefit on 
predicting future insurance losses and the hedging analysis for county-level data as well. 

Summary statistics of the 1-year future aggregate wildfire loss in San Diego, Riverside, San 
Bernardino, and the total of the three counties. 

Table 16. Summary statistics of the 1-year future aggregate wildfire loss in San Diego, Riverside, San Bernardino, 
and the total of the three counties. 

State Mean St.D. C.V. Skewness 95% Quantile 99% Quantile 99.5% Quantile 
San Diego 1.08 6.70 6.22 15.89 3.44 20.66 38.46 
Riverside 0.26 1.58 6.01 14.78 0.86 4.82 9.05 

San Bernardino 0.83 6.20 7.50 16.95 2.13 16.31 32.07 
Total 2.17 9.24 4.27 11.12 8.22 37.70 63.18 

Table 17. Summary statistics of the hedged loss over the 1-year horizon in San Diego, Riverside, and San 
Bernardino under the 4 scenarios. 

State Scenario Mean St.D. C.V. Skewness 95% Quantile 99% Quantile 99.5% Quantile 
San Diego 1 1.10 6.38 5.81 16.87 3.17 17.35 35.15 

2 1.12 6.39 5.72 16.79 3.54 17.35 35.15 
3 1.21 5.00 4.14 22.54 1.92 1.99 18.56 
4 1.31 5.02 3.83 22.10 3.12 4.07 18.56 

Riverside 1 0.27 1.49 5.59 15.69 0.79 3.99 8.23 
2 0.27 1.50 5.50 15.60 0.89 3.99 8.23 
3 0.29 1.17 4.03 20.42 0.47 0.49 4.41 
4 0.32 1.18 3.71 19.96 0.77 1.01 4.41 

San Bernardino 1 0.84 6.01 7.13 17.57 2.01 14.26 30.01 
2 0.85 6.01 7.06 17.54 2.20 14.26 30.01 
3 0.95 4.92 5.17 21.90 1.22 1.25 16.36 
4 1.02 4.93 4.82 21.73 2.05 2.64 16.36 
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Table 18. Summary statistics of the hedged loss over the 1-year horizon in San Diego, Riverside, and San 
Bernardino with CAT bonds in the presence of basis risk. 

State Scenario Mean St.D. C.V. Skewness 95% Quantile 99% Quantile 99.5% Quantile 
San Diego 1 1.09 6.44 5.90 16.44 3.48 19.04 35.15 

2 1.11 6.45 5.79 16.34 3.52 19.31 35.15 
3 1.16 5.49 4.71 16.71 3.80 10.77 18.56 
4 1.30 5.52 4.26 16.41 3.98 12.35 18.56 

Riverside 1 0.27 1.55 5.83 14.59 0.87 4.78 8.91 
2 0.27 1.55 5.73 14.54 0.88 4.83 9.03 
3 0.28 1.53 5.41 10.72 0.97 4.69 8.32 
4 0.31 1.54 4.93 10.79 0.99 4.88 8.94 

San Bernardino 1 0.84 6.05 7.24 17.25 2.17 15.53 30.34 
2 0.85 6.06 7.13 17.20 2.18 15.74 30.39 
3 0.89 5.33 5.95 17.10 2.50 10.55 18.76 
4 1.00 5.34 5.35 16.96 2.58 12.10 19.20 

Table 19. Summary statistics of the unhedged loss over the 1-year horizon in San Diego, Riverside, and San 
Bernardino. 

State Mean St.D. C.V. Skewness 95% Quantile 99% Quantile 99.5% Quantile 
San Diego 1.50 9.80 6.53 16.18 4.63 27.76 54.33 
Riverside 0.32 2.19 6.74 17.68 0.98 5.99 11.38 

San Bernardino 1.14 9.85 8.63 19.69 2.55 21.45 46.34 
Total 2.97 14.10 4.75 12.29 10.73 52.45 90.75 

Table 20. Summary statistics of the hedged loss over the 1-year horizon in San Diego, Riverside, and San 
Bernardino under the 4 scenarios using single-scale models. 

State Scenario Mean St.D. C.V. Skewness 95% Quantile 99% Quantile 99.5% Quantile 
San Diego 1 1.53 9.37 6.13 17.06 4.27 23.31 49.87 

2 1.55 9.39 6.05 16.99 4.77 23.30 49.87 
3 1.67 7.55 4.53 21.82 2.54 2.64 27.59 
4 1.81 7.58 4.18 21.48 4.17 5.48 27.59 

Riverside 1 0.33 2.10 6.35 18.61 0.90 5.05 10.44 
2 0.34 2.10 6.26 18.55 1.01 5.05 10.44 
3 0.36 1.72 4.72 23.77 0.55 0.57 5.61 
4 0.39 1.73 4.38 23.45 0.90 1.16 5.61 

San Bernardino 1 1.16 9.65 8.29 20.22 2.42 18.99 43.88 
2 1.17 9.65 8.23 20.20 2.63 18.99 43.88 
3 1.32 8.30 6.28 24.12 1.49 1.52 25.68 
4 1.41 8.31 5.90 24.03 2.50 3.22 25.68 

8. Conclusion 

In this project, we apply an innovative Bayesian multi-scale Dynamic Count Mixture Model 
(DCMM) to predict location-specific wildfire frequencies. The proposed model is capable of 
handling the intricate dynamics of the wildfire frequency data, including zero-inflation, 
time-varying patterns, and the over-dispersed feature compared to the Poisson 
distribution. Furthermore, the DCMM model is able to incorporate the tie-varying spatial 
dependence of the frequency data among multiple locations. In the empirical section, we 
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illustrate the capability of the proposed model to produce accurate mean forecast, as well 
as reasonable credible intervals for states with rather different patterns (frequent wildfire 
versus very few wildfires over the sample). 

Based on the DCMM model, together with the Bayesian Gaussian dynamic linear model for 
the claim severity, we price wildfire catastrophe (CAT) bonds with different characteristics. 
In the hedging analysis, we show that the hedging with wildfire CAT bonds could 
substantially lower the variability and tail risk of insurers exposed to wildfire risk in different 
states. A stop-loss reinsurance application and CAT bond hedging application with the 
county-level data of California are also presented with the proposed model. Although we 
have focused on the wildfire application in this paper, the proposed Bayesian framework 
can also be applied to predicting insurance losses of other perils, and study the pricing and 
hedging effectiveness of CAT bonds written on other peril(s). Such analyses are interesting 
future research directions. The application of the proposed modeling framework on 
catastrophe risk capital allocation is another very interesting topic to explore in future 
research.  
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Appendix 

A. Single-Scale Forecasting Results 

Table 21 and Table 22 report the 1- to 12-month out-of-sample forecast mean absolute 
deviance of wildfire frequency obtained from the single-scale DCMM models for states in 
the Western and the Eastern region, respectively. 

Table 21. The Mean Absolute Deviation (MAD) of the Western states over the out-of-sample forecasting horizons 
k=1,2,...,12 months using single-scale models. 

𝑘𝑘 AK AZ CA CO HI ID MT NV 
1 0.67 0.45 2.43 1.40 0.22 1.09 3.94 0.52 
2 0.67 0.45 2.38 1.39 0.22 1.08 4.13 0.52 
3 0.66 0.45 2.40 1.37 0.22 1.08 3.79 0.52 
4 0.66 0.45 2.38 1.38 0.22 1.07 3.76 0.51 
5 0.65 0.45 2.41 1.39 0.21 1.07 3.78 0.51 
6 0.65 0.45 2.43 1.39 0.21 1.06 3.81 0.50 
7 0.65 0.46 2.44 1.40 0.21 1.07 3.72 0.50 
8 0.64 0.45 2.39 1.38 0.21 1.09 3.82 0.51 
9 0.59 0.45 2.37 1.37 0.21 1.09 3.54 0.50 

10 0.60 0.45 2.47 1.37 0.21 1.08 3.59 0.50 
11 0.59 0.44 2.48 1.35 0.21 1.07 3.39 0.50 
12 0.58 0.44 2.45 1.34 0.21 1.06 3.46 0.51 
𝒌𝒌 NM OK OR TX UT WA WY  
1 1.55 0.77 0.75 11.51 1.84 2.54 0.51  
2 1.52 0.76 0.75 11.11 1.82 2.50 0.51  
3 1.53 0.76 0.73 10.51 1.82 2.52 0.51  
4 1.51 0.76 0.73 10.11 1.80 2.39 0.50  
5 1.51 0.75 0.74 10.11 1.78 2.41 0.50  
6 1.48 0.75 0.74 11.22 1.79 2.31 0.50  
7 1.47 0.75 0.74 9.71 1.78 2.27 0.49  
8 1.48 0.75 0.74 9.41 1.80 2.31 0.49  
9 1.50 0.75 0.74 9.29 1.74 2.28 0.50  

10 1.48 0.75 0.73 8.96 1.76 2.25 0.49  
11 1.47 0.76 0.71 8.78 1.72 2.27 0.49  
12 1.44 0.75 0.70 8.36 1.70 2.31 0.49  
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Table 22. The Mean Absolute Deviation (MAD) of the Eastern states over the out-of-sample forecasting horizons 
k=1,2,...,12 months using single-scale models. 

𝑘𝑘 AR FL GA KS LA MD MI MN MO 
1 0.39 1.70 1.27 0.19 0.35 0.15 0.16 0.17 0.47 
2 0.39 1.68 1.28 0.19 0.35 0.15 0.15 0.17 0.46 
3 0.39 1.67 1.28 0.19 0.35 0.15 0.15 0.17 0.46 
4 0.39 1.64 1.29 0.19 0.35 0.15 0.15 0.17 0.45 
5 0.39 1.62 1.29 0.19 0.34 0.15 0.15 0.17 0.45 
6 0.39 1.63 1.27 0.19 0.34 0.15 0.15 0.17 0.44 
7 0.38 1.62 1.28 0.19 0.34 0.14 0.15 0.17 0.45 
8 0.39 1.60 1.29 0.19 0.34 0.14 0.15 0.16 0.45 
9 0.39 1.61 1.26 0.19 0.34 0.14 0.15 0.16 0.44 

10 0.38 1.56 1.25 0.19 0.34 0.14 0.15 0.16 0.44 
11 0.38 1.58 1.26 0.19 0.34 0.14 0.15 0.16 0.43 
12 0.38 1.53 1.25 0.19 0.33 0.14 0.15 0.16 0.44 
𝒌𝒌 NE NJ NY NC SC VA WV WI  
1 0.37 0.18 0.09 0.11 0.12 0.35 1.24 2.48  
2 0.37 0.18 0.09 0.11 0.12 0.35 1.23 2.46  
3 0.37 0.18 0.09 0.11 0.12 0.35 1.23 2.43  
4 0.36 0.18 0.09 0.12 0.12 0.34 1.20 2.31  
5 0.36 0.18 0.09 0.11 0.12 0.35 1.23 2.39  
6 0.36 0.18 0.09 0.12 0.12 0.34 1.19 2.31  
7 0.36 0.18 0.09 0.12 0.12 0.33 1.16 2.29  
8 0.36 0.18 0.08 0.11 0.12 0.34 1.21 2.23  
9 0.35 0.17 0.08 0.11 0.12 0.34 1.16 2.23  

10 0.35 0.17 0.08 0.11 0.11 0.34 1.19 2.22  
11 0.36 0.17 0.09 0.11 0.11 0.33 1.14 2.18  
12 0.36 0.17 0.08 0.11 0.11 0.33 1.14 2.14  
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