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What is Wrong with common ML approaches

« ML techniques are becoming standards in many areas of the insurance industry and in actuarial science, with many successful
implementations in terms of model performance, data understanding, process automation, etc.

sl C o ©

Robustness Trust Continuity Optimality

* However, some issues remain, including:

*

« Consequences are:

Lack of nuanced Difficulty to detect Stability and drift Limitation in
decisions and adversarial data and predictions algorithmic learning
generalization to interpret models through time guidance, cost.

* B-
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Uncertainty using BNNs

» Approaches that consider the notion of “uncertainty” could address such issues.

+ Bayesian Neural Networks (BNN) are interesting candidates that allow to know when and what the model doesn’t know [1] and to give
uncertainty estimations.

» This paradigm also fits well with actuarial science which is based on risk and uncertainty estimation:

Uncertainty quantification Forecasting of SWI indicators for drought Survival analysis prediction and uncertainty
for stock price prediction [2] severity prediction [3] using pseudo values [4]
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[1] Y Gal, (2016) Uncertainty in Deep Learning,http://www.cs.ox.ac.uk/people/yarin.gal/website//thesis/thesis.pdf,
P. 4 [2] Chandra R, He Y, (2021) Bayesian neural networks for stock price forecasting before and during COVID-19 pandemic, https://doi.ora/10.1371/journal.pone.0253217 CCQ el RE
[3] Internal CCR Group analysis, (2022) SWI indicators prediction

[4] D Feng, L Zhao, (2021) BDNNSurv: Bayesian deep neural networks for survival analysis using pseudo values, https:/jds-online.ora/journal/JDS/article/1244/info ,


http://www.cs.ox.ac.uk/people/yarin.gal/website/thesis/thesis.pdf
https://doi.org/10.1371/journal.pone.0253217
https://jds-online.org/journal/JDS/article/1244/info

2. What are BNNs and uncertainties
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BNNs - Overview

* Classical ML approach: learn the most optimal « Bayesian ML approach: learn the a posteriori
combinations of weights/parameters minimizing a distribution on the model parameters from Bayes'
specified loss function. * rule. * [5] [6] [7]

Standard Neural Network Bayesian Neural Network

» Each weight has a single value referred as » Each weight is represented by an optimal
a point estimation. distribution.
» Use differentiation to find the optimal value » Use approximation methods to draw the
such as gradient descent. optimal posterior distribution.
* Formulas and decompositions available in EAA presentation https://www.actuview.com/media/downloadAttachment/key/526aea265200d7349c6f40a66f3afe41/maid/599
P. 6 [5] N. G. Polson, V. Sokolov et al., (2017) Deep learning: a Bayesian perspective, Bayesian Analysis, vol. 12, no. 4, pp. 1275-1304 CCQ (a3l RE
[6] J. Lampinen and A. Vehtari, (2001) Bayesian approach for neural networks—review and case studies, Neural Networks, vol. 14, no. 3, pp. 257 — 274,

[7] D. M. Titterington, (2004) Bayesian methods for neural networks and related models,” Statist. Sci., vol. 19, no. 1, pp. 128-139, 02



2. BNNs and unc

BNNs - Approximations

* From a practical perspective, Bayesian inference using Neural Networks is not trivial:
* Impossible computation of Bayes' rule analytically;
«  MCMC methods are costly both regarding computationally and memory.

« Several approximation methods * have emerged in recent years:

Determinist Approaches [ Ensemblist methods ]

Exact inference Analytical calculation Bayesian Linear Regression

MCMC methods Metropolis-Hastings Algorithm Hamiltonian MC Algorithm

Stochastic Gradient Hamiltonian MC

| Stochastic Gradient Langevin Dynamics |
SWAG
RECAST

With SGD Dynamics

Uncertainty Estimation / Bayesian DL [ Bayes by Backprop ]
Bayesian Approaches

Approximate inference , Variational inference = Multiplicative normalizing flows
| Bayes via Hypernetworks
MC Drop-out
With Stochastic Regularization Techniques ) ~ Variational Dropout
Dropout with alpha-divergences

With Laplace's Approximation
Others

With Batch Normalization
P.7 * Formulas and decompositions available in EAA presentation RE



2. BNNs and unc

BNNs - Monte-Carlo Dropout

* Dropout refers to randomly dropping out units (in our
case nodes) during training.

« Monte Carlo Dropout [8] is currently one of the most
practical methods available (because of its easiness)

« It allows to reinterprets the dropout as an approximation
of the Bayesian approach.

« It continues to use the “stochasticity” of dropout during the
prediction/test phase to get several credible models
(weights from approximate posteriors).

P. 8 [8] G. Yarin and G. Zoubin. (2016). Dropout as a bayesian approximation: Representing model uncertainty in deep learning. https://arxiv.org/abs/1506.02142

\/

Monte Carlo Dropout
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https://arxiv.org/abs/1506.02142

2.BNNs and uncg

BNNs - Where does it come from?

* Predictive uncertainty reflects how likely a prediction is to be wrong
on certain observations.

+ Bayesian framework is useful to estimate uncertainty as it gives a
range of credible predictions.

* Uncertainty can be decomposed [9] into:
« Aleatoric uncertainty: noise in data
* Epistemic uncertainty: model lack of knowledge

* One example:
» Aleatoric uncertainty is high here in areas where the target

variable does not follow a deterministic relationship with
the feature variable

« Epistemic uncertainty is high here in areas where there is
insufficient data

P.9 [9] A Der Kiureghian and O Ditlevsen. (2009) Aleatory or epistemic? does it matter? Structural Safety, 31 (2):105-112,
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2. BNNs and unc

Obtaining epistemic and aleatoric uncertainties

BNNs — How to estimate it?
----- Model predictions
« Epistemic uncertainty is modelled with the Bayesian approach by introducing o Zﬁi'ar'tz:ir:::ﬁ:nty
a distribution on the parameters (posterior) e .
?B ® ‘;l., '...&_.. .............
» Aleatoric uncertainty is modelled using distribution on model output (likelihood) = . ’ ‘.‘.o" 0\.
®°
%0 0.
MODELING UNCERTAINTY " og

ALEATORIC qNCERTAINW
‘ Feature x

Sample models from posterior...

*
X > For classification cases:
+ “Total predictive uncertainty can be measured by the predictive
entropy, i.e. entropy of mean prediction” *
> * Forregression cases:
X > > + “Total predictive uncertainty can be measured by the total variance of
the predictive distribution” *

b b
5

EPISTEMIC UNCERTAINTY
CCRpE R [

P. 10 * Formulas and decompositions available in EAA presentation
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Context

« French motor insurance portfolio collected for reinsurance purpose. A first
“‘manual” analysis was developed in 20109.

+ ~2k severe bodily injury claims from 1999 to 2021, reviewed annually.

» Updated prejudices charges with ~137k observations.

« Key features identified: age, sex and socio-professional category of the victim, type
of injury, rate of permanent damage to physical integrity.

 Work will consist of standard ML regression with tabular data for predicting the
severity of prejudice charges, globally and per type.

« About 45 prejudice types. We focus on the top 3. Permanent functional deficit,
Temporary functional deficit and Third party support.

P. 12 [10] CCR Re Publication Third party liability compensation of severe motor bodily injury claims, (2019)
https://www.ccr-re.com/documents/20123/54390/Third+party+WhitePaper+-+CCR+Re+-+WEB.pdf

claim_cost (in million€)

Wamings @)  Reproduction
Dataset statistics Variable types
Number of variables 15 Numeric 8
Number of observations 5673 Categorical ]
Missing cells 132 Boolean 1
Missing cells (%) 02%
Duplicate rows 0
Duplicate rows (%) 0.0%
Total size in memory 626.1 KiB

Average record size in memory 11308

Evolution of claim costs by top 5 damage type

2007 2008 2009 2010 2011 2012 2013 2014 2015
occurence_date (year)
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https://www.ccr-re.com/documents/20123/54390/Third+party+WhitePaper+-+CCR+Re+-+WEB.pdf

3. Appl

Robustness

Comparing predictive performances with 5-fold CV for =all damage typaes=

o Are BNNs good enough comparing to standard machine learning,

B Mean squared errors
neural networks or actuarial methods? * o

] ’:. BNNs provide interesting results with limited volatility, most of the time
with equal MSE compared to common NN.

RF still provide better results and common GLM (not specifically adapted) as
. GLM
well as GAM lag behind.

I I | | |
oo o025 o050 o¥s 100 125 150 175 200

Comparing predictive performances with 5-fold CV for <Assistance par tierce personne=  Comparing predictive performances with 5-fold CV for <Déficit Fonctionnel Permanent=  Comparing predictive performances with 5-fold CV for <Assistance par tierce personne>

BNN } B Mean squared errors BN - -_ BN Mean squared errors BNN _ B Mean Absolute Errors
o o — - o I
Cll.tlm 0_55 CII.%CII 'EII.]I'E ]_(IJCII 1.55 ].E{Il IL]I'E —0!25 O_E]ﬂ 0.55 ﬂ_gﬂ ﬂ_'IJ'S IIJI]D léS ]_gﬂ l]l"5 O_I-‘J O_Iz 0.|4 {Il.lﬁ O.IE ].IO

P. 13 « Disclaimer: results are deeply correlated to data and use case specificities RE



3. Appl

Robustness

How fast are BNNs? How to ensure that
BNNs are viable for production run (regarding
both training and inference time)? *

( N
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Inference time for BNNs on contrary is quite good,
even compared to GLMs.

Results are not affected by prejudice type task Comparing inference times of models for <all damage types= Comparing inference times of models for <Déficit Fonctionnel Temporair:
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P. 14 « Disclaimer: results are deeply correlated to data and use case specificities RE
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Trust

Can we profile uncertainty over
training time ? How related are
uncertainty and error measures?

7

vl
N

3 )- While loss is decreasing, we clearly
observe uncertainty profile flatten.

The more the error increases the more
the uncertainty also increases and
becomes more volatile.

Uncertainty is also observed for data at
specific target ranges, with no evident
errors.
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3.;Application

Trust

o How to formalize links between

uncertainty measure and

features or observations?

Using partial dependance plots with
uncertainty we can analyze for
some feature ranges unlikely
predictions.

Multivariate analysis allows to highlights
unknown combinations (missing obser-
vation profile).

Prediction

Predictions with model uncertainty color
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Continuity

How BNNs can help regarding model
or data analysis through time? How
does it assist drift analysis?

Deterioration function allow to demon-
strate model adaptability to features
changes.

It appears helpful, in addition of importance
feature analysis, to highlight key variables.

It is also a good complementary tool to
follow model drift. We observe here stable
MSE while uncertainty increases and
becomes volatile after 3 years.

\

Uncertainty for increasing gaussian detoriation of a train data point
for all damage types

Impact on the uncertainty of the deterioration of a single feature - top 10
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Optimality

o How can we benefit from BNNs and
optimize learning costs, prediction
guality, etc.?

AT/~ During inference, we can define
uncertainty threshold to ensure MSE
expectations.

With active learning [11] approaches we
can also minimize retraining costs while
minimizing also MSE values.

Finally, we can mix both threshold and
active learning to define retraining
strategies.

P. 18
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[11] B Settles, (2010), Active learning literature survey, http://burrsettles.com/pub/settles.activelearning.pdf
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4. Conclusion & perspectives




4. Conclusions &

Conclusion

» Despite relative theoretical complexity, BNNs can be developed to add uncertainty notions into standard actuarial / ML tasks.
* Results are promising, in terms of time inference, model quality, interpretability capabilities, continuity add-on, process optimization, etc.
 We observe BNNs drawbacks: training/test time, difficulty of training (choice of prior distribution), lack of interpretability chart baselines.

« At the end, there would be many risks [12] not to consider BNNs and model uncertainty:

Training data

Most certain predictions  Most uncertain predictions

workclass
workclass Frivate fnivat
-1.2254% s

education

Doctorate

education-num
ma tus

Prof-specialty
Husband

cap 1-loss
Prediction: dog hourg-per-week
Probability: 0.95 native-country

hours-per-week
native-country

Prediction: dog
Probability: 0.98

salary salary S0
adieiatiins i education-num_na False
Name: €300, dtype: obj Name: 13145, dtype: object,age

workclass
£nlugt
education Soma-

workclass
fnlugt
education
sducation-nun

education-num
ma. atus Married-ci

marital-status

sccupation Prof-gpacialty ove o Farming-tfishing
relationship Nusband relationship Husband
A race white sace "m;"
v b sex Male
L f'x._, capital-gain -0.201885
o 5.28980 capital-loss -0,259806
L4 2.31517 hours-per-wsek 3.47774
sative-country United-States Aative-country United-States
salary >=50% salary <50k
Parsed an image of myself through the animal network and it's 98% confident I'm a dog sducation-nun_na false education-num_na False (c) Semantic (d) Aleatoric (e) Epistemic
§ L ) L . . i Segmentation Uncertainty Uncertainty
Overconfident prediction of a dog [13] Bias and Ethic in tabular data classification with

Capturing various uncertainty measures

Adults Income [14] on computer vision tasks [15]

[12] A Nguyen, J. Yosinski, J. Clune, (2014), Deep Neural Networks are Easily Fooled https://arxiv.org/abs/1412.1897

P. 20 [13] J Ramkissoon (2020) Dealing with Overconfidence in Neural Networks: Bayesian Approach, https:/jramkiss.github.io/2020/07/29/overconfident-nn/ CCQ ccl k=
[14] D. Huynh (2019) Bayesian deep learning with Fastai,
[15] A Kendall, Y Gal, (2017) What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? https://arxiv.org/pdf/1703.04977.pdf



https://arxiv.org/abs/1412.1897
https://jramkiss.github.io/2020/07/29/overconfident-nn/
https://towardsdatascience.com/bayesian-deep-learning-with-fastai-how-not-to-be-uncertain-about-your-uncertainty-6a99d1aa686e
https://arxiv.org/pdf/1703.04977.pdf

4. Conclusions &

Perspectives

« Several perspectives can be discussed:
» Deeper exploration of aleatoric or epistemic uncertainty measures relation and representation;
« Integration of such uncertainty measures within daily processes (library?);
« Exploration of out of domain data uncertainty;
« Other examples in actuarial science (claim reserving, mortality rate prediction, ESG, BEL, etc.) or experienced in CCR Group (Cyber
risk, SWI indicators for drought nat cat modelling, etc.);
« Other insurance tasks such as NLPs (Custom NER Active learning and Clause classification outliering) or CV (for TreeDetection).

Retrained model Base DeepForest model

1998  3119574.000000 47124563.000000 129571818.000000 205210185.000000 250438154.000000 278516575.000000 239443982.000000 294634712.000000
1999 2611938.000000 45712676.000000 128109553.000000 199696111.000000 251226453.000000 2783089709.000000 289757024.000000 296221318.000000
2000 3660623 000000 48578158 000000 131138360.000000 203536066.000000 245153147 000000 275513570000000 290153175000000 294503166 000000
2001 1959019.000000 46814727.000000 129874301.000000 200157921.000000 249622859.000000 277553530.000000 291323882.000000 296885103.000000
2002 4136072000000 51272019.000000 133205433.000000 207331606.000000 250449602000000 278623322 000000 291495346 000000 297631758 000000

09

2003 3592737.000000 49380700.000000 135461144.000000 203766029.000000 249377437.000000 279661185.000000 292897321.000000 298935320.000000
2004 1817625.000000 52367903.000000 127123345.000000 197533449.000000 243772955.000000 270937790.000000 284027624.000000 283476173.000000
2005 16517463.000000 S548T4170.000000 127918577.000000 199922166.000000 247451150.000000 271736199.000000 284764683.000000 290172197.000000
2006 4056397.000000 46620965 000000 123762050.000000 199871502.000000 246708416.000000 274025670.000000 288207447.000000 292632220.000000 08
2007 2094358.000000 46397031.000000 132602794.000000 199503974.000000 250744434.000000 278357306.000000 238067589.000000 293130137.000000
2008 3204310.000000 39314302.000000 127133116.000000 195618362.000000 242022959.000000 271356829.000000 285957669.000000 290641213.000000
2009 2251020000000 45134704 000000 129443792.000000 207226593.000000 253528126000000 275339116000000 289163444 000000 294661052 000000
2010 3247383.000000 45355418.000000 130948545.000000 197259486.000000 245648248.000000 277067336.000000 288809927.000000 294575540.000000 07
2011 4023190 000000 52422934 000000 135085441.000000 213928806.000000 262775639000000 283531575000000 302083905 000000

283492730.000000

2012 4056287.000000 50069534.000000 142260025.000000 206667561.000000 257968262.000000

2013 3335156.000000 S52570292.000000 133763173.000000 206994774.000000 254275027.000000
Random Selection

Least Confidence
Entropy

DO BALD

BB BALD

06

2014 1727421.000000 45142658.000000 129925423.000000
130639369.000000

202030672.000000

2015 2707623.000000 44076323.000000
2016 3057485.000000 41589158.000000

2017 2455100.000000

o 560 1060 ]5;)0 20'00 25;)0
Individual claim reserving study example using Active learning analysis to improve Custom NER annotation Custom DeepForest model inference on French aerial

Bayesian LTSM prediction i i
Y P applied to reinsurance treaties analysis context [16] [17] images study of softmax vs uncertainty.

P. 21 [16] F. Planchet, C. Y Robert, (2019) Insurance Data Analytics, NLP methodological triggers to address Insurance domain issues, Economica CCQ [de)
[17] A. Siddahant, Z. C. Lipton (2018), Deep Bayesian Active Learning for Natural Language Processing: Results of a Large-Scale Empirical Study, arXiv:1808.05697


https://arxiv.org/abs/1808.05697

4. Conclusions &

Perspectives

We have explored Synthetic Data Vault
(SDV) to know better how models could
react and be uncertain to rare or unknown
events.

We have used CTGAN [18] on the
dataset application, by randomly
dropping regions and training BNNs

Then we use synthetic data for BNNs
inference and we compare to real data
uncertainty.

We have observed that average
uncertainty estimation on
synthetic data is a great lower bound to
its real valuation and tell us more on
model understanding.

[18] Lei et al, Oct 2019. Modeling tabular data using conditional GAN. https://arxiv.org/abs/1907.00503
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Thank you for your attention

Contact:

Aurélien COULOUMY
+33 6 26 13 09 97

Chief Data & Al Office — CCR Group — acouloumy@ccr.fr
Lecturer — Université Lyon 1 ISFA — aureliencouloumy@gmail.com

P.23

Ba-


mailto:acouloumy@ccr.fr
mailto:aureliencouloumy@gmail.com

Appendix

D.




5. Appendix

References

[1] Y Gal, (2016) Uncertainty in Deep Learning,http://www.cs.ox.ac.uk/people/yarin.gal/website//thesis/thesis.pdf,

[2] Chandra R, He Y, (2021) Bayesian neural networks for stock price forecasting before and during COVID-19 pandemic, htips://doi.org/10.1371/journal.pone.0253217
[3] Internal CCR Group analysis, (2022) SWI indicators prediction

[4] D Feng, L Zhao, (2021) BDNNSurv: Bayesian deep neural networks for survival analysis using pseudo values, https://jds-online.org/journal/JDS/article/1244/info
[5] N. G. Polson, V. Sokolov et al., (2017) Deep learning: a Bayesian perspective, Bayesian Analysis, vol. 12, no. 4, pp. 1275-1304

[6] J. Lampinen and A. Vehtari, (2001) Bayesian approach for neural networks—review and case studies, Neural Networks, vol. 14, no. 3, pp. 257 — 274,

[7] D. M. Titterington, (2004) Bayesian methods for neural networks and related models,” Statist. Sci., vol. 19, no. 1, pp. 128-139, 02

[8] G. Yarin and G. Zoubin. (2016). Dropout as a bayesian approximation: Representing model uncertainty in deep learning. https://arxiv.org/abs/1506.02142

[9] A Der Kiureghian and O Ditlevsen. (2009) Aleatory or epistemic? does it matter? Structural Safety, 31 (2):105-112,

[10] CCR Re Publication Third party liability compensation of severe motor bodily injury claims, (2019)
https://www.ccr-re.com/documents/20123/54390/Third+party+WhitePaper+-+CCR+Re+-+WEB.pdf

[11] B Settles, (2010), Active learning literature survey, http://burrsettles.com/pub/settles.activelearning.pdf

[12] A Nguyen, J. Yosinski, J. Clune, (2014), Deep Neural Networks are Easily Fooled https://arxiv.org/abs/1412.1897

[13] J Ramkissoon (2020) Dealing with Overconfidence in Neural Networks: Bayesian Approach, https://iramkiss.qgithub.i0/2020/07/29/overconfident-nn/

[14] D. Huynh (2019) Bayesian deep learning with Fastal,

[15] A Kendall, Y Gal, (2017) What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? https://arxiv.org/pdf/1703.04977.pdf

[16] F. Planchet, C. Y Robert, (2019) Insurance Data Analytics, NLP methodological triggers to address Insurance domain issues, Economica

[17] A. Siddahant, Z. C. Lipton (2018), Deep Bayesian Active Learning for Natural Language Processing: Results of a Large-Scale Empirical Study, arXiv:1808.05697
[18] Lei et al, Oct 2019. Modeling tabular data using conditional GAN. https://arxiv.org/abs/1907.00503

b2 -


http://www.cs.ox.ac.uk/people/yarin.gal/website/thesis/thesis.pdf
https://doi.org/10.1371/journal.pone.0253217
https://jds-online.org/journal/JDS/article/1244/info
https://arxiv.org/abs/1506.02142
https://www.ccr-re.com/documents/20123/54390/Third+party+WhitePaper+-+CCR+Re+-+WEB.pdf
http://burrsettles.com/pub/settles.activelearning.pdf
https://arxiv.org/abs/1412.1897
https://jramkiss.github.io/2020/07/29/overconfident-nn/
https://towardsdatascience.com/bayesian-deep-learning-with-fastai-how-not-to-be-uncertain-about-your-uncertainty-6a99d1aa686e
https://arxiv.org/pdf/1703.04977.pdf
https://arxiv.org/abs/1808.05697
https://arxiv.org/abs/1907.00503

GROUPE
CCR™ CAISSE CENTRALE DE REASSURANCE

Caisse Centrale de Réassurance

157 boulevard Haussmann 75008 Paris — France
Tél. : +33 1 44 31 00 — http://www.ccr.fr CCQ
SA au capital de 60 000 000 € - 388 202 533 RCS Paris




