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Theoretical Background



Theoretical Background
• Gaussian Processes (GP) are stochastic processes based on the normal 

distribution. 

• Gaussian Process Regression (GPR), is a relatively lesser-known procedure based 
on Gaussian processes, which can be implemented in the context of machine 
learning.

• GPR can be defined as a supervised non-parametric machine learning technique 
stemming from the Bayesian field.

• One of the main features of GPR is the ability to produce a probability 
distribution of functions that fit a set of observations and so return predictions 
with uncertainty intervals around them. 

• GPR techniques can be ideal candidates to extend traditional stochastic reserving 
techniques in order to quantify reserve variability.



Bayesian Framework

• In the context of Machine Learning a full range of estimates is a remarkable result, 
as the most famous alternatives only provide point estimates.

• Bayesian inference allows us to update our views considering the observed 
evidence:

Rather than fitting a model purely from data, this approach blends the external prior
knowledge with actual observations, resulting in a posterior estimate that 
synthetizes the two



Advantages:

1. Incorporate in models external 

knowledge not present in the data, 

which is particularly useful for 

actuarial applications.

2. Predictions come naturally in a 

probabilistic form.

The Bayesian approach comes with advantages and disadvantages:

Bayesian Framework

Disadvantages:

1. Inference leads almost always to
intractable mathematical formulas
which can be treated only via 
simulation.

2. It can be difficult to translate prior
knowledge into suitable priors.



Gaussian Processes as regression tools

Gaussian Processes (GP) are stochastic processes that generalize the 
Multivariate Normal distribution. The generalization step lies in the 
parametrization:

GP(𝑥) = 𝑁(𝞵(𝑥), 𝞢(𝑥, 𝑥′))

Where:

- 𝞵(x) is the mean function

- 𝞢(𝑥, 𝑥′) is the covariance function



A GP can be thought as the process that generates 
the data points, i.e. the cloud of n data points can 
be thought as a n-dimensional realization of a 
GP(𝞵(x), 𝞢(𝑥, 𝑥′)):

• 𝞵(x) is the function that describes where on 
average is to be found every n-th realization. 
(Usually set to 0)

• 𝞢(𝑥, 𝑥′) is the Covariance function or kernel and 
determines how spread are the realizations. It 
can be quickly interpreted as a measure of 
distance between the realizations.

Gaussian Processes as regression tools



The functions 𝞵(x) and 
𝞢 𝑥, 𝑥′ characterize the 
process. From a well-
defined GP we can sample 
as many realization as we 
desire. 

The picture shows many 
realizations from a 
particular GP.

Gaussian Processes as regression tools



Introducing a set of  
observations, we can retain from 
the prior samples only the 
functions that pass through the 
observation points: effectively 
blending prior knowledge and 
actual evidence.

Gaussian Processes as regression tools



Covariance Functions



Covariance functions

• Covariance Functions, or kernels, fully specify the functional form of the 
prior and significantly impact the final form of the posterior.

• A very simple and intuitive meaning of 𝞢 𝑥, 𝑥′ is the one of distance: we 
can assume that the correlation between two points decreases the farther 
away they are from each other.

• For instance, if two input points are very close to each other and expected 
to behave similarly, the kernel will have a value close to 1. Conversely, 
when the points are far apart and there’s no expectation they will behave 
similarly, the kernel will have a value close to 0.



Euclidean distance

The Euclidean distance is one of the most commonly used kernels and from 
this the meaning of distance can be immediately understood:

𝞢 𝑥, 𝑥′ = exp −| 𝑥 − 𝑥′ |2

The value of the output decreases exponentially with the increase of the 
distance between two points.



Squared Exponential

This is another commonly found kernel and has the form:

𝞢 𝑥, 𝑥′ = 𝜎2 exp −
(𝑥 − 𝑥′)2

2𝜃2

Where 𝜎2 is the scaling factor and 𝜃 the lengthscale factor. Again, the 
concept of distance is very evident in the definition.



Matern 3/2 and Matern 5/2

𝛴 𝑥, 𝑥′ = 𝜎2 1 +
3 𝑥 − 𝑥′

𝜃
𝑒𝑥𝑝

− 3 𝑥 − 𝑥′

𝜃

𝛴 𝑥, 𝑥′ = 𝜎2 1 +
5 𝑥 − 𝑥′

𝜃
+
5 𝑥 − 𝑥′ 2

3𝜃2
𝑒𝑥𝑝

− 5 𝑥 − 𝑥′

𝜃

Similarly to the previous example, 𝜎2 is the scaling factor and 𝜃 the 
lengthscale factor. The covariance between two measurements is a function of 
the distance.



Squared Exponential - Samples



Matern 3/2 - Samples



Matern 5/2 - Samples



Claim Data Representation



Wide version of data
Actuaries have been analyzing claims in the form of run-off triangles, a matrix 
representation (or, equivalently, wide format table) where origin periods are 
reported on the rows and development periods on the column:

AY\DP 1 2 3 4 5 6 7 … n

1 𝑋1,1 𝑋1,2 𝑋1,3 𝑋1,4 𝑋1,5 𝑋1,6 𝑋1,7 𝑋1,… 𝑋1,𝑛

2 𝑋2,1 𝑋2,2 𝑋2,3 𝑋2,4 𝑋2,5 𝑋2,6 𝑋2,7 𝑋2,…

3 𝑋3,1 𝑋3,2 𝑋3,3 𝑋3,4 𝑋3,5 𝑋3,6 𝑋3,7

4 𝑋4,1 𝑋4,2 𝑋4,3 𝑋4,4 𝑋4,5 𝑋4,6

5 𝑋5,1 𝑋5,2 𝑋5,3 𝑋5,4 𝑋5,5

6 𝑋6,1 𝑋6,2 𝑋6,3 𝑋6,4

7 𝑋7,1 𝑋7,2 𝑋7,3

... 𝑋…,1 𝑋…,2

n 𝑋𝑛,1



Long version of data
Instead of the usual triangle, we can think of claim data in a long format. Common 
practice for data scientists, but maybe not so common for actuaries:

AY DP Amount

1 1 𝑋1,1

1 2 𝑋1,2

1 … 𝑋1,…

1 n 𝑋1,𝑛

2 1 𝑋2,1

2 2 𝑋2,2

2 … 𝑋2,…

2 n-1 𝑋2,𝑛−1

… … 𝑋…,…

n 1 𝑋𝑛,1



Long version of data
It is still easy to see how Accident Year and Development Period represent the coordinates 
on a typical 3-d cartesian plane.

AY DP Amount

1 1 𝑋1,1

1 2 𝑋1,2

1 … 𝑋1,…

1 n 𝑋1,𝑛

2 1 𝑋2,1

2 2 𝑋2,2

2 … 𝑋2,…

2 n-1 𝑋2,𝑛−1

… … 𝑋…,…

n 1 𝑋𝑛,1



The goal of the method is to predict future observations (lower triangle) after 
training on history (upper triangle), in a typical ML fashion.

Effectively, estimating a function: 𝑓 𝐴𝑌, 𝐷𝑃 = 𝑋𝐴𝑌,𝐷𝑃

Where 𝑓 . is a GPR.

AY DP Amount

2 n 𝑋2,𝑛

3 n-1 𝑋3,𝑛−1

3 n 𝑋3,𝑛

… ... 𝑋…,…

… n 𝑋…,𝑛

n n 𝑋𝑛,𝑛

Long version of data



Graphical Representation of Claim Data



Application



Application on real data

• We tested this methodology on both Claim Amounts and Loss 
Ratios from the publicly available triangles from the NAIC Schedule 
P (G. Meyers and P. Shi, 2011).

• This dataset includes major personal and commercial lines of 
business from many US P&C insurers.

• This dataset is made of fully developed triangles, allowing to test of 
the procedure interms of AvsE.



Application on real data

• Before fitting the models, we performed several data cleaning and data 
quality operations to ensure data was suitable for our purposes.

• We worked with 10x10 triangles with no missing data points and no major 
business changes.

• We fit the model on the upper triangle (observed data) and estimated 
predictions for the lower triangle.

• The procedure has been iterated for all the triangles in the dataset.



Application on real data

• In order to evaluate the quality of the point estimates we looked at RMSE
(Root Mean Square Error) of the observed reserve vs the estimated one.

• With respect to the stochastic properties, we have calculated the observed 
reserve percentile on the estimated distribution and then tested it with 
Kolmogorov-Smirnov test for uniformity (Meyers, 2015).

• The main idea behind this test is that differences between Observed and 
Estimated data would be uniformly distributed, implying that on average 
the model is unbiased: i.e. on average we do not have predictions distorted 
upwards or downwards.



Model specifications and parameters

As mentioned, we are fitting Incremental Paid Claims and 

Incremental Paid Loss Ratios as function of AY and DP:

𝑋𝐴𝑌,𝐷𝑃 ~ GP(0, 𝞢 𝑥, 𝑥′ )

𝑋𝐴𝑌,𝐷𝑃
𝐸𝑃𝐴𝑌

~ GP(0, 𝞢 𝑥, 𝑥′ )



Input Warping and Standardization

• Inputs are on two very different scales: AY goes from 1988 to 1997 
whereas the DP goes from 1 to 10.

• To obtain stable and reliable results, a standardization is necessary, in 
order to remove distorsions due to scale differences.

• We standardized data according to a procedure called Input Warping 
(Snock et al., 2014)



• We applied to both AY and Dev Year the min-max scale:

w′ =
𝑤 −𝑤𝑚𝑖𝑛

𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

• Then the normalized data points are taken as the input to a function of Beta 
Cumulative Distribution function:

w′′ = 𝐼𝑤′ 𝑎𝑤 , 𝑏𝑤 =
𝐵(𝑤′, 𝑎𝑤 , 𝑏𝑤)

𝐵(𝑎𝑤 , 𝑏𝑤)

Where 𝑎𝑤 and 𝑏𝑤 are real parameters.

Input Warping and Standardization



• The procedure returns a number between 0 and 1 for both AY and DP.

• In simple terms, we can think about this procedure as a sophisticated 
standardization technique that normalizes the inputs.

Input Warping and Standardization



Model specifications and parameters

We employed 3 prior kernels for modeling purposes:

1. Squared Exponential

2. Matern 3/2

3. Matern 5/2

Each of them for both Incremental Paid amounts and Incremental Paid Loss 
Ratios.



Comparison



Procedure Comparison

• We ran the procedure on every triangle in the dataset, and being the 
actual observed development claims available, we were able to test the 
results, both in terms of point estimate and stochastic accuracy.

• With respect to predictive power performance, we used the classical 
metric of RMSE.

• With respect to stochastic accuracy, we gathered the percentile at which 
the Actual reserve fell on the Predictive Distribution for all the triangle in 
the dataset. Subsequently, we tested that the distribution of the 
percentiles was uniform on the interval (0,1) using the Kolmogorov-
Smirnov test.



Procedure Comparison
Method RMSE K-S Test

GPR - Squared Exponential (amounts) 770,706 0.152

GPR - Matern 3/2 (amounts) 549,021 0.103

GPR - Matern 5/2 (amounts) 247,976 0.165

GPR - Squared Exponential (LR) 449,609 0.149

GPR - Matern 3/2 (LR) 481,146 0.17

GPR - Matern 5/2 (LR) 235,784 0.358

Chain Ladder ODP 558,320 0.001

Cape Cod ODP 416,693 0.001

RMSE: the lower,  the better 
K-S Test: the higher, the better.



Ultimate Amounts



Ultimate Amounts



Ultimate Amounts



Ultimate Amounts



Ultimate Amounts



Ultimate Amounts



Procedure Comparison
• Having a full range of estimates, 

we can produce the implied 
probability distribution of the 
Loss Development Factors.

• This feature can turn out 
particularly useful for 
practitioners as it makes possible 
to pick a selection according to a 
specific risk appetite.



Variance Decomposition

The variance of the predictive distribution can be decomposed in its two main 
components: Expected Value of Process Variance (EVPV) and Variance of
Hypothetical Mean (VHM).

Method Mean Reserve Total Variance EVPV VHM

Squared Exponential (amounts) 25,621 104,892,875 104,785,405 107,470

Matern 3/2 (amounts) 27,672 88,379,162 88,291,744 87,418

Matern 3/2 (amounts) 24,752 93,356,182 93,263,299 92,883

Squared Exponential (LR) 29,835 94,209,270 94,115,054 94,216

Matern 3/2 (LR) 26,202 88,015,296 87,927,915 87,380

Matern 5/2 (LR) 27,182 90,852,410 90,755,527 96,883



Variance Decomposition

• The decomposition of variance is the starting point for further research on 
claims reserve variability on a n-years time horizon, which extends the 
applications of the methodology to capital modelling.

• Bayesian models seem to be particularly promising in this respect, as 
variance is easily decomposed: the variability of parameters (so the 
estimation variability) is described by the posterior probability distribution. 
On the other hand, the process variance is simulated via the predictive 
distribution.



Conclusions



• GPR models are able to outperform traditional techniques from a 
deterministic, as well as a stochastic, point of view. 

• Moreover, due to the nature of the method, we are also able to further 
investigate the distributions of the model parameters in order to further 
study the variability of the claim estimates. 

• In a context where the stochastic behavior of the reserve estimate is 
valuable, such an approach can definitely bring a hedge against more 
simplistic methodologies, e.g. ODP. 

Conclusions



• The methodology, as presented, could definitely be improved and refined. Further 
studies could be focused on the implementation of different Covariance functions 
such as the Periodic Covariance function or higher orders of the Matern
formulation. 

• Furthermore, it would be interesting to define similar multivariate processes that 
are non-Gaussian in nature: a good candidate for insurance claim analysis may be 
the Wishart distribution, i.e. a multidimensional generalization of the gamma 
distribution (Eaton 2007).

• Another area of improvement could be the introduction of further dimensions. In 
our study we had the AY and the DP as inputs, however in some contexts where 
inflation is an important factor to consider (e.g. structured settlements analysis) 
having the Calendar Year as an additional predictor could bring additional value.

Conclusions
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