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Polling Questions

• How many of you have taken Exam 5?
• How many of you have taken the prior Exam 4/c?
• How many of you have taken MAS II?
• How many of you have fit a regression model?
• How many of you have used R ?
• How many of you have experience in reserving?
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Agenda

• Outline goals
• Vocabulary
• Generating Data Sets
• Format for Case Studies
• Case Study I

• Varying inflation and exposure volume
• Change in Operations

• Case Study II
• Zero Payments
• High Severity
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Goals for Session

Cover examples
• Normalizing the triangle
• Options for inflation
• Varying exposure size
• Options for change in operations
• Zero payments in the triangle
• High claim severity

What won’t be covered.
• Underlying theory of Bayesian 

MCMC
• How to monitor Bayesian MCMC 

behavior 
• Extensive review of coding for 

packages
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Bayesian MCMC Vocabulary
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Model Structure Vocabulary

• Population variable: variable that can have a non-Normal prior distribution with posterior 
distribution as weighted average of prior and data indicated estimate (generalization of conjugate 
prior Bayesian distributions like Gamma-Poisson or Beta-Binomial)

• Random/Group variable: variable that is restricted to a Normal prior with zero mean (average 
across group) and the variance values estimated from the data set (something like the least 
squares credibility approach)

• Distribution model: each parameter of the distribution has an equation in the model structure

• MCMC: Markov Chain Monte Carlo approach where the parameters are entries in the Markov 
probability model and a simulation based algorithm is used to iteratively estimate the parameters

• Posterior Distribution: Data set containing the simulated parameter values for each pass through 
the MCMC process after warmup 

• Prior distribution: Analyst’s prior opinion of the distribution for each parameter
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Modeling Environment

7

RStudio IDE

brms

STAN

MCMC
OBJECT

ggplot2

Graph 
object

ShinyStan

Shiny 
Object
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Software Vocabulary

• STAN: Bayesian MCMC program that implements MCMC via an 
efficient algorithm (Hamiltonian)

• Brms: software that is a macro writer to generate STAN code and 
prepare the data set for STAN

• Tidyverse: version of R code to simplify general data manipulation 
• Tidybayes: version of R code to simplify Bayesian MCMC data 

manipulation
• Ggplot2: version of R code to assist in creating graphs
• Rstudio: integrated data environment to assist in creating and running 

models
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Generating Data Sets

• Data sets created by simulation
• Selected reported counts at 12 months development for exposure base
• Poisson payment count distribution with rate varying by development year
• Lognormal incremental payment amount with mu and sigma varying by development 

year

• Loss triangle description
• Accident Years 2000 to 2021
• Development Years 1 to 22
• Incremental payments

• Loss Cost Trend
• Inflation with lognormal assumption
• Coverage adjustment with lognormal assumption multiplied with inflation
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Format for Case Studies

• Common sequence
• Exploratory data analysis graphs
• Model description
• Model results

• Comments on modeling choices and results
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Justification for Normalization 
using Case I Data Set
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Normalization Translation to Natural Log

• Mechanics
• Divide payments by accident year exposure
• Divide payments by some inflation index
• Take Natural log

• Justification
• Payment amounts comparable across accident years 
• Diminishes correlation effect
• Diminishes effect of large differences in amounts

• Illustration of effects
• Graphs to illustrate benefits follow
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Case I:
Simplest Model: No Change in 
Operations and No Change in 
Inflation Distribution 
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Brms Structure

Brms structure
• Start with Regression Type 

formula:
• response | aterms ~ 
pterms + (gterms | 
group)

• Add Other Modeling features:
• Prior Distributions 
• Correlation structures
• Variance modeling & other terms

Brms components
• Regression formula terms:

• Response: dependent variable
• Aterms: adjustments to dependent variable 

(exposure or censoring)
• Pterms: GLM type betas for population
• Group: variables to apply least squares 

credibility to in regression

• Other modeling features
• Prior distribution: source to credibility weight 

against data set estimates
• Correlation & Variance: options to model 

complex covariance structures
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BRMS Code for Time as Trend Model Priors

24

ln_prior_operation_1 <- c(prior(normal(-3,.5),class=b, coef=Intercept),
prior(normal(1,1),class=b, coef=Dev_Yr_2_Factor2),
prior(normal(2,1),class=b, coef=Dev_Yr_2_Factor3),
prior(normal(.03,.01),class=b, coef=Cal_Yr_Time),
prior(normal(1,1),class=b, coef=Dev_Yr_6_Cap),
prior(normal(-.5,.5),class=b, coef=Dev_Yr_6_Cap_Sqrd),
prior(normal(-.5,.5),class=b, coef=Dev_Yr_8_Spline_Sqrd),
prior(normal(.5,.5),class=b, coef=Dev_Yr_8_Spline),
prior(normal(.4,.5),class=b, coef=Intercept,dpar=sigma),
prior(normal(0,.5),class=b, coef=Dev_Yr_1_Factor2,dpar=sigma),
prior(normal(.5,1),class=b, coef=Dev_Yr_13_Spline,dpar=sigma))
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BRMS Code for Time as Trend  Model
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lognormal_pp_operation_I_1 <-brm(bf(Trended_Incr_PP ~ 0 +Intercept + 
Dev_Yr_6_Cap+
Dev_Yr_6_Cap_Sqrd+
Dev_Yr_2_Factor +
Dev_Yr_8_Spline +
Dev_Yr_8_Spline_Sqrd +
Cal_Yr_Time ,

sigma ~0 + Intercept +
Dev_Yr_1_Factor+
Dev_Yr_13_Spline +                             
(1||Acc_Yr)), This introduces group effect for accident year

seed = 8603529,
data = Train_Triangle_All_Operation_I,
family =lognormal(),
prior =ln_prior_operation_1)

Application of Bayesian MCMC to Reserving Noisy Data



BRMS Code for Inflation Plus Correction Trend 
Model Priors
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ln_prior_operation_3 <- c(prior(normal(-3,.5),class=b, coef=Intercept),
prior(normal(1,1),class=b, coef=Dev_Yr_2_Factor2),
prior(normal(2,1),class=b, coef=Dev_Yr_2_Factor3),
prior(normal(.01,.01),class=b, coef=Cal_Yr_Time),
prior(normal(1,1),class=b, coef=Dev_Yr_6_Cap),
prior(normal(-.5,.5),class=b, coef=Dev_Yr_6_Cap_Sqrd),
prior(normal(-.5,.5),class=b, coef=Dev_Yr_8_Spline_Sqrd),
prior(normal(.5,.5),class=b, coef=Dev_Yr_8_Spline),
prior(normal(.4,.5),class=b, coef=Intercept,dpar=sigma),
prior(normal(0,.5),class=b, coef=Dev_Yr_1_Factor2,dpar=sigma),
prior(normal(.5,1),class=b, coef=Dev_Yr_13_Spline,dpar=sigma))
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examples



BRMS Code for Inflation Plus Correction as 
Trend  Model
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lognormal_pp_operation_I_3 <-brm(bf(Trended_Incr_PP_Def ~ 0 +Intercept + 
Dev_Yr_6_Cap+
Dev_Yr_6_Cap_Sqrd+
Dev_Yr_2_Factor +
Dev_Yr_8_Spline +
Dev_Yr_8_Spline_Sqrd +
Cal_Yr_Time ,

sigma ~0 + Intercept +
Dev_Yr_1_Factor+
Dev_Yr_13_Spline +                           
(1||Acc_Yr)),

seed = 8603529,
data = Train_Triangle_All_Operation_I,
family =lognormal(),
prior =ln_prior_operation_3)
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Comments on Case I with Constant Inflation 
Assumption & No Change in Operation
• Deflating the data to model let’s one choose future inflation 

assumptions
• Varying inflation assumptions let’s one explicitly account for changes 

in economy
• If one can assume no change in inflation and no change in operation 

time as trend factor gives similar fit
• Will retain the deflating option going forward in more complex 

examples
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Case I With Change in Inflation , 
Change in Claim Operation & 
Change in Undewriting
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Case I with Operation & Inflation Change 

• Data Set Changes
• Introduce Calendar Year Shift in 

simulation parameters 
• Calendar Year Less than 2010
• Calendar Year Less than 2017

• Introduce Accident Year shift in 
simulation Parameters

• Accident Year Less than 2018
• Accident Year  Equal to 2018
• Accident Year Greater than2018

• Introduce inflation change 
• Calendar year 2019 shifts to 
• Lognormal: mu .07 & sigma .02

• Model Changes
• Introduce Calendar Year group 

categories variable
• Introduce Accident Year group 

categories variable
• Inflation is handled by the effect 

of deflating data
• Question of what inflation 

assumption to use going forward for 
reserve projections?

• Look at different assumptions
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BRMS Code for No Operation Change Model 
Priors
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ln_prior_operation_1 <- c(prior(normal(-3,.5),class=b, coef=Intercept),
prior(normal(1,1),class=b, coef=Dev_Yr_2_Factor2),
prior(normal(2,1),class=b, coef=Dev_Yr_2_Factor3),
prior(normal(.01,.01),class=b, coef=Cal_Yr_Time),
prior(normal(1,1),class=b, coef=Dev_Yr_6_Cap),
prior(normal(-.5,.5),class=b, coef=Dev_Yr_6_Cap_Sqrd),
prior(normal(-.5,.5),class=b, coef=Dev_Yr_8_Spline_Sqrd),
prior(normal(.5,.5),class=b, coef=Dev_Yr_8_Spline),
prior(normal(-0,.5),class=b, coef=Dev_Yr_12_Spline_Sqrd),
prior(normal(0,.5),class=b, coef=Dev_Yr_12_Spline),
prior(normal(.4,.5),class=b, coef=Intercept,dpar=sigma),
prior(normal(0,.5),class=b, coef=Dev_Yr_1_Factor2,dpar=sigma),
prior(normal(-.5,1),class=b, coef=Ln_Dev_Yr,dpar=sigma),
prior(normal(.5,1),class=b, coef=Dev_Yr_13_Spline,dpar=sigma))



BRMS Code for No Operation Change Model
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lognormal_pp_operation_II_1 <-brm(bf(Trended_Incr_PP_Def ~ 0 +Intercept + 
Dev_Yr_6_Cap+
Dev_Yr_6_Cap_Sqrd+
Dev_Yr_2_Factor +
Dev_Yr_8_Spline +
Dev_Yr_8_Spline_Sqrd +
Dev_Yr_12_Spline +
Dev_Yr_12_Spline_Sqrd + 

Cal_Yr_Time +
(1||Acc_Yr),

sigma ~0 + Intercept +
Dev_Yr_1_Factor+
Dev_Yr_13_Spline +
Ln_Dev_Yr +
(1||Acc_Yr)),

seed = 8603529,
data = Train_Triangle_All_Operation_II,
family =lognormal(),
prior =ln_prior_operation_1)



BRMS Code With Operation Change Model 
Priors
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ln_prior_operation_1 <- c(prior(normal(-3,.5),class=b, coef=Intercept),
prior(normal(1,1),class=b, coef=Dev_Yr_2_Factor2),
prior(normal(2,1),class=b, coef=Dev_Yr_2_Factor3),
prior(normal(.01,.01),class=b, coef=Cal_Yr_Time),
prior(normal(1,1),class=b, coef=Dev_Yr_6_Cap),
prior(normal(-.5,.5),class=b, coef=Dev_Yr_6_Cap_Sqrd),
prior(normal(-.5,.5),class=b, coef=Dev_Yr_8_Spline_Sqrd),
prior(normal(.5,.5),class=b, coef=Dev_Yr_8_Spline),
prior(normal(-0,.5),class=b, coef=Dev_Yr_12_Spline_Sqrd),
prior(normal(0,.5),class=b, coef=Dev_Yr_12_Spline),
prior(normal(.4,.5),class=b, coef=Intercept,dpar=sigma),
prior(normal(0,.5),class=b, coef=Dev_Yr_1_Factor2,dpar=sigma),
prior(normal(-.5,1),class=b, coef=Ln_Dev_Yr,dpar=sigma),
prior(normal(.5,1),class=b, coef=Dev_Yr_13_Spline,dpar=sigma))



BRMS Code for With Operation Change Model
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lognormal_pp_operation_II_4 <-brm(bf(Trended_Incr_PP_Def ~ 0 +Intercept + 
Dev_Yr_6_Cap+
Dev_Yr_6_Cap_Sqrd+
Dev_Yr_2_Factor +
Dev_Yr_8_Spline +
Dev_Yr_8_Spline_Sqrd +
Dev_Yr_12_Spline +
Dev_Yr_12_Spline_Sqrd + 
Cal_Yr_Time +
(1||Acc_Yr)+ 
Acc_Yr_Grp_2+Accident Year Group Categorical Variable
Cal_Yr_Grp_3,Calendar Year Group Categorical Variable

sigma ~0 + Intercept +
Dev_Yr_1_Factor+
Dev_Yr_13_Spline +
Ln_Dev_Yr +
(1||Acc_Yr)),

seed = 8603529,
data = Train_Triangle_All_Operation_II,
family =lognormal(),
prior =ln_prior_operation_4)
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Future Inflation Modeling Options

• Inflation Scenario 1
• Mu = .03
• Sigma =.02

• Inflation Scenario 2
• Mu = .04
• Sigma = .02

• Inflation Scenario 3
• Mu = .07
• Sigma = .02
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Comments on Case I with Changing Operation 
& Inflation
• Categorical variable can recognize shift in operations & improve fit
• No need for another calendar year group starting in 2019  due to 

inflation shift since deflating data picks that up.
• Assumptions on future economic environment are critical in setting 

reserves in changing enviroment
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Case II: Zero Payments & High 
Severity (Lognormal)
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Case II Model Design Comments

• Illustrates use of hurdle models to account for zero payments
• The density of a hurdle distribution can be specified as follows. 

If x=0x=0 set f(x)=θf(x)=θ. Else 
set f(x)=(1−θ) g(x)/(1−G(0))f(x)=(1−θ) g(x)/(1−G(0)) where g(x)g(x
) and G(x)G(x) are the density and distribution function of the non-
hurdle part, respectively.

• This example combines
• Binomial model for probability of zero payment
• Lognormal for claim amounts
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Bayesian Non_Zero Payment Priors

65

ln_prior_non_zero_2 <- c(prior(student_t(3,-4,.5),class=b, coef=Intercept),
prior(student_t(3,.03,.01),class=b, coef=Cal_Yr_Time),
prior(student_t(3,1,.5),class=b, coef=Dev_Yr_10_Cap),
prior(student_t(3,-.5,.5),class=b, coef=Dev_Yr_10_Cap_Sqrd),
prior(student_t(3,0,.5),class=b, coef=Dev_Yr_10_Spline),
prior(student_t(3,0,.5),class=b, coef=Dev_Yr_10_Spline_Sqrd),
prior(student_t(3,.1,.5),class=b, coef=Dev_Yr_6_Cap,dpar=sigma),
prior(student_t(3,.1,.5),class=b, coef=Dev_Yr_10_Spline,dpar=sigma))

Application of Bayesian MCMC to Reserving Noisy Data
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outliers



BRMS Model for Non_Zero Payments 
Lognormal Case
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lognormal_pp_non_zero_2 <-brm(bf(Trended_Incr_PP_Def ~ 0 +Intercept + 
Dev_Yr_10_Cap+

Dev_Yr_10_Cap_Sqrd+
Dev_Yr_10_Spline +
Dev_Yr_10_Spline_Sqrd +

Cal_Yr_Time +(1||Acc_Yr),
sigma ~

Dev_Yr_6_Cap +
Dev_Yr_10_Spline ),

data = Train_Triangle_Non_Zero_Count,
family =lognormal(),
prior =ln_prior_non_zero_2)
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Bayesian Lognormal Hurdle ModelPriors

70

ln_hurdle_1_prior <- c(prior(student_t(3,-4,.5),class=b, coef=Intercept),
prior(student_t(3,.03,.01),class=b, coef=Cal_Yr_Time),
prior(student_t(3,1,.5),class=b, coef=Dev_Yr_10_Cap),
prior(student_t(3,-.5,.5),class=b, coef=Dev_Yr_10_Cap_Sqrd),
prior(student_t(3,0,.5),class=b, coef=Dev_Yr_10_Spline),
prior(student_t(3,0,.5),class=b, coef=Dev_Yr_10_Spline_Sqrd),
prior(student_t(3,.1,.5),class=b, coef=Dev_Yr_6_Cap,dpar=sigma),
prior(student_t(3,.1,.5),class=b, coef=Dev_Yr_10_Spline,dpar=sigma),

prior(student_t(3,-.5,.05),class=b, coef=Dev_Yr_1_Factor2,dpar=hu))

Application of Bayesian MCMC to Reserving Noisy Data
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BRMS Code for Lognormal Hurdle Model
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hurdle_lognormal_pp_1 <-brm(bf(Trended_Incr_PP_Def ~ 0 +Intercept + Dev_Yr_10_Cap+
Dev_Yr_10_Cap_Sqrd+
Dev_Yr_10_Spline +
Dev_Yr_10_Spline_Sqrd +
Cal_Yr_Time +(1||Acc_Yr),

sigma ~
Dev_Yr_6_Cap +
Dev_Yr_10_Spline ,

hu~0 + Intercept +Dev_Yr_1_Factor ),
data = Train_Triangle_All,
family =hurdle_lognormal(),
prior =ln_hurdle_1_prior)
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Comments on Case II

• Hurdle models allow one to combine probability of zero payment & 
non-zero payment estimates in one model

• Using the student_t prior is one approach to dealing with outliers
• Sigma’s pattern  of a slow decrease as the accident year ages for the 

first few development years then increasing as the accident year ages 
can be a common feature of low frequency – high severity business

• One could use other continuous distributions like Gamma and 
recognize the change in parameters:

• Gamma would use “shape” rather than “sigma” in conjunction with the mean 
estimate as an example
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Conclusion

• One can explicitly model for varying effect of inflation 
• Inflation assumptions on reserve indications can be illustrated 
• One can explicitly model effect of company operation changes
• The Bayesian MCMC product of a posterior distribution for results 

lends itself to management presentation
• Recognize future estimates have some uncertainty
• Uncertainty can be quantified
• Helps with discussion on where to set published reserve estimates
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Appendix
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Additional Resources

• Brms
• brms: An R Package for Bayesian Multilevel Models using Stan, Paul-Christian Burkner, Journal of Statistical Software 2017
• Advanced Bayesian Multilevel Modeling with the R Package brms by Paul-Christian Bürkner, The R Journal Vol. 10/1, July 2018

• STAN
• https://mc-stan.org/

• Rstudio
• https://rstudio.com/

• Tidyverse
• Rstudio help
• R for Data Science: Import, Tidy, Transform, Visualize, and Model Data 1st Edition, Hadley Wickham, Garret Grolemund

• Bayesian MCMC textbooks
• Statistical Rethinking: A Bayesian Course with Examples in R and STAN (Chapman & Hall/CRC Texts in Statistical Science) 2nd Edition, 

by Richard McElreath
• Bayesian Data Analysis (Chapman & Hall/CRC Texts in Statistical Science) 3rd Edition, Gelman et.al. 

• Tidybayes
• https://cran.r-project.org/web/packages/tidybayes
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Code for Creating Explanatory Variables
Page 1
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Cal_Yr_Time = Cal_Yr - 2000,
Ln_Dev_Yr = log(Dev_Yr),
Inv_Dev_Yr = 1/Dev_Yr, 
Dev_Yr_6_Cap = if_else(Dev_Yr < 6, Dev_Yr, 

as.integer(6) ),
Dev_Yr_10_Cap = if_else(Dev_Yr < 10, Dev_Yr, 

as.integer(10) ),
Dev_Yr_6_Cap_Ln =log(Dev_Yr_6_Cap),
Dev_Yr_12_Cap = if_else(Dev_Yr < 12, Dev_Yr, 

as.integer(12) ),
Dev_Yr_13_Cap = if_else(Dev_Yr < 13, Dev_Yr, 

as.integer(13) ),



Code for Creating Explanatory Variables
Page 2
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Dev_Yr_6_Spline=if_else(Dev_Yr < 6,0,
Dev_Yr-5),

Dev_Yr_6_Spline_Sqrd = Dev_Yr_6_Spline * 
Dev_Yr_6_Spline,

Dev_Yr_8_Spline=if_else(Dev_Yr < 8,0,
Dev_Yr-7),

Dev_Yr_8_Spline_Sqrd = Dev_Yr_8_Spline * 
Dev_Yr_8_Spline,

Dev_Yr_6_Cap_Sqrd = Dev_Yr_6_Cap * Dev_Yr_6_Cap ,
Dev_Yr_12_Cap_Sqrd = Dev_Yr_12_Cap * Dev_Yr_12_Cap 

,
Dev_Yr_Sqrd = Dev_Yr * Dev_Yr ,
Dev_Yr_Cbd = Dev_Yr * Dev_Yr * Dev_Yr, 
Dev_Yr_Ln = log(Dev_Yr),
Dev_Yr_Inv = 1/Dev_Yr,



Code for Creating Explanatory Variables
Page 3
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Dev_Yr_1_Factor = as.factor(case_when(
Dev_Yr == 1 ~ 1,
Dev_Yr >1 ~2

)),
Dev_Yr_3_Factor = as.factor(case_when(

Dev_Yr == 1 ~ 1,
Dev_Yr == 2 ~2,
Dev_Yr == 3 ~3,
Dev_Yr > 3 ~4

)),
Dev_Yr_2_Factor = as.factor(case_when(

Dev_Yr == 1 ~ 1,
Dev_Yr == 2 ~2,
Dev_Yr > 2 ~3

)),



Code for Creating Explanatory Variables
Page 4
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Dev_Yr_Factor =as.factor(Dev_Yr),
Dev_Yr_10_Spline =if_else(Dev_Yr < 10,0,

Dev_Yr - 9),   
Dev_Yr_12_Spline =if_else(Dev_Yr < 12,0,

Dev_Yr - 11),  
Dev_Yr_13_Spline =if_else(Dev_Yr < 13,0,

Dev_Yr - 12),  
Dev_Yr_10_Spline_Cap_15 = case_when(

Dev_Yr < 10 ~0,
Dev_Yr < 16 ~Dev_Yr-9,
Dev_Yr >15 ~15),

Dev_Yr_6_Spline_Ln =if_else(Dev_Yr < 6,0,
log(Dev_Yr_6_Spline)),    

Dev_Yr_10_Spline_Ln =if_else(Dev_Yr < 10,0,
log(Dev_Yr_10_Spline)),    

Dev_Yr_10_Spline_Ln =if_else(Dev_Yr < 10,0,
log(Dev_Yr_10_Spline)), 



Code for Creating Explanatory Variables
Page 5
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Dev_Yr_12_Spline_Ln =if_else(Dev_Yr < 12,0,
log(Dev_Yr_12_Spline)),  

Dev_Yr_12_Spline_Sqrd = Dev_Yr_12_Spline * 
Dev_Yr_12_Spline,

Dev_Yr_15_Spline =if_else(Dev_Yr < 15,0,
Dev_Yr - 14),

Dev_Yr_15_Spline_Ln =if_else(Dev_Yr < 15,0,
log(Dev_Yr_15_Spline)),

Cal_Yr_Grp_3 =as.factor(case_when(
Cal_Yr < 2010 ~ "LT_2010",
Cal_Yr < 2017 ~"2010_To_2016",
Cal_Yr > 2016 ~"GE_2017"

)),
Acc_Yr_Grp_2 = as.factor(if_else( Acc_Yr < 2018,

"LT_2018",
"GE_2018")))


