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Penalized regression - Between Credibility and GBMs
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Credibility: Worker's Compensation example

Loss Cost by class code example

Losses and exposures for companies are collected, and we
want to compute an estimation of the average loss cost per
class code.

The data can be represented visually:

e  The blue bars represent the number of observations
for a given class;

e  The purple lines represent the Observed Experience
as the average loss cost for each class;

e  The black line represent the overall average (or grand
average) of $500 in this example.
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Credibility: Univariate estimate

A natural estimate is the average loss cost by class code.

Such estimate may be inappropriate for class Health-Care
which has low exposure.

The same argument applies for Finance and Construction

This approach is followed in the GLM framework, that fully
trusts the data:

Boim = mﬁax LogLikelihood(Observed, 3)
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Removing non-significant
levels
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Removing low-significance levels

A classic approach is to use the statistical significance of the different levels.

Levels that have low exposure (or small effects) are grouped together, or put at
the average value.

The goal of this approach is to avoid trusting very noisy models with a few
observations.

The result obtained will depend on the significance threshold above which
levels will be kept into the final model or grouped:

- If alevel is more significant than the threshold, it is kept
- If alevelis less significant than the threshold, it is removed

Modelers often use a “5% significance level” but any other value can be
selected.
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Fitted model depends on the threshold

Strong (low) significance thresholds are hard to validate and lead to a robust model.
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Fitted model depends on the threshold

Weak (high) significance threshold are easy to validate and lead to a volatile model.
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Strengths & limits of levels selection

This approach has well know strengths and limits:

It is a binary method, leading to clear decisions

It is very frequently used and widely accepted

It relies on very classic statistics

X ltis a binary method: it does not use efficiently the
limited observations we have on “health-care”

X Tests justification rely on hypothesis often not met
in practice
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The Credibility solution

The idea of a credibility framework is to create a model
between these two extreme “yes” and “no” solutions.
Low-exposure levels are:

- Not fully trusted (like they would in a standard GLM
framework).

- Not fully discarded (like they would if we applied a
grouping of non-significant levels).
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What is the idea motivating Credibility ?

The Buhlmann credibility creates predictions by mixing two
sources of informations:
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What is the idea motivating Credibility ?

The Buhlman credibility creates predictions by mixing two
sources of informations:
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Quick Reminder... What is Credibility

When the volume of data is not enough to accurately estimate the losses,

“Gredibility, simply pu, is the weighting Credibility methodologies provide ways to complement the observed

together of different estimates to come up

experience with additional information.

with a combined estimate.” o .
The Credibility formula is:

Foundations of Casualty Actuarial Science
Estimate = Z * Observed Experience + (1 - Z) * Complement of Credibility

where the Credibility factor Z is a number between 0 and 1.



Buhlmann Credibility: Computing Z

The modeler decides to use Buhlmann Credibility.
Buhlmann's Z for Health-care

The formula for credibility is L0+ RS s e e R
Z - n 0.8
n+K
N
£ 06
Where K can be estimated from the data via standard z
formulas. 2 i
c
0.2 H
0.0

1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Variance Conditional Mean 1/K

T K in R* is the ratio between the variances of the two distributions presented earlier: mean of conditional variance (in purple, Expected Process Variance, EPV) / variance of
conditional means (in grey, Variance of the Hypothetical Mean, VHM)



Example: Health Care estimate

Large K (low credibility)
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Example: Health Care estimate

Medium K (intermediate
credibility)

Intermediate information on the
predictions can be derived from
the observation (the distributions
of the observations around the
prediction has a medium
variance)

Predictions are between the
overall average and the
observations.
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Example: Health Care estimate

Small K (strong credibility)

Strong information on the
predictions can be derived from
the observation (the distributions
of the observations around the
prediction has a small variance)

Predictions are close to the
observations.
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Credibility works on a single dimension !

Credibility hypothesis are on the observed values, not the
coefficients !

Integration of credibility is done as a post-processing, after the
GLM has been built.

It can be applied to a single variable: it is not a multivariate
analysis !

The statisticians who designed our GLMs were unaware we
intended to subject GLM estimates to the violence of a subsequent
round of ad hoc credibility adjustments. If they had known, they
might have suggested a better starting point than GLM estimates..”

F. Klinker, Generalized Linear Mixed Models for Ratemaking 2010
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Strengths & limits of Buhlmann Credibility

This approach has also well-documented strengths & limits:

It allows to leverage all the available data,

It is very frequently used and widely accepted

It relies on very classic statistics

[Z4Results can be computed without a computer (which

didn't exist in the 1960’s when the method was proposed)

X Itis applied as a post-processing, only to one variable in
the model
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Comparing different techniques

Control low-exposure segments
to prevent overfitting

Set coefficients of low-exposure
segments at zero

Shrink low-exposure segments

Works for multivariate models

Creates transparent models
(GLM or additive models)

Natively manage non-linear
effects

Coefficient depending on the
robustness parameter

Levels Selection Credibility
All the techniques presented today aim at controlling overfitting.

Selection of effects No selection of effects

This allows to tolerate segments with limited

Al (yet usable) data

Yes No
Designed for the GLM framework

These techniques work on “pure GLM” (linear & categorical effects)
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Enriching the GLM
framework



Why the GLM lacks credibility

GLM coefficients are the maximum of likelihood (probability of observing the
data, given the model):

~
=]
o

B* = Argmax Likelihood (Obs., B)

The probability of observations is displayed in purple on the right.
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The Penalized GLM Formula

Like for Credibility, Penalized Regressions integrate another prior hypothesis.

But this time, the prior hypothesis is directly on the coefficient values: we
integrate a probability for different values of the coefficients.

For instance, in the Ridge-regression framework, we assume coefficients follow a
normal distribution:
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The Penalized GLM Formula

The idea of Penalized Regression is to include a second
hypothesis in the GLM framework: the coefficients have a a-priori
distribution.

This prior is visible in the maximum of likelihood definition:
2

B* = Argmax Likelihood(Obs., B) X a el/2

Which means:

B* = Argmax LogLikelihood(Obs.,B) — A B*

This hypothesis is similar to the Buhlmann credibility ; they are
equivalent for a one-dimensional model.
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The Ridge

The coefficients computed depend on the A parameter.
Ridge estimated value for Health-Care

- For small lambda, the coefficients will be close to a simple
GLM 700 +

- For large lambda, the coefficients will be close to zero
(and the predictions will be close to the base-level).

Health-care estimate
]
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Example: Health Care estimate

Large A (large penalty)
Strong prior on the coefficient Exposures Observed —e— Ridge estimates
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Example: Health Care estimate

Medium A (medium penalty)

Intermediate prior on the Exposures Observed —e— Ridge estimates
coefficient (the prior distribution

. Ridge estimate value
has a small variance)
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Example: Health Care estimate

Small A (small penalty)

Weak prior on the coefficient (the
prior distribution has a large
variance)

Coefficients and predictions are
close to the observed value.
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Blending GLM with Credibility

Penalized GLMs share the same properties as Credibility in the following ways:
1. Both shrink GLM estimates toward the complement of Credibility (grand average);
2. Both apply more shrinkage to segments with low volume of data / credibility
3.  Both based on a Bayesian model, as in Buhlmann Credibility

The theoretical connection between Credibility and Penalized GLM

can be found in:

° Fry, Taylor. "A discussion on credibility and penalised regression, with

implications for actuarial work" (2015)

e  M.Casotto et al. “Credibility and Penalized Regression” (2022) ; this topic was

also presented last year during the CAS seminar.

4. However, while the Credibility approach can be applied to one variable after the GLM

fit, the ridge regression can be applied to all variables simultaneously.
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Comparing different techniques
Levels Selection Credibility Ridge Regression

Control low-exposure segments

to prevent overfitting All the techniques presented today aim at controlling overfitting.

Set coefficients of low-exposure

Selection of effects No selection of effects
segments at zero
Shrink low-exposure segments No This allows to tolerate segments with limited (yet usable) data
Works for multivariate models Yes No Yes
Creates transparent models .
(GLM or additive models) Designed for the GLM framework

Natively manage non-linear

effects These techniques work on “pure GLM” (linear & categorical effects)

Coefficient depending on the
robustness parameter
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The Penalized GLM Formula: the Lasso

Like the Ridge, Lasso-regression framework, assumes coefficients follow a given
distribution.

But this time the distribution used is the Laplace distribution:

B ~ Laplace(0,1/ 1
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The Penalized GLM Formula

Ridge-regression also includes a second hypothesis in the GLM
framework: the coefficients a-priori follow the Laplace
distribution.
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Impact of smoothness to Lasso estimates
Workers Compensation example
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Impact of smoothness to Lasso estimates
Workers Compensation example

Large A (large penalty)
Strong prior on the coefficient Exposures Observed —e— Lasso estimates
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Impact of smoothness to Lasso estimates
Workers Compensation example

Medium A (medium penalty)

Intermediate prior on the Exposures Observed —e— Lasso estimates
coefficient (the prior distribution
has a small variance)

Lasso estimate value
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Impact of smoothness to Lasso estimates
Workers Compensation example

Small A (small penalty)

Weak prior on the coefficient (the Exposures Observed —e— Lasso estimates
priqr distribution has a large Lasso estimate value
variance) -
Coefficients and predictions are 750
close to the observed value.
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Coefficient path graph of the Lasso

Workers Compensation example
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Coefficient path graph of the Lasso

Workers Compensation example
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Coefficient path graph of the Lasso

Workers Compensation example
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Coefficient path graph of the Lasso

Workers Compensation example
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Coefficient path graph of the Lasso

Workers Compensation example
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Coefficient path graph of the Lasso

Workers Compensation example
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Coefficient path graph of the Lasso

Workers Compensation example
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Coefficient path graph of the Lasso

Workers Compensation example
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Coefficient path graph of the Lasso

Workers Compensation example
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Coefficient path graph of the Ridge

The same graph can be computed for a Ridge regression
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Comparing different techniques
Levels Selection Credibility Ridge Regression Lasso Regression

Control low-exposure segments

to prevent overfitting All the techniques presented today aim at controlling overfitting.

Set coefficients of low-exposure

segments at zero Selection of effects No selection of effects Selection of effects
Shrink low-exposure segments No This allows to tolerate segments with limited (yet usable) data
Works for multivariate models Yes No Yes Yes
Creates transparent models :
(GLM or additive models) Designed for the GLM framework

Natively manage non-linear

effects These techniques work on “pure GLM” (linear & categorical effects)

Coefficient depending on the
robustness parameter

o6 oz 10 12 1 oo o2 o4+ o5 o 1
2% 10% 20% Fidge inverse penaty 14 Ridge inverse penaly /A

P-values significance (%)



Gradient Boosting and GLMs



There is a strong relationship between Credibility and Penalized Regression methods.
There is an equal connection, between Gradient Boosting Machines (GBMs) and Penalized Regression.

Such additional connection highlights the flexibility of the Penalized framework, which can be used to enhance components of the current
methodologies of insurance pricing.



Introduction to GBM

What is a Boosted Tree ?

GBMs are also referred as Boosted Trees.

- Boosted as in Boosting - a learning technique that “learns from the mistakes” by iterating models on residuals.

- Trees as in Decision Tree - simple model that predicts a target based on decision rules learnt from the data.



What is a tree

Trees estimate losses via recursive if/else decision rules.
Rules are inferred from the data in a greedy fashion.

Each possible two way split of the data is evaluated by comparing the
averages of the two complementary partitions.

The split leading to the biggest likelihood increase will be selected.

The search is then iterated on each subpopulation until one stopping
criteria is met, such as

° Maximum tree depth
° Minimum amount observation per leaf

° Min deviance gain...

Which class code ?

How many
employees ?

<5

employees

650 S Loss

150 Risks

WC Data

>=5
employees

850 S Loss
300 Risks

Not Mining

500 $ Loss

2500 Risks




Application: Worker Compensation
Building a tree on Worker Compensation data

Loss deviations

[ Number of observations —®— Observed === Overall Average

800 4000
3500 Which class code ?
700
SOOOg
600 2
2500 2
0
500 P oG E R LR LY AL LEEEREY TR LY g
2000 ©
\, S
400 1500 2
[S
2
300 1000
500
200
=) I §

He. R Co, 4 L7 4o, “i, *
a/,%% sy 0%“!/'% i oo%%’/ 17%/{% nce %se'%
"9

Class codes



Application: Worker Compensation

i ?
Building a tree on Worker Compensation data Which class code ?

Health Care (No / Yes)
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Application: Worker Compensation

i ?
Building a tree on Worker Compensation data Which class code ?

Health Care (No / Yes)
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Loss deviations

Application: Worker Compensation

i ?
Building a tree on Worker Compensation data Which class code ?

Health Care (No / Yes) Retail (No / Yes)
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Loss deviations

Application: Worker Compensation
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Application: Worker Compensation

The tree split the dataset between Mining and Not Mining, 800
leading to two different predictions.
In a GBM, the first tree is the first step of the learning 790
procedure: the boosting. B
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Application: Worker Compensation

The tree split the dataset between Mining and Not Mining,
leading to two different predictions.

In a GBM, the first tree is the first step of the learning
procedure: the boosting.

The boosting procedure consist of three steps:

1. Compute the residuals
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Application: Worker Compensation

The tree split the dataset between Mining and Not Mining,
leading to two different predictions.

In a GBM, the first tree is the first step of the learning
procedure: the boosting.

The boosting procedure consist of three steps:

1. Compute the residuals

2. Fit a new tree

Residual ($)
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Application: Worker Compensation

Exposures —e— Observed —e— Tree Estimates

The tree split the dataset between Mining and Not Mining, _— 4000
leading to two different predictions.
3500
In a GBM, the first tree is the first step of the learning 790
procedure: the boosting. & 3000
5 600
The boosting procedure consist of three steps: 3 2500 4
2 500 2000 3
. 3 8
1.  Compute the residuals o T X
£ 400 1500
2. Fit a new tree z
300 1000
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Coefficient path graph of a GBM

Workers Compensation example

| Exposures = Observed —e— GBM estimates
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Coefficient path graph of a GBM

Workers Compensation example

| Exposures = Observed —e— GBM estimates
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Coefficient path graph of a GBM

Workers Compensation example
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Coefficient path graph of a GBM

Workers Compensation example

Exposures = Observed —e— GBM estimates
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Coefficient path graph of a GBM

Workers Compensation example

Exposures = Observed —e— GBM estimates
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Coefficient path graph of a GBM

Workers Compensation example
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Coefficient path graph of a GBM

Workers Compensation example
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Coefficient path graph of a GBM

Workers Compensation example

Exposures = Observed —e— GBM estimates
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Coefficient path graph of a GBM

Workers Compensation example

Exposures = Observed —e— GBM estimates
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Boosting and stepwise learning

In the simple Worker Compensation example, the GBM learns as in a
forward stepwise procedure, by iteratively

1.  Selecting the most important feature.

2. Including (fitting) the effects.

Forward stepwise procedures work well in a very simple case like here,
but they are known to not handle correctly correlated variables.

For a similar reason, boosting procedures are always combined with a
learning rate to improve the model’s ability to generalize.

Number of Trees



The learning rate

Exposures —e— Observed
—e— Tree Estimates —o— Tree with Learning Rate
The learning rate is a constant between 0 and 1 that
mitigates the contribution of an individual tree to the overall 800 4000
prediction.
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Learning rate = 0.5
Estimate evolution until 40 trees

| Exposures = Observed —e— GBM estimates
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Learning rate = 0.3
Estimate evolution until 80 trees

Exposures = Observed —e— GBM estimates
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Learning rate = 0.05

Estimate evolution until 350 trees

| Exposures = Observed —e— GBM estimates
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Toward the coefficient path graph

The graph on the right represents the evolution of the estimates
by the number of trees.

S,
’1"098 Number of Trees



Toward the coefficient path graph

The graph on the right represents the evolution of the estimates
by the number of trees.

The same graph can be represented by rescaling the x-axis in the
same scale as in penalized regression (to fit a 0-100% range).

Rescaled 1/A (to fit a 0-100% range)



Comparing Lasso and GBM

— Lasso Coefficient path

0% 20% 40% 60% 80% 100%

Rescaled 1/A (to fit a 0-100% range)

GBM (Learning Rate = 0.05)

Rescaled 1/A (to fit a 0-100% range)



Boosting converges to the Lasso

ASTIN, AFIR/ERM
and IACA

The convergence of boosting toward Lasso solution is a proven mathematical

result.

A

A discussion on credibility and penalised
regression, with implications for actuarial

1. GBMs provide a good approximation of a Lasso regression

Prepar

Presentod fc

2. Both GBMs and Lasso allow to tune a parameter in order to control the g
training error and ability to generalise:
a.  GBMs via the combination of number of trees - learning rate (and

many other tree-related parameter)

The Insftute will ensure that allre)
author(s) and inciude.

b.  Lasso via the smoothness parameter

work
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LEAST ANGLE REGRESSION

BY BRADLEY EFRON,! TREVOR HASTIE,Z IAIN JOHNSTONE?
AND ROBERT TIBSHIRANI

Stanford University

The purpose of model selection algorithms such as All Subsets, Forwand
Selection and Backward Elimination is to choose 4 linear model on the
basis of the same set of data to which the model will be applied. Typically
we have availsble a Large collection of passible covariates from which we
hope 1o select a parsimonious set for the efficient prediction of a respoase
varisble. Least Angle Regression (LARS), 8 new model selection algorithm,
is 8 seful and less greedy version of teaditional forward selection medsods.
Three main properties are derived: (1) A simple modification of the LARS
algorithm implements the Lasso, an attractive version of ordinary least
squares that constrains the sum of the absolute regression coefficients;
the LARS modification calculstes all possible Lasso estimates for a given
problem, using an order of magnitude less computer time than previous
methods. (2) A different LARS modification efficiently implements Forward
Stagewise linear regression, another promising new model selection method;
this connection explains the similar numerical results previously observed
for the Lasso and Stagewise, and helps us understand the properties of
both methods, which are seen as constrained versions of the simpler LARS
algorithm. (3) A simple approximation for the degrees of freedom of a LARS
estimate is availsble, from which we derive a Cy estimate of prediction esror;
this allows 4 principled choice among the range of possible LARS estimates.
LARS and its variants are computationally efficient the paper describes
a publicly available algorithm that requires only the same order of magnitude
of computational effort as ordinary least squares applied to the full set of
covariates.

1. Introduction. Automatic model-building algorithms are familiar, and
sometimes notorious, in the linear model literature: Forward Selection, Backward

imination, All Subsets ion and various inations are used to auto-
matically produce “good” linear models for predicting a response y on the basis
of some measured covariates xy, X3, ..., X,. Goodness is often defined in terms
of prediction accuracy, but parsimony is another important criterion: simpler mod-
els are preferred for the sake of scientific insight into the x — y relationship. Two
promising recent model-building algorithms, the Lasso and Forward Stagewise lin-




What about
ordinal variables ?
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What about Ordinal variables ?

The Worker Compensation example highlights the connection between GBMs and Lasso for categorical variables.

The main benefit of a GBM is its ability to natively fit non-linear effect on ordinal variables.

At a first glance, Penalized Regressions seem unable to natively fit non-linear effects.

We will show that, by analyzing how GBMs incorporate non-linearities, it is possible to incorporate the same learning procedures to Penalized
regression.



GBM and Ordinal variables

GBMs natively handles non-linear effects by combining

1. Trees

Detects the location on where to split the ordinal variables in
two region

2. Boosting

Adaptively learns structure from the residuals / errors
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GBM and Ordinal variables

GBMs natively handles non-linear effects by combining

1. Trees

Detects the location on where to split the ordinal variables in two
region

2. Boosting

Adaptively learns structure from the residuals / errors
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Lasso and Ordinal variables

GBMs natively handles non-linear effects by combining

1. Trees

Detects the location on where to split the ordinal variables in two
region

2. Boosting

Adaptively learns structure from the residuals / errors
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Lasso and Ordinal variables

GBMs natively handles non-linear effects by combining

1. Trees

Detects the location on where to split the ordinal variables in two
region

2. Boosting

Adaptively learns structure from the residuals / errors
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Lasso and Ordinal variables

GBMs natively handles non-linear effects by combining

1. Trees

Detects the location on where to split the ordinal variables in two
region

2. Boosting
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Lasso and Ordinal variables

GBMs natively handles non-linear effects by combining

1. Trees

Detects the location on where to split the ordinal variables in two
region

2. Boosting

Adaptively learns structure from the residuals / errors
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Lasso and Ordinal variables

GBMs natively handles non-linear effects by combining

1. Trees

Detects the location on where to split the ordinal variables in two
region

2. Boosting

Adaptively learns structure from the residuals / errors
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Lasso and Ordinal variables

GBMs natively handles non-linear effects by combining

1. Trees

Detects the location on where to split the ordinal variables in two
region

2. Boosting

Adaptively learns structure from the residuals / errors
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The impact of the Learning Rate

GBMs natively handles non-linear effects by combining

1. Trees

Detects the location on where to split the ordinal variables in two
region

2. Boosting
Adaptively learns structure from the residuals / errors
3. Learning Rate

Allows to incrementally adapt the trees to the signal, making the
model ‘smoother’ and more robust to correlations
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The impact of the Learning Rate
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The impact of the Learning Rate

GBMs natively handles non-linear effects by combining
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How GBMs ‘learn’ ordinal variables

These visual examples highlight how GBM effectively learn non-linearities:

1. The most significant split (the ‘derivative’) is computed.
2. The learning rate defines the amount of signal to be learnt (hence controlling for smoothing).

3.  The number of trees defines the stopping point to prevent overfitting.

The same structure can be replicated in Penalized Regression by using an appropriate prior distribution (or penalty)



Creating new Priors and Penalties

Exposure train == Coefficient (%) ~# Predicted (%) == Observed (%)

Grouping is statistically equivalent to the
assumption that the coefficients of two
consecutive levels

e are more likely to be close than far apart
if they are significantly different.a

e  or have the same coefficients if they are
not significantly different...
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Creating new Priors and Penalties

This means that the derivative of the (ordinal) variable) Expogine e~ Coficlent (), ~@==Eieticiad () 8= Dtiserned(X)
follows a Laplace distribution:

As the values of the coefficients are discrete, the
derivative can be written as:

p(ﬁ) a e_/l |ﬁi_Bi+1|

This distribution of probability is used as a prior
when maximizing the likelihood to fit a model:

B* = Argmaxg LL(x,y,B) — A |B; — Bi+1l

CONFIDENTIAL



Weak Smoothness ¢ Strong reliance on the observation
The prior has a very limited impact on the final model

Exposure train = Coefficient (%) - Predicted (%) =#=— Observed (%)
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Stronger Smoothness <& Weaker reliance on the observation
The final model is an average between the most likely coefficients according to the prior and the observations

Relative values

Exposure train == Coefficient (%) - Predicted (%) == Observed (%)
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Strong Smoothness & Very weak reliance on the observation
The weight of the observation in the model is weaker than the priors

Relative values

Exposure train == Coefficient (%) - Predicted (%) =8 Observed (%)
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Very Strong Smoothness ¢ Full reliance on the prior

Exposure train =@ Coefficient (%) - Predicted (%) == Observed (%)
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Lasso and Ordinal variables

Under these “Lasso” assumption on the derivative, penalized regression
can natively incorporate non-linear effects.

Furthermore, the convergence result between GBMs and Lasso is still
valid.

To control the training error and ability to generalise:

- Penalized Regression require the definition of a single parameter:

the smoothness

- GBMs require to determine the combination of several
parameters:

- number of trees
- learning rate
- and other tree-related parameters
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Comparing GBM and Penalized Regression

Control low-exposure segments
to prevent overfitting

Works for multivariate models

Creates transparent models
(GLM or additive models)

Natively manage non-linear
effects

Lasso Regression GBM Derivative Lasso - AGLM

All the techniques presented today aim at controlling overfitting.

Yes ; apply the same priors / rules for all levels

Designed for the GLM No - Output Designed for the GLM
framework usually not transparent framework

No - Requires non-linearities to be

explicitly specified Yes



Conclusion

Penalized regression offers a flexible and theoretically sound framework to tackle and address the GLM’s drawbacks.
It does so in an accessible way:

- Penalized regression require the choice of only one parameter: the smoothness
- Smoothness relates to known credibility techniques
- Penalized regression require little to no investment cost
- Inputs and outputs are equal to GLMs - adding penalizations to GLM is straightforward via software

- Potentially unlock use-cases not previously considered for modeling

Via complement of credibility, it is possible to gradually update current models to new ones

- GLMs can be used as a data analysis alternative as modeling effort is reduced since non-linearities are natively handled.



The big picture

Levels Credibility Ridge Lasso Derivative

Selection Regression Regression R Lasso-AGLM

Control low-exposure segments

All the techniques presented today aim at controlling overfitting.
to prevent overfitting

Set coefficients of low-exposure Selection of No selection of effects Selection of effects, allowing binary decisions (if the
segments at zero effects effects are visualized - not always true for GBMs)
Shrink low-exposure segments No This allows to tolerate segments with limited (yet usable) data
Work for multivariate models Yes No

Yes ; apply the same priors / rules for all levels

Creates transparent models

. Usually, output Additive
(GLM or additive models) RelSei BLERE Sl not transparent models
Natively manage no';l;';ifsr These techniques work on “pure GLM” (linear or categorical effects) Yes

Coefficient depending on the
robustness parameter
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The coefficient path graph

How to rescale’ the impact of the penalty

It is possible to generalize this graph, tracking the impact of penalty on
several levels simultaneously.

Coefficient path
Health- Care
The ‘coefficient path graph'’ allows to globally analyse how the estimates
/coefficient evolve when the smoothness increases: Mining
- Y axis represents the value of the estimates. Food Services
- Xaxis represents the ‘Empirical Credibility’ - which is a ‘Proportion Construction

of the GLM solution) / Manufacturing
o Retail

|Predicted; — Grand Average| Agriculture
|GLM; — Grand Average|

Empirical Credibility =

i€Classes

- Empirical Credibility = 100 % - Estimates match the observed Finance
- Empirical Credibility = 0 % - Estimates match the Grand Average (or 0 02 04 06 08 1
complement of credibility)
Proportion of GLM solution ‘



Is the convergence result a desirable property ?
Smaller learning rate corresponds to better models, but at a cost

In GBMs the smaller the learning rate the better

1. Smaller learning rates lead to more performant and
robust models - as they handle better correlations

2. Smaller learning rates require to build many more
trees

The only limit of choosing a smaller learning rate in a GBM
is the time required to build the models.

Lasso being equivalent to a very little learning rate is a
desirable property.

Average Loss Cost (3)
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