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Bootstrapping Introduction

Concept: Statistical technique for estimating the quantity about a population by averaging estimates from 
multiple small data samples. 

1. Choose how many bootstrap samples do we want to use

2. Choose a sample size

3. For each bootstrap sample

1. Draw a sample with replacement with the chosen size

2. Calculate the statistic (Mean, Variance, median or even maximum) on the sample

4. Calculate the mean of the calculated sample statistics.
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Bootstrapping Introduction
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 What is the Bootstrapping?
 Example:

5 24 3

6 32 3

4 42 4

5 15 3

 Estimate the proportion for each color.
 What is the mean of the proportion for each color?  What if we resample it with replacement for 1000 

times? It will follow a certain distribution. And Bootstrapping will help us to get the distribution.



The estimate of future payments on (re)insurance contracts already written is subject to volatility.

The volatility affects many areas of our business:

• Reserving:  including Solvency II and IFRS 17

• Loss Portfolio Transfers

• Enterprise Risk Management

Various methods have been used to quantify this uncertainty.

Bootstrapping methods, made popular by England & Verrall (1999, 2002), are commonly used but do not 
always produce realistic results.

Business Purpose
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The goal of bootstrapping is to estimate the variance of a statistical estimator based on the data itself.

From the saying: “lifting yourself up by your own bootstraps”

We are actually estimating the distribution of the chain ladder estimate of ultimate as the first step.

Key assumptions:

1) Ultimate losses are estimated using the all-year weighted average chain ladder method.

2) Each cell in the incremental development triangle has the same variance/mean ratio, ϕ.

3) Each cell in the incremental development triangle is statistically independent from the other cells.

Any of these assumptions can be relaxed in practice.  We will focus on the third.

Outline of Bootstrapping
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Outline of Bootstrapping
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Bootstrapping starts with an incremental paid 
(or incurred) triangle.

A “fitted” version of the triangle is created based 
on chain-ladder or GLM.

The fitted triangle will have the same row and 
column totals as the original triangle.

Data is the “Taylor / Ashe” example as used in the 
England and Verrall paper.



Outline of Bootstrapping
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Next a triangle of standardized residuals is 
created.

This assumes:

 each cell has a mean equal to the 
“fitted” value

 that there is a constant variance/mean 
ratio ϕ for all cells in the triangle

The smallest and largest values are marked 
just for reference.



Outline of Bootstrapping
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Bootstrap iterations are performed:

 Resample [with replacement] residuals 
from the original data

 For each resampled set of residuals, 
recreate a triangle of loss amounts

 Estimate the chain ladder reserve from 
each pseudo-triangle

 Include random (process variance) 
around the chain ladder estimate

Key assumption:  each cell is an 
independent draw from the residuals



Past Back-Testing of Bootstrap (Leong, et al.)
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Back-testing of the bootstrapping method has been 
performed previously by Leong (2014) and Shapland (2019).

They have compared actual (hold-out) loss outcomes to the 
quantiles estimated by the bootstrap.

Ideally the actual results would fall evenly across predicted 
deciles.

In Schedule P examples, more actual losses fell into the tails 
of the bootstrap ranges than would have been predicted.  
This indicates that the bootstrap tends to underestimate the 
range of outcomes.



Data source for back-testing and potential data issues

CAS website schedule P data

• Net paid L&ALAE as of 12-120 months for accident years 1988-1997

• By line of business and by companies 

• CAL (158 companies) 

• OL (239 companies) 

• WC (132 companies)

The CAS website schedule P data is a good toy example, but shows some data problems needing scrubbing

• Negative development (even negative cumulative payments!)

• Operational changes such as LPT or commutation

• Highly skewed data
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Data Cleaning

• Excluding companies with fewer than 10 accident years of data

• Excluding companies with data showing obvious abnormality

• No. of companies remained:  CAL - 89, OL – 125, WC - 59  
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38997 Nissan Fire & Marine Ins Co Us Br Other Liability
AY 12 24 36 48 60 72 84 96 108 120

1988 311 311 311 311 311 311 311 311 311 311
1989 458 457 457 457 457 457 457 457 457 457
1990 81 81 81 81 81 81 81 81 81 81
1991 122 122 122 122 122 122 122 122 122 122
1992 78 78 78 78 78 78 78 78 78 78
1993 112 112 112 112 112 112 112 112 112 112
1994 180 180 180 180 180 180 180 180 180 180
1995 182 182 182 182 182 182 182 182 182 182
1996 178 178 178 178 178 178 178 178 178 178
1997 149 149 149 149 149 149 149 149 149 149

86 Allstate Ins Co Grp Workers Compensation
AY 12 24 36 48 60 72 84 96 108 120

1988 70,571 155,905 220,744 251,595 274,156 287,676 298,499 304,873 321,808 325,322
1989 66,547 136,447 179,142 211,343 231,430 244,750 254,557 270,059 273,873 277,574
1990 52,233 133,370 178,444 204,442 222,193 232,940 253,337 256,788 261,166 263,000
1991 59,315 128,051 169,793 196,685 213,165 234,676 239,195 245,499 247,131 248,319
1992 39,991 89,873 114,117 133,003 154,362 159,496 164,013 166,212 167,397 168,844
1993 19,744 47,229 61,909 85,099 87,215 88,602 89,444 89,899 90,446 90,686
1994 20,379 46,773 88,636 91,077 92,583 93,346 93,897 94,165 94,558 94,730
1995 18,756 84,712 87,311 89,200 90,001 90,247 90,687 91,068 91,001 91,161
1996 42,609 44,916 46,981 47,899 48,583 49,109 49,442 49,073 49,161 49,255
1997 691 2,085 2,795 2,866 2,905 2,909 2,908 2,909 2,909 2,909

No Development

Pooling / Loss Portfolio Transfer ?



Correlation

The bootstrap method includes an assumption that all cells in the triangle are independent and therefore can 
be resampled independently.

This assumption can be relaxed by introducing a correlation structure.

And so…

Rho, rho, rho your boot.  ♪♪♪♫
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Correlation
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Correlation in GEE
Generalized Estimating Equations (GEE) is 
an expansion of GLM to allow for 
correlation to be included.

Several types of correlation structures are 
commonly used.

The correlation is ideally estimated from the 
data itself but can alternatively be “fixed” by 
the user.



Correlation

The AR(1) autoregressive correlation structure corresponds to a mean-reverting random walk.

This is a simple time-series structure used, for example, to model inflation.

Possible calendar year effects:

1) Economic inflation

2) Social inflation

3) Shock events such as recent COVID pandemic

4) Changes in claims handling or settlement strategy
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Correlation
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Calendar year effects operate from one diagonal to another.

We would like losses in the same calendar year to be more correlated with each other than with loss in more 
“distant” diagonals.

Source for graphic:  Lloyd’s Claims Inflation Study 2014
https://assets.lloyds.com/assets/pdf-claims-inflation-discussion-document-mg-20141128/1/Claims-Inflation-Discussion-Document-MG-20141128.pdf



Correlation
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The correlation matrix has a row for each “cell” of the triangle.  Losses paid in the same calendar year are 
more strongly correlated.  Correlation decreases over time.



Correlation
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Using this correlation structure with a Gaussian copula allows for simulation of correlated random variables.

This is illustrated with “heat map” showing diagonal effects.



Result – Effect of introducing a correlation structure
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We can run many simulations – perhaps 
10,000 – to produce a range of possible 
outcomes of the final losses.

When actual losses emerge, we can see 
where the losses fell within the range of this 
estimated distribution.

We can also see how the reserve range is 
expanded when correlation is included.

For the US industry data, we can see how 
this expanded range improves the 
prediction accuracy.
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Result – Effect of introducing a correlation structure
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The outcomes previously in the tails of the reserve 
range are now within the middle deciles.

Ideally, a correct model would have about 10% of the 
actual outcomes in each decile.  The “bathtub” shape, 
with more outcomes in the tails indicates that the 
reserve range from the bootstrap with the 
independence assumption is too narrow.  Including a 
correlation structure brings it closer to a uniform 
distribution.



• Bootstrapping models are popular for estimating reserve ranges, but they often show narrow ranges.

• We were able to replicate past studies to confirm this.

• One reason for the narrow range is the independence assumption when resampling.

• We can include correlation in the resampling via a copula.

• This is calibrated on the US industry data sample.

Conclusions & Observations
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1) STAGE 1:  Set up model

a. Estimate chain ladder ultimate losses by year

b. Create fitted triangle using chain ladder ultimate losses and average development pattern

c. Estimate variance/mean “dispersion” parameter

d. Estimate expected mean and variance values for each cell of the incremental triangle

2) STAGE 2:  Bootstrap Iterations (repeated multiple times)

a. Resample [independent] random variables for each cell of the triangle

b. Create pseudo-triangle

c. Estimate chain ladder unpaid losses from the pseudo-triangle (bootstrap)

d. Store bootstrap result

3) STAGE 3:  Show range of bootstrap results

a. Calculate standard deviations and quantiles

b. If possible, compare actual results to the range

Appendix:  Summary of Bootstrapping Procedure

23



1) STAGE 1:  Set up model

a. Estimate chain ladder ultimate losses by year

b. Create fitted triangle using chain ladder ultimate losses and average development pattern

c. Estimate variance/mean “dispersion” parameter

d. Estimate expected mean and variance values for each cell of the incremental triangle

e. Calculate Cholesky decomposition of correlation matrix

2) STAGE 2:  Bootstrap Iterations (repeated multiple times)

a. Resample [correlated] random variables for each cell of the triangle

b. Create pseudo-triangle

c. Estimate chain ladder unpaid losses from the pseudo-triangle (bootstrap)

d. Store bootstrap result

3) STAGE 3:  Show range of bootstrap results

a. Calculate standard deviations and quantiles

b. If possible, compare actual results to the range

Appendix:  Summary of Correlated Bootstrapping Procedure

24



Munich Reinsurance

Imprint

09/09/2022 Münchener Rückversicherungs-Gesellschaft
09/09/2022 Munich Reinsurance Company

©
© 

9 September 2022 25

MRAS – Pricing and Underwriting Services


