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Business Problem Munich RE =

Traditionally, trend for frequency or severity has been estimated by fitting log-linear curves to historical data.
This is fine so long as trend is constant across the historical period, but what if trends are changing?

» Impact of economic recessions & recoveries

« Social inflation

« Pandemic stay-at-home

Trend selections try to balance between using one fitted trend for all years versus using the [noisy] actual
year-to-year historical changes.

This is the trade-off between bias and variance.

Smoothing methods can help!

®
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Smoothing Splines — COVID example Munich RE

Daily Reported Cases Time-series related to COVID19 pandemic
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Smoothing Splines — COVID example

% Change from Prior Week
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The percent change in the weekly
numbers shows a cyclical pattern but not
obvious how the different series are
related.

Too messy to read ?
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Smoothing Splines — COVID example Munich RE

NJ COVID19 Statistics (smoothed)

The smoothing spline helps remove the
—-—New Cases ——Hospitalizations Deaths
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Business Problem Munich RE

Insurance trends share similar problems with the questions around COVID.

« Data can be very noisy

 Trends are not constant over time

Social Inflation is one area where changes may emerge slowly over time rather than as a shock event.

®
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What is “Social Inflation?” Munich RE =

Social Inflation includes evolving legal strategies.
A NITA But how do we quantify something like this ?

T}'IEATER Tips Amazon description:
dSTRATEGIES

h ; In this new, third edition of Theater Tips and Strategies for Jury Trials, David Ball updates his methods and
FOR JURY TRIALS

approaches to jury persuasion. This practical step-by-step guide helps you navigate the changes that occur in jury
trials instead of being blindsided by them.

Based on both research and the experience of lawyers and trial consultants across the country, Theater Tips and
Strategies for Jury Trials, Third Edition, presents technigues of the stage and screen you can use to win in the
courtroom. Ball tells how to use theater concepts to persuade and motivate jurors. He tells attomeys how to look,
talk, and act naturally, and to communicate the truth clearly and memorably, so they gain trust and credibility from
judges and jurors.

David Ball, Ph.D.

Pt Ball provides practical guidance for voir dire, openings and closings, testimony, and focus groups. He describes what
prﬂCmiﬂnEfS can learn from actors about their manner, voice pfﬂJEﬂiﬂﬂ, and behavior. He Explatns how to grab the
jury from the beginning—just as a good movie opening captures the audience. He details how to prepare your "cast”
of witnesses s0 the'!f' lESﬁf}' Cl'earﬁi’, CrEﬂim!f, and memorably'. He offers advice on tEmﬂg the S-I'Uf'f' s0 that it commands

attention and motivates jurors to argue for your side. i




The Geneva Association

Munich RE

Wage and price Inflation
« trend in general price level
+ wage settlements and

Narrow definition

®
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Thomson Reuters — Personal Injury Awards
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The median award numbers show a
relatively “flat” period from 2003 to
2010, with an upward trend in
subsequent years.

We do not have a good way to evaluate
if this is due to change in cases that
settle versus those that go to verdict.

But the pattern is consistent with what
we have heard on “social inflation”
increasing more recently.

Available from Insurance Information Institute:

https://www.iii.org/table-archive/22445
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Thomson Reuters — Personal Injury Awards
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Amounts for verdict awards are highly
skewed, so the average is generally
much higher than the median. In fact,
about 7 out of 8 cases are below the
average award in any year.

But both show similar pattern: flat
amounts for 2003-2010 and higher
inflation in last decade.

Median = “midpoint” where half the verdicts are
above this amount and half below.

Average = sum all verdicts and divide by the total
number

1



Smoothing Splines Munich RE

Smoothing Splines remove the need
n for the user to select change points.

2 . .
minimize Z(yi _ g(xi)) + - J’ gn(t)z dt They are derived as a solution to the

curve that minimizes squared error
1=1 subject to a “penalty” for nonlinearity.

This turns out to be a cubic spline.

A =0 isthedataitself g(x;) =vy;

The Smoother Matrix S, plays the
same role as the Hat Matrix in
regression, allowing us to
approximate:

A — oo islinear regression (no curvature)

g, = S5;-Y = Effective number of parameters

=  Confidence intervals around the
smoothed curve

12
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Linear Regression Splines Munich RE =

In linear regression, the design
X . matrix X is used to create a “hat
B matrix” that is used to transform the
original data Y to the fitted vector Y.

~
I

=
1

(XT . X)_l . XT . Y The “hat matrix” H is useful:

= Trace of H (sum of diagonal) is
equal to number of parameters

—_ = Can be used to estimate
X | (XT | X) 1. XT ) Y — H ' Y prediction error around the fitted

regression line

0
ll

\\ J/

-— _—

—

Hat I‘Lﬂlatrix

13

®@



Technical Details Munich RE =

The mathematical details are not critical for making use of smoothing splines.

Intuitively, we may consider the smoothed result g as a weighted average of the data itself y and the least-
squares regression fit.

The “weight” used in the average is a matrix Z, rather than a single number.

g, = Z,:y+ U—-2)) Y5

Smoothed Data Regression Fit

14
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Smoothing Splines Munich RE =

How do we estimate the smoothing parameter?

« Smooth “by eye” = often sufficient in exploratory analysis
« Consider the effective number of parameters relative to the number of data points
« Cross Validation

* Leave One Out (LOO)

» Generalized Cross Validation (GCV) is an easier short-cut

n
n 2
GCVy = > -Z(yi - g(x))
(n — Tr(SA)) bt
“Our experience and that of others has indicated that GCV

tends to undersmooth... particularly in small datasets.”

- Hastie & Tibshirani; Generalized Additive Models

15
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Example #1: Workers’ Compensation Severity
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The average severity for Workers’
Compensation “lost time” claims has
historically outpaced inflation.

The trend is not constant over time, with
a moderating pattern during 2009-2015.

Many factors may contribute to this
change:

= ACA/Obamacare

= Opioid crisis

= Economic factors moving from
manufacturing to service industries

Source:

https://www.ncci.com/SecureDocuments/SOLGuide2022.html
#WC Loss_Drivers

16
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Example #1: Workers’ Compensation Severity Munich RE =

A naive projection for 2014 might have

Average Severity for Indemnity Claims used a log-linear regression on prior ten

R complete years 2003-2012.
50,000 | et
---- Simple extrapolation would lead to
......... about a 10% miss in the severity.
40,000 . y= 30963e0-032x
......... R*=0.8188
30,000 -
20,000
10,000
Source:
https://www.ncci.com/SecureDocuments/SOLGuide2022.html
i} o = N w E= 1%, ] =2} ~ (=] w o = N w — 1%, [=)] ~l =] (¥} o =
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Example #1: Workers’ Compensation Severity Munich RE

A smoothing spline with smoother of 5.0

Average Severity for Indemnity Claims is much more representative of the data

60,000 .
' than the all-year fit
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Example #2: Auto Fatalities

1.80

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

6661

000¢

T00¢

2002
£00¢

Fatalities per 100 Million VMT

00¢

500¢

900¢

£00¢
800¢

600¢

0T0?
T10¢

c1oe

€10¢

v10¢

ST0T

9102

LT0¢

810¢

6102

020¢

Teoe

Munich RE =

Data from the National Highway Traffic
Safety Administration (NHTSA) shows
generally improving frequency in
fatalities.

The rate of improvement is not constant
and may be influenced by economic
conditions and technology changes.

Source:

https://www-fars.nhtsa.dot.gov/Trends/TrendsGeneral.aspx
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Example #2: Auto Fatalities
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Munich RE =

A naive projection for 2016 might have
used a log-linear regression on prior ten
complete years 2005-2014.

Simple extrapolation would lead to
about a 20% miss in the frequency.

Source:

https://www-fars.nhtsa.dot.gov/Trends/TrendsGeneral.aspx
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Example #2: Auto Fatalities smoothing spline on 2005-2014
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Munich RE =

A smoothing spline with smoother of 1.0
is much more representative of the data
than the 10-year fit

Smoothed Trend
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Example #2: Auto Fatalities smoothing spline on 2005-2019
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Including data through 2019, the

forecast would miss the change caused

by the pandemic.

Smoothed Trend
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Example #2: Auto Fatalities smoothing spline on 2005-2020
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The 2020 data point is extremely
leveraged

Smoothed Trend
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Example #3: CPI for All Urban Consumers

Hospital and Related Services in US City Average as of July 2022
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Munich RE

Example #3: CPI for All Urban Consumers

Hospital and Related Services in US City Average as of July 2022
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Example #3: CPI for All Urban Consumers Munich RE =
Hospital and Related Services in US City Average as of July 2022
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Change in Hospital CPI YOY
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Munich RE

Change in Hospital CPI YOY

Smoothing Parameter = 0, # Parameters
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Smoothed Trend
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Change in Hospital CPI YOY

Smoothing Parameter = 1, # Parameters = 15.02, Std Error = 2.29
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Munich RE

Change in Hospital CPI YOY

Smoothing Parameter = 10, # Parameters

8.92, Std Error = 3.93

Smoothed Trend
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Smoothed Trend
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Smoothing Parameter = 100, # Parameters = 5.46, Std Error = 8.03

Change in Hospital CPI YOY
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Change in Hospital CPI YOY

Smoothing Parameter = 1000, # Parameters

3.51, Std Error = 16.93

Smoothed Trend
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Change in Hospital CPI YOY

2.43, Std Error = 33.34

Smoothing Parameter = 10000, # Parameters

Smoothed Trend
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Limitations of Statistical Methods Munich RE

Smoothing Splines can help us explore our data and identify where trends may be changing.

« They do not tell us why the trends are changing.

« If there are multiple causes at play, it is not easy to say which is the main driver of change.

» Forecasts beyond the latest point can be difficult.

+ For example, COVID may have significantly impacted the latest year but it does not
necessarily represent a trend that will continue into the future.

* Hyndman paper in the Reference slide is helpful for examining forecasts.

34
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References and Resources Munich RE

Tibshirani lecture notes on splines [great 4-page introduction]

http://www.stat.cmmu.edu/~ryantibs/advmethods/notes/smoothspline.pdf

Wu, Tongtong, “Introduction to Smoothing Splines”, online lecture slides (2004) available at:

https://www.scribd.com/presentation/421924201/smsp-ppt

Hyndman, Rob, et al, "Local Linear Forecasts Using Cubic Smoothing Splines” (2005)
https://www.researchgate.net/publication/5179833 Local Linear Forecasts Using Cubic _Smoothing Splines

[Good explanation of connection of smoothing splines to ARIMA models, and confidence intervals on forecasts]

Dave’s article “Smoothing Splines for Trend”, Actuarial Review Jan/Feb 2021

https://ar.casact.org/smoothing-splines-for-trend/

Recommended R packages: pspline
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