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Traditionally, trend for frequency or severity has been estimated by fitting log-linear curves to historical data.

This is fine so long as trend is constant across the historical period, but what if trends are changing?

• Impact of economic recessions & recoveries

• Social inflation

• Pandemic stay-at-home

Trend selections try to balance between using one fitted trend for all years versus using the [noisy] actual 
year-to-year historical changes.

This is the trade-off between bias and variance.

Smoothing methods can help!

Business Problem
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Smoothing Splines – COVID example
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Time-series related to COVID19 pandemic

Evaluating how the numbers are changing is useful for 
decision-making.  

Should we return to the office?

Should I avoid crowded stores or restaurants?

But the numbers are “noisy” and not always easy to 
identify a trend.

Numbers from New Jersey
Source:  https://www.nj.gov/health/cd/topics/covid2019_dashboard.shtml



Smoothing Splines – COVID example
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The percent change in the weekly 
numbers shows a cyclical pattern but not 
obvious how the different series are 
related.

Too messy to read ?
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Smoothing Splines – COVID example
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The smoothing spline helps remove the 
“noise” from the time series data.

We can then see the logical relationship 
between the series.

 Hospitalizations lag reported cases by 
1 to 2 weeks.

 Deaths lag hospitalizations by 1 to 2 
weeks.
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Insurance trends share similar problems with the questions around COVID.

• Data can be very noisy

• Trends are not constant over time

Social Inflation is one area where changes may emerge slowly over time rather than as a shock event.

Business Problem
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What is “Social Inflation?”
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Social Inflation includes evolving legal strategies.

But how do we quantify something like this ?

Amazon description:



The Geneva Association
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Thomson Reuters – Personal Injury Awards
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The median award numbers show a 
relatively “flat” period from 2003 to 
2010, with an upward trend in 
subsequent years.

We do not have a good way to evaluate 
if this is due to change in cases that 
settle versus those that go to verdict.

But the pattern is consistent with what 
we have heard on “social inflation” 
increasing more recently.

Available from Insurance Information Institute:
https://www.iii.org/table-archive/224450
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Thomson Reuters – Personal Injury Awards
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Amounts for verdict awards are highly 
skewed, so the average is generally 
much higher than the median.  In fact, 
about 7 out of 8 cases are below the 
average award in any year.

But both show similar pattern: flat 
amounts for 2003-2010 and higher 
inflation in last decade.

Median = “midpoint” where half the verdicts are 
above this amount and half below.

Average = sum all verdicts and divide by the total 
number
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Smoothing Splines
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Smoothing Splines remove the need 
for the user to select change points.

They are derived as a solution to the 
curve that minimizes squared error 
subject to a “penalty” for nonlinearity.

This turns out to be a cubic spline.

The Smoother Matrix Sλ plays the 
same role as the Hat Matrix in 
regression, allowing us to 
approximate:

 Effective number of parameters

 Confidence intervals around the 
smoothed curve



Linear Regression Splines
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In linear regression, the design 
matrix X is used to create a “hat 
matrix” that is used to transform the 
original data Y to the fitted vector Ŷ.

The “hat matrix” H is useful:

 Trace of H (sum of diagonal) is 
equal to number of parameters

 Can be used to estimate 
prediction error around the fitted 
regression line



The mathematical details are not critical for making use of smoothing splines.

Intuitively, we may consider the smoothed result g as a weighted average of the data itself y and the least-
squares regression fit.

The “weight” used in the average is a matrix Z, rather than a single number.

Smoothed Data Regression Fit

Technical Details
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How do we estimate the smoothing parameter?

• Smooth “by eye” = often sufficient in exploratory analysis

• Consider the effective number of parameters relative to the number of data points

• Cross Validation

• Leave One Out (LOO)

• Generalized Cross Validation (GCV) is an easier short-cut

“Our experience and that of others has indicated that GCV 

tends to undersmooth… particularly in small datasets.”
- Hastie & Tibshirani; Generalized Additive Models

Smoothing Splines

15



Example #1:  Workers’ Compensation Severity
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The average severity for Workers’ 
Compensation “lost time” claims has 
historically outpaced inflation.

The trend is not constant over time, with 
a moderating pattern during 2009-2015.

Many factors may contribute to this 
change:

 ACA/Obamacare

 Opioid crisis

 Economic factors moving from 
manufacturing to service industries

Source:
https://www.ncci.com/SecureDocuments/SOLGuide2022.html
#WC_Loss_Drivers



Example #1:  Workers’ Compensation Severity
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A naïve projection for 2014 might have 
used a log-linear regression on prior ten 
complete years 2003-2012.

Simple extrapolation would lead to 
about a 10% miss in the severity.

Source:
https://www.ncci.com/SecureDocuments/SOLGuide2022.html
#WC_Loss_Drivers



Example #1:  Workers’ Compensation Severity
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A smoothing spline with smoother of 5.0 
is much more representative of the data 
than the all-year fit

Source:
https://www.ncci.com/SecureDocuments/SOLGuide2022.html
#WC_Loss_Drivers



Example #2:  Auto Fatalities

19

Data from the National Highway Traffic 
Safety Administration (NHTSA) shows 
generally improving frequency in 
fatalities.

The rate of improvement is not constant 
and may be influenced by economic 
conditions and technology changes.

Source:
https://www-fars.nhtsa.dot.gov/Trends/TrendsGeneral.aspx



Example #2:  Auto Fatalities
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A naïve projection for 2016 might have 
used a log-linear regression on prior ten 
complete years 2005-2014.

Simple extrapolation would lead to 
about a 20% miss in the frequency.

Source:
https://www-fars.nhtsa.dot.gov/Trends/TrendsGeneral.aspx



Example #2:  Auto Fatalities smoothing spline on 2005-2014
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A smoothing spline with smoother of 1.0 
is much more representative of the data 
than the 10-year fit

Source:
https://www-fars.nhtsa.dot.gov/Trends/TrendsGeneral.aspx



Example #2:  Auto Fatalities smoothing spline on 2005-2019
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Including data through 2019, the 
forecast would miss the change caused 
by the pandemic.

Source:
https://www-fars.nhtsa.dot.gov/Trends/TrendsGeneral.aspx



Example #2:  Auto Fatalities smoothing spline on 2005-2020
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The 2020 data point is extremely 
leveraged

Source:
https://www-fars.nhtsa.dot.gov/Trends/TrendsGeneral.aspx



Example #3:   CPI for All Urban Consumers
Hospital and Related Services in US City Average as of July 2022
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Example #3:   CPI for All Urban Consumers
Hospital and Related Services in US City Average as of July 2022
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Example #3:   CPI for All Urban Consumers
Hospital and Related Services in US City Average as of July 2022
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Change in Hospital CPI YOY
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Change in Hospital CPI YOY
Smoothing Parameter = 0, # Parameters = 40, Std Error = 0
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Change in Hospital CPI YOY
Smoothing Parameter = 1, # Parameters = 15.02, Std Error = 2.29
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Change in Hospital CPI YOY
Smoothing Parameter = 10, # Parameters = 8.92, Std Error = 3.93
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Change in Hospital CPI YOY
Smoothing Parameter = 100, # Parameters = 5.46, Std Error = 8.03
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Change in Hospital CPI YOY
Smoothing Parameter = 1000, # Parameters = 3.51, Std Error = 16.93
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Change in Hospital CPI YOY
Smoothing Parameter = 10000, # Parameters = 2.43, Std Error = 33.34
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Smoothing Splines can help us explore our data and identify where trends may be changing.

• They do not tell us why the trends are changing.

• If there are multiple causes at play, it is not easy to say which is the main driver of change.

• Forecasts beyond the latest point can be difficult.

• For example, COVID may have significantly impacted the latest year but it does not 
necessarily represent a trend that will continue into the future.

• Hyndman paper in the Reference slide is helpful for examining forecasts.

Limitations of Statistical Methods
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Tibshirani lecture notes on splines [great 4-page introduction]

http://www.stat.cmu.edu/~ryantibs/advmethods/notes/smoothspline.pdf

Wu, Tongtong, “Introduction to Smoothing Splines”, online lecture slides (2004) available at:

https://www.scribd.com/presentation/421924201/smsp-ppt

Hyndman, Rob, et al, ”Local Linear Forecasts Using Cubic Smoothing Splines” (2005) 
https://www.researchgate.net/publication/5179833_Local_Linear_Forecasts_Using_Cubic_Smoothing_Splines

[Good explanation of connection of smoothing splines to ARIMA models, and confidence intervals on forecasts]

Dave’s article “Smoothing Splines for Trend”, Actuarial Review Jan/Feb 2021

https://ar.casact.org/smoothing-splines-for-trend/

Recommended R packages: pspline

References and Resources
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