# Modeling Inflation Driven Reserving Cycles 

2022 CLRS

James Ely, FCAS

## Antitrust Notice

- The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.
- Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding - expressed or implied - that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.
- It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.


## Session Organization

## Part 1

Outline how to build a single model that finds the historical development pattern and reserving cycle effects using wave methods.

## Part 2

Explain why we might want to use transforms, knowing that this is not our dominant paradigm.

## How To Build a Wave Model for Loss Development Cycles

1. Organize our data
2. Calculate Model Parameters
3. Apply our Judgement

## Periodic Function or Wave



## US Workers Compensation Paid Link Ratios

|  | 12-24 | 24-36 | 36-48 | 48-60 | 60-72 | 72-84 | 84-96 | 96-108 | 108-120 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AY |  |  |  |  |  |  |  |  |  |
| 1997 |  |  |  |  |  |  |  |  | 1.011 |
| 1998 |  |  |  |  |  |  |  | 1.018 | 1.010 |
| 1999 |  |  |  |  |  |  | 1.026 | 1.013 | 1.022 |
| 2000 |  |  |  |  |  | 1.037 | 1.019 | 1.021 | 1.036 |
| 2001 |  |  |  |  | 1.048 | 1.025 | 1.033 | 1.034 | 1.002 |
| 2002 |  |  |  | 1.082 | 1.044 | 1.043 | 1.042 | 1.005 | 1.052 |
| 2003 |  |  | 1.141 | 1.084 | 1.058 | 1.043 | 1.012 | 1.061 | 1.019 |
| 2004 |  | 1.261 | 1.138 | 1.084 | 1.061 | 1.014 | 1.075 | 1.026 | 1.022 |
| 2005 | 1.931 | 1.274 | 1.136 | 1.092 | 1.026 | 1.087 | 1.029 | 1.027 | 1.016 |
| 2006 | 1.981 | 1.297 | 1.161 | 1.053 | 1.101 | 1.038 | 1.036 | 1.020 | 1.017 |
| 2007 | 2.056 | 1.307 | 1.113 | 1.135 | 1.058 | 1.044 | 1.029 | 1.022 |  |
| 2008 | 2.072 | 1.267 | 1.198 | 1.088 | 1.058 | 1.040 | 1.026 |  |  |
| 2009 | 1.971 | 1.344 | 1.143 | 1.089 | 1.058 | 1.033 |  |  |  |
| 2010 | 2.122 | 1.299 | 1.142 | 1.089 | 1.046 |  |  |  |  |
| 2011 | 2.030 | 1.297 | 1.148 | 1.078 |  |  |  |  |  |
| 2012 | 2.049 | 1.289 | 1.134 |  |  |  |  |  |  |
| 2013 | 2.068 | 1.284 |  |  |  |  |  |  |  |
| 2014 | 2.041 |  |  |  |  |  |  |  |  |

## US Workers Compensation Paid Link Ratios as a Periodic Sequence



## A High Frequency Pattern with a Low Frequency Cycle



## Our Job is to Separate the Two Components



## Steps in Fourier Analysis

1. Calculate Fourier Coefficients

The coefficients give the amplitude of component waves
2. Separate Pattern, Cycle and Noise

## Modeling Periodic Data

We can find the component waves by interpolating our sequential data with wave functions.

Interpolation Options

1. Fourier Series - real valued waves
2. Transforms - complex valued waves

## Amplitude of Component Waves

 for WC Link Ratios

## Separating Signal from Noise (by Analogy to Color Vision)

- Look for a particular frequency or a narrow band of frequencies e.g. Find something green
- Find the frequencies that are most significant e.g. What color is it?


## Amplitude of Component Waves

 for WC Link Ratios

## Amplitude of Noise Frequencies

 for WC Link Ratios

## Cyclical Component of WC LDFs



## Amplitude of Component Waves

for Comm AL Link Ratios


## Amplitude of Noise Frequencies for Comm AL Link Ratios



Cyclical Component of CAL Link Ratios


## Questions?

1. How do we organize our data?
2. How do we calculate model parameters?
3. How do we separate pattern, cycle and noise?

## Why Should We Use a Transform?

1. Transforms allow us to attach meanings to the quantities in our model
2. Transforms also allow us to solve otherwise difficult problems like convolutions and differential equations

## Imaginary Exponents are Frequencies

$\cos (\omega t)$ describes a periodic function with frequency $\omega$
$e^{i \omega t}=\cos (\omega t)+i \sin (\omega t)$ describes a periodic function with frequency $\omega$

The presence of the imaginary unit $i$ in an exponent changes the meaning of the exponent from a rate to a frequency

Our Typical Inflation Model

## Real Life Inflation Exhibits Variability

We Can Model Variable Inflation as A Wave Around an Exponential

## Mathematical Motivation

$e^{\alpha t} \quad$ describes an exponential
$e^{i \omega t}=\cos (\omega t)+i \sin (\omega t) \quad$ describes a wave
$e^{(\alpha+i \omega) t} \quad$ describes a wave around an exponential
$e^{\alpha t}$
$\operatorname{Re}\left[e^{i \omega t}\right]$


$$
\operatorname{Re}\left[e^{(\alpha+i \omega) t}\right]
$$

## Transform Formulas

$$
T\left[x_{t}\right]=\sum_{t=0}^{N-1} x_{t} e^{-r t}
$$

$r$ is real
$r=i \omega$
$r=\alpha+i \omega$

T is Present Value
T is the Fourier transform
T is the LaPlace transform

## Stochastic Present Value

The LaPlace transform of a sequence of cash flows can be interpreted as the stochastic present value (a distribution).

If the exponent represents inflation rather than interest, then the LaPlace transform represents the distribution of total losses at constant cost.

