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Why Tweedie? Munich RE =

Introduced in the insurance context in 1994 by Jorgensen et al, “Fitting Tweedie’s compound Poisson model
to insurance claims data.”

It appears to have been adopted in the US for use in pure premium GLM ratemaking, without considering
alternatives.

The attraction of the Tweedie distribution is two-fold:
« It can be interpreted as a collective risk model (i.e., a combination of frequency and severity)

* ltincludes a mass point as zero — for “unbalanced” data
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Tweedie as Collective Risk Munich RE =

The Tweedie distribution can be
interpreted as a collective risk
model with Poisson frequency and
gamma severity.
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Over-dispersed Poisson (ODP) as Collective Risk

Poisson Frequency Constant Severity
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The over-dispersed Poisson (ODP)
is the usual name for GLM when
variance is assumed to be
proportional to expected value.

We never explicitly use this as a
distribution form, but it can be
interpreted as a simple collective
risk model with Poisson frequency
and constant severity (Gary Venter
likes to call it PCS instead of ODP).

The aggregate distribution is
discrete and equal to Poisson times
a scale factor.



Quasi Negative Binomial (QNB) as Collective Risk Munich RE =

Poisson Frequency Logarithmic Severity Pliefposze AIEEE © el
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Logarithmic Severity ?1?
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The logarithmic severity starts with a geometric distribution.

Geometric is discrete with each probability a constant ratio
to the probability for the lower value. For QNB we also shift
it to start at 1 rather than 0.

Geometric is the discrete analogy to an exponential
distribution.

The mean of the geometric distribution is “mixed” using a
form of upper truncated pareto.

1
fw=van

1
— l=pu=M
U

The logarithmic distribution can be considered a discrete
version of a mixed exponential model.
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Comparison of Tail Behavior

Coefficient of Variation (CV)
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The QNB is a modestly thicker tailed
distribution than the Tweedie.

The QNB will be slightly less sensitive
to extreme values of very low or very
high pure premium values.

See Appendix for more details on the higher
moments.
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Variance Structure: Tweedie Munich RE =

For GLM, we do not need the full collective risk model interpretation.

The conditions are relaxed such that we only need to know the relationship of the variance as a function of
the mean.

For Tweedie:

V() = -1 1<p<2

The dispersion parameter ¢ is considered a “nuisance parameter” that does not affect the expected pure
premium fit.

The variance parameter p is supplied by the model user.
Special cases:
p =1 s over-dispersed Poisson

p =2 is Gamma

®@



Variance Structure: Quasi Negative Binomial Munich RE =

For Quasi Negative Binomial (QNB):

Vi) = ¢ (Hi +%' ﬂaz)

The dispersion parameter ¢ is considered a “nuisance parameter”’ that does not affect the expected pure
premium fit (same as in Tweedie).

The variance parameter £ is supplied by the model user.

As with the Tweedie, the QNB is a compromise between ODP and Gamma variance structures.

[QNB is an arithmetic (additive) combination, Tweedie is a geometric (multiplicative) combination]

10

®@



Variance Structure: Collective Risk Models Munich RE =

In usual notation, aggregate losses Z are treated as a random sum of severity X and frequency N.

N
Y
j=1

Var(Z) = Var(X) - E(N) + E(X)? - Var(N)
If the frequency is Negative Binomial, with a contagion c, then the variance formula can be re-written as:
Var(N) = E(N) 4+ c- E(N)?

E(X?)
E(X)

Var(Z) = ( ) -E(Z) +c-E(Z)?

This form is equivalent to the QNB variance structure.

11
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Quick Summary

“Anything you can do | can do better’

Irving Berlin (Annie Get Your Gun)

Why Quasi Negative Binomial (QNB) instead of Tweedie?

* Just as easy to implement in GLM framework

* QNB can also be interpreted as a collective risk model

» Itis a compromise between Poisson and Gamma variance structures

« Variance parameter is easier to compare to other collective risk models

« Slightly thicker tail behavior

®
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Quick Summary Munich RE =

“I Don’t Want to Change the World”

Ozzy Osbourne

In practice, the choice of variance function will not materially change the fitted values in a classification rating
plan.

Getting the variance function wrong is a form of heteroskedasticity. This may distort the significance
statistics (e.g., t-statistics) and even change the decision on which variables to include.

But if all you need is to fit the expected values, then the choice of Tweedie versus QNB is not critical.

13
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Quick Summary Munich RE =

“There is so much more | could have done if they'd let mel”
Nick Cave (The Curse of Millhaven)

The CAS call for essay constrained the paper to three pages, so limited the detail that could be included.

Variance structures in GLM can also be compared by looking at their Estimating Equations.

This gives more insight into how GLM makes use of the variance assumptions.

14



Estimating Equations Munich RE

As noted above, the different variance structures can be interpreted as collective risk models.
But in GLM, they do not have to be!

Rather than thinking in terms of distributions, GLM more naturally works with weighted averages.
Estimating Equations could better be thought of as balance equations:

Under what weighting scheme do the fitted values balance to the actual values?
For the ODP, with the “canonical” log-link (rating factors applied multiplicatively), the fitted values balance to
the actual values for any column of predictors.

n n

in,j Vi = in,j 4z vj

15
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Estimating Equations Munich RE

We can also include weights w, to give added flexibility to the balancing equations.

Xij Wi Vi = E Xij Wit |

n mn

The result in classification ratemaking is that the fitted pure premium values balance to the actual losses
across each dimension of the rating plan.

In loss development work, this is why the ODP GLM matches the chain ladder method.

If we stay with the log-link structure but switch to Tweedie or QNB variances, the weights are adjusted by a
function of the fitted values.

16
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Estimating Equations — Tweedie with log-link Munich RE =

We keep the log-link structure (rating variables applied multiplicatively) but change to Tweedie variance.

mn mn

in,f (1 7P) i = Z xii (1) -

The estimating equations show the weighting scheme under which the fitted values match the actual values.

Admittedly, there is not much intuition to these weights.

Note also: the idea of the “mass point at zero” does not play any role in this.

17
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Estimating Equations — QNB with log-link Munich RE =

We keep the log-link structure (rating variables applied multiplicatively) but change to QNB variance.

n

- k
Zx” (pz1 +k).yi B in’j.(uﬂrk)'ﬁi

The weights (in parenthesis) are constrained between 0 and 1, so are a bit more stable than for the Tweedie.

We can also re-arrange the terms as below. The right-hand side looks like an experience-rating formula.

D= Yo () e ()
‘_lxi,j Vi = ‘_13&',; 0+ k Vi w +k Hi

18
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Appendix: Comparison of Higher Moments Munich RE =

Just for reference, we can also confirm that the higher moment for kurtosis is slightly higher for the QNB.

Tweedie Quasi-Megative Binomial
Mean U u
: 1
Variance g - uf P - (p.' + .u")
- - P ® 9
Coefficient of Variation V= |— cv= |2 F
N A
—
lim CV 0 d
Sk cv (1 +——).cv
eWness - —
F Wtk
Kurtosis 3+p-CV-(Skew — CV) + Skew? 34 2.CV-(Skew — CV) + Skew*
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Appendix: Variance Functions and Quasi-Likelihood Munich RE =

Wedderburn (1974) introduced the quasi-likelihood function as a way to extend GLM beyond explicit
distribution forms. It is defined using only the variance function.

L
y—1t
Quasi — Likelihood = f —— dt
) ¢-V(t)

The variance functions for the models we have discussed are given below.

(overdispersed) Poisson Vip) =
Tweedie V(p) = u?

Quasi Negative Binomial Viw) =pu+ % - Y2

21
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Background

Model Framework
* Loss cost GLM with log link
* Examples use public dataset datacar (see appendix)

What is quasi-Poisson?
» Like Poisson except defined on all non-negative values instead of just integers
» Variance relationship allows for over-dispersion: Var(y) = ¢u

Quasi-Poisson connection to estimating equations/minimum bias are well known
» Mildenhall: A SYSTEMATIC RELATIONSHIP BETWEEN MINIMUM BIAS AND GENERALIZED LINEAR MODELS

More comprehensive presentation on quasi-Poisson

* Presented at BACE regional affiliate meeting in 2019
* https://community.casact.org/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=394ac193-
30d9-b9f9-a6f1-b5ddd03daba3&forceDialog=0




Distribution Comparisons

Quasi-Poisson (QP)
* Predictions are balanced to observations on categorical co-variates
* Simplifies the offset process (exposure offset is equivalent to model offset)
* Testing in R and SAS shows quasi-Poisson models fit faster

* Human time in model building is a cost/constraint

Tweedie

* Tweedie appears to be a more appropriate distribution as compared to quasi-Poisson when tested on
loss cost data

* Tweedie has better predictive power as compared to quasi-Poisson
* Tweedie is more common/accepted

Quasi-Negative Binomial (QNB)
* Less influenced by extreme observations

* Potentially more stable convergence
* Collective risk model interpretation

For Tweedie vs QP, my experience is that the observations above hold broadly
| haven’t performed extensive testing for Tweedie vs QNB beyond the examples in this presentation



Initial Motivations

— Tweedie predictions are not balanced to observations

* Fitted GLM on sample dataset (datacar) using a Tweedie distribution (p=1.5)

* Included categorical covariate agecat in the model

» We can see for Tweedie that the predicted pure premium = actual pure premium

» Using the quasi-Poisson distribution, the predictions are in fact balanced to the observed pure premium

Earned Pure Tweedie Tweedie QP
agecat Exposure Premium Predicted %Difference Predicted
1 2,612 500 495 -1.2% 500
2 5,892 337 335 -0.5% 337
3 7,409 288 289 0.3% 288
4 7,617 282 283 0.6% 282
5 5,171 205 206 0.5% 205
6 3,100 221 219 -0.6% 221

Total 3,100 293 293 0.0% 293
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The mismatches for Tweedie occur even on large datasets with credible data. The

cause is due to the model specification.
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Why does Tweedie have bias in the predictions?
Answer: Variance structure and link function

* When the GLM link function is the canonical link for the distribution then the predictions will be
balanced to the observations

* We almost always use a log link, which is not the canonical link for the Tweedie distribution
* Log link is the canonical link for Poisson

* Balance equations termed in loss vs predicted loss
* Tweedie parameter p
* Notice that when p = 1 (quasi-Poisson) then predicted losses balance to actual losses
* When p # 1 then in general predictions will not balance

Z IOSS,‘[I:—!]XU' = Z |p['Cd IOSSI.;;II-[_FXU‘
i i



What’s wrong with regular Poisson? Why do we need
guasi-Poisson?

* There is a fundamental issue to using the Poisson distribution for loss cost modeling
* The Poisson distribution is not defined for non-integers
* Poisson probability:

eH ¥

y!
* A second issue with the Poisson distribution is that it is assumed that the variance equals the
mean

* Var(y) = u

e Quasi-Poisson improves this relationship by allowing the variance to be proportional to the
mean:

* Var(y) = ¢u

flw =




Can we extend the Poisson distribution to all non-
negative values?

Answer: No

* Pmf for the Poisson distribution with mean u:
_y kH#
© fklp =e*—, k€{0,12,..}

* Suppose we wanted to extend the Poisson distribution from integers to all non-negative numbers in a way such
that the parameter estimates were unchanged

* That s, can we replace k! with a (reasonably nice) function g such that for y > 0

u
fLylp) = e‘”ﬁ is a probability distribution?

* Natural candidate would be g(y) =T'(y + 1)

* Turns out that it is not possible
* Why?

* For the curious... Proof relies on showing the moment generating functions are equal on an open domain. Result is to
conclude distributions are in fact the same.



Sample dataset performance comparisons

* Examples are great, but we must be careful in generalizing from these examples
* Tweedie vs quasi-Poisson: | have found similar results across many different datasets

* | haven’t performed much testing with quasi-negative binomial beyond these examples



Quasi-Negative Binomial Testing Comments

Variance relationship: Var(y) = ¢(u + %,uz)

* The parameter k determines the mixing between the linear term and the quadratic term

* Adifficulty with building intuition is that the k is not unitless and needs to be compared to the mean for intuition
* The Tweedie p is unitless and selecting a value around 1.6-1.8 is often a reasonable starting point

Testing QNB in R

* glm.nb allows estimation of both the variable coefficients and k (MLE estimation)

* On the test dataset glm.nb found that k = 0.01

* We can also use R glm with the negative binomial distribution
* Need to specify k
* Didn’t converge on the sample dataset for k < 2

* Both glm.nb and glm do not currently utilize quasi-frameworks. That is, the distributions do not allow for overdispersion.
The functions do accommodate non-integer observations.

« Var(y) =p+ %HZ

* Itis not difficult to calculate a Pearson or deviance estimate of ¢. Then this estimated dispersion parameter can be used to calculate
significance tests that contemplate overdispersion.



Performance - Gini

Fit model and evaluate on entire dataset (in-sample testing)
Cross-Val (10 fold, 5 times)

Note that this is one small sample data set
* Requires 4-5 decimal places to see differences

Results
» Tweedie has the best cross validated performance
» Negative binomial (NB) between Tweedie and quasi-Poisson
» Quasi-Poisson (QP) shows the smallest drop in performance

Model Full Dataset Cross-Val Difference
QP 0.14114 0.12367 0.01748
Tweedie (p=1.2) 0.14130 0.12374 0.01755
Tweedie (p = 1.5) 0.14173 0.12374 0.01799
Tweedie (p=1.7) 0.14205 0.12374 0.01831
NB (k =3) 0.14233 0.12370 0.01864
NB (k =4) 0.14230 0.12370 0.01860
NB (k =5) 0.14228 0.12371 0.01857

NB (k =6) 0.14230 0.12372 0.01859



Performance — Double Lift

-12%

5 bin cross validated double lift
Charts show %error = (pred — act)/act

Left chart shows that Tweedie has lower error vs quasi-Poisson

Right chart shows that quasi-negative binomial has lower error than Tweedie

Once again, this is just one sample data set
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Algorithm Speed — R glm

Model Relative Time
QP 1.00
NB (k estimated) 4.06
NB (k=3) 1.47
NB (k=4) 1.07
NB (k=5) 0.87
NB (k=6) 0.75
Tweedie (p=1) 2.09
Tweedie (p=1.2) 1.61
Tweedie (p=1.5) 1.25
Tweedie (p=1.7) 2.37

» Overall Tweedie appears to be at least 30% slower
than quasi-Poisson on the test data set

» QNB can be faster than QP for a fixed k, the issue
is that k needs to be estimated which greatly
increases fitting time

NB = Negative binomial (recall that R doesn’t have a
quasi-framework yet)

Dispersion estimate

* R uses the Pearson estimator for dispersion
* ris the number of parameters

_ 1 U’rr' - J”J'jz
= n—r Z’ ;)

Tweedie likelihood

* Likelihood is not computed as it is computationally
expensive (can use tweedie package to compute)

* | didn’t compare times for estimating the Tweedie
p (can use tweedie.profile)



Algorithm Speed — SAS hpgenselect

* SAS hpgenselect has the option to use maximum likelihood to estimate the dispersion ¢ and
power p for the Tweedie distribution

* Tweedie (p MLE estimated) fits both p and ¢ using MLE
* Tweedie (1.5) — p was specified to be 1.5 and ¢ is still estimated using MLE
* quasi-Tweedie is an option to avoid MLE estimation of ¢ (similar to R)

* For Poisson and negative binomial hpgenselect doesn’t estimate an overdispersion parameter ¢,
though the Pearson estimate is simple to compute

* Poisson is fastest, whereas Tweedie is the slowest even when using the quasi-Tweedie

Model Relative Time
Poisson 1.00
Tweedie (p MLE estimated) 18.32
Tweedie (p=1.5) 5.78
quasi-Tweedie wDispersion Est (p=1.5) 5.53
quasi-Tweedie woDispersion Est (p=1.5) 3.66
NB (k estimated) 2.29

NB (k =0.01) 1.28



Examining the variance relationship of the sample
data

Fit quasi-Poisson model for predicted mean

*  Wanted to give QP the best shot at showing a linear
relationship. Using Tweedie predictions give similar results.

Ranked low to high and binned into 20 equal exposure
bins

On each bin calculated empirical mean and variance
Plot to right shows the relationship

Fit curve of form Vary;, = a ,ugin
* aistheintercept
* pisthe fitted power (1.84 in this case)

Suggests that a Tweedie variance relationship is
more appropriate than quasi-Poisson (linear)

» Also implies that the QNB variance structure may
be more appropriate
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Factor Offsets

Suppose in our model we wanted to apply fixed factors
* These could be in the current model or perhaps previously selected factors

With loss cost data two of the most common ways to apply factors offsets are:
* Let F denote multiplicative factors to offset

1. Model offset: l;% ~n + log(F), weight = EE
2. Exposure offset: % ~ 1, weight = EExF

For the QNB and Tweedie the exposure offset is not equivalent to the model offset, whereas for
QP the two methods of offsetting are equivalent (Shi 2010)

Why does this work for QP?
* Answer: The log link is the canonical link for the Poisson distribution



Conclusion

Any of these distributions can be a reasonable choice for modeling loss cost

+¢ Quasi-Poisson
» Fits faster
» Predictions are balanced to losses for categorical variables
» Exposure offset is equivalent to model offset

s Tweedie
» Variance structure appears more appropriate as compared to quasi-Poisson
» Best cross validated performance on sample dataset

+* QNB
» Heavier tailed —> extreme observations have less influence
» Collective risk model interpretation
» Double lift was superior on sample data set
» Similar (perhaps faster) fitting time to QP

» R implementation issues: lack of convergence for small k on our sample datasetdoes not currently consider
overdispersion (can be handled manually)

» Issue is that the parameter k needs to be estimated. Currently there are heuristics that allow for a reasonable
default value.

* E.g., p=1.61to 1.8 for Tweedie is accepted by many as reasonable for initial model building
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Appendix



Data set used to contrast model performance

dataCar*
* This data set is based on one-year vehicle MOde_I
insurance policies taken out in 2004 or 2005. Data Adjustments
67856 observations * veh_body_grp2 = grouped small exposure levels with
Frequency ™~ 15.5% other levels
Severity ~ 51900 * veh_val5 = vehicle value rounded to nearest 0.1 and

Fields used in sample model

claimcstO - loss capped at 5
Exposure * Transform agecat to factor to model as categorical
Pure premium (pp) = claimcstO/exposure variable
veh_value in $10,000s
veh_body _ . s
* Categorical with levels BUS CONVT COUPE Target = Pure Premium (pp) = Claimcst0/exposure
HBACK HDTOP MCARA MIBUS PANVN RDSTR Welght = exposure (EE)
SEDAN STNWG TRUCK UTE Formula:
gender
« categorical with levels F M pp ~ agecat + gender + veh_body_gp2 + veh_val5
agecat

* 1 (youngest), 2,3,4,5,6

*Contained in insuranceData R package https://cran.r-project.org/web/packages/insuranceData/index.html



