Property Pricing when Including Catastrophe Perils

CAS RPM Seminar

March 16, 2022

David Keeton, CCRMP

Howard A Kunst, FCAS MAAA CCRMP

CREDENTIALIZATION

For more information visit CatRiskCredentials.org

Poll:

What segment of the insurance industry do you work in:

- 1) Primary Insurance company
- 2) Reinsurance company
- 3) Surplus lines
- 4) Broker
- 5) Other

Poll:

What is your role within your current company:

- 1) Pricing
- 2) Reserving/Claims
- 3) Underwriting/Underwriting support
- 4) Product Management
- 5) Other

- General Prop. Pricing
- Components
- Other Influencing Aspects
- Unique Challenges
 - Differences
 - Risk Appetite
- CAT Models
- Purpose
- Different Hazard Model Strengths v Limitations
- Profit Models
- Target ROC
- Calibration

Summary

- Reinsurance
- Multi Model Approach Risk Steering

Risk Indifferent Pricing

Premium Components

Premium = Expenses + Expected Losses + Target Profit

- Expenses
 - External (Acquisition)
 - Internal (Operational and Claims Handling)
- Expected Losses E[L]
 - All perils Fire, Flood, Water, Freeze, Wind, Earthquake, etc.
 - Actual Claims vs Projected Losses
 - Historical Experience (lots of events / data)
 - ISO based loss reporting
 - Individual company loss history
 - Exposure Rated (limited data / events)
 - Individual large losses
 - CAT peril modeling
- > Profit
 - Target Loss Ratios
 - Target Return on Capital Allocation

AVONDALE

Property Pricing w/ Cat Perils

General Prop. Pricing

- Components
- Other Influencing Aspects
- Unique Challenges
- Differences
- Risk Appetite
- CAT Models
- Purpose
- Different Hazard Model
- Strengths v Limitatio Profit <u>Models</u>
- Target ROC
- Calibration

Summary

Reinsurance

Multi Model Approach

Risk Steering

Risk Indifferent Pricing

Other Influencing Aspects

Expenses

- Allocation by LOB
 - Claims handling Attritional vs CAT shock

Expected Losses

- > Exposure Base TIV
 - vs. Premium Based Loss Projections

Market Segment

- Admitted Carriers
 - Transpose Target Premiums into buckets of 'Like Kind & Quality'
 - Rate Change Management Timing / Lag
 - Reinsurance Impact Costs and Risk Management
- > Surplus Lines Carriers
 - Opportunistic Agile Pricing options v Prevailing Market opportunities
- > Reinsurance
 - Agile pricing options v Elastic Market Demand & Diversified capital options
 - Most adept at setting Target Returns & Target Premiums

AVONDALE

Property Pricing w/ Cat Perils

General Prop. Pricing

- Components
- Other Influencing Aspects
- Unique Challenges
 - Differences
- **Risk Appetite**
- CAT Models
- Purpose
- Different Hazard Model Strengths v Limitat
- Profit Models
- Target RC
- Calibration
- Reinsurance

Risk Steering

Summary

Multi Model Approach

Risk Indifferent Pricing

> Potential for large loss accumulation – impacting profits or solvency

Market Cycles

Volatility

- Different Phases for Different Market Segments
- Industry Denial or Convenient Memory Impact
 - 2006 to 2015 'Drought' of US Landfall Hurricanes
 - Last 5 years Consecutive years with Major US Landfalls
- > External Capital Agility v Other Investment Opportunities

Risk Appetite

- Balancing Act
 - Focus Short Term v Long Term
 - Stability of results between years
 - Target Returns higher returns = taking on more risky business (i.e. CAT)

AVONDALE

Property Pricing w/ Cat Perils

p. 7

CAT – Unique Challenges

- **General Prop. Pricing**
 - Components
- Other Influencing Aspects
- Unique Challenges
 - Differences
 - Risk Appetite
- CAT Models
- Purpose
- Different Hazard Mode Strengths v Limitations Profit Models

Target ROC Calibration

Reinsurance

Risk Steering

Summary

Multi Model Approach

Risk Indifferent Pricing

CAT – Unique Challenges

Risk Appetite (cont.)

- Requires Acknowledging Corporate Tolerance
 - CAT business is risky Full stop
 - Can't have your cake and eat it too!
 - Pricing needs to be aligned with Corp Risk Appetite
 - o Clevel alignment / signoff
 - Understanding the gap between actual experience & future possibilities
- Establishing Guardrails
 - Scenario Testing
 - o Used to confirm Risk Tolerance
 - o Independent from probabilistic fog i.e. Real Risk Management
 - Simulations of Economic Outcome
 - Varying mix of business and pricing
 - o Establishes reference points for finalizing pricing parameters
 - Pricing as portfolio steering option when integrated with Risk Appetite.

AVONDALE

Property Pricing w/ Cat Perils

Natural Catastrophe Models and Property Insurance Pricing

Howard A Kunst, FCAS CCRMP 2022 RPM March 16, 2022

CoreLogic® Find. Buy. Protect.

Agenda

9	The origins	0	f	Ň	a	tu	ra	al	C	à	ta	as	sti	0	p	h	e
	models		1		Ż		ļ		1		4						

- Different types of Natural catastrophe models and their uses
- Why some perils are modeled differently than others
 - Locational accuracy

The origins of Natural Catastrophe models

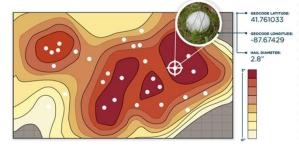
- Flood "models" existed in the late 1800's as a means to manage flooding of the Mississippi River
- Models as we know them now have been around for over 50 years, but their widespread use began after Hurricane Andrew
 - 1966 National Flood Insurance Program California Earthquake models
- Hurricane Andrew exposed a weakness in that very few people
 - knew that the potential \$'s of damage possible
 Historical losses simply do not provide enough information to assess the full range of losses / events that could happen

				(a)	•				*	÷		*	*			×		-	
			*				×											-	
											*				\mathbf{x}	*	•	÷ .	
				•	• •													-	
															*		*		
 CA Wildfire 	*												ě.			*			
		-								-		-	-	 					

Types of Natural Catastrophe Models

POLL:

Which of the following is typically not a standard type of Natural Catastrophe model?

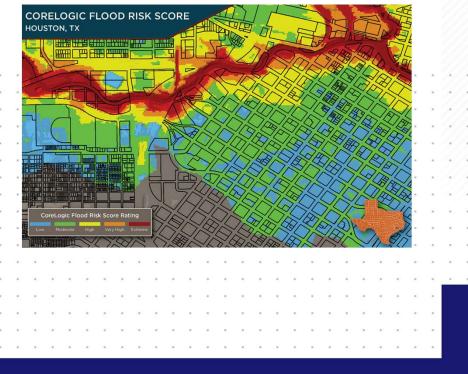

- 1) Probabilistic
- 2) GLM
- 3) Deterministic
- 4) Forensic

Types of Natural Catastrophe Models

DETERMINISTIC

What could happen?

PROBABILISTIC What if it happened?


FORENSIC

What did happen?

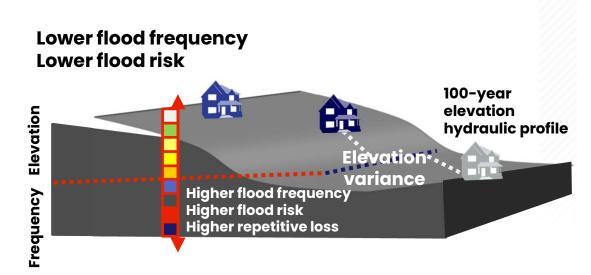
Deterministic Models

- Provides a score (1-100) that represents the relative risk for a specific peril, at a specific location
- May only be relative to the hazard/frequency of a damaging event, while some include a measure of estimated loss based on the structure present

Deterministic Models

Flood Risk Score erample

Create comprehensive spectrum of flood risk classifications


- Above/below 100-year flood elevation, up to 5,000-year flood event
- 10–100 score

Compare unknown (targeted property elevation) with known risk point (100-year flood elevation)

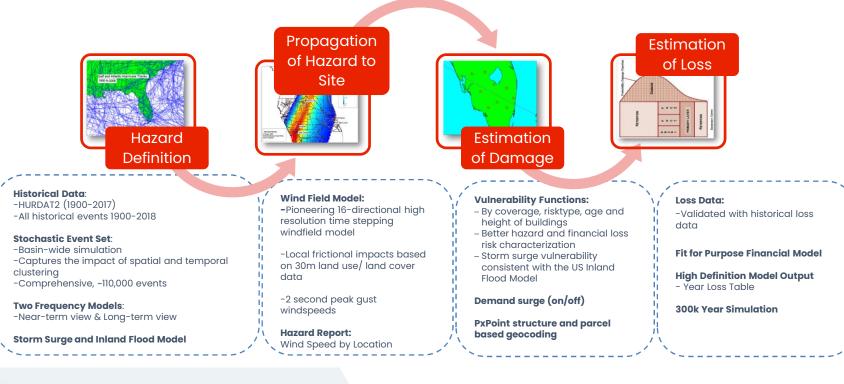
 Derive risk scores based on elevation variances (elevation difference between 100-year elevations and property elevations/first floor height)

The challenge: to build 100-year flood surface profile to cover national rivers, lakes, coastal zones and other water bodies

Probabilistic Models

- Start with a large event set (historical and simulated); each event has a frequency of occurrence
- Based on characteristics of the event at any location, the structure vulnerability and associated loss can be calculated

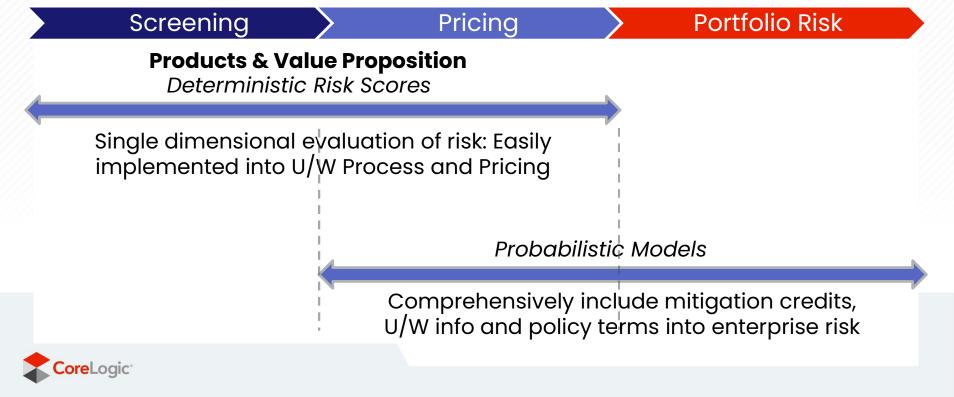
Probabilistic Models


Range of information provided

- Outputs include:
 - Event Loss tables and Yearly Loss tables
 - Average Annual Loss (AAL's) the expected loss per year (average of all years)
 - Standard Deviation of AAL
 - Probable Maximum Loss (PML's) the maximum loss expected at a given frequency (i.e. 100 year PML – 1% frequency)
 - Tail Value at Risk (TVaR) average of all losses that could happen beyond a given frequency (average of the top 1% losses)

Probabilistic Example: North Atlantic Hurricane Model

Certified by the FCHLPM since the inception of the process in 1997



Natural Catastrophe Offerings to Insurers/Reinsurers

A Complete Suite of Products to Cover the Insurers' Needs

Insurance Activity

Uniqueness of various perils

Large Footprint catastrophes

gorootprint odtastroprios	
 Mostly infrequent Earthquake Severe hurricane Large impact area can lead Large area leads to the pote 	to significant event losses ential for more structures damaged
	estimate AAL's and PML's to get a e loss potential is since event history
at any location is sparse	
5	
CoreLogic:	

Uniqueness of various perils

Smaller Footprint catastrophes

- Potentially more frequent
- Smaller geographic area affected
- Historical event experience is included when modeling the potential for future events
 Hail

Uniqueness of various perils

Locational Accuracy

 Larger footprint events may not require the same level of locational granularity as smaller footprint events

Most perils require accurate location / geocoding to ensure the best answer from the model
Flood (elevation changes)
Wildfire (distance to high risk vegetation)

- General Prop. Pricing
- Components
- Other Influencing Aspects
- Unique Challenges
 - Differences
- Risk Appetite

CAT Models

- Purpose
- Different Hazard Models
- Strengths v Limitations
- Profit Models

Target ROC Calibration

Reinsurance

Summary

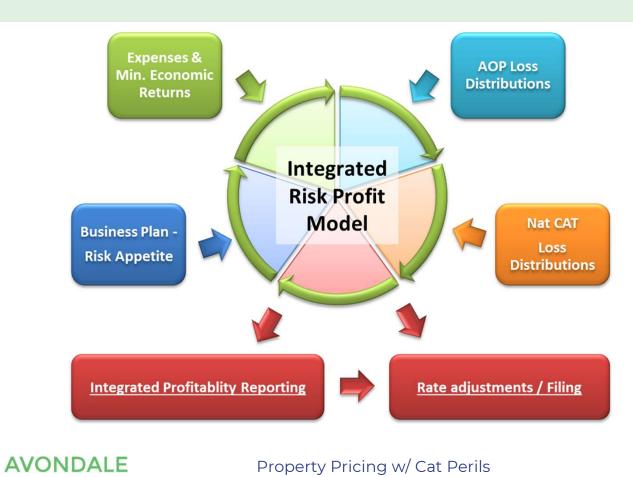
Multi Model Approach

Risk Indifferent Pricing

Risk Steering

CAT Models – User Perspective

Probabilistic Models


- > What need do they fulfill?
 - Traditional / Experience Analytics are not sufficient for projections
- > Intended to be More Informative than Predictive
 - E.g. Post Event Loss estimation is not based solely on output
- > Additional Tools in the Quiver
 - Risk Management Manage Potential Loss Aggregation
 - o Capital & Reserve Allocations
 - Pricing that Aligns with Risk Management
- > Differences
 - Perils E[L], Variance, Tail Statistics ...
 - Footprint Larger vs. Smaller
 - o Granularity of exposures vs. granularity of the model
 - Model Vendors
 - o Scientific Consensus but implementation differs
 - E.g. Condensing peril to primary loss drivers
 - E.g. Validation / Calibration Convergence criteria

Understanding these Nuances is critical when using Cat models in pricing

AVONDALE

Property Pricing w/ Cat Perils

Integrated Capital / Risk Pricing Model

General Prop. Pricing

- Components
- Other Influencing Aspects
- Unique Challenges
- Differences
- Risk Appetite
- CAT Models
- Purpose
- Different Hazard Model
- Profit Models

Strengths v Limitati

- Target ROC Calibration
- Reinsurance

Summary

Multi Model Approach

Risk Steering

Risk Indifferent Pricing

Risk Capital Pricing Models

Premium = Expenses + <u>Expected Losses</u> + <u>Target Profit</u>

- > Expenses
 - Allocation by LOB
 - Claims handling Attritional vs CAT shock
- Expected Losses Loss Distributions
 - Individual Policy Losses
 - Attritional (Experience Rating) & Large Loss (Exposure Rating)
 - Catastrophe Losses multi-policy losses
 - Know what models include or do well and vice versa (spend time on this)
 - Think sensitivity testing, etc.
 - o Large Events model adjustments
 - $_{\odot}$ $\,$ Smaller Events Blended model with higher frequency historic losses
- Target Profit / ROC Considerations
 - Volume Estimated Claims / Expected Losses
 - Variability of Loss Estimates
 - Loss Pick General variance from Expected Losses (e.g. Std Dev)
 - Risk of Extreme events Tail Distribution Statistics (e.g. TVaR, xTVaR)

AVONDALE

Property Pricing w/ Cat Perils

General Prop. Pricing

- Components
- Other Influencing Aspects
- Unique Challenges
- Differences
- Risk Appetite
- CAT Models
- Purpose
- Different Hazard Models

Strengths v Limitatio

- Profit Models
 - Target ROC
- Calibration Reinsurance

Summary

Multi Model App<u>roach</u>

That have been a second s

Risk Steering Risk Indifferent Pricing

Risk Capital Pricing Models

Relative Target Rate of Returns

- Estimated Losses = E[L]
 - This can be set aside directly from Premiums so return could be very low
 - o Opportunity analogy Checking Account Interest

> Variability of E[L]

- Volume variability Low Variation so required return can be medium
 - o Opportunity analogy Returns on Government Bonds
- Extreme Event Variability High Variation so higher return required
 - o Opportunity analogy High Risk Stock Returns

By Loss Category

- > Higher Risk
- ➢ Higher ROR

	Relative Rate of Return Requirements by Loss Category												
Reserve	AC	OP	CAT										
Component	Attritional	Large Losses	Small	Major									
E[L]	Low to zero	Low to zero	Low to zero	Low to zero									
Variance in E[L]	Low to medium	Medium	Medium	Medium									
Extreme Event	NA	NA	High	Very High									

AVONDALE

Property Pricing w/ Cat Perils

General Prop. Pricing

- Components
- Other Influencing Aspects
- Unique Challenges

Differences

Risk Appetite

CAT Models

Purpose

Different Hazard Model

Profit Models

Strengths v Limitati

Target ROC Calibration

Reinsurance

Risk Steering

Summary

Multi Model Approach

Risk Indifferent Pricing

Risk Capital Pricing Models – Weighted Average

Example:

- Volume Profit
 - General Construct = min [x% , $\sum f_x$ (Loss Distribution)]
 - \circ Where x and f_x can vary by peril / categories
 - Simplified Form (as multiple of E[L])
 - a% * Attritional + b% * Large Loss + c% * Small CAT + d% * Large Cat
- Extreme Event Profit
 - General Construct = min [y%, $\sum g_x$ (Loss Distribution)]
 - \circ Where y and g_x can vary by peril / region
 - Simplified Form (as multiple of TVaR₁₀₀)
 - E.g. Hurricane = a% * US + b% * FL + c% * Gulf + d% MidAtl
 - o E.g. Quake = v% * US + w% * CA + x% * PNW + y% * NM + z% * SE
 - Factors based on All Perils convolution and independent peak regions

AVONDALE

Property Pricing w/ Cat Perils

General Prop. Pricing

- Components
- Other Influencing Aspects
- Unique Challenges
- Differences
- Risk Appetite
- CAT Models
- Purpose
- Different Hazard Model
- Strengths v Limitatio Profit Models
- Target ROC Calibration
- Reinsurance

Summary

Reinsurance

Multi Model Approach Risk Steering

Risk Indifferent Pricing

Calibration

Reinsurance – NOT just an additional Expense

- > When to use?
 - When the cost is cheaper than holding the risk
- > For simple CAT XOL, where to attach and how much limit?
 - Again, comparing to your risk pricing model can inform.
- > Concept Example: 2 parameter profit model (CAT contribution only)
 - a * E[L] + b * TVaR₁₀₀
 - 2 CAT XOL reinsurance treaties purchased
 - Price $XOLx = aE[L]^x + bTVaRx_{100}$
 - $\circ~$ Price, E[L] & TVaR_{100} are known for both layers solve for a & b.
 - Represents market check for a segment of your total CAT Curve
- > Validation / Calibration
 - Check factors a & b across the full portfolio (not just the purchased layers)
 - How does current reinsurance market cycle compare to your long term targets?

AVONDALE

Property Pricing w/ Cat Perils

- General Prop. Pricing
- Components
- Other Influencing Aspects
- Unique Challenges
 - Differences
 - Risk Appetite
- CAT Models
- Purpose
- Different Hazard Models
- Strengths v Limitatio Profit <u>Models</u>
- Target ROC
- Calibration
- Reinsurance

Multi Model Approach

Risk Steering

Risk Indifferent Pricing

Calibration

Multi-Model Approach – NOT just averaging E[L]s

- > Remember each CAT model uses slightly different processes
 - We need to be aware of and understand those differences
- Reinsurance Consensus Pricing
 - Despite multiple reinsurers / models, there is still only one price
- Multiple Models
 - E[L] model 1 ≠ E[L] model 2
 - TVaR₁₀₀ model 1 ≠ TVaR₁₀₀ model 2
 - : Volume & Extreme factors will not be the same either
- Blending Multiple models
 - Calculate premium using each model and their unique factors
 - THEN blend the resulting target premiums not just one statistic

AVONDALE

Property Pricing w/ Cat Perils

- General Prop. Pricing
- Components
- Other Influencing Aspects
- Unique Challenges
- Differences
- Risk Appetite
- CAT Models
- Purpose
- Different Hazard Model
- Strengths v Limitati Profit Models
- Target ROC
- Calibration
- Reinsurance
- Multi Model Approach
- Risk Steering
- **Risk Indifferent Pricing**
- Summary

Calibration

Risk Steering & Indifferent Pricing

- > Balancing Portfolio Distribution
 - Steering business through adjusting regional & pricing parameters
- Principles Relativity Parameter Calibration
 - Based on Company Risk Appetite
 - Price to be otherwise indifferent to deploying capacity
 - Between perils (think attritional vs Cat losses)
 - o Between Different Cat perils
 - o Between different regions (within in specific Cat Peril)
- Regional Risk Accumulation
 - Scarcity of capacity
 - o Risk Appetite for Maximal loss
 - $_{\odot}$ $\,$ Availability of reinsurance to further Cap CAT losses $\,$
- > Example: 1 risk using 250 TVaR₁₀₀ vs 5 risks with 250 TVaR₁₀₀ in total

AVONDALE

Property Pricing w/ Cat Perils

Summary

AVONDALE

Property Pricing w/ Cat Perils

Questions?