{ "Session Name": "Semi-structured data – best or worst of both worlds?",

"cast":[

{"speaker":"Jim Weiss","designation":["FCAS","CPCU"],"social": "linkedin.com/in/jimtheactuary"}, {"speaker": "Khanh Luu","designation":"ACAS","social": "linkedin.com/in/khanh-luu-acas-14929630"},

],

"venue":"Casualty Actuaries of the Northwest Annual Meeting", "session start":"2022-03-16 07:15:00PM GMT", "session end":"2022-03-16 08:30:00PM GMT", "number slides": 13

Session (semi) structure

- Warm-up | Live polling questions
- Background | Problem statement and refresher on data forms
- Application | Cases where semi-structured data may enhance actuarial analysis
- Tips | Exemplary techniques and software

Poll #1 - Autonomy

What is the typical level of IT involvement in a new actuarial analysis?

- a. Ambient | Infrastructure and security only
- b. Back Required for extraction and custom reporting
- C. Front | Required to "productionize" analysis results
- d. Back and front Involved at multiple phases of typical project

Poll #2 - Accessibility

What portion of realizable insights contained in insurance databases are actuaries typically able to unlock?

- a. 76-100% We are the great liberators of insights
- b. 51-75% There may be more hiding under the covers
- C. 0-50% The insights are trapped and must be rescued
- d. Don't know No idea what this data is capable of

Problem statements

- Dark data
 - "Unmatchables"
 - "Burial at sea"
- Imperfect governance
 - Lacking documentation
 - Ambiguous definitions
- Innovation frictions
 - Software development cycle
 - Compatibility

Could using a different datainterchange approach help solve all these problems?

Data forms

Structured

pre-defined model tabular format SQL tables, Excel files

Metadata

Data about data Not a separate data structure Infoschema

Semi-structured

No pre-defined model Some hierarchy, contains tag/ text JSON data, XML data

Unstructured

No pre-defined model Documents, Image, Video, Audio

As we go from Structured to Semi-structured to Unstructured, data generally becomes more text heavy.

Triangle example

-	Incurral.Year	012 0	024 0	036 🗘	048 🗘	060 🗘	072 🗘	084 *	096 0	108 0	120 🗘	1 [2 ····{ 3 ····{
1	1995	17674	32062	38619	42035	43829	44723	45162	45375	45483	45540	4"subreport : "Part-3b", 5subreport": "Part-3b",
2	1996	18315	32791	39271	42933	44950	45917	46392	46600	46753	NA	6"reportDate": "2004-12-31", 7"Triangle": [
3	1997	18606	32942	39634	43411	45428	46357	46681	46921	NA	NA	8
4	1998	18816	33667	40575	44446	46476	47350	47809	NA	NA	NA	10 "012": 17674, 11 "024": 32062, 13 "026", 33610
5	1999	20649	36515	43724	47684	49753	50716	NA	NA	NA	NA	13 "048": 42035, 14 "060": 43829,
6	2000	22327	39312	46848	51065	53242	NA	NA	NA	NA	NA	15 "072": 44723, 16 "084": 45162,
7	2001	23141	40527	48284	52661	NA	NA	NA	NA	NA	NA	17 "096": 45375, 18 "108": 45483,
8	2002	24301	42168	50356	NA	19 ····································						
9	2003	24210	41640	NA	22"Incurral.Year": 199 23							
10	2004	24468	NA	24 "024": 32791, 25 "036": 39271,								

See appendix for how we brought this down into R

Source: R package 'insuranceData'

0	
9	
10	····· "012": 17674,
11	····· "024": 32062,
12	····· "036": 38619,
13	"048": 42035,
14	"060": 43829,
15	
16	"084": 45162,
17	
18	
19	
20	·····},
21	·····{
22	"Incurral.Year": 1996,
23	
24	····· "024": 32791,
25	
26	
27	"060": 44950,
28	
29	····· "084": 46392,
30	"096": 46600,
31	"108": 46753
32	·····},
33	
34	"Incurral.Year": 1997,
35	"012": 18606,
36	"024": 32942.

Warm-Up

Background

Application

Tips

Pros and cons

- Implicitly documented
- Lightweight
 - Grouping of similar entries
 - No need to store empties
- Web friendly
- Pre-joined

• Useful conduit

We will address above in "Application"

- Difficult to enforce controls
- Heavyweight
 - Redundant tags
 - Inability to index
- Ugly
- Lack of common keys
- Generally requires rendering

We will address above in "Tips"

Application: Rating a policy

Driver	Fav Color	Vehicle	ModelYear	MSRP	Territory	Effective	11/19/2021	
Jim	Green	Prius	2022	30,000	CA 001	Expiration?	11/19/2022	
Khanh	Red	Ferrari	2015	225,000	WA 003	Payment	Installments	
Kiki	Blue	Coverage	Limit	Deductible		Card on File	**** **** 1234	
Mikey	Orange	BI	100/300					
		PD	25					
		UM	100/300					
		OTC		\$500				

- The input (user experience) should be structured (e.g. text boxes, dropdowns)
- The premium calculation (thought process, abstraction) is unstructured (e.g. model executable)
- The output (e.g. acceptance, premium) is structured
- How much additional data structure is (un)necessary to connect the endpoints to the underlying process?

Application: Describing spatial relationships

- The input (elaborate polygons) is essentially unstructured (e.g. jpeg)
- The context (a fare for each polygon) is structured (e.g. data table)
- The output (choropleth map) is unstructured (e.g. jpeg)
- How many clicks, scrolls, uploads etc. are typically (un)necessary to represent the context in an unstructured way?

Analysis from 2021 CAS Data Visualization Workshop @ RPM for more info on Leaflets For related data visit: <u>https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-ddgc</u>

Tip: Parsing semi-structured data

JSON from earlier

(1130) [4]: "ishedole =","subreport":"Part B0", "subcreage":": Libblity," "report tate: "2004 42-21",""rtingle": [["noural.vee":1995.002":1374, "024":32062,"0.06":13613, "044":42055,"066":4382 072":4732, "044":4362,"066":4387, 100":45483,"110":45540), ("Incurral:vee":1995.",021":1357,"045":42035,"004":42035,"066":4482,"405" ("Incurral:vee":1997.","021":0806","041":3424,"051":0806,",004":3411,"006":44267,"021":4357,"044":42035,"021":4357,"045":42035,"041":42035,"045

fromJSON in jsonlite R package creates dataframe

*	report ÷	subreport ÷	subcoverage	reportDate +	Triangle ÷
1	Schedule P	Part 3b	Liability	2004-12-31	11 variables

Unpack nested information with list commands

^	Incurral.Year	X012 [÷]	X024 [÷]	X036 [‡]	X048 [‡]	X060 [÷]	X072 [‡]	X084 [‡]	X096 [÷]	X108 ÷	X120
1	1995	17674	32062	38619	42035	43829	44723	45162	45375	45483	45540
2	1996	18315	32791	39271	42933	44950	45917	46392	46600	46753	NA
3	1997	18606	32942	39634	43411	45428	46357	46681	46921	NA	NA
4	1998	18816	33667	40575	44446	46476	47350	47809	NA	NA	NA
5	1999	20649	36515	43724	47684	49753	50716	NA	NA	NA	NA
6	2000	22327	39312	46848	51065	53242	NA	NA	NA	NA	NA
7	2001	23141	40527	48284	52661	NA	NA	NA	NA	NA	NA
8	2002	24301	42168	50356	NA	NA	NA	NA	NA	NA	NA
9	2003	24210	41640	NA	NA	NA	NA	NA	NA	NA	NA
10	2004	24468	NA	NA	NA						

Call an API with Postman or HTTR

Tip: making associations

- ++ Edit distance/ Levenshtein distance >> Approximate matching.
- Example: Business name
 - Both Python/ SAS have built in package (e.g. Python has fuzzywuzzy, SAS has compged)
 - Matched if partial elements contained within string
- Example: Person name
 - Python package allows matching when order of elements are different
 - [Last name], [First Name] vs. [First Name] [Last Name]

Conclusion

- Head in the clouds | Can't see snowflakes and sparks from inside cave
- Cuts both ways | Information loss can occur when (un)structuring
- Rosetta stone | Semi-structure provides multi-useful go-between
- Deceptively simple | Easy to start, tougher to scale
- Keys to success | Better leverage partnerships and open-source

Appendix – Downloading the triangle

load libraries and data sets

library(dplyr) library(insuranceData) library(data.table) library(jsonlite) library(httr)

render Schedule P

data(IndustryAuto)
for (ctr in 1:max(IndustryAuto\$Development.Year)) {
 Triangle1<-IndustryAuto%>%
 filter(Development.Year==ctr)%>%
 group_by(Incurral.Year)%>%
 summarize_at(c('Claim'),sum)%>%
 setnames(old=c('Claim'),
 new=c(paste(sprintf('%o3d',ctr*12),sep='')))
 if (ctr==1) {Triangle<-Triangle1} else {Triangle<-Triangle%>%left_join(Triangle1)}
 rm(Triangle1)
}

Appendix – Different JSON commands

create a JSON

report<-'Schedule P' subreport <-'Part 3b' coverage<-'PPA' subcoverage<-'Liability' reportDate<-'2004-12-31'

myJSON<-as.data.frame(t(as.data.frame(c(report,subreport,subcoverage,reportDate))))%>% rename(report=1,subreport=2,subcoverage=3,reportDate=4) rownames(myJSON)<-NULL myJSON\$Triangle<-list(Triangle) TriangleJ<-toJSON(myJSON)

render Schedule P
TriangleJ_parse<-fromJSON(TriangleJ)
TriangleJ_parse_SchedP<-as.data.frame(TriangleJ_parse[['Triangle']])</pre>