

CS10: Intermediate Experience and Exposure Rating Methods for Today

CARe Seminar, June 13-14, 2022 – Virtual Event

Caitlyn Pace, ACAS, Senior Treaty Underwriter, Swiss Re (Moderator)

David Fairchild, FCAS, Vice President & Managing Actuary, Partner Re Shani Clarke, Actuarial Consultant, Verisk/ISO Underwriting Solutions UK

Antitrust Notice

- The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.
- Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding – expressed or implied – that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.
- It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

Intermediate Track Pre-Requisites

Prerequisites

These presentations are considered intermediate level and assume you already have a basic understanding of the following concepts:

- General purpose of exposure rating vs experience rating
- Losses occurring vs risks attaching
- Treaty vs facultative
- Excess of loss reinsurance
- Primary vs excess policies
- Claims development and trending/on-leveling: purpose and methodologies
- ALAE, rate change, ILFs, credibility

CS10: Intermediate Experience and Exposure Rating Methods for Today

This session will build upon prior basic CARe track and boot camp materials and will presuppose familiarity with the basics of exposure and experience rating methodologies. This session will include the usage of more advanced techniques to address common excess rating challenges, exacerbated by the various extra stresses and data distortions currently being encountered. These additional distortions include:

- Shifting policy limits, credibility and blending of loss development factors, method confidence levels
- Recent heightened inflation, social inflation, civil unrest, and Covid impacts including on LDFs

Accurately assessing these impacts holistically, will lead to more refined:

- Benchmarking and individual account analysis
- Avoiding overconfidence in experience and exposure rating

Moderator:

Caitlyn Pace, ACAS, Senior Treaty Underwriter, Swiss Re (Moderator) (post poll trend Qs)

Panelists:

David Fairchild, FCAS, Vice President & Managing Actuary, Partner Re (*repost poll trend Qs*) Shani Clarke, Actuarial Consultant, Verisk/ISO Underwriting Solutions UK (*poll trend As*) Q&A 10 mins

Measuring Confidence – Covid/Inflation Trends – Qs TBD

2022 CARe Seminar (CS10) - Measuring Actuarial Confidence

1. General Liability Average Annual Frequency Change from 2015 to 2019 (pre Covid)

Lower 90% Confidence Interval	
Upper 90% Confidence Interval	

2. General Liability Frequency Change from 2019 to 2020 (1st Covid year)

Lower 90% Confidence Interval	
Upper 90% Confidence Interval	

3. General Liability Frequency Change from 2020 to 2021 (2nd Covid year)

Lower 90% Confidence Interval	
Upper 90% Confidence Interval	

11. What is your name (Optional)

We are **asking 10 Qs** via Survey Monkey that will be left up during the course of David and Shani's CS10 presentations. **If you feel 90% of the time the answer will be between -15% to -5% then enter -15 and -5 in the 2 boxes.** Should **carefully** read the question being asked, such as LOB, frequency or severity, and time period.

"Answers" will be presented at the end of Shani's section. You can answer either **anonymously, or provide your name** at the end.

Measuring Confidence answers, comparing aggregated confidence interval ranges to the "Answers", will be provided in the **Tuesday linked session CS23 "Overinflated Wheels".** That session will also go deeper into the Covid/Inflation impacts in the Commercial and Personal Auto poll Q results.

CARe – Intermediate Experience & Exposure Rating Methods for Today

David Fairchild

Disclaimer

PartnerRe

Opinions expressed are solely those of the author. This presentation is for general information, education and discussion purposes only. It does not constitute legal or professional advice and does not necessarily reflect, in whole or in part, any corporate position, opinion or view of PartnerRe or its affiliates.

It may not be reproduced or disseminated in any form, without the prior written permission of PartnerRe.

PartnerRe accepts no liability as a result of any reliance you may have placed or action taken based upon the information outlined in this presentation.

Supporting Source Materials

- Much of the source content is derived from previous CARe presentations and published papers
- Original source information and special thanks to:
 - Mata & Verheyen "An Improved Method for Experience Rating Reinsurance Treaties using Exposure Rating Techniques" (2005)
 - http://www.casact.org/pubs/forum/05spforum/05spf171.pdf
 - David R. Clark "Introduction to Bayesian Loss Development" (2016) <u>http://www.casact.org/pubs/forum/16sforum/Clark.pdf</u>
 - Shi/Hartman "Credibility in Loss Reserving" (2014) <u>https://www.casact.org/pubs/forum/14sumforumv2/Shi_Hartman.pdf</u>
 - Conger & Lowe "Managing Overconfidence" (2003)

Agenda – CS10 Intermediate Exposure / Experience

PartnerRe

- Shifting Limits in Excess of Loss Ratings A Brief Example
- Credibility In Loss Development
 - 1. Sample Company
 - 2. Loss Development Credibility
 - 3. Experience Rating
 - 4. Credibility Blending of Experience and Exposure

Actuarial Overconfidence

- 1. Measuring Overconfidence Polling Qs
- 2. Exposure Rating
- 3. Experience Rating

Shifting Limits in Excess of Loss Ratings A Brief Example

Changing Policy Limits Distribution

- Suppose we are pricing a 500,000 excess of 500,000 layer, but the ceding company has recently begun writing higher limit policies that result in more exposure to the layer.
- Can we still use the historical experience rating?
- If so, what adjustments can be made?

- There are many possible approaches to overlay an adjustment to the experience rating.
- One approach: Adjust historical experience period burn cost based on the relative exposure rating of each historical period (i.e. limits drift factor)

Advantage:

This is one of the most accurate of possible methods.

Disadvantage(s):

- Requires full policy limit profile for each historical period
- Potential difficulty in explaining adjustment factors

Example on the next slide...

PartnerRe

Adjust historical experience period burn cost based on the relative exposure rating of each historical period (i.e. limits drift factor)

				Exposure Rate				
				250,000	500,000			
	Policy L	imit Distribu	<u>ution</u>	excess of	excess of			
AY	500,000	750,000	1,000,000	250,000	500,000			
2011	75.00%	20.00%	5.00%	14.88%	2.22%			
2012	75.00%	20.00%	5.00%	14.88%	2.22%			
2013	75.00%	20.00%	5.00%	14.88%	2.22%			
2014	75.00%	20.00%	5.00%	14.88%	2.22%			
2015	75.00%	20.00%	5.00%	14.88%	2.22%			
2016	70.00%	20.00%	10.00%	14.82%	2.87%			
2017	65.00%	20.00%	15.00%	14.76%	3.52%			
2018	60.00%	20.00%	20.00%	14.70%	4.17%			
2019	60.00%	20.00%	20.00%	14.70%	4.17%			
2020	60.00%	20.00%	20.00%	14.70%	4.17%			
2021	60.00%	20.00%	20.00%	14.70%	4.17%			

• The exposure rates from this table are used to adjust the experience rated loss costs. The change in exposure rate combines the impact of the changing layered loss and the change in premium that results from the shift in the limits profile.

Mata & Verheyen "An Improved Method for Experience Rating Reinsurance Treaties using Exposure Rating Techniques" (2005) <u>http://www.casact.org/pubs/forum/05spforum/05spf171.pdf</u>

Adjust historical experience period burn cost based on the relative exposure rating of each historical period (i.e. limits drift factor)

			Expected Loss		
			to 500K xs 500K	Weighted	Limits Drift
AY	Limit	Prem Wgt	Layer	Expected Loss	Factor
2011	500,000	75.0%	0.00%		
	750,000	20.0%	7.83%		
	1,000,000	5.0%	13.01%	2.22%	1.88
2021	500,000	60.0%	0.00%		
	750,000	20.0%	7.83%		
	1,000,000	20.0%	13.01%	4.17%	1.00

- Limits drift factor for 2011 = Expected Loss for 2020 / Expected Loss for 2011
 - 4.17% / 2.22% = 1.88
- The experience rated loss cost indication for 2011 would then be adjusted by a factor of 1.88 to account for the fact that the ceding company is now writing more high limit policies than they have in the past.
- This adjustment factor would be calculated for each year in the experience period.
- IMPORTANT this methodology can be used for an increasing shift in limits or decreasing shift in limits

PartnerRe

Credibility in Loss Development

Credibility In Loss Development

1. Sample Company Data

400K xs 100K Reported Loss Triangle

	12	24	36	48	60	72	84	96	ITD
2014	14,700	462,500	1,082,700	1,675,200	2,156,100	2,458,500	3,347,000	4,296,200	4,296,200
2015	196,900	1,033,300	1,758,900	2,517,000	3,455,800	3,891,300	4,423,300		4,423,300
2016	275,800	946,400	1,738,400	1,956,200	2,077,100	2,383,000			2,383,000
2017	215,700	527,800	1,192,300	2,126,000	2,009,200				2,009,200
2018	332,100	1,447,500	2,562,800	3,170,400					3,170,400
2019	284,800	1,141,400	1,758,600						1,758,600
2020	132,800	262,100							262,100
2021	20,100								20,100

500K xs 500K Reported Loss Triangle

_	12	24	36	48	60	72	84	96	ITD
2014	0	322,700	537,600	431,700	450,900	468,000	468,000	468,000	468,000
2015	0	27,200	27,200	0	185,700	371,400	371,400		371,400
2016	183,300	422,700	419,500	603,500	604,200	361,700			361,700
2017	0	0	315,300	605,100	531,900				531,900
2018	0	60,600	463,600	678,500					678,500
2019	0	65,500	482,900						482,900
2020	0	0							0
2021	0								0

Age-to-Age (ATA) Factors

_	12 - 24	24 - 36	36 - 48	48 - 60	60 - 72	72 - 84	84 - 96
2014	31.463	2.341	1.547	1.287	1.140	1.361	1.284
2015	5.248	1.702	1.431	1.373	1.126	1.137	
2016	3.431	1.837	1.125	1.062	1.147		
2017	2.447	2.259	1.783	0.945			
2018	4.359	1.771	1.237				
2019	4.008	1.541					
2020	1.974						
Avg	4.007	1.816	1.373	1.172	1.136	1.224	1.284

Age-to-Age (ATA) Factors

	12 - 24	24 - 36	36 - 48	48 - 60	60 - 72	72 - 84	84 - 96
2014	#DIV/0!	1.666	0.803	1.044	1.038	1.000	1.000
2015	#DIV/0!	1.000	0.000	#DIV/0!	2.000	1.000	
2016	2.306	0.992	1.439	1.001	0.599		
2017	#DIV/0!	#DIV/0!	1.919	0.879			
2018	#DIV/0!	7.650	1.464				
2019	#DIV/0!	7.373					
2020	#DIV/0!						
Avg	4.903	2.499	1.315	1.081	0.968	1.000	1.000

• First step would be to check for stability in the profiles and policy limit drift.

• Triangle observations:

- The lower attaching 400K xs 100K layer has a far more credible triangle than the 500K xs 500K layer.
- The empirical tail factor generated by the 400K xs 100K layer also significantly longer than the empirical tail factor in the 500K xs 500K triangle.

Credibility In Loss Development

- We need to create a "prior distribution" of development patterns.
- In a perfect world, these patterns should and would vary for all relevant risk characteristics:
 - Lines of business distinctions
 - Class of business and hazard groupings
 - Differences in coverage triggers (risks attaching vs. claims made vs. occurrence)
 - Policy limit and attachment point distributions

Shi/Hartman "Credibility in Loss Reserving" (2014) https://www.casact.org/pubs/forum/14sumforumv2/Shi_Hartman.pdf

Clark "Introduction to Bayesian Loss Development" (2016) <u>http://www.casact.org/pubs/forum/16sforum/Clark.pdf</u>

Credibility In Loss Development

- In addition to the client data from two slides before, we also have industry data or client benchmark data. Here we have a range of patterns with varying development speeds.
- The above is industry SOLM data with the 10% bar representing the average of the quickest 10% of companies in the database. As a reinsurer we can also build out a range of excess of loss development patterns by line of business to generate a similar structural concept.

Credibility In Loss Development

400K xs 100K graph

- The blue lines (taken from the prior slide) represent an approximate 90% confidence interval around the industry pattern.
- Similarly, we can fit the client data to a curve to see a similarly calculated 90% confidence interval in orange above.
- The client data has a *slower* development pattern than the industry data.

500K xs 500K graph

The client data has a <u>faster</u> development pattern than the industry data.

Credibility In Loss Development

Bayesian Theory

$$f(\theta \mid x) = \frac{f(x \mid \theta) \cdot f(\theta)}{f(x)} = \frac{f(x \mid \theta) \cdot f(\theta)}{\int_{\theta} f(x \mid \theta) \cdot f(\theta) d\theta}$$

- Where
 - $f(\theta)$ is a distribution representing "prior" knowledge of the parameters θ
 - $f(x|\theta)$ is a likelihood function representing the probability of observing the actual data x given a certain set of parameter assumptions.
 - $f(\theta | x)$ is the "posterior" probability of the parameters, revised based on the data
- For the loss development pattern problem, we need a multivariate conjugate relationship.

Dirichlet => Multinomial

Credibility In Loss Development

Bayesian Theory

- Our prior knowledge, in this case of the industry or market development patterns, is used as though it had been previously observed data.
- There are two main sources of uncertainty in prior information (Parodi and Bonche 2010)
 - Market heterogeneity the spread of different risks around some industry average
 - Estimation uncertainty the industry average, though large, may still be of limited size
- As a result, we may choose to give the prior distribution more or less variance (and ultimately credibility) depending on how we view these sources of uncertainty.

Credibility In Loss Development

Application

 Select "Fast", "Medium", and "Slow" benchmark patterns as a starting point for three representative levels. If we do not know anything regarding the risk characteristics of the client, we can begin with the apriori assumption of equal weights.

Benchmark Loss Development Factors (LDF to Ultimate) - 400K xs 100K												
	12	24	36	48	60	72	84	96	108	120	Apriori Weights	
Fast	7.547	2.618	1.696	1.332	1.166	1.086	1.043	1.028	1.019	1.013	33.33%	
Medium	12.195	3.861	2.257	1.667	1.403	1.274	1.193	1.139	1.101	1.073	33.33%	
Slow	24.096	6.494	3.425	2.361	1.857	1.590	1.426	1.314	1.226	1.149	33.33%	
Average	11.720	3.774	2.265	1.691	1.423	1.285	1.201	1.149	1.109	1.076		

- We credibility weight each of the three benchmark patterns with the client pattern.
- For each benchmark pattern, we select the alpha and beta parameters for each age such that the ATA = (Alpha + Beta) / Beta. The total value of Alpha + Beta can be customized depending on the informative power of the prior pattern.
- You must also select a variance / mean ratio (scale parameter φ). A small value will result in more weight given to the client data because it implies a small process variance. This can be estimated empirically from the triangle, or from other sources.

Credibility In Loss Development

Application

LDF to Ult

15.499

4.525

2.568

 The credibility weighted patterns are simply the dollar weighted average (utilizing the column 1 and column 2 figures) of the client / benchmark sections.

400K xs 100K Reported Loss Triangle

	12	24	36	48	60	72	84	96	ITD
2014	14,700	462,500	1,082,700	1,675,200	2,156,100	2,458,500	3,347,000	4,296,200	4,296,200
2015	5 196,900	1,033,300	1,758,900	2,517,000	3,455,800	3,891,300	4,423,300		4,423,300
2016	5 275,800	946,400	1,738,400	1,956,200	2,077,100	2,383,000			2,383,000
2017	7 215,700	527,800	1,192,300	2,126,000	2,009,200				2,009,200
2018	332,100	1,447,500	2,562,800	3,170,400					3,170,400
2019	284,800	1,141,400	1,758,600						1,758,600
2020	132,800	262,100							262,100
2021	20,100								20,100
	12 - 24	24 - 36	36 - 48	48 - 60	60 - 72	72 - 84	84 - 96	96 - Ult	
Client Pattern				-					
Column 1	1,452,800	5,558,900	8,335,100	8,274,400	7,689,000	6,349,800	3,347,000		
Column 2	5,821,000	10,093,700	11,444,800	9,698,200	8,732,800	7,770,300	4,296,200		
All Year Wtd ATA	4.007	1.816	1.373	1.172	1.136	1.224	1.284		
Benchmark (Med	lium)								
Column 1	3,166,052	5,845,636	7,385,911	8,416,317	9,080,542	9,364,207	9,547,360	8,779,631	
Column 2	10,000,000	10,000,000	10,000,000	10,000,000	10,000,000	10,000,000	10,000,000	10,000,000	
ATA	3.159	1.711	1.354	1.188	1.101	1.068	1.047	1.139	
Credibility-Weig	hted								
Column 1	4,618,852	11,404,536	15,721,011	16,690,717	16,769,542	15,714,007	12,894,360	8,779,631	
Column 2	15,821,000	20,093,700	21,444,800	19,698,200	18,732,800	17,770,300	14,296,200	10,000,000	
ATA	3.425	1.762	1.364	1.180	1.117	1.131	1.109	1.139	

1.883

1.595

1.428

1.263

1.139

Credibility In Loss Development

Application

 The same procedure is performed with the Slow and Fast benchmark patterns (Slow shown below).

400K xs 100K Reported Loss Triangle

	12	24	36	48	60	72	84	96	ITD
2014	14,700	462,500	1,082,700	1,675,200	2,156,100	2,458,500	3,347,000	4,296,200	4,296,200
2015	196,900	1,033,300	1,758,900	2,517,000	3,455,800	3,891,300	4,423,300		4,423,300
2016	275,800	946,400	1,738,400	1,956,200	2,077,100	2,383,000			2,383,000
2017	215,700	527,800	1,192,300	2,126,000	2,009,200				2,009,200
2018	332,100	1,447,500	2,562,800	3,170,400					3,170,400
2019	284,800	1,141,400	1,758,600						1,758,600
2020	132,800	262,100							262,100
2021	20,100								20,100
	12 - 24	24 - 36	36 - 48	48 - 60	60 - 72	72 - 84	84 - 96	96 - Ult	
Client Pattern			-						
Column 1	1,452,800	5,558,900	8,335,100	8,274,400	7,689,000	6,349,800	3,347,000		
Column 2	5,821,000	10,093,700	11,444,800	9,698,200	8,732,800	7,770,300	4,296,200		
All Year Wtd ATA	4.007	1.816	1.373	1.172	1.136	1.224	1.284		
Benchmark (Slow	1								
Column 1	2,695,053	5,274,099	6,893,431	7,865,311	8,562,197	8,968,553	9,214,586	7,610,350	
Column 2	10,000,000	10,000,000	10,000,000	10,000,000	10,000,000	10,000,000	10,000,000	10,000,000	
ATA	3.711	1.896	1.451	1.271	1.168	1.115	1.085	1.314	

Credibility-Weighted

Column 1	4,147,853	10,832,999	15,228,531	16,139,711	16,251,197	15,318,353	12,561,586	7,610,350
Column 2	15,821,000	20,093,700	21,444,800	19,698,200	18,732,800	17,770,300	14,296,200	10,000,000
ATA	3.814	1.855	1.408	1.220	1.153	1.160	1.138	1.314
LDF to Ult	24.316	6.375	3.437	2.441	2.000	1.735	1.495	1.314

PartnerRe

Credibility In Loss Development

Application

 Our prior weights (33.33%) are adjusted to posterior weights to reflect the fact that the client data is most representative of the slow curve.

Bayesian L	Jpdating of Probab	vilities			
	LogLikelihood	Difference in LogLikehood	Relative Likelihood	Original Weights	Revised Weights
	А	B = A - Max(A)	C = exp(B)	D	E = C * D / Avg (C)
Fast	-22.7256	-6.1971	0.002	33.33%	0.18%
Medium	-18.5356	-2.0071	0.134	33.33%	11.82%
Slow	-16.5285	0	1.000	33.33%	87.99%
		Avg:	0.379		

 The final pattern is a credibility-weighted average of the individual benchmark patterns weighted with the client data.

Benchmark Loss Development Factors (LDF to Ultimate) - 400K xs 100K											
	12	24	36	48	60	72	84	96	108	120	A Posteriori Weights
Fast	11.274	3.507	2.101	1.591	1.366	1.240	1.113	1.028	1.019	1.013	0.18%
Medium	15.499	4.525	2.568	1.883	1.595	1.428	1.263	1.139	1.101	1.073	11.82%
Slow	24.316	6.375	3.437	2.441	2.000	1.735	1.495	1.314	1.226	1.149	87.99%
Average	22.741	6.073	3.301	2.356	1.940	1.691	1.463	1.290	1.209	1.139	
Original Average	11.720	3.774	2.265	1.691	1.423	1.285	1.201	1.149	1.109	1.076	

Credibility In Loss Development

Application

- Same process is followed for the 500K xs 500K layer. However, now we can use what we learned on the 400K xs 100K layer and begin with our apriori weights equal to the posterior weights from the previous slide.
- Since the 500K xs 500K triangle has limited credibility, we would utilize a larger scale parameter which will result in a final pattern that is close to the "slow" benchmark.

Benchmark Loss Development Factors (LDF to Ultimate) - 500K xs 500K											
	12	24	36	48	60	72	84	96	108	120	A Posteriori Weights
Fast	9.909	3.242	1.866	1.399	1.203	1.084	1.038	1.025	1.020	1.015	0.16%
Medium	16.705	4.811	2.474	1.760	1.462	1.286	1.195	1.143	1.109	1.081	12.81%
Slow	33.051	7.635	3.480	2.416	1.965	1.638	1.454	1.343	1.267	1.201	87.03%
Average	29.272	7.087	3.303	2.303	1.880	1.581	1.414	1.313	1.244	1.184	

Credibility In Loss Development

Experience Rating (400K xs 100K)

- Utilizes the credibility weighted LDFs.
- Also makes use of any limits drift adjustment.

Experience Rating \$400K xs \$100K layer

	On-Level	Exposure	Trended		Premium /	400K xs 100K	Severity	Frequency	Policy	400K xs 100K	
AY	Premium	Trend	OLP	LDF	LDF	Reported	Trend	Trend	Limit Drift*	Trended	Rate
2014	18,432,700	1.083	19,959,973	1.290	15,472,235	4,296,200	1.267	1.000	0.995	5,415,086	35.0%
2015	17,258,900	1.072	18,503,877	1.463	12,649,328	4,423,300	1.230	1.000	0.995	5,412,901	42.8%
2016	17,916,600	1.062	19,018,832	1.691	11,248,161	2,383,000	1.194	1.000	0.996	2,834,045	25.2%
2017	18,544,100	1.051	19,490,035	1.940	10,045,621	2,009,200	1.159	1.000	0.997	2,322,226	23.1%
2018	18,470,700	1.041	19,220,684	2.356	8,157,962	3,170,400	1.126	1.000	0.998	3,561,177	43.7%
2019	19,199,500	1.030	19,781,264	3.301	5,991,728	1,758,600	1.093	1.000	0.998	1,917,826	32.0%
2020	19,157,800	1.020	19,542,872	6.073	3,217,946	262,100	1.061	1.000	0.999	277,784	8.6%
2021	19,374,100	1.010	19,567,841	22.741	860,450	20,100	1.030	1.000	1.000	20,703	2.4%
Total	148,354,400		155,085,378		<mark>67,643,4</mark> 30	18,322,900				21,761,747	32.2%

Prospective 20,000,000

6,434,253 32.2%

* Calculation as discussed in Part 1 of the presentation

PartnerRe

Credibility In Loss Development

Experience Rating (500K xs 500K)

 For the higher 500K xs 500K layer, the experience is volatile and not fully credible. In this case, the experience indication is credibility weighted with an exposure rated relativity selection.

Experience Rating \$500K xs \$500K layer

	On-Level	Exposure	Trended		Premium /	500K xs 500K	Severity	Frequency	Policy	400K xs 100K	
AY	Premium	Trend	OLP	LDF	LDF	Reported	Trend	Trend	Limit Drift	Trended	Rate
2014	18,432,700	1.083	19,959,973	1.313	15,202,738	468,000	1.267	1.000	1.037	614,784	4.0%
2015	17,258,900	1.072	18,503,877	1.414	13,087,677	371,400	1.230	1.000	1.033	471,849	3.6%
2016	17,916,600	1.062	19,018,832	1.581	12,027,621	361,700	1.194	1.000	1.025	442,686	3.7%
2017	18,544,100	1.051	19,490,035	1.880	10,365,785	531,900	1.159	1.000	1.020	628,950	6.1%
2018	18,470,700	1.041	19,220,684	2.303	8,344,685	678,500	1.126	1.000	1.016	775,876	9.3%
2019	19,199,500	1.030	19,781,264	3.303	5,988,227	482,900	1.093	1.000	1.012	534,010	8.9%
2020	19,157,800	1.020	19,542,872	7.087	2,757,660	0	1.061	1.000	1.004	0	0.0%
2021	19,374,100	1.010	19,567,841	29.272	668,474	0	1.030	1.000	1.000	0	0.0%
Total	148,354,400		155,085,378		<mark>68,442,867</mark>	2,894,400				3,468,155	5.1%

Prospective 20,000,000

400K xs 100K Rate 32.2%

5.1%

1,013,445

- Exposure Rating Relativity 0.461
- Expected 500K xs 500K Rate 14.8%

Credibility 75%

Selected 500K xs 500K Rate 7.5%

Selected 500K xs 500K Expected Loss 1,501,632

Actuarial Overconfidence

Data Processing vs. Analysis – Actuarial Overconfidence

Processing: formatting data and populating models

- Actuaries are "attached" to their pricing models
- Familiarity albeit "known bugs"

Analysis: making sense of the numbers

- Not just providing a numerical result but also asking the right questions throughout the pricing process
- Communicating uncertainties around the answer to all stakeholders
- Stress-testing results by varying key assumptions

Actuarial Overconfidence – Exposure Rating

- Last year's profile vs. this year's profile
- Last year's gross loss ratio vs. this year's gross loss ratio
- What is not included in the exposure rate? For example, ECO/XPL in casualty treaties
- Reasonableness of the curve for the underlying portfolio
 - US: Industry Curves, Client specific ILFs, Curve fit to data
 - Non-US: Swiss Re curves, Power curves, Lloyd's industrial curve

Actuarial Overconfidence – Experience Rating

- Claims movements in the layer vs. last year's selected LDFs
- Actual vs. Expected
- Rate changes
 - Cedant vs. market statistics by class of business
 - Estimated last year vs. actual achieved consistently worse than estimated?
 - How are the rate changes calculated? Do they include claims inflation? Exposure adjustments?
- Other loadings ECO/XPL, Cat loads, "free layer" adjustment

Best way to manage overconfidence: institutionalize pricing & UW control cycle

Pricing and underwriting process elements

Data requirements

Actuarial methods employed Underwriting policies and rules Decision authorities and monitoring Quality assurance

Formal retrospective performance testing Data accurate and adequate? Pricing methods sufficiently robust? Policies and rules effective? Decision authorities appropriate? Variances between projected and actual experience within tolerances?

Source: CAE Zurich 2004 – Doug Collins-Tillinghast-Towers Perrin (Adapted and used with permission from Willis Towers Watson)

Overconfidence (374 actuarial respondents-2012)

Metaknowledge = understanding of the limits of knowledge

"Known unknowns" and recognition of "unknown unknowns"

We humans tend to believe we know much more than we do

- Development of metaknowledge not typically part of formal education
- Metaknowledge is rarely recognized or rewarded in practice
- Underwriters and actuaries are not immune!
 - Towers Watson "Confidence Quiz"

35

35

PartnerRe

Steve Lowe, CARe 2012

Measuring Confidence – Covid/Inflation Trends – Qs TBD

2022 CARe Seminar (CS10) - Measuring Actuarial Confidence

1. General Liability Average Annual Frequency Change from 2015 to 2019 (pre Covid)

Lower 90% Confidence Interval	
Upper 90% Confidence Interval	

2. General Liability Frequency Change from 2019 to 2020 (1st Covid year)

Lower 90% Confidence Interval	
Upper 90% Confidence Interval	

3. General Liability Frequency Change from 2020 to 2021 (2nd Covid year)

Lower 90% Confidence Interval	
Upper 90% Confidence Interval	

11. What is your name (Optional)

We are **asking 10 Qs** via Survey Monkey that will be left up during the course of David and Shani's CS10 presentations. **If you feel 90% of the time the answer will be between -15% to -5% then enter -15 and -5 in the 2 boxes.** Should **carefully** read the question being asked, such as LOB, frequency or severity, and time period.

"Answers" will be presented at the end of Shani's section. You can answer either **anonymously, or provide your name** at the end.

Measuring Confidence answers, comparing aggregated confidence interval ranges to the "Answers", will be provided in the **Tuesday linked session CS23 "Overinflated Wheels".** That session will also go deeper into the Covid/Inflation impacts in the Commercial and Personal Auto poll Q results.

Questions and Feedback...

Presenter:

David Fairchild, VP Managing Actuary

David.Fairchild@partnerre.com

How Understanding Civil Unrest, Social Inflation, Covid and Recent Inflation Trends can Prepare You for 2022 and 2023

Shani Clarke Actuarial Consultant Verisk Underwriting Solutions UK

13/06/2022

©Verisk Analytics, Inc. All rights reserved

Agenda

- 1. Civil Unrest
- 2. Social Inflation
- 3. Covid
- 4. Inflation
- **5. Recent Impacts**

Civil Unrest Section 1

The Maplecroft Civil Unrest Index

The Civil Unrest Index quantifies the risk of disruption to business caused by any incidents of unrest ranging from protests to rioting in 198 countries.

Civil Unrest

The index score is presented on a scale of 0.00-10.00, where 0.00 represents highest risk and 10.00 represents lowest risk. The risk category is based on the index score as follows:

© Verisk Maplecroft 2020

Civil Unrest – The Main Drivers

- Political polarization and distrust in the legitimacy of the electoral process
- Divisions over criminal justice
 I and police reform
 - Income inequality

The Impact on Insurers

2020 losses were heavily skewed by losses in May and June following the death of George Floyd and seemed the tail off at that point.

Businessowners Riot and Civil Commotion Losses

Commercial Property Riot and Civil Commotion Losses

Year	Losses	Year	Losses
2016	\$51,015	2016	\$2,592,906
2017	\$315,783	2017	\$1,355,114
2018	\$102,029	2018	\$640,511
2019	\$660,097	2019	\$402,862
2020	\$153,479,388	2020	\$86,849,354

© Verisk. Reported data is preliminary.

© Verisk. Reported data is preliminary.

The Impact on Insurers

Protest activity was not localized to one state, the losses are seen nationwide.

Top 5 Statewide Percentage Increases – Commercial Property and Businessowners Combined

State	Average Riot and Civil Commotion (2016-2019)	Riot and Civil Commotion (2020)	Percent Change in Riot and Civil Commotion Losses
Illinois	\$5,311	\$64,946,337	1,222,822%
Wisconsin	\$315	\$1,629,802	517,297%
Massachusetts	\$2,917	\$7,668,183	262,824%
Georgia	\$805	\$2,113,302	262,340%
Kentucky	\$363	\$638,852	176,135%

© Verisk. Reported data is preliminary.

2022 and beyond

Social Inflation Section 2

©Verisk Analytics, Inc. All rights reserved.

What is Social Inflation?

The increased costs of insurance claims resulting from:

• Larger jury verdicts

Driven by:

- Changes in the judicial landscape
 - Greater propensity to sue

Rise of social inflation | AGCS (allianz.com)

What is causing the changing loss experience?

Higher Jury Awards

- Upward trends in jury awards
- Distrust towards large corporations
- "Deep Pocket Syndrome"
- Use of Analytics

- Traumatic brain injury
- Medical advances

Court Closures and Settlement Trends

- Uncertainty around court reopening
- Delays in cases proceeding
- Increase in settled cases

What is causing the changing loss experience?

Workers' Compensation Claims

Increasingly more generous

Tort Reform

- Tort reform rollback including:
 - Non-economic damage caps
 - Punitive damages reforms

Litigation Financing

- 3rd party financing
- Non-Recourse Loan, Loans to Plaintiff, Investment types.

What the data shows us?

General Liability – Premises/Operations Accident Year Occ. Frequency

What the data shows us?

Overall General Liability vs Commercial Umbrella/Excess loss ratios

How can insurers respond?

- Data Analytics and Predictive Modelling
- Exposure Modelling
- Product

Covid Section 3

©Verisk Analytics, Inc. All rights reserved.

Verisk

General Liability – Class Groups Incurred Claim Count by Class Group

Figure 1: Incurred Claim Count (I+A)

General Liability – Cause of Loss Incurred Claim Count by Cause of Loss

General Liability – State Group Incurred Claim Count by State Group

Source: ISO SOLM – AQRQ, data through 9/30/2020

Considerations

Digitisation of the Market

Challenges

- Cyber-related exposures
- Effectiveness of distribution channels
- Fraud

Opportunities

These can be found at several distinct parts of the value chain:

- Pricing Models
- Underwriting Process
- Claims Handling
- Customer Experience and expectations
- Detect and Manage Fraud

Inflation Section 4

©Verisk Analytics, Inc. All rights reserved.

Historical USA inflation rates – 2021 estimated July 2021

©2022 Verisk Analytics, Inc. All rights reserved.

Verisk[®]

Historical UK inflation rates

Inflation - CPI UK Office for National Statistics Through December 2021

Construction costs

Commercial trend

Residential trend

Why volatility in Residential?

- Lumber vs. Steel & Concrete
- Higher labor prices for Commercial more stable (at the moment!)
- Building finishing (Elevators, Sprinklers, etc.)

Wage Inflation – BLS December 2021

Chart 2. Twelve-month percent change, not seasonally adjusted, civilian workers

4.0% increase year over year

Highest in 20 years

U.S. Bureau of Labor and Statistics

Effects of "minor" inflation

Consider the difference between 2% inflation and 4% on a long-tailed line, with a 15 year horizon

Effects of "minor" inflation

Consider the hypothetical difference between 2% inflation and 4% on a long-tailed line, with a 15-year horizon

Assume a UK insurer with "fully reserved" claims on a nominal and expected inflation basis

Expected year of payments Year 0	Nominal (today's date) Pound Sterling of expected ultimate loss	Reserved expected ultimate loss with 2% inflation assumption	Actual loss payments given realized 4% inflation	Difference
Year 2	£4M	£4.16M	£4.33M	£0.17M
Year 4	£3M	£3.25M	£3.52M	£0.27M
Year 6	£4M	£4.5M	£5.07M	£0.57M
Year 8	£6M	£7.03M	£8.24M	£1.21M
Year 10	£12M	£14.63M	£17.83M	£3.2M
Year 12	£10M	£12.68M	£16.08M	£3.4M
Year 14	£5M	£6.6M	£8.71M	£2.11M
Totals	£44M	£52.85M	£63.78M	£10.93M

©2022 Verisk Analytics, Inc. All rights reserved.

Recent Impacts Section 5

©Verisk Analytics, Inc. All rights reserved.

Recent Trends Impacted by Covid / Inflation – Total GL 2017 through 2021 Year-End (Preliminary)

GL showed a 29% frequency reduction in 2020 due to Covid, with similar depressed level in 2021. Average severities increased in 2020 and 2021 by 11% and 9%, compared to the 4-5% trends that we have been seeing in the past.

Questions:

- how long will it take for the frequencies to return to normal or new normal levels
- how much of this heightened inflation is expected to continue into 2022 and beyond

SOLM Qtr GL 2021 Q4 © Insurance Services Office 2022 For SOLM / E&R+ Clients Only

 Subline
 PremOps | Products | Other

 Class Group
 GL-Comp Op | GL-Contr | GL-CRR | GL-Lcl Prd | GL-Liquor | GL-Mfg | GL-OLT | GL-Pollution | GL-Prod

 Region
 Countrywide

 Cause of Loss
 All Causes of Loss

 Claim Size
 1 - <10k | 10k - <25k | >= 25k

 Company Speed
 Faster | Slower

	Claim Count	Severity	Premium
2020	0.669	1.152	0.990
2021	0.673	1.261	1.017
2022	?	?	?

of Claims (5 years) 580,607

Recent Trends Impacted by Covid / Inflation – GL Restaurants & Bars 2017 through 2021 Year-End (Preliminary)

Verisk Illustrative

This annual view of the quarterly data shows the YTY changes for frequency, severity, and loss ratio from 2017 through year-end 2021.

The large frequency reduction in 2020, has been offset by partial frequency increase and a large increase in severity for 2021. The average severity increase of around 10% for each of the last 3 years, has increased to almost 25% in 2021. The heightened recent inflation may cause a floor on settlements, potentially impacting results in 2022 and beyond

Subline	PremOps Products
Class Group	Restaurants and Bars
Region	Countrywide
Cause of Loss	All Causes of Loss
Claim Size	1 - <10k 10k - <25k >= 25k
Company Speed	Faster Slower

SOLM Qtr GL 2021 Q4 © Insurance Services Office 2022 For SOLM / E&R+ Clients Only

CvRR			
	Claim Count	Severity	Premium
2020	0.544	1.178	0.907
2021	0.642	1.406	0.923
2022	?	?	?

of Claims (5 years) 38,135

3. SOLM Infographic – GL Restaurants & Bars Updated through 12/31/2021 (Preliminary)

ISO Size-of-Loss Matrix

© Insurance Services Office, Inc., 2021 Market Segment: General Liability

Total General Liability

70%

60%

50%

40%

30%

20%

10%

0%

This exhibit shows the holistic analysis using standard SOLM Infographic, showing the combined impact of frequency and severity trends along with rate changes to produce on-level loss ratios. Note that for this category, the significant impact of Covid and inflation on the 2020 and 2021 loss ratios, primarily driven by a large reduction in frequency.

Additional analysis is needed to properly include the impact of Covid and inflation on parameter and loss ratio assessment, including making usage of industry average reductions due to Covid which may reverse in 2021 and 2022. If these Covid impacts to frequency begin to reverse, with heightened inflation, we could see a large rise in loss ratio in 2022.

All Companies - Restaurants and Bars All Year Trend: 5.36% (DeT=0%) Avg Duration: Rpt 1.7 / Paid 3.3 Years All Causes Of Loss Unlimited xs 0 Countrywide 45 45,000 Loss Ratio Frequency 40 40,000 35,000 35 30 30,000 25 25,000 20 20,000 15 15,000 10,000 10 5,000 5 0 0 2001 2004 2007 2010 2013 2016 2019 2001 2004 2007 2010 2013 2016 2019 1.20 BI Rate Index (Base = 2009) 87.3% 2-5yrs 1.00 59.9% 2-5yrs 0.80 32.0% 0.60 25.69 0.40 Paid 0.20 Rpt 3.3 1.7 LDF Duration 0.00

Verisk Illustrative

SOLM 2021 v1

Recent Trends Impacted by Covid / Inflation – GL Products 2017 through 2021 Year-End (Preliminary)

SOLM Qtr GL 2021 Q4

Not every GL category saw the big increase in severity that we saw with Restaurants and Bars. Looking at Products markets, we saw only a moderate increase in severity with continuing decreases in frequency leading to slight further reduction in loss ratios.

	Claim Count	Severity	Premium
2020	0.831	1.098	0.985
2021	0.806	1.181	1.006
2022	?	?	?

of Claims (5 years) 73,945

Impact of Covid/Heightened Inflation on 2020-2021 Cross Line Comparison - Frequency and Severities

Note: Values shown may not match selections shown

Verisk*

Illustrative

GL Sample Triangle – Pre vs. Post Covid

Subline
Class Group
Region
Cause of Loss
Claim Size
Company Speed

Entertainment and Recreation | Hotels and Motels | Restaurants and Bars | Schools Countrywide

All Causes of Loss 1 - <10k | 10k - <25k | >= 25k

PremOpe

1-<10k | 10k - <25k | >= 2 Slower

This exhibit shows a sample cumulative quarterly triangle for Incurred Indemnity. The large drop off in indemnity starting in 2020Q2 can be clearly seen with a gradual bounce back in quarters since.

Looking at development factors, we can see that these factors have increased in the Covid quarters from what we have seen in the past showing a lengthening pattern. Due to this change in factors, it is important to select the proper pattern for development as the calculation of ultimates can change significantly based on these assumptions.

Incurred Indemnity	Loss Year	Loss Month	3	6	9	12	15	18	21	24	27
	2017	3	12,986,765	24,585,150	28,025,667	31,522,452	33,375,628	36,542,795	39,812,419	41,377,044	42,881,917
	2017	6	13,379,979	26,442,338	31,621,484	34,344,058	36,754,622	37,705,510	40,324,617	42,159,622	46,348,010
	2017	9	12,755,620	23,707,952	28,958,385	32,708,063	35,610,202	39,113,093	43,203,739	46,990,559	49,826,984
	2017	12	10,995,879	22,295,441	26,041,934	31,209,357	34,412,694	36,358,716	39,371,370	42,923,200	46,468,535
	2018	3	14,305,945	23,842,980	26,477,180	30,312,888	33,581,617	35,294,478	39,353,856	39,833,878	41,311,357
	2018	6	14,124,973	22,747,567	25,920,620	27,125,996	29,899,525	32,865,568	35,885,880	36,995,077	39,352,043
	2018	9	15,085,205	26,564,290	32,459,853	34,049,244	38,179,258	40,857,234	43,662,596	46,377,747	49,546,428
	2018	12	13,832,055	22,781,539	26,187,857	28,927,808	30,163,114	34,406,407	37,906,840	41,069,395	42,425,294
	2019	3	14,635,263	24,641,084	28,343,451	31,295,762	35,175,836	40,060,953	42,850,286	47,405,417	48,075,583
	2019	6	15,062,756	25,736,269	31,910,835	34,825,105	40,820,736	43,188,128	46,497,140	48,403,053	49,297,703
	2019	9	13,425,461	24,672,926	28,602,372	34,065,357	36,602,993	40,383,078	44,912,278	47,135,400	52,942,202
	2019	12	14,285,965	24,477,721	29,931,993	31,761,105	34,584,569	39,552,936	41,928,174	43,130,436	47,429,957
	2020	3	13,276,295	23.475.238	25.779.045	28,734,885	31,701,357	34,519,618	37.623.945	41.178.269	
	2020	6	3 607 552	8 650 967	10 106 916	11 540 029	11 993 917	14 144 926	16 037 001	41,110,200	
	2020	9	8.827.758	17.306.620	19.063.778	21,229,860	22,988,850	25.137.358	10,001,001		
	2020	12	8.467.011	13.097.636	15.381.172	16,755,359	19,151,523	20,101,000			
	2021	3	9.000.827	22,436,424	25,761,010	29.439.533	10,101,020				
	2021	6	9.676.074	20,225,863	25,100,772	20,100,000					
	2021	9	10.487.807	21,715,737	20,100,112						
	2021	12	8,644,690	21,110,101							
			-,,								
			6/3	9/6	12/9	15/12	18/15	21/18	24/21	27/24	30/27
	2017	3	1.893	1.140	1.125	1.059	1.095	1.089	1.039	1.036	1.062
	2017	6	1.976	1.196	1.086	1.070	1.026	1.069	1.046	1.099	1.057
	2017	9	1.859	1.221	1.129	1.089	1.098	1.105	1.088	1.060	1.027
	2017	12	2.028	1.168	1.198	1.103	1.057	1.083	1.090	1.083	0.981
	2018	3	1.667	1.110	1.145	1.108	1.051	1.115	1.012	1.037	1.124
	2018	6	1.610	1.139	1.047	1.102	1.099	1.092	1.031	1.064	1.090
	2018	9	1.761	1.222	1.049	1.121	1.070	1.069	1.062	1.068	1.067
	2018	12	1.647	1.150	1.105	1.043	1.141	1.102	1.083	1.033	1.035
	2019	3	1.684	1.150	1.104	1.124	1.139	1.070	1.106	1.014	1.089
	2019	6	1.709	1.240	1.091	1.172	1.058	1.077	1.041	1.018	1.146
	2019	9	1.838	1.159	1.191	1.074	1.103	1.112	1.049	1.123	1.058
	2019	12	1.713	1.223	1.061	1.089	1.144	1.060	1.029	1.100	
	2020	3	1.768	1.098	1.115	1.103	1.089	1.090	1.094		
	2020	6	2.398	1.168	1.142	1.039	1.179	1.134			
	2020	9	1.960	1.102	1.114	1.083	1.093				
	2020	12	1.547	1.174	1.089	1.143					
	2024	3	2.402	4 4 4 9	4 4 4 2						
	2021	3	2.495	1,140	1.145						
	2021	6	2.493	1.140	1.145						

			3 - 6	6 - 9	9 - 12	12 - 15	15 - 18	18 - 21	21 - 24	24 - 27	27 - 30
0	ATA	2017-2019	1.782	1.177	1.111	1.096	1.090	1.087	1.056	1.061	1.067
0	ATA	2020-2021	2.047	1.155	1.120	1.092	1.121	1.112	1.094		
1	ATA	Last 7 Quarters	2.047	1.165	1.122	1.101	1.115	1.092	1.067	1.060	1.087
	ATU		5.996	2.930	2.515	2.241	2.036	1.826	1.672	1.568	1.479
	Ultimate		51,833,604	63,617,122	63,124,160	65,982,506	39,001,725	45,908,938	26,821,601	64,575,205	70,163,691
			1,227,360,324								

Verisk^{**}

Illustrative
Measuring Confidence – Covid/Inflation Trends (TBA)

Metrics for Pre Covid, 1 st Covid and 2 nd Covid year	90% CI		
	Lower	Upper	Actual
Total GL Frequency Change – 2015-2019			
Total GL Frequency Change – 2019-2020			
Total GL Frequency Change – 2020-2021			
Total GL Severity Change – 2015-2019			
Total GL Severity Change – 2019-2020			
Total GL Severity Change – 2020-2021			
Total CAu Frequency Change – 2019-2020			
Total CAu Severity Change – 2020-2021			
Total PAu Frequency Change – 2019-2020			
Total PAu Severity Change – 2020-2021			

Actual Results will be updated with final Qs asked. May swap out lines and may include eg UK Q(s) for 9 and/or 10.

Questions and Feedback

Ask Questions:

Presenter

Shani Clarke Shani.Clarke@verisk.com

> No part of this presentation may be copied or redistributed without the prior written consent of ISO. This material was used exclusively as an exhibit to an oral presentation. It may not be, nor should it be relied, upon as reflecting a complete record of the discussion.

