An Aggregate Trend Renewal Micro Model for Loss Reserves, with Inflation and Discount

#### Anas Abdallah • CAS Spring Meeting (2022)

joint work with:

Emmanuel Hamel • Ghislain Léveillé

Orlando, FL • May 16-18, 2022



2022 CAS Spring Meeting





Anas Abdallah • CAS Spring Meeting (2022)

An Aggregate Trend Renewal Process (ATRP) for Loss Reserves, with Inflation and Discount









#### Illustrations





An Aggregate Trend Renewal Process (ATRP) for Loss Reserves, with Inflation and Discount

# 1. Introduction

Anas Abdallah • CAS Spring Meeting (2022)

An Aggregate Trend Renewal Process (ATRP) for Loss Reserves, with Inflation and Discount

★ Ξ →



- Medical Malpractice Insurance
  - Indemnities
  - Expenses
- Aggregate Trend Renewal Model
  - Trend effects
  - Inflation and Discount Factors
- Loss Reserving
  - Macro-Level Reserving
  - Micro-Level Reserving

# Medical Malpractice

- Medical malpractice is generally defined as a professional negligence
- Need for medical professionals to obtain professional liability **insurance** to offset the risk and (high) costs of lawsuits
- Medical malpractice costs and premiums vary by specialties
- Medical malpractice regulations vary by country and even by jurisdiction within countries
- There are essentially two primary types of policies for medical malpractice : "claims-made" and "occurrence"

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Medical Malpractice



An Aggregate Trend Renewal Process (ATRP) for Loss Reserves, with Inflation and Discount

# 2. Loss Reserving

Anas Abdallah • CAS Spring Meeting (2022)

An Aggregate Trend Renewal Process (ATRP) for Loss Reserves, with Inflation and Discount

▲ 同 ▶ ▲ 国 ▶ ▲ 国

#### The insurance framework and reserving

#### Inverted production cycle

Insurer receives the price (premium) of the product before knowing its cost (claim)

Estimate this cost and hold enough capital

#### The insurance framework and reserving

#### Inverted production cycle ↓ Insurer receives the price (premium) of the product before knowing its cost (claim) ↓ Estimate this cost and hold enough capital ↓ Make sure the company has enough money put aside to pay all the claims that they are on the hook for : Loss **Reserving**

## Loss Reserving schools of thoughts

- Aggregated claims : Macro-Level Reserving
  - Loss Triangles
- Individual claims : Micro-Level Reserving
  - Granular Data

Anas Abdallah • CAS Spring Meeting (2022)

An Aggregate Trend Renewal Process (ATRP) for Loss Reserves, with Inflation and Discount

4 3 5 4

## From Macro-Level Reserving...

- The current reserving practice consists of using methods based on claims development triangles : Macro-Level Reserving
  - Triangles are organized by accident and dev. periods
- Traditional reserving methods have worked well in several circumstances in the past, however :
  - Limitations to provide robust and realistic estimates in more variable contexts
  - Limited interpretive and predictive power of the accident and development period parameters
  - Huge estimation error for the latest development periods (lack of observed aggregate amounts)
  - Inability to properly capture the pattern of claim development

・ 同 ト ・ ヨ ト ・ ヨ ト

#### ... to Micro-Level Reserving

- Big data era and increased need for more accurate reserving models
- Taking advantage of the information embedded in individual claims data
- Separates the estimation of the incurred but nor reported (IBNR) and the reported but not settled (RBNS) claims
- Allows for the incorporation of the detailed information about the individual claims

• • = = • • = =

# Macro vs Micro Loss Reserving

- Macro-Level Reserving
  - + Comparative ease of use (benchmark)
  - + Availability of triangle data
  - Heterogeneity of data
  - Predictive Power
- Micro-Level Reserving
  - + Accuracy
  - + More Flexibility
  - Availability of data
  - Expensive computing power

# 3. ATRP Model

Anas Abdallah • CAS Spring Meeting (2022)

An Aggregate Trend Renewal Process (ATRP) for Loss Reserves, with Inflation and Discount

▲ 同 ▶ ▲ 国 ▶ ▲ 国

### Context

- We use the model that has been proposed and described in Léveillé and Hamel (2017), but in a loss reserving framework
- Contribution to the loss reserving literature :
  - Introduction trend (on occurrence of the events and claims)
  - Inflation factor
  - Discount rate

4 3 b

### Context

- We use the model that has been proposed and described in Léveillé and Hamel (2017), but in a loss reserving framework
- Contribution to the loss reserving literature :
  - Introduction trend (on occurrence of the events and claims)
  - Inflation factor
  - Discount rate

We study their impacts on the Macro-level and Micro-level reserving methods

#### Trend renewal process (TRP)

- The Trend renewal process (TRP) model was first introduced rigorously by Lindqvist et al. (2003) in reliability theory
- Let  $\lambda(t)$  a non-negative function defined for  $t \geq 0$ , satisfying

$$\Lambda(t)=\int_0^t\lambda(u)du\ <\infty,\ t\ge 0\ ext{and}\ \Lambda(\infty)=\infty$$

The sequence of occurrence times {*T<sub>k</sub>*; *k* ∈ *N*\*} generates a TRP[*F*, λ(.)] if the sequence of transformed times {Λ(*T<sub>k</sub>*); *k* ∈ *N*\*} forms an ordinary renewal process for which the inter-occurrence times have a common (positive) distribution *F* and a deterministic trend function λ(*t*)

- 4 同 1 4 三 1 4 三 1

## Aggregate Trend renewal process (ATRP)

- Now let us introduce the aggregate trend renewal process (ATRP), that will be used as a « data generating process »
- We consider the following process, for  $1 \le i, j \le t$  :

$$Z_{i,j}(t) = \sum_{k=1}^{N(t)} I(T_k, \xi_k, \zeta_k; t, i, j) \{A_1(T_k + \xi_k + \zeta_k) X_k + A_2(T_k + \xi_k + \zeta_k) Y_k\}$$

- N(t) is a TRP[F, λ(.)] process generated by a sequence of continuous positive random variables {T<sub>k</sub>; k ∈ N<sup>\*</sup>}
- $T_k$  represents the **occurrence** time of the  $k^{th}$  event
- $\xi_k$  is the **delay** taken by the insured from  $T_k$  to **report** the claim to the insurer
- $\zeta_k$  is the **delay** taken by the insurer from  $T_k + \xi_k$  to **pay** the indemnity and the expenses

## Aggregate Trend renewal process (ATRP)

- $X_k$  represents the deflated amount of the  $k^{\text{th}}$  indemnity paid
- $Y_k$  represents the deflated amount of the  $k^{\text{th}}$  expenses paid
- A<sub>k</sub> = exp {-∫<sub>0</sub><sup>x</sup> β<sub>k</sub>(x)dx + ∫<sub>0</sub><sup>t</sup> α<sub>k</sub>(x)dx}, k = 1, 2, are the net discount factors at time t corresponding to the payments of the indemnities :

 $\alpha_i$  and  $\beta_i$  are the corresponding forces of inflation and interest

# Conditional ATRP

- Here, we will consider the incremental payments of the indemnities and expenses
- Let  $W_{i,j}(t)$  represent future incremental payments of the indemnities and expenses for the accident year *i* and development period *j* :

$$W_{i,j}(t) = Z_{i,j}(t)|B_i$$

• *B<sub>i</sub>* is related to the (strict) **lower** triangular matrix

・ 同 ト ・ ヨ ト ・ ヨ

# 4. Illustrations

Anas Abdallah • CAS Spring Meeting (2022)

An Aggregate Trend Renewal Process (ATRP) for Loss Reserves, with Inflation and Discount

★ Ξ →

# Data and hypotheses

- A real closed claims database from the state of Florida in USA is used for numerical calculations and calibration
- The database contains information on individual claims related to malpractice insurance
- We will focus on 11 years of data (2005-2016)
- We use the same conclusions for parameters estimation obtained from this data in Léveillé and Hamel (2017)
- These hypotheses include parameters calibration for : density functions of the delays of reporting and payment, the expenses and indemnities distributions, inflation and interest and trend function



- Macro-Model : GLM
- Micro-Model : ATRP

Anas Abdallah • CAS Spring Meeting (2022)

An Aggregate Trend Renewal Process (ATRP) for Loss Reserves, with Inflation and Discount

★ 3 → < 3</p>

## Model Selection

• Akaike Information criteria (AIC)

$$AIC = logL\left(\hat{\theta}; x\right) - p, \qquad (1)$$

where  $logL(\hat{\theta}; x)$  is the log-likelihood evaluated at the MLE  $\hat{\theta}$ , and p is the number of estimated parameters in the model. Based on this approach the model with the largest AIC is selected.

• Bayesian Information criteria (BIC)

$$BIC = logL\left(\hat{\theta}; x\right) - \frac{p}{2}log(n), \qquad (2)$$

and the largest statistic is again favored.

# Macro-Model : GLM (ODP)

- Model Calibration on data (upper triangle) generated by the ATRP model
- The fit statistics suggest the Over-Dispersed Poisson (ODP)

| Model                       | AIC        | BIC        |  |
|-----------------------------|------------|------------|--|
| Poisson Log-Link, Not       |            |            |  |
| overdispersed               | 11,800,261 | 11,800,307 |  |
| Poisson Log-Link,           |            |            |  |
| Overdispersed, Saddle Point | 2,010.078  | 2,056.06   |  |
| Approximation (ODP)         |            |            |  |
| Negative Binomial Log-Link  | 2,071.292  | 2,119.464  |  |
| Gamma Log-Link              | 2,071.319  | 2,119.492  |  |
| Gamma Inverse-Link          | 2,083.098  | 2,131.27   |  |

Macro-Model : GLM (ODP)

• We define the incremental claims as

$$Y_{i,j} = C_{i,j} - C_{i,j-1}, \ j \in \{1, ..., I\}, \ , \ \forall i.$$

• The predicted values of the runoff triangle will be obtained as followed :

$$E[Y_{i,j}] = \mu_{i,j} = \exp(\gamma + \omega_i + \psi_j),$$
  

$$Var[Y_{i,j}] = \varphi \ \mu_{i,j} = \varphi \ \exp(\gamma + \omega_i + \psi_j)$$

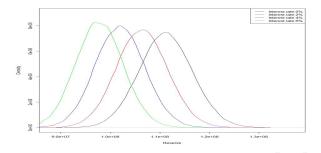
★ ∃ → ★ ∃

# Micro-Model : ATRP - conditional moments

- According to the hypotheses and definitions of section 3, a closed-form expression is obtained for the **first moment**  $E[W_{i,j}]$ .
- **Theorem** : According to the hypotheses and definitions of the section, the second moment  $E[W_{i,j}^2]$  is also obtained (and then variance).

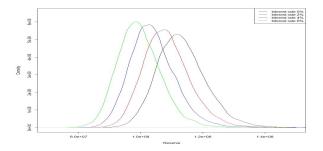
# **Reserves** Predictions

- Conditional ATRP model without Markov chain Monte Carlo (MCMC)
- Conditional ATRP model with Markov chain Monte Carlo (MCMC)
- GLM-ODP without Bootstrap
- GLM-ODP with Bootstrap


3.1

# **Reserves** Predictions

- Conditional ATRP model without Markov chain Monte Carlo (MCMC)
- Conditional ATRP model with Markov chain Monte Carlo (MCMC)
- GLM-ODP without Bootstrap
- GLM-ODP with Bootstrap
- Discounting impact
- Inflation impact


# Reserves Predictions - Discounting Impact (GLM-ODP)

- The Figure below presents the estimated reserve densities for discount rates of 0%, 2%, 4% and 6%, for the **GLM-ODP**
- The relatively weak asymmetry and the maximum of the density functions decrease with the decreasing of interest rate



# Reserves Predictions - Discounting Impact (ATRP)

- The Figure below presents the estimated reserve densities for discount rates of 0%, 2%, 4% and 6%, for the **ATRP** model
- The relatively weak asymmetry and the maximum of the density functions decrease with the decreasing of interest rate



### **Reserves Predictions - Inflation Impact**

- Assessing the inflation impact (without discounting) and comparing the **GLM-ODP** and the **ATRP** model
- Knowing the full claims developments from our generating process makes the **true reserve** available
- We observe a higher inflation impact for the ATRP model, compared to the classical methods
- A smaller coefficient of variation for the ATRP model

#### **Reserves Predictions - Inflation Impact**

|           | Inflation   |            |       | No-Inflation |            |       | Inflation impact |          |       |
|-----------|-------------|------------|-------|--------------|------------|-------|------------------|----------|-------|
| Method    | Reserve     | St. dev.   | CV    | Reserve      | St. dev.   | CV    | Reserve          | St. Dev. | CV    |
| True Res. | 113,983,485 |            | •     | 63,596,509   |            |       | 79.2%            | •        | •     |
| Mack      | 111,187,449 | 18,476,949 | 16.6% | 62,814,370   | 11,238,832 | 17.9% | 77%              | 64.4%    | -7.3% |
| ODP Boot. | 112,819,697 | 19,034,902 | 16.9% | 63,821,991   | 11,424,602 | 17.9% | 76.8%            | 66.6%    | -5.6% |
| ATRP      | 113,229,168 | 8,016,520  | 7.1%  | 63,347,117   | 4,426,208  | 7.0%  | 78.7%            | 81.1%    | 1.4%  |

Anas Abdallah • CAS Spring Meeting (2022)

An Aggregate Trend Renewal Process (ATRP) for Loss Reserves, with Inflation and Discount

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

# **Risk Capital Implications**

- The predictive reserves distribution is very informative for actuaries, but also from a risk capital standpoint
- Comply with regulatory standards (buffer for adverse scenarios)
- Insurance companies have to hold risk capital relating to (unexpected) losses that are incurred but not yet paid
- Risk Capital is the difference between the risk measure and the reserve : Risk Capital = TVaR<sub>95%</sub>(R) - TVaR<sub>60%-80%</sub>(R)

#### ↓

We study the combined impact of discounting and inflation on Risk Capital

### **Risk Capital Implications**

#### • Impact on Risk Capital - GLM-ODP Model

| ODP<br>Bootstrap<br>Discount<br>rate |             | With Inflation |                 | V          |            |                 |                     |
|--------------------------------------|-------------|----------------|-----------------|------------|------------|-----------------|---------------------|
|                                      | TVaR60      | TVaR95         | Risk<br>Capital | TVaR60     | TVaR95     | Risk<br>Capital | Inflation<br>impact |
| 0%                                   | 132,171,851 | 158,601,247    | 26,429,396      | 75,295,015 | 90,982,406 | 15,687,391      | 68,5%               |
| 2%                                   | 126,383,920 | 151,576,492    | 25,192,573      | 72,178,338 | 87,165,105 | 14,986,767      | 68,1%               |
| 4%                                   | 120,944,030 | 144,882,365    | 23,938,335      | 69,277,584 | 83,586,120 | 14,308,536      | 67,3%               |
| 6%                                   | 115,752,524 | 138,362,809    | 22,610,285      | 66,534,695 | 80,183,528 | 13,648,834      | 65,7%               |

Anas Abdallah • CAS Spring Meeting (2022)

▲ □ ▷ ▲ 관 ▷ ▲ 코 ▷ ▲ 코 ▷ ▲ 로 ♡ ♀ ( An Aggregate Trend Renewal Process (ATRP) for Loss Reserves, with Inflation and Discount

### **Risk Capital Implications**

#### • Impact on Risk Capital - ATRP Model

| ATRP<br>model    |             | With Inflation |              | 7                         |            |              |                     |
|------------------|-------------|----------------|--------------|---------------------------|------------|--------------|---------------------|
| Discount<br>rate | TVaR60      | TVaR95         | Risk Capital | TVaR60                    | TVaR95     | Risk Capital | Inflation<br>impact |
| 0%               | 120,921,634 | 132,655,648    | 11,734,013   | 67,696,362                | 74,134,396 | 6,438,034    | 82,3%               |
| 2%               | 115,701,240 | 126,805,051    | 11,103,811   | 64,932,597                | 71,075,991 | 6,143,393    | 80,7%               |
| 4%               | 110,839,934 | 121,413,899    | 10,573,964   | 62,394,6 <mark>4</mark> 8 | 68,296,073 | 5,901,425    | 79,2%               |
| 6%               | 106,366,460 | 116,332,116    | 9,965,657    | 60,009,379                | 65,689,797 | 5,680,418    | 75,4%               |

Anas Abdallah • CAS Spring Meeting (2022)

An Aggregate Trend Renewal Process (ATRP) for Loss Reserves, with Inflation and Discount

→ < ∃ →</p>

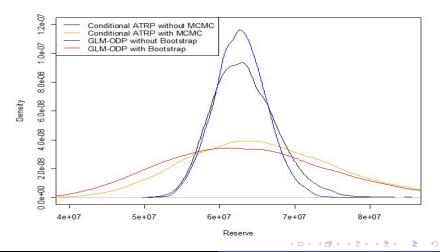
## Risk Capital Implications - Inflation and Discount

- Impact of the inflation on the risk capital is very high for both models
- This finding confirms the importance of incorporating the inflation analysis in loss reserves and risk capital analyses
- The inflation impact seems to be slightly correlated, negatively, with the discount factor
- Also, independently from the inflation, the risk capital decreases when we increase the discount factor

A (1) > A (2) > A

## Risk Capital Implications - Models Comparison

- Inflation impact seems to be constantly higher for the ATRP model with MCMC, compared to the GLM-ODP model with Bootstrap
- GLM-ODP model underestimates the impact of the inflation on the Risk Capital (this is consistent with the reserves findings)


## Risk Capital Implications - Models Comparison

- Inflation impact seems to be constantly higher for the ATRP model with MCMC, compared to the GLM-ODP model with Bootstrap
- GLM-ODP model underestimates the impact of the inflation on the Risk Capital (this is consistent with the reserves findings)
- Inflation is explicitly incorporated in the ATRP model
- The ODP model only incorporates the inflation impact through the estimated parameters
- Discount factor is not applied at the same time for both models (due to their different forms)

### Risk Capital Implications - Parameter uncertainties

- The two models have relatively the same behavior at the tail of the distribution (more conservative)
- This difference is also explained by the parameter uncertainties
- We observe that the incorporation of parameters uncertainty (parameter risk) is over-estimating the risk capital
- We observe a lighter tailed distribution (a much less conservative scenario) without parameter uncertainties

#### **Risk Capital Implications - Parameter uncertainties**



Anas Abdallah • CAS Spring Meeting (2022)

An Aggregate Trend Renewal Process (ATRP) for Loss Reserves, with Inflation and Discount

# 5. Concluding Remarks

Anas Abdallah • CAS Spring Meeting (2022)

An Aggregate Trend Renewal Process (ATRP) for Loss Reserves, with Inflation and Discount

. . . . . .

## **Concluding Remarks**

With the conditional ATRP model, we have incorporated many useful features :

- Separating the expenses and indemnities
- Delays before reporting the claims and before payments
- Inflation and Discount
- A Trend renewal model for the (accidents) counting process

## **Concluding Remarks**

With the conditional ATRP model, we have incorporated many useful features :

- Separating the expenses and indemnities
- Delays before reporting the claims and before payments
- Inflation and Discount
- A Trend renewal model for the (accidents) counting process
- Flexibility : assumptions can be relaxed if the economic environment or legislative and regulatory measures are changing

A (1) > A (2) > A

#### Limitations and extensions

- Work in progress
  - Evaluating the model assumptions impact, under different scenarios (sensitivity analysis)
  - Incorporating stochastic inflation and discount (more realistic conditions of investments and credits)

4 3 6 4 3

#### Limitations and extensions

#### Work in progress

- Evaluating the model assumptions impact, under different scenarios (sensitivity analysis)
- Incorporating stochastic inflation and discount (more realistic conditions of investments and credits)

#### Extensions

- P&C : Auto Coverages (example : Accident Benefits with Disability Income) with real-world data
- Dependence between coverages (Multivariate Trend Renewal Model)

・ 同 ト ・ ヨ ト ・ ヨ ト

## Selected References

- Abdallah, A., Boucher, J.-P., and Cossette, H. (2015). Modeling Dependence Between Loss Triangles with Hierarchical Archimedean Copulas. ASTIN Bulletin.
- Bhat VN (2001) Medical malpractice : a comprehensive analysis. Auburn House, Connecticut
- Charpentier, A. and Pigeon, M. (2016). Macro vs micro methods in non-life claims reserving an econometric perspective. Risks, 4(2), 12.
- Léveillé, G. and Hamel, E. (2017). A compound trend renewal model for medical/professional liabilities. European Actuarial Journal, 7(2), 435-463.
- Lindqvist BH, Elvebakk G, Heggland K (2003) The trend renewal process for statistical analysis of repairable systems. Technometrics 45(1) :31–44
- Wüthrich, M. and Merz, M. (2008). Stochastic Claims Reserving Methods in Insurance. New York - Chichester : Wiley.

#### End of the presentation

# Thank you for your attention

Anas Abdallah • CAS Spring Meeting (2022)

An Aggregate Trend Renewal Process (ATRP) for Loss Reserves, with Inflation and Discount

#### Questions?



#### Contact :

#### anasabdallah@mcmaster.ca

