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Introduction



Actuarial Loss Reserving

Ï Determine the outstanding liability for policies issued in the past.

Ï An estimate of the outstanding liability needs to be recorded in the annual

statement.

Ï It represents the largest liability amount on the balance sheet.

Ï Two objectives :

Ï maximum accuracy ; and

Ï better understanding of the underlying components of the risk.
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Collective Approaches

Loss reserving is traditionally based on an aggregated dataset (run-off triangle).

Occurrence Development period

period 1 2 3 4 5 6

1 C11 C12 C13 C14 C15 C16

2 C21 C22 C23 C24 C25 C26

3 C31 C32 C33 C34 C36

4 C41 C42 C43 C46

5 C51 C52 C56

6 C61 C66

Table 1: Cumulative claims amounts
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Collective approaches

Ï There are many classical (or aggregate, or collective) methods to evaluate

reserves.

Ï Widely discussed in the literature, e.g. Stochastic claims reserving methods

in insurance 1 by M.V. Wüthrich and M. Merz, or Estimating unpaid claims

using basic techniques 2 by J. Friedland, J. for an extensive discussion of

existing methods.

Ï While insurance companies always had access to very detailed information,

computational and cultural limitations have traditionally prevented their

use.

Ï Nowadays, practitioners have the ability to perform more rigorous reserving

models with more detailed information, but traditional collective methods

are still dominant in loss reserving practice.

1. Wiley Finance
2. Casualty Actuarial Society, vol. 201
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Individual Dynamics
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Individual Approaches

Ï Individual loss reserving approaches can be traced to the 1980s.

Ï It is in 2007 that the subject really took off with the availability of detailed

data, and the development of computing resources.

Ï On the one hand, statistical learning techniques are widely used in the field

of data analytic.

Ï On the other hand, only few approaches based on these techniques have

been developed in individual loss reserving models.

Ï In this talk, we focus on tree-based models.
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Open Claims

Ï Almost all individual models assume the availability of many closed files.

Ï In practice, this assumption is never verified, and the actuary must include

open files in the modeling process.

Ï Two families of approaches : (A) strategies based on survival analysis, and

(B) strategies based on imputation of missing data.

Ï The main objective of this talk is to investigate both strategies through 2

actuarial models : a tree-based censored regression model from O. Lopez,

X. Milhaud and P.E. Thérond (strategy A), and an individual loss reserving

model using imputation from F. Duval and M. Pigeon (strategy B).
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2 Strategies
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No Strategy : Including only Closed Claims

Ï Actually, there is a third way : including only closed claims in the modeling

process.

Ï Obviously, this is not a good strategy : it leads to building the model using

a too high proportion of ”simple cases” and underestimating the risk

associated with the portfolio.
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First Strategy : more Focus on Closed Claims

Ï Main idea : using a weighted regression (tree) procedure for censored data

to correct the selection bias.

Ï We only keep closed claims in the modeling process, but we associate each

claim with a weight according to the duration of the claim.

Ï Thus, the longest (more complex) claims will have higher weights and vice

versa.
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Second strategy : Complete all Claims

Ï Main idea : artificially generating values, or pseudo-responses, for all open

files in order to ”complete” the portfolio.

Ï We use classical approaches such as Chain-Ladder or (individual)

generalized linear models to complete open claims.

Ï We obtain a predictive distribution for each of the pseudo-responses so we

can choose what we will use (mean, quantile, etc.) in the modeling process.
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A Toy Example to Illustrate how

it Works



Artificial Portfolio

Table 2: Portfolio for the toy example

Claim id Acc. year Dev. year 1 Dev. year 2 Dev. year 3 Status (val. date)

1 2000 200 400 100 Closed

2 2000 300 400 150 Closed

3 2001 250 450 − Open

4 2001 300 500 − Open

5 2001 350 600 − Closed

6 2002 400 − − Open

7 2002 200 − − Open

The valuation date is January 1st, 2003.
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Strategy A

Ï n= 7 claims in the portfolio.

Ï Kaplan-Meier (KM) weights are defined by

wk =
(

δk

n−k +1

)k−1∏
i=1

(
n− i

n− i +1

)δi
, k = 2, . . . ,n−1, (1)

with w1 = δ1/n, and wn =∏n−1
i=1

(
n−i

n−i+1

)δi
.

Ï δk = 1 for closed claims and 0 otherwise.

Ï In the CART algorithm, the empirical cdf is replaced by

F̂Z (x)=
n∑

k=1

wk I(Zk ≤ x).
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Results with Strategy A

Table 3: Portfolio for a strategy based on survival analysis

Claim id Paid Duration (Z) Status (val. date) wclass. wKM Pred. value

1 700 2.9930 Closed 1/7 0.4 −
2 850 3.0040 Closed 1/7 0.4 −
3 700 2.0013 Open 1/7 0 950

4 800 2.0024 Open 1/7 0 950

5 950 1.9911 Closed 1/7 0.2 −
6 400 0.9935 Open 1/7 0 950

7 200 1.0095 Open 1/7 0 950

R̂RBNS = (950−700)+ (950−800)+ (950−400)+ (950−200)= 1,700.
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Strategy B

Ï We consider a generalized linear model with the over-dispersed Poisson

distribution and a logarithmic link function (occurrence and development

years as covariates).

Ï We use a quantile q of the ODP distribution as pseudo-responses. We

(should) determine q = 0.9 using cross-validation.

Ï In the CART algorithm, we include all 7 closed, or artificially closed, claims

in the portfolio.
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Results with Strategy B

Table 4: Portfolio for a strategy based on imputation of missing data

Claim id Paid Status (val. date) Exp. value Pseudo-resp. Pred. value

1 700 Closed − 700 −
2 850 Closed − 850 −
3 700 Open 857 895 934.5

4 800 Open 957 997 934.5

5 950 Closed − 950 −
6 400 Open 1,058 1,100 1,100

7 200 Open 858 896 934.5

R̂RBNS = (934.5−700)+ (934.5−800)+ (1,100−400)+ (934.5−200)= 1,788.
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Numerical Applications



Dataset(s)

Ï To respect a ”replicability” criteria, we use simulated data by the Individual

Claims History Simulation Machine, or ICHSM, described in

→ A. Gabrielli and M.V. Wüthrich (2018). An individual claims history

simulation machine. Risks, 6, 29.

Ï It is a stochastic simulation machine that generates individual claims

histories of non-life insurance claims.

Ï Based on neural networks calibrated on real, but unknown to us and to the

public, non-life insurance data.

Ï Few covariates : lines of business (LoB), labor sector of the injured (cc),

age of the injured (age), part of the body injured (inj part) and reporting

delay (RepDel).
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General Structure
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Analyzes

Using this procedure, we compare the performance of several approaches :

Ï Mack’s model with bootstrap (Gamma distribution) ;

Ï collective over-dispersed Poisson model for reserves ;

Ï tree-based model using strategies based on survival analysis (strategy A),

and

Ï tree-based model using strategies based on imputation (strategy B).
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Analyzes

Ï For strategy A, we consider two models :

M1 where the duration and the severity are modeled in a single step,

and

M2 where the duration is first modeled, then the severity.

Ï For strategy B, we consider two models :

M3 using only occurrence and developments years as covariates, and

M4 using all covariates.
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Analyzes

All approaches are applied to three scenarios

(1) one line of business without inflation (mainly detailed in this talk),

(2) two lines of business without inflation), and

(3) two lines of business with inflation in the frequency.
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Scenario I : one Line of Business and no Inflation

We construct a validation dataset containing 1,060 claims,

1,060×12= 12,720 annual photographs and accident years between 1994 and

2005.

Table 5: Validation dataset (in $1,000) for Scenario I

Valuation date % of censored data RBNS amount IBNR amount

01/01/2005 11.9 350 4

01/01/2006 11.7 406 8

01/01/2007 7.7 260 1

01/01/2008 6.6 192 1

01/01/2009 5.4 162 0

01/01/2010 4.2 124 0

01/01/2011 3.7 93 0

01/01/2012 2.6 68 0
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Hyperparaters for the Strategy B

Ï We must first determine the level (quantile) q to be used in the completion

of the databases.

Ï We generate databases of size 2,000 and calculate the mean absolute error

of prediction (MAE) for a grid of values of q.

Ï Selected values are q̂(2006,3) = 0.85, q̂(2006,4) = 0.85, q̂(2010,3) = 0.8,

q̂(2010,4) = 0.7 q̂(2012,3) = 0.6 and q̂(2012,4) = 0.4, where q̂(i ,j) is the selected

quantile for estimator j (j = 3 : only occ. and dev. years as covariates and

j = 4 : all covariates) and valuation year i .
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Hyperparaters for the Strategy B
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Figure 1: MAE of prediction as a function of the level q for a glm (ODP) using only

occurrence and development years as covariates (solid line) and all covariates (broken

line).
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Scenario I : Results (2006)
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Figure 2: Predictive distribution of the reserve amount. The observed value is

$414,000 for 2006.
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Scenario I : Results (2010)
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Figure 3: Predictive distribution of the reserve amount. The observed value $124,000

for 2010.
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Scenario I : Results (2012)
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Figure 4: Predictive distribution of the reserve amount. The observed value is $68,000

for 2012.
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Remarks

Ï Tree M1 model (blue line) produces very variable reserves resulting in very

high expected values and very flattened predictive distributions.

Ï This effect is less pronounced for a more mature portfolio because there are

much fewer open claims.

Ï Tree M2 model (red line) is much more stable, which is mainly due to the

fact that there is more data to estimate I(Y > z) than I(M >m,Y > z).
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Remarks

Ï Estimators M3 and M4 offer similar performance, which seems to indicate

that the use of individual explanatory variables when imputing missing

values does not significantly improve the performance of the model.

Ï We still add a caveat to this remark due to the small number of micro-level

covariates in the database.

Ï Estimators M3 and M4 require much shorter computation times than

estimators M1 and M2.
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Scenario I : Results (2006 - Strategy A)
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Figure 5: Predictive distribution of the reserve amount using all claims (solid lines)

and only closed claims (broken lines) in the calibration process.
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Scenario I : Results (2006 - Strategy B)
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Figure 6: Predictive distribution of the reserve amount using all claims (solid lines)

and only closed claims (broken lines) in the calibration process.
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Remarks

Ï We confirm that, in practically all cases, the fact of not considering the

open files in the calibration process leads to an underestimation of the risk.

Ï This underestimation is particularly important for estimators based on

strategy B.
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Conclusion



Conclusion

Ï Strategy in which open files would be removed from the calibration process

is not advisable.

Ï The two estimators (M1 and M2) proposed in strategy A behave quite

differently in all scenarios. The estimator M2 should be preferred given the

stability it has shown compared to M1 which varies greatly.

Ï The performance of the estimators (M3 and M4) based on strategy B is

rather similar in the three scenarios indicating that the individual

information embedded in the covariates used in the imputation of missing

data does not guide the model to better results.

Ï The two estimators (M3 and M4) outperform the ones of strategy A based

on Kaplan-Meier weights regarding computation time.
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