

Using Open Files for Individual Loss Reserving in Property and Casualty Insurance

M. Pigeon and H. Cossette CS-26

Université du Québec à Montréal (UQAM) and Université Laval

- 1. Introduction
- 2. 2 Strategies
- 3. A Toy Example to Illustrate how it Works
- 4. Numerical Applications
- 5. Conclusion

Introduction

- ► Determine the outstanding liability for policies issued in the past.
- An estimate of the outstanding liability needs to be recorded in the annual statement.
- ► It represents the largest liability amount on the balance sheet.
- ► Two objectives :
 - maximum accuracy; and
 - ▶ better understanding of the underlying components of the risk.

Loss reserving is traditionally based on an aggregated dataset (run-off triangle).

Occurrence	Development period					
period	1	2	3	4	5	6
1	<i>C</i> ₁₁	<i>C</i> ₁₂	C ₁₃	<i>C</i> ₁₄	C ₁₅	C ₁₆
2	C_{21}	C ₂₂	C ₂₃	C ₂₄	C_{25}	<i>C</i> ₂₆
3	C_{31}	C ₃₂	C ₃₃	C ₃₄		<i>C</i> ₃₆
4	C_{41}	C ₄₂	C ₄₃			C ₄₆
5	C_{51}	C_{52}				<i>C</i> ₅₆
6	C_{61}					<i>C</i> ₆₆

Table 1: Cumulative claims amounts

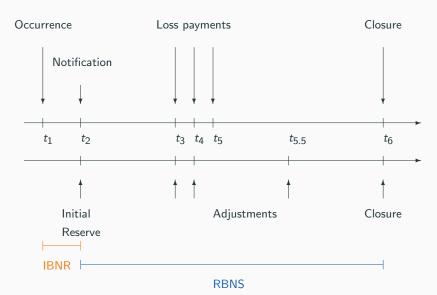
Collective approaches

- There are many classical (or aggregate, or collective) methods to evaluate reserves.
- ► Widely discussed in the literature, e.g. Stochastic claims reserving methods in insurance¹ by M.V. Wüthrich and M. Merz, or Estimating unpaid claims using basic techniques² by J. Friedland, J. for an extensive discussion of existing methods.
- While insurance companies always had access to very detailed information, computational and cultural limitations have traditionally prevented their use.
- Nowadays, practitioners have the ability to perform more rigorous reserving models with more detailed information, but traditional collective methods are still dominant in loss reserving practice.

^{1.} Wiley Finance

^{2.} Casualty Actuarial Society, vol. 201

Individual Dynamics

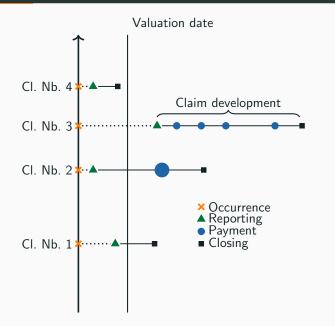


- ▶ Individual loss reserving approaches can be traced to the 1980s.
- It is in 2007 that the subject really took off with the availability of detailed data, and the development of computing resources.
- On the one hand, statistical learning techniques are widely used in the field of data analytic.
- On the other hand, only few approaches based on these techniques have been developed in individual loss reserving models.
- ▶ In this talk, we focus on tree-based models.

- ► Almost all individual models assume the availability of many closed files.
- In practice, this assumption is never verified, and the actuary must include open files in the modeling process.
- Two families of approaches : (A) strategies based on survival analysis, and
 (B) strategies based on imputation of missing data.
- The main objective of this talk is to investigate both strategies through 2 actuarial models : a tree-based censored regression model from O. Lopez, X. Milhaud and P.E. Thérond (strategy A), and an individual loss reserving model using imputation from F. Duval and M. Pigeon (strategy B).

2 Strategies

Portfolio



8/34

- Actually, there is a third way : including only closed claims in the modeling process.
- Obviously, this is not a good strategy : it leads to building the model using a too high proportion of "simple cases" and underestimating the risk associated with the portfolio.

- Main idea : using a weighted regression (tree) procedure for censored data to correct the selection bias.
- ► We only keep closed claims in the modeling process, but we associate each claim with a weight according to the duration of the claim.
- Thus, the longest (more complex) claims will have higher weights and vice versa.

- Main idea : artificially generating values, or *pseudo-responses*, for all open files in order to "complete" the portfolio.
- ► We use classical approaches such as Chain-Ladder or (individual) generalized linear models to complete open claims.
- ▶ We obtain a predictive distribution for each of the pseudo-responses so we can choose what we will use (mean, quantile, etc.) in the modeling process.

A Toy Example to Illustrate how it Works

Table 2: Portfolio for the toy example

Claim id	Acc. year	Dev. year 1	Dev. year 2	Dev. year 3	Status (val. date)
1	2000	200	400	100	Closed
2	2000	300	400	150	Closed
3	2001	250	450	-	Open
4	2001	300	500	_	Open
5	2001	350	600	_	Closed
6	2002	400	_	_	Open
7	2002	200	-	-	Open

The valuation date is January 1st, 2003.

- ▶ n = 7 claims in the portfolio.
- ▶ Kaplan-Meier (KM) weights are defined by

$$w_{k} = \left(\frac{\delta_{k}}{n-k+1}\right) \prod_{i=1}^{k-1} \left(\frac{n-i}{n-i+1}\right)^{\delta_{i}}, \qquad k = 2, \dots, n-1,$$
(1)

with
$$w_1 = \delta_1 / n$$
, and $w_n = \prod_{i=1}^{n-1} \left(\frac{n-i}{n-i+1} \right)^{\delta_i}$.

- $\delta_k = 1$ for closed claims and 0 otherwise.
- ▶ In the CART algorithm, the empirical cdf is replaced by

$$\widehat{F}_{Z}(x) = \sum_{k=1}^{n} w_{k} \mathbb{I}(Z_{k} \leq x).$$

Table 3: Portfolio for a strategy based on survival analysis

Claim id	Paid	Duration (<i>Z</i>)	Status (val. date)	w ^{class.}	w ^{KM}	Pred. value
1	700	2.9930	Closed	1/7	0.4	-
2	850	3.0040	Closed	1/7	0.4	_
3	700	2.0013	Open	1/7	0	950
4	800	2.0024	Open	1/7	0	950
5	950	1.9911	Closed	1/7	0.2	_
6	400	0.9935	Open	1/7	0	950
7	200	1.0095	Open	1/7	0	950

 $\widehat{R}^{\text{RBNS}} = (950 - 700) + (950 - 800) + (950 - 400) + (950 - 200) = 1,700.$

- ► We consider a generalized linear model with the over-dispersed Poisson distribution and a logarithmic link function (occurrence and development years as covariates).
- ► We use a quantile q of the ODP distribution as pseudo-responses. We (should) determine q = 0.9 using cross-validation.
- In the CART algorithm, we include all 7 closed, or artificially closed, claims in the portfolio.

Table 4: Portfolio for a strategy based on imputation of missing data

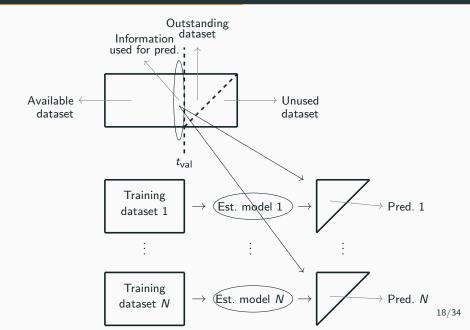
Claim id	Paid	Status (val. date)	Exp. value	Pseudo-resp.	Pred. value
1	700	Closed	-	700	-
2	850	Closed	_	850	_
3	700	Open	857	895	934.5
4	800	Open	957	997	934.5
5	950	Closed	_	950	-
6	400	Open	1,058	1,100	1,100
7	200	Open	858	896	934.5

 $\widehat{R}^{\text{RBNS}} = (934.5 - 700) + (934.5 - 800) + (1,100 - 400) + (934.5 - 200) = 1,788.$

Numerical Applications

- ► To respect a "replicability" criteria, we use simulated data by the *Individual Claims History Simulation Machine*, or ICHSM, described in
 → A. Gabrielli and M.V. Wüthrich (2018). An individual claims history simulation machine. *Risks*, 6, 29.
- It is a stochastic simulation machine that generates individual claims histories of non-life insurance claims.
- Based on neural networks calibrated on real, but unknown to us and to the public, non-life insurance data.
- ▶ Few covariates : lines of business (LoB), labor sector of the injured (cc), age of the injured (age), part of the body injured (inj_part) and reporting delay (RepDel).

General Structure



Using this procedure, we compare the performance of several approaches :

- Mack's model with bootstrap (Gamma distribution);
- ► collective over-dispersed Poisson model for reserves;
- ► tree-based model using strategies based on survival analysis (strategy A), and
- ► tree-based model using strategies based on imputation (strategy **B**).

► For strategy **A**, we consider two models :

M1 where the duration and the severity are modeled in a single step, and

M2 where the duration is first modeled, then the severity.

► For strategy **B**, we consider two models :

*M*3 using only occurrence and developments years as covariates, and *M*4 using all covariates.

All approaches are applied to three scenarios

- (1) one line of business without inflation (mainly detailed in this talk),
- (2) two lines of business without inflation), and
- (3) two lines of business with inflation in the frequency.

Scenario I : one Line of Business and no Inflation

We construct a validation dataset containing 1,060 claims, $1,060 \times 12 = 12,720$ annual photographs and accident years between 1994 and 2005.

Valuation date	% of censored data	RBNS amount	IBNR amount
01/01/2005	11.9	350	4
01/01/2006	11.7	406	8
01/01/2007	7.7	260	1
01/01/2008	6.6	192	1
01/01/2009	5.4	162	0
01/01/2010	4.2	124	0
01/01/2011	3.7	93	0
01/01/2012	2.6	68	0

Table 5: Validation dataset (in \$1,000) for Scenario I

- ▶ We must first determine the level (quantile) *q* to be used in the completion of the databases.
- ▶ We generate databases of size 2,000 and calculate the mean absolute error of prediction (MAE) for a grid of values of q.

► Selected values are $\hat{q}^{(2006,3)} = 0.85$, $\hat{q}^{(2006,4)} = 0.85$, $\hat{q}^{(2010,3)} = 0.8$, $\hat{q}^{(2010,4)} = 0.7 \quad \hat{q}^{(2012,3)} = 0.6$ and $\hat{q}^{(2012,4)} = 0.4$, where $\hat{q}^{(i,j)}$ is the selected quantile for estimator j (j = 3 : only occ. and dev. years as covariates and j = 4 : all covariates) and valuation year i.

Hyperparaters for the Strategy B

Eval. date 01/01/2012 - Scenario I

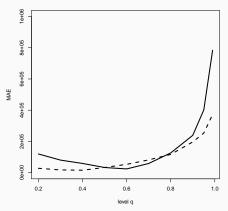
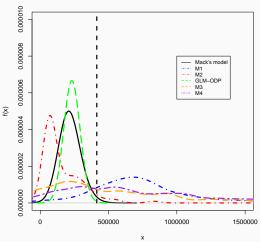


Figure 1: MAE of prediction as a function of the level q for a glm (ODP) using only occurrence and development years as covariates (solid line) and all covariates (broken line).

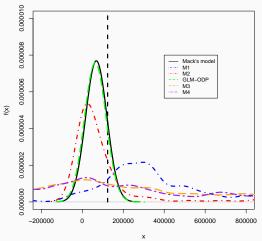
Scenario I : Results (2006)



Val. date 01/01/2006 - Scenario I

Figure 2: Predictive distribution of the reserve amount. The observed value is \$414,000 for 2006.

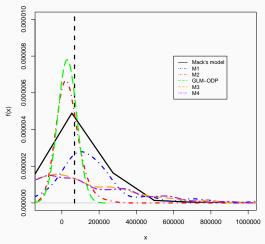
Scenario I : Results (2010)



Val. date 01/01/2010 - Scenario I

Figure 3: Predictive distribution of the reserve amount. The observed value 124,000 for 2010.

Scenario I : Results (2012)



Val. date 01/01/2012 - Scenario I

Figure 4: Predictive distribution of the reserve amount. The observed value is 68,000 for 2012. 27/34

- ► Tree *M*1 model (blue line) produces very variable reserves resulting in very high expected values and very flattened predictive distributions.
- This effect is less pronounced for a more mature portfolio because there are much fewer open claims.
- ► Tree M2 model (red line) is much more stable, which is mainly due to the fact that there is more data to estimate I(Y > z) than I(M > m, Y > z).

- ► Estimators *M*3 and *M*4 offer similar performance, which seems to indicate that the use of individual explanatory variables when imputing missing values does not significantly improve the performance of the model.
- We still add a caveat to this remark due to the small number of micro-level covariates in the database.
- ► Estimators *M*3 and *M*4 require much shorter computation times than estimators *M*1 and *M*2.

Scenario I : Results (2006 - Strategy A)

Val. date 01/01/2006 - Scenario I

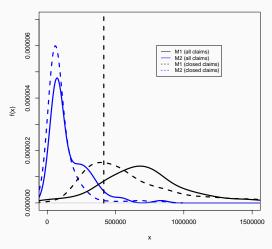
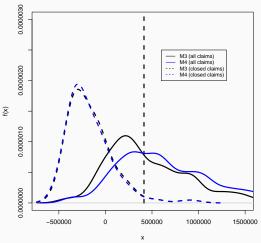


Figure 5: Predictive distribution of the reserve amount using all claims (solid lines) and only closed claims (broken lines) in the calibration process.

Scenario I : Results (2006 - Strategy B)



Val. date 01/01/2006 - Scenario I

Figure 6: Predictive distribution of the reserve amount using all claims (solid lines) and only closed claims (broken lines) in the calibration process. 31/34

- We confirm that, in practically all cases, the fact of not considering the open files in the calibration process leads to an underestimation of the risk.
- ► This underestimation is particularly important for estimators based on strategy **B**.

Conclusion

- Strategy in which open files would be removed from the calibration process is not advisable.
- ► The two estimators (*M*1 and *M*2) proposed in strategy **A** behave quite differently in all scenarios. The estimator *M*2 should be preferred given the stability it has shown compared to *M*1 which varies greatly.
- ► The performance of the estimators (*M*3 and *M*4) based on strategy **B** is rather similar in the three scenarios indicating that the individual information embedded in the covariates used in the imputation of missing data does not guide the model to better results.
- ► The two estimators (*M*3 and *M*4) outperform the ones of strategy **A** based on Kaplan-Meier weights regarding computation time.

- Cossette, H. and Pigeon, M. (2021). A Comparison of Two Individual Tree-Based Loss Reserving Methods. Submitted.
- Duval, F., and Pigeon, M. (2019). Individual loss reserving using a gradient boosting-based approach. *Risks*, 7, 79.
- Lopez, O., Milhaud, X., and Thérond, P. E. (2016). Tree-based censored regression with applications in insurance. *Electronic Journal of Statistics*, 10(2), 2685-2716.
- Lopez, O., Milhaud, X., and Thérond, P. E. (2019). A tree-based algorithm adapted to microlevel reserving and long development claims. ASTIN Bulletin, 49(3), 741-762.