
git tutorial



What we'll cover

• Tech check

• Why?

• Basic operations

• Moving to GitHub

• Branching



Tech check

1. Have you installed git?

2. Do you have one of the following:
• RStudio

• Atom

• GitHub desktop

• Sourcetree

• Something else?

3. Make sure you can find a command prompt
• Most decent IDEs make this easy



Why?



Alternatives

• Filename

• E-mail

• Office suite/cloud backup

• Track changes





Filename as a version control system

• Absolutely no non-manual governance
• Naming convention is a social contract
• No way to enforce this with technology

• Not foolproof at all
• Nothing to stop the timestamp and filename from getting out of sync
• For that matter, nothing stopping me from changing the timestamp of a file to 

anything I want

• Changes from one version to another are not at all clear
• We love manual processes!

• Only applicable to one file
• Could use naming convention for a directory, but complexity only magnifies



E-mail as a version control system

"I think I sent it on or about the 12th of June. 
Maybe in the morning. I know that I'd just 
eaten a burrito, but I can't remember if it was 
a breakfast burrito or a regular burrito."



Office suite/cloud backup

• Better than nothing, but falls well short

• Passive backup != version control
• I want to be deliberate about changes. I know when I've made progress.

• Some things don't need to be memorialized. They're noise and don't need to 
be backed up.

• What's a good restore point? Panning for gold

• No documentation of the evolution of the thinking. Must be 
(re)constructed by comparing successive versions.



Office suite/cloud track changes

• Only one file at a time

• Comments and changes disappear after they've been accepted.

• End goal is to have all of the changes removed from the document, 
giving us a "clean" copy.

• Collaboration on one copy of the file. My version == your version.

• Nonexistent for spreadsheets

• Nonexistent for scripts



Git to the rescue!



Getting started

1. Fire up Atom, RStudio, etc.

2. Create a project



Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes 

6. Revert changes

7. Ignore



If you're using Atom



If you're using RStudio



git init

1. Have a look at the project folder

2. Take a gander at the support in the IDE

3. Open a terminal prompt and run
git status

git log

git --help

git --version

git init –h

git init --help



Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes

6. Revert changes

7. Ignore



Create a new file

1. Code the following:
print("Hello, world!")

2. Save the file as:
hello.py

3. Open a terminal prompt and run
git status



File status

• When a file is first created it is not tracked.
• If you stage it, it will be tracked.

• If you commit it, after staging, that file will be tracked forever.

• If you ignore it, you won't see it again.

• Once a file is being tracked, changes will show as being "not staged 
for commit"



Changes not staged

Staged

Committed

git reset

IgnoredUntracked

git commit

git add git add

git checkout

git revert



Changes not staged

Staged

Committed

IgnoredUntracked

git add



Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes

6. Revert changes

7. Ignore



Stage changes

1. Open a terminal prompt and run
git status

git add my_file.py

git status

2. Also explore how this looks in your IDE



Changes not staged

Staged

Committed

git reset

IgnoredUntracked

git commit

git add git add

git checkout

git revert



Stage vs. commit

• Stage
•I'm pretty sure that I'm done making changes.

•This is the set of changes that I'm planning to commit.

•Necessary step before committing

• Commit
•We're all good here. This is a unit of work and here's some commentary.

•(Almost) no turning back

"It's like ham and eggs: the chicken is merely 

involved with the ham and eggs. The pig? He's 

committed."



Stage changes

1. Open a terminal prompt and run
git status

git add my_file.py

git status

2. Also explore how this looks in your IDE

3. Back at the terminal
git reset

git status

git add my_file.py

git status



Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes

6. Revert changes

7. Ignore



Changes not staged

Staged

Committed

IgnoredUntracked

git commit

git add



Commit changes

1. Open a terminal prompt and run
git status

git commit –m "Initial commit for hello.py"

git status

2. Also explore how this looks in your IDE



Stage vs. commit

• Stage
•I'm pretty sure that I'm done making changes.

•This is the set of changes that I'm planning to commit.

• Commit
•We're all good here. This is a unit of work and here's some commentary.

•(Almost) no turning back



Commit changes

1. Open a terminal prompt and run
git log

2. Also explore how this looks in your IDE



Visual metaphor for commits



Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes

6. Revert changes

7. Ignore



Changes not staged

Staged

Committed

git reset

IgnoredUntracked

git commit

git add git add

git checkout

git revert



Changes not staged

Staged

Committed

IgnoredUntracked

git add



Make more changes

1. Edit your file in some way

2. Open a terminal prompt and run
git status

git diff hello.py

git add hello.py

3. Also explore how this looks in your IDE



Changes not staged

Staged

Committed

IgnoredUntracked

git commit

git add



Commit the change

1. Edit your file in some way

2. Open a terminal prompt and run
git status

git commit –m “Made a change”

3. Also explore how this looks in your IDE



Version history!



Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes

6. Revert changes

7. Ignore



Changes not staged

Staged

Committed

git reset

IgnoredUntracked

git commit

git add git add

git checkout

git revert



Changes not staged

Staged

Committed

IgnoredUntracked

git revert



Revert a commit

1. Open a terminal prompt and run
git status

git revert

git commit –m “Made a change”

2. Also explore how this looks in your IDE



Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes

6. Revert changes

7. Ignore



Changes not staged

Staged

Committed

git reset

IgnoredUntracked

git commit

git add git add

git checkout

git revert



Changes not staged

Staged

Committed

IgnoredUntracked



Ignoring files

1. Do this live



Basic git operations

1. Create a new project

2. Create a new file

3. Stage

4. Commit

5. Make some changes

6. Revert changes

7. Ignore



Moving to GitHub



Version Control in the Cloud

• Similar to DropBox, Google Docs, etc.
• HOWEVER! No automatic sync to your device.

• ALSO! Very limited cloud-only use. Most use cases assume manual sync 
between your device and the cloud.

• Also BitBucket, GitLab



Account Features

• Contribution activity

• My repositories

• Stars

• Followers

• Following



Repo Features

• Issue tracking

• Wiki

• Basic business intelligence

• Integrations



Push



Push to the cloud

1. Ensure that we have a repo

2. Open a terminal prompt and run
git status

git remote -v

git remote add origin https://github.com/user/repo.git

git remote -v

git push origin

3. Also explore how this looks in RStudio and Atom



Pull





Update changes from the cloud

1. Open a terminal prompt and run
git status

git pull origin

git status

2. Also explore how this looks in your IDE



Branching



Branching

• Main or “clean” version of the code

• Branch for:
• Feature development

• Testing

• Debugging/hotfixing



Main



Main

Dev



Create a new branch

1. Open a terminal prompt and run
git status 

git branch -v 

git checkout –b my_new_branch

git branch -v

git status

2. Also explore how this looks in your IDE



main

my_new_branch



Make some changes and commit

1. Make some changes to your file

2. Open a terminal prompt and run
git status 

git add my_file.py

git commit –m “Testing out this thing”

3. Also explore how this looks in your IDE

4. Now run this
git checkout main

5. You’re looking at the other branch!



main

my_new_branch



Merge development and main

1. Open a terminal prompt and run
git status 

git checkout main 

git merge my_new_branch

git branch -v

git status

2. Also explore how this looks in your IDE



main

my_new_branch



1.1 1.2 1.3

main

test

dev



Making a pull request



Steps

1. Fork the repository

2. Edit and commit

3. Submit the pull request




