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Abstract
Motivation. The Hayne MLE family of models are quite elegant in their application, 
but, like most models, the modeling framework needs to allow for the flexibility 
to deal with many different practical issues in order to address the needs of the 
practicing actuary. While actuaries are accustomed to making practical adjust­
ments to their algorithms, there is motivation to stay as close to the theoretical 
underpinnings of the models as possible in order to maintain a sound foundation. 
Whenever the monograph strays a bit from the theory, those departures are noted 
so practitioners can adequately judge their impact.

Method. This monograph starts by reviewing the Hayne MLE modeling framework 
using a standard notation. Then it covers a number of practical data issues and 
addresses the diagnostic testing of the model assumptions. Next it will explore a 
variety of enhancements to the basic framework to allow the models to address 
other issues related to reserving and pricing risk. Finally, since no single model 
is perfect, ways to combine or credibility weight the Hayne MLE model results 
with various other models are explored in order to arrive at a “best estimate” of 
the distribution. This is similar to how a deterministic best estimate is generally 
derived in practice, so ways for the practitioner to correlate models by segment in 
order to simulate aggregate results are also discussed.

Results. The monograph will illustrate the practical implementation of the Hayne 
MLE modeling framework as a powerful tool for estimating a distribution of 
unpaid claims.

Conclusions. The monograph outlines the full versatility of the Hayne MLE 
models for the practicing actuary.

Availability. In lieu of technical appendices, several companion Excel workbooks 
are included that illustrate the calculations described in this monograph. The 
companion materials are summarized in the Supplementary Materials section 
and are available at https://www.casact.org/sites/default/files/2022­03/
Monograph10-ExcelFiles_0.zip.

Keywords. Maximum Likelihood Estimate, Reserve Variability, Reserve Range, 
Stochastic Reserving, Distribution of Possible Outcomes, Generalized Linear Model, 
Best Estimate.

Availability of Excel workbooks. In lieu of technical appendices, several companion 
Excel workbooks are included that illustrate the calculations described in this monograph. 
T he companion materials are summarized in the Supplementary Materials 
section and are available at https://www.casact.org/sites/default/files/2022­03/
Monograph10-ExcelFiles_0.zip. Other sources of ODP bootstrap modeling 
software that could be used for educational purposes would include working parties 
and other industry groups in North America and Europe, including but not limited 
to models freely available in the R statistical software package.
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With the introduction of the Hayne [8] MLE family of models, the CAS membership 
has gained a very powerful and useful new toolset for estimating unpaid claim distri-
butions from a data triangle. The growing need for stochastic models for use as part of 
enterprise risk management and the changing regulatory landscape makes these new 
stochastic models all the more important. However, like most papers on stochastic 
modeling, the Hayne [8] paper focuses primarily on the theory and development of the 
basic modeling framework, which of course is the critical first step. This monograph 
is an attempt to build and expand upon the foundation of these models by exploring 
different aspects of their use on a regular basis so that the practicing actuary has a more 
complete toolset for solving a wider variety of actuarial problems.

1.1.  Objectives
This is the second in a series looking at distributions of loss estimates. The mono-

graphs in this series look at the theoretical foundations of stochastic unpaid claims 
models and practical details of implementing them.

Common objectives of the monographs in this series are:

1.	 Showing how the models can be used in practice to help the wider adoption of 
unpaid claims distribution.

Most of the papers describing stochastic models tend to focus primarily on 
the theoretical aspects of the model while ignoring the data issues that commonly 
arise in practice. As a result, the models can be quite elegantly implemented yet 
suffer from practical limitations such as only being useful for complete triangles or 
only for positive incremental values. Thus, while keeping as close to the theoretical 
foundation as possible, this objective is to illustrate how practical adjustments can 
be made to accommodate common data issues and allow the model to “fit” the 
data. As a practical matter, it is also possible that the model does not fit the data 
very well, or fits less well than other models, so the process of diagnosing the 
reasonability of the assumptions will inform the actuary’s judgment when consider-
ing adjustments to the parameters or how much weight, if any, to give the model 
in relation to other models.

2.	 Showing how stochastic reserving can be similar to deterministic reserving when it 
comes to analyzing and using the best parts of multiple models.

Actuaries are still searching for the perfect model to describe “the” distribution 
of unpaid claims, as if imperfections in a model remove it from all consideration, 

1.  Introduction
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since it can’t be “the one.” This notion can also manifest itself when an actuary 
settles for a model that seems to work the best or is the easiest to use, or believes 
that each model must be used in its entirety or not at all. Interestingly, this notion 
was dispelled long ago with respect to deterministic point estimates, as actuaries 
commonly use many different methods, which range from easy to complex, and 
judgmentally weight the results to arrive at their best estimate.

Model risk – the risk that the model you have chosen is not the same as the one 
that generates future losses – is very real. Weighting or combining multiple estimates 
is a very practical way of addressing model risk. More importantly, the monograph 
hopes to illustrate the advantage of using a more complete set of risk estimation 
tools (which can include both stochastic models and deterministic methods) to 
arrive at an actuarial best estimate of the distribution of possible outcomes, rather 
than to focus on deterministic methods to select the “mean” and then simply “add on” 
a simple approximation or use only a favorite model to turn that selected mean into 
a distribution.

A final objective of this monograph is to review the theoretical foundation of 
Hayne MLE models to better understand the assumptions and parameters. If model 
assumptions and parameters do not fit the statistical features found in the data, then 
the results of a simulation may not be a very good estimate of the distribution of 
possible outcomes. Thus, the modeling framework must be able to adapt or “fit” the 
model to the data, so this point will be elaborated on in later sections.
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Casualty Actuarial Society	 3

Rather than use the notation in the Hayne [8] paper, the notation from the CAS 
Working Party on Quantifying Variability in Reserve Estimates Summary Report [4] 
will be used since it is intended to serve as a “standard notation” for further research.

Many models visualize loss data as a two-dimensional array, (w,d ) with accident 
period or policy period w, and development age d (think w = “when” and d = “delay”). 
For this discussion, it is assumed that the loss information available is an “upper  
triangular” subset for rows w = 1, 2, . . . , n and for development ages d = 1, 2, . . . ,  
n – w + 1. The “diagonal” for which w + d equals the constant, k, represents the loss 
information for each accident period w as of accounting period k.1

For purposes of including tail factors, the development beyond the observed data 
for periods d = n + 1,n + 2, . . . , u, where u is the ultimate time period for which 
any claim activity occurs, or the period in which all claims are final and paid in full, 
must also be considered.

The monograph uses the following notation for certain important loss statistics:

	 c(w,d ):	 cumulative loss from accident2 year w as of age d.
	 q(w,d ):	 incremental loss for accident year w from d − 1 to d.
	c(w,n) = U(w):	� total loss from accident year w when claims are at ultimate values 

at time n.3

	 R(w):	� future development after age d for accident year w, i.e., = U(w) – 
c(w,d ).

	 f (d ):	� parameter or factor applied to c(w,d ) to estimate q(w,d + 1)  
or can be used more generally to indicate any parameter or factor 
relating to age d.

	 F(d ):	� parameter or factor applied to c(w,d ) to estimate c(w,d + 1) or 
c(w,n) or can be used more generally to indicate any cumulative 
parameter or factor relating to age d.

2.  Notation

1	 For a more complete explanation of this two-dimensional view of the loss information, see the Foundations of 
Casualty Actuarial Science [6], Chapter 5, particularly pages 210–226.

2	 The use of accident year is used for ease of discussion. All of the discussion and formulas that follow could also 
apply to underwriting year, policy year, report year, etc. Similarly, year could also be half-year, quarter or month. 
Finally, while year is implied in the formulas, in many of the tables that follow the equivalent number of months 
are shown.

3	 This would imply that claims reach their ultimate value without any tail factor. This is generalized by changing n 
to n + t = u, where t is the number of periods in the tail.
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	 T = T(n):	� ultimate tail factor at end of triangle data, which is applied to the 
estimated c(w,n) to estimate c(w,u).

	 G(w):	� parameter or factor relating to accident year w – capitalized to 
designate ultimate loss level.

	 h(k):	� parameter or factor relating to the diagonal k along which w + d  
is constant.4

	 M(w,d ):	� matrix factors relating to both accident year w and development 
year d parameters.

	 e(w,d ):	 a random fluctuation, or error, which occurs at the w,d cell.
	 b(w,d ):	 cumulative claim count from accident year w as of age d.
	 p(w,d ):	 incremental claim count for accident year w from d − 1 to d.
	 N(w):	 the exposures for accident year w.
	 A(w,d ):	 the incremental average for accident year w from d − 1 to d.
	 E[x]:	 the expectation of the random variable x.
	 Var[x]:	 the variance of the random variable x.
	 k, r:	 variance parameters.

What are called factors here could also be summands, but if factors and summands 
are both used, some other notation for the additive terms would be needed. The 
notation does not distinguish paid vs. incurred, but if this is necessary, capitalized 
subscripts P and I could be used.

4	 Some authors define d = 0, 1, . . . , n − 1 which intuitively allows k = w along the diagonals, but in this case the 
triangle size is n × n − 1 which is not intuitive. With d = 1, 2, . . . , n defined as in this monograph, the triangle 
size n × n is intuitive, but then k = w + 1 along the diagonals is not as intuitive. A way to think about this which 
helps tie everything together is to assume the w variables are the beginning of the accident periods and the  
d variables are at the end of the development periods. Thus, if years are used, then cell c(n,1) represents accident 
year n evaluated at 12/31/n, or essentially 1/1/n + 1.
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Casualty Actuarial Society	 5

The Hayne MLE models5 are based on a triangular array of incremental values:

d

1 2 3  . . . n – 1 n

w 1 q(1,1) q(1,2) q(1,3)  . . . q(1,n – 1) q(1,n)

2 q(2,1) q(2,2) q(2,3)  . . . q(2,n – 1)

3 q(3,1) q(3,2) q(3,3)  . . . 

 . . .  . . .  . . . 

n – 1 q(n – 1,1) q(n – 1,2)

n q(n,1)

By incorporating an exposure adjustment, the variety of methods available for 
analysis is widened as the focus shifts to the incremental averages:

,
,

. (3.1)( ) ( )
( )

=A w d
q w d
N w

Hayne [8] notes that the exposure adjustment for average incremental values (3.1) 
can be based on exposure counts or premium amounts, which would commonly be 
referred to as an average pure premium or burning cost. In addition, the exposure 
adjustment can be based on an estimate of ultimate claim counts, which would be 
commonly referred to as an average claim severity:6

,
,
,

. (3.2)( ) ( )
( )

=A w d
q w d
b w u

In the case of the average claim severity, the ultimate claim counts are often only 
estimates and as such could be treated as random variables, which will be addressed in 
Section 4.

3. The Hayne MLE Models

5	 While condensed for ease of exposition, significant portions of Section 3 are based on Hayne [8].
6	 For both premiums and exposures, their magnitude can result in very small average values that may have some 

disadvantages with respect to estimating the model parameters. A practical solution in either case is to use 
premiums or exposures in thousands or a similar value.
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The Hayne MLE models are then based on a generalized framework that expresses 
each underlying method as a matrix-valued function of a parameter vector q:

, . (3.3)�( ) ( )=A w d M

In order to turn this general framework into a stochastic model, two key assumptions 
are made.7 First, the variance of each incremental value is assumed to be proportional 
to a power of the square of the mean. It is quite common to assume the variance is 
proportional to a power of the expected values, but the square of the mean is used to 
allow incremental values to be negative. Also, the constant of proportionality is expo-
nential, allowing the parameter to take on any value while assuring positive values for 
the variance. Second, as the variance of an average of a sample with a finite variance 
will be inversely proportional to the number of items in the sample, the constant of 
proportionality is assumed to vary inversely to the number of exposures.

The stochastic model is then expressed as follows:

, (3.4)[ ]( ) = µE A w d

, . (3.5)
2

ln 2( ) ( )[ ]( )
( )

=
µ

= µ[ ]( )
κ ρ

κ− ρVar A w d
e
N w

e N w

Hayne [8] notes that this model includes an implicit structural heteroscedasticity 
and that both the expected values and variances differ by accident and development 
year. The two variance parameters, k and r, provide a mechanism to approximate 
the variance structure of the data without over-parameterizing the model. However, 
the formulae can be modified to allow k to vary by development period if additional 
control over the heteroscedasticity is desired.

Hayne [8] eloquently describes additional assumptions and processes for estimating  
the parameters for the stochastic model expressed in (3.4) and (3.5), including R code 
in the appendix. As this can’t be improved upon here, it is left to the reader to review 
the Hayne [8] paper for further details, but the focus will turn to the five different 
implementations of this general framework before moving on to various practical 
implementation issues. For anyone not familiar with R, the implementation of the 
process of estimating model parameters in R is replicated in Excel in the companion 
“Hayne MLE Models.xlsm” file. In Excel, the MLE estimates for the parameter vector q  
are found using the Solver function. Note, however, that while the Solver algorithm  
in Excel should estimate parameters that are very close to those estimated in R, there 
can be differences and in some cases constraints may need to be added to the Excel 
Solver algorithm.

7	 It is also important to understand that by appealing to the Central Limit Theorem we note that A(w,d) is 
approximately Normal provided the number of claims is sufficiently large, since it is an average of independent 
events from equation (3.1) or (3.2).
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While the monograph continues to illustrate the Hayne MLE models with the 
more advanced “Hayne MLE Models.xlsm” file, also included in the companion Excel 
files are a set of “Hayne Framework 6 __.xlsm” files that illustrate the calculations for 
each of these different models using a 6 × 6 triangle. These simpler files are designed to 
help the reader gain a deeper understanding of each model.

3.1.  Berquist-Sherman Model
Berquist and Sherman [2] developed methods to recognize that incremental 

severities can have different “levels” by accident year as well as different trends by 
development year. Hayne [8] simplifies this approach by assuming a uniform trend 
from one accident year to the next, which replaces different levels with uniform changes 
in level and indirectly impacts the development for each year.

, (3.6)[ ]( ) ( )= ×E A w d f d ewG

In the Hayne Berquist-Sherman model, the f (d ) parameters represent an average 
incremental by development period. The G parameter is a constant accident year trend 
where w = 1, 2, 3, . . . , n. Using the data from Hayne [8], the companion Excel file 
summarizes the Berquist-Sherman model parameters as in Table 3.1.

In addition to the mean and standard deviation of each parameter, which are nearly 
identical to those in Hayne [8], the coefficient of variation (“CoV”) row is added so 
that the heteroscedastistic variance by parameter is more apparent. The decay ratios 
row is simply the mean of the development parameter divided by the mean of the prior 

Table 3.1.    Summary of Berquist-Sherman Parameters

Development Period Parameters (Average Incremental)

12 24 36 48 60 72 84 96 108 120

Mean 620.95 760.66 708.15 553.57 349.99 181.39 70.96 43.88 11.08 15.21

Std Dev 40.50 46.55 43.00 35.49 26.17 17.66 10.39 8.74 4.22 7.34

Decay Ratios: 122.5% 93.1% 78.2% 63.2% 51.8% 39.1% 61.8% 25.2% 137.3%

CoV: 6.5% 6.1% 6.1% 6.4% 7.5% 9.7% 14.6% 19.9% 38.1% 48.3%

Accident Year

Trend K p AIC BIC Parameters

Mean 0.045 11.216 0.654 643.4 669.5 Acc Period 0

Std Dev 0.009 1.037 0.085 Dev Period 10

CoV: 18.9% 9.2% 12.9% Trend 1

11
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Table 3.2.    Expected Incremental Mean Values for Berquist-Sherman Model

Predicted Incremental Mean [Model Fitted] (Paid [÷ Ultimate Claims])

Year 12 24 36 48 60 72 84 96 108 120
Future 
Totals

2008 649.69 795.86 740.93 579.17 366.20 189.78 74.25 45.91 11.59 15.92 0.00

2009 679.73 832.66 775.18 605.95 383.13 198.56 77.69 48.03 12.13 16.65 16.65

2010 711.16 871.16 811.03 633.96 400.84 207.74 81.28 50.25 12.69 17.42 30.11

2011 744.04 911.43 848.52 663.28 419.37 217.34 85.04 52.57 13.27 18.23 84.07

2012 778.44 953.57 887.75 693.94 438.76 227.39 88.97 55.00 13.89 19.07 176.93

2013 814.43 997.66 928.80 726.03 459.05 237.90 93.08 57.55 14.53 19.95 423.01

2014 852.08 1,043.79 971.74 759.59 480.27 248.90 97.38 60.21 15.20 20.88 922.84

2015 891.48 1,092.05 1,016.67 794.71 502.48 260.41 101.89 62.99 15.90 21.84 1,760.22

2016 932.70 1,142.54 1,063.67 831.46 525.71 272.45 106.60 65.90 16.64 22.85 2,905.28

2017 975.82 1,195.36 1,112.85 869.90 550.02 285.05 111.53 68.95 17.41 23.91 4,234.97

10,554.09

development parameter, which will be used in later discussions about model fit and 
tail extrapolation.

Using formulas (3.6) and (3.5) to calculate the expected mean and standard 
deviation, the results for each incremental value are shown in Tables  3.2 and 3.3, 
respectively.

Reviewing Table 3.2 you can see how the expected mean values for each devel
opment period relate to the model parameters for f (d ) in Table 3.1 by looking at each 
column. Also, comparing rows allows you to see how the trend parameter G impacts 
each accident year. Reviewing Table 3.3, you can see how expected standard devia-
tion values follow a similar pattern to the expected mean values by column and row.  
In addition, the standard deviations are related to the exposures (i.e., ultimate claims 
in this example), which can produce interesting differences, such as the values for 2017 
being smaller than for 2016 due to a significantly larger estimate of ultimate claims. 
Table 3.4 shows the incremental coefficients of variation so that you can easily see the 
heteroscedasticity implied in the model.

3.2.  Cape Cod Model
Hayne [8] notes that the traditional Bornhuetter-Ferguson [3] method estimates 

future losses by accident year as a percent of an a priori estimate of the ultimate losses 
for that year. In contrast, a feature of the Cape Cod method is that it derives the a 
priori estimates directly from the data. Hayne [8] essentially combines these methods 
by assuming that the incremental average amounts are the product of an accident year 
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Table 3.3.    Incremental Standard Deviation Values for Berquist-Sherman Model

Predicted Incremental Standard Deviation [Model Fitted] (Paid [÷ Ultimate Claims])

Year 12 24 36 48 60 72 84 96 108 120
Future 
Totals

2008 95.13 108.63 103.66 88.24 65.39 42.55 23.04 16.82 6.84 8.42 0.00

2009 98.60 112.59 107.44 91.46 67.77 44.10 23.88 17.43 7.09 8.72 8.72

2010 97.68 111.54 106.45 90.61 67.14 43.69 23.65 17.27 7.02 8.64 11.14

2011 100.06 114.26 109.04 92.82 68.78 44.75 24.23 17.69 7.19 8.85 21.05

2012 104.03 118.79 113.36 96.50 71.51 46.53 25.19 18.39 7.48 9.20 33.37

2013 108.82 124.26 118.59 100.95 74.80 48.67 26.35 19.24 7.82 9.63 59.90

2014 107.65 122.92 117.31 99.86 74.00 48.15 26.07 19.03 7.74 9.52 94.79

2015 112.81 128.81 122.93 104.64 77.54 50.45 27.32 19.95 8.11 9.98 144.29

2016 114.36 130.58 124.62 106.08 78.61 51.15 27.69 20.22 8.22 10.12 192.16

2017 110.40 126.07 120.31 102.41 75.89 49.38 26.73 19.52 7.94 9.77 224.29

349.83

Table 3.4.    Incremental Coefficients of Variation for Berquist-Sherman Model

Predicted Incremental Coefficient of Variation [Model Fitted] (Paid [÷ Ultimate Claims])

Year 12 24 36 48 60 72 84 96 108 120
Future 
Totals

2008 14.6% 13.6% 14.0% 15.2% 17.9% 22.4% 31.0% 36.6% 59.0% 52.9%

2009 14.5% 13.5% 13.9% 15.1% 17.7% 22.2% 30.7% 36.3% 58.5% 52.4% 52.4%

2010 13.7% 12.8% 13.1% 14.3% 16.8% 21.0% 29.1% 34.4% 55.4% 49.6% 37.0%

2011 13.4% 12.5% 12.9% 14.0% 16.4% 20.6% 28.5% 33.7% 54.2% 48.6% 25.0%

2012 13.4% 12.5% 12.8% 13.9% 16.3% 20.5% 28.3% 33.4% 53.9% 48.3% 18.9%

2013 13.4% 12.5% 12.8% 13.9% 16.3% 20.5% 28.3% 33.4% 53.8% 48.2% 14.2%

2014 12.6% 11.8% 12.1% 13.1% 15.4% 19.3% 26.8% 31.6% 50.9% 45.6% 10.3%

2015 12.7% 11.8% 12.1% 13.2% 15.4% 19.4% 26.8% 31.7% 51.0% 45.7% 8.2%

2016 12.3% 11.4% 11.7% 12.8% 15.0% 18.8% 26.0% 30.7% 49.4% 44.3% 6.6%

2017 11.3% 10.5% 10.8% 11.8% 13.8% 17.3% 24.0% 28.3% 45.6% 40.9% 5.3%

3.3%
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factor and lag factor, which are usually taken as ultimate loss for the year and the 
percentage of losses emerging that year.
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(3.7)

In the Hayne Cape Cod model, the G(1,1) parameter, or scale, is a constant from 
which all other parameters are based. The G(w) parameters are factors multiplied 
by the constant, which essentially adjust the base for average exposure changes by 
accident year. The f (d ) parameters are factors multiplied by the constant, or constant 
adjusted by the G(w) parameters, which essentially adjust the base (by accident year) 
for average incremental changes by development year. Using the data from Hayne [8], 
the companion Excel file summarizes the Cape Cod model parameters as in Table 3.5.

Using formulas (3.7) and (3.5) to calculate the expected mean and standard 
deviation, the results for each incremental value are shown in Tables  3.6 and 3.7, 
respectively.

Table 3.5.    Summary of Cape Cod Parameters

Accident Period Parameters

Scale 2009 2010 2011 2012 2013 2014 2015 2016 2017

Mean 620.067 1.160 1.123 1.322 1.376 1.521 1.533 1.580 1.169 1.164

Std Dev 30.048 0.066 0.064 0.072 0.075 0.082 0.084 0.091 0.082 0.105

CoV 4.8% 5.7% 5.7% 5.4% 5.4% 5.4% 5.5% 5.8% 7.1% 9.0%

Development Period Parameters (Average Incremental)

24 36 48 60 72 84 96 108 120

Mean 1.181 1.063 0.838 0.534 0.284 0.111 0.067 0.015 0.024

Std Dev 0.041 0.040 0.036 0.029 0.023 0.016 0.016 0.009 0.017

Decay Ratios 90.0% 78.8% 63.7% 53.2% 39.0% 60.7% 22.8% 158.0%

CoV 3.5% 3.8% 4.3% 5.5% 8.1% 14.8% 23.1% 61.1% 70.4%

K p AIC BIC Parameters

Mean 13.104 0.435 659.4 701.6 Acc Period 9

Std Dev 1.010 0.083 Dev Period 9

CoV 7.7% 19.0% Scale 1

19
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Table 3.6.    Expected Incremental Mean Values for Cape Cod Model

Predicted Incremental Mean [Model Fitted] (Paid [÷ Ultimate Claims])

Year 12 24 36 48 60 72 84 96 108 120
Future 
Totals

2008 620.07 732.01 659.04 519.38 330.98 176.23 68.79 41.73 9.53 15.05 0.00

2009 719.49 849.38 764.70 602.65 384.04 204.48 79.82 48.43 11.05 17.47 17.47

2010 696.47 822.21 740.24 583.37 371.76 197.94 77.27 46.88 10.70 16.91 27.61

2011 819.84 967.86 871.37 686.71 437.61 233.01 90.95 55.18 12.60 19.90 87.68

2012 853.00 1,006.99 906.61 714.48 455.31 242.43 94.63 57.41 13.11 20.71 185.86

2013 943.01 1,113.26 1,002.28 789.88 503.36 268.01 104.62 63.47 14.49 22.89 473.48

2014 950.77 1,122.42 l,010.52 796.38 507.50 270.22 105.48 63.99 14.61 23.08 984.87

2015 979.71 1,156.58 1,041.28 820.62 522.95 278.44 108.69 65.94 15.05 23.78 1,835.47

2016 725.16 856.08 770.74 607.41 387.08 206.10 80.45 48.81 11.14 17.60 2,129.33

2017 721.47 851.72 766.81 604.31 385.10 205.05 80.04 48.56 11.08 17.52 2,970.19

8,711.96

Table 3.7.    Incremental Standard Deviation Values for Cape Cod Model

Predicted Incremental Standard Deviation [Model Fitted] (Paid [÷ Ultimate Claims])

Year 12 24 36 48 60 72 84 96 108 120
Future 
Totals

2008 58.08 62.43 59.64 53.77 44.20 33.60 22.31 17.95 9.44 11.52 0.00

2009 62.35 67.02 64.03 57.73 47.45 36.07 23.96 19.28 10.14 12.37 12.37

2010 59.13 63.56 60.72 54.75 45.00 34.21 22.72 18.28 9.61 11.73 15.17

2011 63.13 67.86 64.83 58.45 48.04 36.52 24.26 19.52 10.26 12.52 25.36

2012 64.83 69.69 66.58 60.02 49.34 37.51 24.91 20.04 10.54 12.86 36.04

2013 68.78 73.94 70.63 63.68 52.35 39.79 26.43 21.26 11.18 13.64 55.18

2014 66.30 71.26 68.08 61.38 50.45 38.35 25.47 20.49 10.78 13.15 73.31

2015 68.34 73.45 70.17 63.27 52.01 39.53 26.26 21.12 11.11 13.56 98.55

2016 59.01 63.43 60.59 54.63 44.90 34.14 22.67 18.24 9.59 11.70 104.47

2017 55.18 59.32 56.67 51.09 42.00 31.92 21.20 17.06 8.97 10.95 114.30

210.79
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Reviewing Table 3.6, you can see that the scale, or constant, is the value for 2008 at 
12 months of development. The G(w), or accident year, parameters are used to adjust 
the scale in the 12-month column and then the f (d ), or development year, parameters 
are used to adjust the scale, or scale adjusted by accident year, for each development 
column. Table 3.8 shows the incremental coefficients of variation so that you can easily 
see the heteroscedasticity implied in the model.

3.3.  Chain Ladder Model
For the traditional chain ladder method, average development factors are multiplied 

by the cumulative amounts by accident year to estimate the expected future incremental  
values. Hayne [8] also uses the cumulative amounts by accident year, but instead 
derives parameters which represent the proportion of the incremental value in each 
development year. The parameters are constrained so that the incremental values 
sum to the cumulative values. In addition, n − 1 parameters are used with the last 
development year parameter derived so that the sum of all parameters is 100%.

In the Hayne chain ladder model, the G(w) parameters are the actual cumulative  
values for each accident year. The f (d ) parameters are factors multiplied times the 
cumulative values to derive the expected incremental values by development year. 
Only n − 1 parameters are derived and the “parameter” for the last development period 
is one minus the sum of the n − 1 parameters. In order to constrain the sum of the 
expected incremental values to equal the cumulative values, the f (d ) parameters are 

Table 3.8.    Incremental Coefficients of Variation for Cape Cod Model

Predicted Incremental Coefficient of Variation [Model Fitted] (Paid [÷ Ultimate Claims])

Year 12 24 36 48 60 72 84 96 108 120
Future 
Totals

2008 9.4% 8.5% 9.0% 10.4% 13.4% 19.1% 32.4% 43.0% 99.1% 76.5%

2009 8.7% 7.9% 8.4% 9.6% 12.4% 17.6% 30.0% 39.8% 91.7% 70.8% 70.8%

2010 8.5% 7.7% 8.2% 9.4% 12.1% 17.3% 29.4% 39.0% 89.8% 69.4% 54.9%

2011 7.7% 7.0% 7.4% 8.5% 11.0% 15.7% 26.7% 35.4% 81.5% 62.9% 28.9%

2012 7.6% 6.9% 7.3% 8.4% 10.8% 15.5% 26.3% 34.9% 80.4% 62.1% 19.4%

2013 7.3% 6.6% 7.0% 8.1% 10.4% 14.8% 25.3% 33.5% 77.2% 59.6% 11.7%

2014 7.0% 6.3% 6.7% 7.7% 9.9% 14.2% 24.1% 32.0% 73.8% 57.0% 7.4%

2015 7.0% 6.4% 6.7% 7.7% 9.9% 14.2% 24.2% 32.0% 73.8% 57.0% 5.4%

2016 8.1% 7.4% 7.9% 9.0% 11.6% 16.6% 28.2% 37.4% 86.1% 66.5% 4.9%

2017 7.6% 7.0% 7.4% 8.5% 10.9% 15.6% 26.5% 35.1% 80.9% 62.5% 3.8%

2.4%
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divided by the sum of the parameters for that accident year so that the proportional 
factors for that accident year up to the diagonal sum to 100%.
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Using the data from Hayne [8], the companion Excel file summarizes the chain 
ladder model parameters as in Table 3.9.

The parameter for 120 months is greyed since it is derived by subtracting the sum 
of the other parameters from one. Using formulas (3.8) and (3.5) to calculate the 
expected mean and standard deviation, the results for each incremental value are 
shown in Tables 3.10 and 3.11, respectively.

Reviewing Table 3.10, it is not as obvious how the parameters relate to the incre-
mental values compared to the Berquist-Sherman or Cape Cod models. However, 
if you sum the incremental values up to the diagonal for each accident year, you will 
discover that they sum to the cumulative value for each accident year. Thus, the f (d ) 
parameters can be seen as representing an average proportion of the incremental values 
compared to the cumulative values. Table 3.12 shows the incremental coefficients of 
variation so that you can easily see the heteroscedasticity implied in the model.

Table 3.9.    Summary of Chain Ladder Parameters

Development Period Parameters (Average Incremental)

12 24 36 48 60 72 84 96 108 120

Mean 0.195 0.231 0.208 0.164 0.104 0.056 0.022 0.013 0.003 0.005

Std Dev 0.005 0.005 0.005 0.005 0.005 0.004 0.003 0.003 0.002 0.003

Decay Ratios: 118.1% 90.0% 78.8% 63.7% 53.2% 39.0% 60.8% 22.9% 157.7%

CoV: 2.5% 2.3% 2.5% 3.1% 4.5% 7.3% 14.3% 22.6% 60.4% 69.6%

K p AIC BIC Parameters

Mean 13.074 0.438 619.4 661.5 Acc Period 10

Std Dev 1.007 0.082 Dev Period 9

CoV: 7.7% 18.8% Trend 0

19
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Table 3.10.    Expected Incremental Mean Values for Chain Ladder Model

Predicted Incremental Mean [Model Fitted] (Paid [÷ Ultimate Claims])

Year 12 24 36 48 60 72 84 96 108 120
Future 
Totals

2008 617.57 729.07 656.33 517.19 329.57 175.45 68.44 41.59 9.51 15.00 0.00

2009 715.93 845.18 760.86 599.56 382.05 203.39 79.34 48.21 11.03 17.39 17.39

2010 695.14 820.64 738.76 582.16 370.96 197.49 77.04 46.81 10.71 16.89 27.60

2011 823.53 972.20 875.21 689.67 439.47 233.96 91.26 55.46 12.69 20.01 88.15

2012 854.54 1,008.81 908.16 715.64 456.02 242.77 94.70 57.55 13.16 20.76 186.17

2013 943.04 1,113.29 1,002.22 789.76 503.25 267.91 104.51 63.51 14.53 22.91 473.37

2014 951.15 1,122.87 l,010.84 796.55 507.58 270.22 105.41 64.06 14.65 23.11 985.02

2015 981.03 1,158.13 1,042.59 821.57 523.52 278.70 108.72 66.07 15.11 23.83 1,837.53

2016 726.85 858.06 772.46 608.70 387.88 206.49 80.55 48.95 11.20 17.66 2,133.89

2017 723.30 853.88 768.69 605.74 385.99 205.49 80.16 48.71 11.14 17.57 2,977.37

8,726.49

Table 3.11.    Incremental Standard Deviation Values for Chain Ladder Model

Predicted Incremental Standard Deviation [Model Fitted] (Paid [÷ Ultimate Claims])

Year 12 24 36 48 60 72 84 96 108 120
Future 
Totals

2008 58.10 62.48 59.67 53.76 44.14 33.49 22.18 17.84 9.35 11.41 0.00

2009 62.38 67.08 64.06 57.72 47.38 35.96 23.81 19.15 10.04 12.25 12.25

2010 59.23 63.69 60.83 54.80 44.99 34.14 22.61 18.18 9.53 11.63 15.04

2011 63.44 68.22 65.15 58.70 48.19 36.57 24.22 19.47 10.21 12.46 25.27

2012 65.08 69.98 66.84 60.22 49.44 37.51 24.84 19.98 10.47 12.78 35.91

2013 69.01 74.21 70.87 63.86 52.42 39.78 26.34 21.18 11.11 13.56 55.07

2014 66.53 71.54 68.32 61.56 50.54 38.35 25.40 20.42 10.71 13.07 73.29

2015 68.61 73.78 70.46 63.48 52.12 39.55 26.19 21.06 11.04 13.48 98.71

2016 59.22 63.68 60.82 54.79 44.98 34.14 22.61 18.18 9.53 11.63 104.68

2017 55.39 59.56 56.88 51.25 42.07 31.93 21.14 17.00 8.91 10.88 114.60

211.05
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3.4.  Hoerl Curve Model
The Hoerl Curve is a three-parameter exponential model that uses the development 

lag for all three parameters, i.e., number of periods, number of periods squared and the 
natural log of the number of periods. Hayne [8] combines these three parameters with 
a constant level parameter and an accident year trend factor.

, (3.9)1 1 2 ln 3 22[ ]( ) = ( )( ) ( ) ( ) ( ) ( )+ × + × + × + ×E A w d eG d f d f d f w G

In the Hayne Hoerl Curve model, the G(1) parameter is the constant level on a 
log scale. The G(2) parameter is a constant trend that adjusts the level by accident year. 
The f (1), f (2), and f (3) parameters are factors multiplied times the development lags, 
i.e., by d, d 2, and ln(d ), respectfully. Using the data from Hayne [8], the companion 
Excel file summarizes the Hoerl Curve model parameters as in Table 3.13.

Using formulas (3.9) and (3.5) to calculate the expected mean and standard 
deviation, the results for each incremental value are shown in Tables 3.14 and 3.15, 
respectively.

Reviewing Table 3.14, the link to the parameters must be viewed on a log scale. 
Starting with the first development column, the beginning “level” for each accident 
year on a log scale is the G(1) parameter plus the trend times the number of years, 
plus one of the f (1) and f (2) parameters. Moving from left to right across the develop-
ment years, the combination of the three development parameters acts to first increase 
the incremental values, then to decrease the incremental values in a smooth curve. 
Table 3.16 shows the incremental coefficients of variation so that you can easily see the 
heteroscedasticity implied in the model.

Table 3.12.    Incremental Coefficients of Variation for Chain Ladder Model

Predicted Incremental Coefficient of Variation [Model Fitted] (Paid [÷ Ultimate Claims])

Year 12 24 36 48 60 72 84 96 108 120
Future 
Totals

2008 9.4% 8.6% 9.1% 10.4% 13.4% 19.1% 32.4% 42.9% 98.3% 76.1%

2009 8.7% 7.9% 8.4% 9.6% 12.4% 17.7% 30.0% 39.7% 91.0% 70.5% 70.5%

2010 8.5% 7.8% 8.2% 9.4% 12.1% 17.3% 29.3% 38.8% 89.0% 68.9% 54.5%

2011 7.7% 7.0% 7.4% 8.5% 11.0% 15.6% 26.5% 35.1% 80.5% 62.3% 28.7%

2012 7.6% 6.9% 7.4% 8.4% 10.8% 15.5% 26.2% 34.7% 79.6% 61.6% 19.3%

2013 7.3% 6.7% 7.1% 8.1% 10.4% 14.8% 25.2% 33.4% 76.4% 59.2% 11.6%

2014 7.0% 6.4% 6.8% 7.7% 10.0% 14.2% 24.1% 31.9% 73.1% 56.6% 7.4%

2015 7.0% 6.4% 6.8% 7.7% 10.0% 14.2% 24.1% 31.9% 73.1% 56.6% 5.4%

2016 8.1% 7.4% 7.9% 9.0% 11.6% 16.5% 28.1% 37.1% 85.1% 65.9% 4.9%

2017 7.7% 7.0% 7.4% 8.5% 10.9% 15.5% 26.4% 34.9% 80.0% 61.9% 3.8%

2.4%
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Table 3.13.    Summary of Hoerl Curve Parameters

Parameters (Average Incremental)

Level d d2 ln(d) Trend

Mean 6.496 0.005 (0.065) 0.596 0.043

Std Dev 0.220 0.240 0.019 0.323 0.008

CoV: 3.4% 4687.1% –28.4% 54.2% 19.5%

K p AIC BIC Parameters

Mean 13.147 0.506 639.7 653.8 Level 1

Std Dev 1.014 0.083 Development 3

CoV: 7.7% 16.3% Trend 1

5

Table 3.14.    Expected Incremental Mean Values for Hoerl Curve Model

Predicted Incremental Mean [Model Fitted] (Paid [÷ Ultimate Claims])

Year 12 24 36 48 60 72 84 96 108 120
Future 
Totals

2008 651.30 813.57 751.30 567.59 362.10 197.86 93.30 38.14 13.55 4.20 0.00

2009 679.90 849.29 784.29 592.51 378.00 206.55 97.40 39.81 14.15 4.38 4.38

2010 709.75 886.58 818.73 618.53 394.60 215.62 101.67 41.56 14.77 4.57 19.34

2011 740.92 925.51 854.68 645.68 411.93 225.08 106.14 43.38 15.42 4.77 63.58

2012 773.45 966.15 892.20 674.04 430.01 234.97 110.80 45.29 16.09 4.98 177.16

2013 807.41 1,008.57 931.38 703.63 448.90 245.28 115.66 47.28 16.80 5.20 430.22

2014 842.86 1,052.85 972.28 734.53 468.61 256.05 120.74 49.35 17.54 5.43 917.72

2015 879.87 1,099.08 1,014.97 766.78 489.18 267.30 126.04 51.52 18.31 5.67 1,724.80

2016 918.50 1,147.34 1,059.53 800.45 510.66 279.03 131.58 53.78 19.11 5.92 2,860.07

2017 958.83 1,197.72 1,106.06 835.59 533.08 291.28 137.35 56.14 19.95 6.18 4,183.37

10,380.64
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Table 3.15.    Incremental Standard Deviation Values for Hoerl Curve Model

Predicted Incremental Standard Deviation [Model Fitted] (Paid [÷ Ultimate Claims])

Year 12 24 36 48 60 72 84 96 108 120
Future 
Totals

2008 95.72 107.11 102.88 89.29 71.14 52.41 35.84 22.80 13.51 7.47 0.00

2009 98.43 110.15 105.81 91.82 73.16 53.89 36.85 23.45 13.90 7.68 7.68

2010 96.76 108.28 104.00 90.26 71.91 52.98 36.23 23.05 13.66 7.55 15.61

2011 98.34 110.05 105.71 91.73 73.09 53.84 36.82 23.42 13.88 7.67 28.29

2012 101.45 113.52 109.04 94.63 75.39 55.54 37.98 24.16 14.32 7.92 47.90

2013 105.29 117.83 113.18 98.22 78.25 57.65 39.42 25.08 14.86 8.22 76.12

2014 103.35 115.65 111.08 96.40 76.81 56.58 38.69 24.61 14.59 8.06 107.15

2015 107.45 120.25 115.50 100.23 79.86 58.83 40.23 25.59 15.17 8.38 149.87

2016 108.08 120.95 116.18 100.82 80.33 59.18 40.47 25.74 15.26 8.43 190.32

2017 103.53 115.85 111.28 96.57 76.94 56.68 38.76 24.66 14.62 8.08 216.00

354.98

Table 3.16.    Incremental Coefficients of Variation for Hoerl Curve Model

Predicted Incremental Coefficient of Variation [Model Fitted] (Paid [÷ Ultimate Claims])

Year 12 24 36 48 60 72 84 96 108 120
Future 
Totals

2008 14.7% 13.2% 13.7% 15.7% 19.6% 26.5% 38.4% 59.8% 99.7% 178.0%

2009 14.5% 13.0% 13.5% 15.5% 19.4% 26.1% 37.8% 58.9% 98.2% 175.4% 175.4%

2010 13.6% 12.2% 12.7% 14.6% 18.2% 24.6% 35.6% 55.5% 92.5% 165.1% 80.7%

2011 13.3% 11.9% 12.4% 14.2% 17.7% 23.9% 34.7% 54.0% 90.0% 160.8% 44.5%

2012 13.1% 11.7% 12.2% 14.0% 17.5% 23.6% 34.3% 53.4% 89.0% 158.9% 27.0%

2013 13.0% 11.7% 12.2% 14.0% 17.4% 23.5% 34.1% 53.0% 88.5% 158.0% 17.7%

2014 12.3% 11.0% 11.4% 13.1% 16.4% 22.1% 32.0% 49.9% 83.2% 148.5% 11.7%

2015 12.2% 10.9% 11.4% 13.1% 16.3% 22.0% 31.9% 49.7% 82.9% 147.9% 8.7%

2016 11.8% 10.5% 11.0% 12.6% 15.7% 21.2% 30.8% 47.9% 79.8% 142.5% 6.7%

2017 10.8% 9.7% 10.1% 11.6% 14.4% 19.5% 28.2% 43.9% 73.2% 130.8% 5.2%

3.4%
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3.5. Wright Model
The Wright model also uses the three-parameter Hoerl curve, but instead of 

constant level and trend parameters, individual parameters for each accident year 
“level” are used.

, (3.10)1 2 ln 32[ ]( ) = ( )( ) ( ) ( ) ( )+ × + × + ×E A w d eG w d f d f d f

In the Hayne Wright model, the G(w) parameters are the individual levels for each 
accident year. Similar to the Hoerl Curve model, the f (1), f (2), and f (3) parameters are  
factors multiplied times the development lags, i.e., by d, d 2, and ln(d ), respectfully. 
Using the data from Hayne [8], the companion Excel file summarizes the Wright model 
parameters as in Table 3.17.

Using formulas (3.10) and (3.5) to calculate the expected mean and standard 
deviation, the results for each incremental value are shown in Tables 3.18 and 3.19, 
respectively.

Reviewing Table 3.18, you can see the similarities to Table 3.14. Starting with the 
first development column, the beginning “level” for each accident year on a log scale is 
the G(w) parameter plus one of the f (1) and f (2) parameters. Moving from left to right 
across the development years, the combination of the three development parameters 
acts to first increase the incremental values, then to decrease the incremental values 
in a smooth curve. Table 3.20 below shows the incremental coefficients of variation 
so that you can easily see the heteroscedasticity implied in the model.

Table 3.17.    Summary of Wright Parameters

Accident Period Parameters

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Mean 6.312 6.472 6.436 6.587 6.636 6.738 6.742 6.771 6.475 6.468

Std Dev 0.168 0.167 0.167 0.166 0.167 0.167 0.166 0.164 0.166 0.184

CoV 2.7% 2.6% 2.6% 2.5% 2.5% 2.5% 2.5% 2.4% 2.6% 2.8%

Development Period Parameters  
(Average Incremental)

d d2 ln(d)

Mean 0.192 (0.078) 0.290

Std Dev 0.183 0.015 0.232

CoV 95.4% –19.5% 80.0%

K p AIC BIC Parameters

Mean 14.592 0.319 612.3 642.4 Acc Period 10

Std Dev 0.909 0.075 Dev Period   3

CoV 6.2% 23.4% 13
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Table 3.18.    Expected Incremental Mean Values for Wright Model

Predicted Incremental Mean [Model Fitted] (Paid [÷ Ultimate Claims])

Year 12 24 36 48 60 72 84 96 108 120
Future 
Totals

2008 617.75 724.24 668.24 509.80 326.60 176.91 81.32 31.79 10.59 3.01 0.00

2009 724.55 849.44 783.76 597.94 383.06 207.49 95.38 37.29 12.42 3.52 3.52

2010 698.92 819.39 756.04 576.79 369.51 200.15 92.00 35.97 11.98 3.40 15.38

2011 813.22 953.39 879.68 671.11 429.93 232.88 107.05 41.85 13.94 3.96 59.74

2012 854.17 l,001.41 923.98 704.91 451.59 244.61 112.44 43.96 14.64 4.16 175.19

2013 945.66 1,108.66 1,022.94 780.41 499.95 270.81 124.48 48.67 16.21 4.60 464.77

2014 949.61 1,113.29 1,027.21 783.67 502.04 271.94 125.00 48.87 16.27 4.62 968.75

2015 977.65 1,146.17 1,057.55 806.81 516.87 279.97 128.70 50.31 16.75 4.76 1,804.17

2016 726.83 852.12 786.23 599.82 384.26 208.14 95.68 37.41 12.46 3.54 2,127.54

2017 721.95 846.40 780.95 595.80 381.68 206.75 95.04 37.16 12.37 3.51 2,959.65

8,578.71

Table 3.19.    Incremental Standard Deviation Values for Wright Model

Predicted Incremental Standard Deviation [Model Fitted] (Paid [÷ Ultimate Claims])

Year 12 24 36 48 60 72 84 96 108 120
Future 
Totals

2008 57.98 61.00 59.45 54.53 47.30 38.89 30.35 22.48 15.83 10.59 0.00

2009 61.39 64.59 62.95 57.74 50.09 41.18 32.13 23.81 16.76 11.21 11.21

2010 58.37 61.41 59.86 54.90 47.63 39.16 30.55 22.64 15.93 10.66 19.17

2011 60.93 64.10 62.48 57.31 49.71 40.87 31.89 23.63 16.63 11.13 30.96

2012 62.47 65.73 64.06 58.76 50.97 41.91 32.70 24.23 17.05 11.41 45.57

2013 65.55 68.96 67.21 61.65 53.48 43.97 34.31 25.42 17.89 11.97 64.96

2014 63.03 66.32 64.64 59.29 51.43 42.28 32.99 24.44 17.21 11.51 80.91

2015 64.73 68.10 66.38 60.88 52.81 43.42 33.88 25.10 17.67 11.82 103.01

2016 57.96 60.98 59.43 54.51 47.28 38.88 30.33 22.47 15.82 10.58 109.72

2017 54.21 57.03 55.58 50.98 44.22 36.36 28.37 21.02 14.80 9.90 117.40

225.23
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3.6. The Simulation Process
For each of the Hayne MLE models, using the parameters to calculate the expected 

mean and standard deviation for each incremental cell is only the starting point, 
since this framework allows us to use simulation to generate a distribution of possible 
outcomes. Additional outputs for each model are the standard deviations for each 
parameter (shown in Tables 3.1, 3.5, 3.9, 3.13, and 3.17) and the variance-covariance 
matrix of all the parameters (not shown). Using the means and variance-covariance 
matrix, the simulation process starts by sampling a random set of new parameters using 
the multi-variate normal distribution. For example, a sample iteration for the Berquist-
Sherman model could look like Table 3.21.

Table 3.20.    Incremental Coefficients of Variation for Wright Model

Predicted Incremental Coefficient of Variation [Model Fitted] (Paid [÷ Ultimate Claims])

Year 12 24 36 48 60 72 84 96 108 120
Future 
Totals

2008 9.4% 8.4% 8.9% 10.7% 14.5% 22.0% 37.3% 70.7% 149.5% 352.3%

2009 8.5% 7.6% 8.0% 9.7% 13.1% 19.8% 33.7% 63.8% 135.0% 318.0% 318.0%

2010 8.4% 7.5% 7.9% 9.5% 12.9% 19.6% 33.2% 62.9% 133.0% 313.5% 124.7%

2011 7.5% 6.7% 7.1% 8.5% 11.6% 17.6% 29.8% 56.5% 119.3% 281.2% 51.8%

2012 7.3% 6.6% 6.9% 8.3% 11.3% 17.1% 29.1% 55.1% 116.5% 274.5% 26.0%

2013 6.9% 6.2% 6.6% 7.9% 10.7% 16.2% 27.6% 52.2% 110.4% 260.2% 14.0%

2014 6.6% 6.0% 6.3% 7.6% 10.2% 15.5% 26.4% 50.0% 105.7% 249.2% 8.4%

2015 6.6% 5.9% 6.3% 7.5% 10.2% 15.5% 26.3% 49.9% 105.5% 248.5% 5.7%

2016 8.0% 7.2% 7.6% 9.1% 12.3% 18.7% 31.7% 60.1% 127.0% 299.3% 5.2%

2017 7.5% 6.7% 7.1% 8.6% 11.6% 17.6% 29.9% 56.6% 119.6% 281.8% 4.0%

2.6%

Table 3.21.    Sample of Berquist-Sherman Parameters

Berquist-Sherman: Development Period Parameters (Average Incremental)

12 24 36 48 60 72 84 96 108 120

668.32 704.13 645.21 559.41 380.69 165.37 84.01 33.80 26.55 15.75

Trend K p

0.047 11.268 0.661

Using the sample parameters, the next step in the simulation process is to calculate 
the mean and standard deviation for each cell, as in Tables 3.22 and 3.23. As a check, 
we can also review the coefficients of variation from the sample incremental parameters 
in Table 3.24.
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Table 3.22.    Sampled Incremental Mean Values for Berquist-Sherman

Generate Incremental Mean from Random Parameters (Paid [÷ Ultimate Claims])

Year 12 24 36 48 60 72 84 96 108 120
Future 
Totals

2008 700.40 737.93 676.18 586.26 398.96 173.31 88.05 35.42 27.82 16.50 0.00

2009 734.02 773.35 708.64 614.40 418.11 181.63 92.27 37.12 29.16 17.29 17.29

2010 769.26 810.47 742.66 643.89 438.18 190.35 96.70 38.90 30.56 18.12 48.68

2011 806.18 849.37 778.30 674.79 459.21 199.48 101.34 40.77 32.02 18.99 91.78

2012 844.88 890.14 815.66 707.18 481.25 209.06 106.21 42.73 33.56 19.91 202.40

2013 885.43 932.87 854.81 741.13 504.35 219.09 111.31 44.78 35.17 20.86 431.21

2014 927.93 977.65 895.84 776.70 528.56 229.61 116.65 46.93 36.86 21.86 980.47

2015 972.47 1,024.57 938.84 813.98 553.93 240.63 122.25 49.18 38.63 22.91 1,841.51

2016 1,019.15 1,073.75 983.91 853.06 580.52 252.18 128.11 51.54 40.48 24.01 2,913.81

2017 1,068.07 1,125.29 1,031.13 894.00 608.39 264.29 134.26 54.01 42.43 25.16 4,178.97

10,706.12

Table 3.23.    Sampled Incremental Std. Dev. Values for Berquist-Sherman

Generate Incremental Standard Deviation from Random Parameters (Paid [÷ Ultimate Claims])

Year 12 24 36 48 60 72 84 96 108 120
Future 
Totals

2008 107.53 111.30 105.06 95.60 74.12 42.71 27.30 14.95 12.74 9.02 0.00

2009 111.61 115.53 109.04 99.23 76.93 44.33 28.33 15.52 13.23 9.37 9.37

2010 110.73 114.62 108.19 98.45 76.33 43.98 28.11 15.40 13.12 9.29 16.08

2011 113.59 117.58 110.98 100.99 78.30 45.12 28.84 15.79 13.46 9.53 22.84

2012 118.27 122.42 115.55 105.15 81.52 46.98 30.02 16.44 14.02 9.92 38.30

2013 123.90 128.25 121.05 110.15 85.40 49.21 31.45 17.23 14.69 10.40 63.50

2014 122.74 127.05 119.92 109.12 84.60 48.75 31.16 17.07 14.55 10.30 105.43

2015 128.81 133.33 125.84 114.51 88.79 51.16 32.70 17.91 15.27 10.81 159.23

2016 130.77 135.36 127.76 116.26 90.14 51.94 33.20 18.18 15.50 10.97 206.04

2017 126.42 130.86 123.52 112.40 87.14 50.22 32.09 17.58 14.98 10.61 238.34

376.95
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Next, using the sampled mean and standard deviation for each incremental 
cell, process variance is added by randomly generating an observation for each cell 
using the normal distribution and the sampled mean and standard deviation for 
that cell. Continuing the example, U(0,1) random values are shown in Table 3.25 
and the random observations based on the means and standard deviations by cell  
in Tables 3.22 and 3.23, respectively, are shown in Table 3.26.

Since the model is typically based on average severities, the final step is to multiply  
the random observations times the ultimate claim counts8 by year to convert the sample 
to total claim values, as in Table 3.27.

Repeating these steps a large number of times, the results for all iterations can be 
saved and summarized by accident year as shown in Figure 3.1.

In addition to results by accident year, results by calendar year and other possibilities 
can also be created from the same simulations. The output will be discussed in more 
detail in Sections 5 and 6.

Table 3.24.    Sampled Incremental CoVs for Berquist-Sherman

Incremental Coefficient of Variation from Generated Random Parameters (Paid [÷ Ultimate Claims])

Year 12 24 36 48 60 72 84 96 108 120
Future 
Totals

2008 15.4% 15.1% 15.5% 16.3% 18.6% 24.6% 31.0% 42.2% 45.8% 54.7%

2009 15.2% 14.9% 15.4% 16.2% 18.4% 24.4% 30.7% 41.8% 45.4% 54.2% 54.2%

2010 14.4% 14.1% 14.6% 15.3% 17.4% 23.1% 29.1% 39.6% 43.0% 51.3% 33.0%

2011 14.1% 13.8% 14.3% 15.0% 17.1% 22.6% 28.5% 38.7% 42.0% 50.2% 24.9%

2012 14.0% 13.8% 14.2% 14.9% 16.9% 22.5% 28.3% 38.5% 41.8% 49.9% 18.9%

2013 14.0% 13.7% 14.2% 14.9% 16.9% 22.5% 28.3% 38.5% 41.8% 49.8% 14.7%

2014 13.2% 13.0% 13.4% 14.0% 16.0% 21.2% 26.7% 36.4% 39.5% 47.1% 10.8%

2015 13.2% 13.0% 13.4% 14.1% 16.0% 21.3% 26.7% 36.4% 39.5% 47.2% 8.6%

2016 12.8% 12.6% 13.0% 13.6% 15.5% 20.6% 25.9% 35.3% 38.3% 45.7% 7.1%

2017 11.8% 11.6% 12.0% 12.6% 14.3% 19.0% 23.9% 32.5% 35.3% 42.2% 5.7%

3.5%

8	 This step depends on the original exposure basis used to parameterize the model. For example, if the model is 
based on pure premiums then the last step is to multiply times exposures by year.
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Table 3.25.    Random Values

Simulated Random Values [Correlated] (Paid)

Year 12 24 36 48 60 72 84 96 108 120

2008 0.4009 0.4189 0.9459 0.3101 0.3192 0.1740 0.4005 0.0364 0.1201 0.0822

2009 0.3078 0.7144 0.5731 0.1989 0.4034 0.4817 0.3595 0.8254 0.8173 0.6103

2010 0.3334 0.8134 0.5619 0.9379 0.3830 0.0163 0.1479 0.8463 0.9088 0.9352

2011 0.9491 0.2084 0.7126 0.2911 0.4702 0.6269 0.7621 0.4779 0.1540 0.0921

2012 0.7837 0.4402 0.1229 0.8062 0.4995 0.3770 0.3096 0.5040 0.8820 0.0521

2013 0.1960 0.2693 0.0002 0.3931 0.1450 0.0349 0.1155 0.0600 0.3554 0.0203

2014 0.7020 0.0977 0.2878 0.7736 0.5855 0.0297 0.9950 0.3926 0.7570 0.6794

2015 0.5225 0.0925 0.9975 0.3746 0.1550 0.5164 0.0112 0.7273 0.1654 0.5295

2016 0.4272 0.7301 0.3417 0.6337 0.3146 0.7889 0.2524 0.8902 0.8295 0.6409

2017 0.0630 0.4542 0.8377 0.4535 0.9946 0.1432 0.5699 0.1098 0.7175 0.1494

Table 3.26.    Sample Observations for Berquist-Sherman

Generate Random Observation from Sampled Incremental Mean & Variance (Paid [÷ Ultimate Claims])

Year 12 24 36 48 60 72 84 96 108 120
Future 
Totals

2008 667.37 709.01 844.47 532.84 359.51 130.00 79.63 7.10 11.80 3.16 0.00

2009 670.92 834.93 723.93 523.28 394.97 177.35 80.40 51.29 40.82 19.53 19.53

2010 714.78 909.75 754.66 794.60 411.07 91.53 65.10 54.30 47.90 32.15 80.05

2011 991.65 745.44 836.84 612.69 449.33 212.28 121.06 39.09 17.25 5.51 61.86

2012 934.48 865.17 672.08 795.40 477.14 191.62 89.39 42.09 49.95 2.84 184.27

2013 770.31 845.46 403.96 704.98 407.24 124.96 71.03 16.39 28.85 (1.54) 239.69

2014 988.80 802.30 820.93 855.55 543.17 132.74 197.56 41.30 46.56 26.29 987.63

2015 973.59 836.35 1,296.12 770.69 456.90 240.28 43.88 59.43 22.61 23.20 1,617.00

2016 988.06 1,152.40 924.07 888.17 531.34 292.49 103.72 73.59 54.89 27.54 2,895.81

2017 862.99 1,103.37 1,150.12 874.98 832.28 206.77 138.49 30.96 50.55 13.31 4,400.84

10,486.67
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Table 3.27.    Conversion to Total Value for Berquist-Sherman

Convert Incremental Severity (Paid [÷ Ultimate Claims]) to Total Incremental Value (in 000’s)

Year 12 24 36 48 60 72 84 96 108 120
Future 
Totals

2008 26,135 27,766 33,070 20,866 14,079 5,091 3,118 278 462 124 0

2009 25,946 32,289 27,996 20,236 15,275 6,859 3,109 1,983 1,578 755 755

2010 29,878 38,029 31,546 33,215 17,183 3,826 2,721 2,270 2,002 1,344 3,346

2011 41,910 31,505 35,368 25,894 18,990 8,972 5,116 1,652 729 233 2,614

2012 38,763 35,888 27,879 32,994 19,792 7,948 3,708 1,746 2,072 118 7,643

2013 30,978 34,000 16,245 28,350 16,377 5,025 2,856 659 1,160 (62) 9,639

2014 43,110 34,979 35,791 37,301 23,682 5,787 8,613 1,801 2,030 1,146 43,059

2015 41,006 35,226 54,590 32,460 19,244 10,120 1,848 2,503 952 977 68,105

2016 42,960 50,106 40,178 38,617 23,103 12,717 4,510 3,200 2,387 1,197 125,908

2017 42,712 54,608 56,922 43,305 41,192 10,234 6,854 1,532 2,502 659 217,808

478,879

Figure 3.1.    Distribution for Berquist-Sherman
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Now that the basic Hayne MLE framework has been described, a variety of practical 
issues needed for addressing many common problems can be addressed. In order to 
distinguish whether the underlying model has parameters associated with individual 
development period, the underlying models can be categorized into two families. The 
first family has parameters tied to individual development age—Berquist Sherman, 
Cape Cod, and chain ladder models fall into this family. The other family has no 
parameters specific to individual development periods and the parameters are more 
comparable to coefficient of regression on development age (operational time)—
Hoerl Curve and Wright models belong to this family.

4.1.  Negative Incremental Values
In general for the Hayne MLE framework, no special care is required in modeling 

triangles with a few negative entries. When the total incremental values for a given 
development period are significantly lower than zero, models from the first family 
have no problem dealing with this type of triangle. Calibrated development period 
parameters, most likely, will turn out to be negative to reflect negative expected incre-
mental values for the period. For models from the second family, incremental means 
are exponential and hence are always positive, so negative incremental values in the 
triangle are difficult to model, which typically implies inappropriateness of the model 
and resulting in a bad fit to the data. However, negative numbers can still be simulated 
due to the process variance during simulation, so a close fit may still work.

4.2.  Standardized Residuals
As the Hayne MLE framework is based on an assumed distribution, i.e., the 

normal distribution for incremental values, this implies that the standardized residuals 
should be normally distributed with mean of zero and a standard deviation of one. 
The goodness of fit to a standard normal distribution of standardized residuals,  
to some degree, implies the appropriateness of the chosen model. Unlike the ODP 
bootstrap model, however, the standardized residuals are not used during the simula-
tion process.

While the residuals are not sampled, the mean and standard deviation of the  
residuals can be used to adjust the process variance simulations. For the mean, an  
average of the residuals greater than zero implies that the mean of the predicted values 

4.  Practical Issues
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are “low” compared to means that would result in an average of zero. Thus, the adjust-
ment for the mean is to increase the mean for each cell by the standard deviation 
for that cell times the average of the residuals. Similarly, a standard deviation of the 
residuals greater than one implies “less” variability than would be “normal,” so the 
standard deviation for each cell can be increased by multiplying it times the standard 
deviation of the residuals.

Another way of thinking about this adjustment is to remember that the process  
variance in the simulations is based on N(0, 1), so if the residuals exhibit a mean 
and standard deviation which differ from zero and one, respectively, then this 
adjustment allows the process variance to more closely match the residuals. In the 
“Hayne MLE Models.xlsm” file, the “Include Residual Adjustment” option on the 
Inputs sheet allows the user to use this adjustment, or not, as this will move away 
from the calculated Hayne MLE parameters, but it could be a way of fitting the model 
to the data.

4.3.  Using an L-Year Average
It is quite common for actuaries to use averages that are less than all years in  

their chain-ladder and related methods. Similarly, the Hayne MLE models can  
be adjusted to only consider the data in the most recent diagonals. For the Hayne 
MLE framework, only the most recent L + 1 diagonals (since an L-year average uses 
L + 1 diagonals) could be used to parameterize the model. The shape of the data to 
be modeled essentially becomes a trapezoid instead of a triangle and the excluded 
diagonals are given zero weight in the models. When running the simulations the 
entire triangle can still be used, since the parameterization of the model has already 
been constrained by the number of diagonals.

The companion “Hayne MLE Models.xlsm” file has not been specifically designed 
to select an L-year model, but that can easily be accomplished by using the outlier 
table to give zero weight to the prior diagonals. Another possibility for an L-year model 
includes an additional payment year term (e.g., a function set to 0 for k < n – L and  
1 for k ≥ n − L) that would produce a similar effect (i.e., using the last L + 1 diagonals) 
while allowing all of the data to be included in the model fit, perhaps enabling better 
diagnostic testing and parameter estimation.

4.4.  Missing Values
Sometimes the loss triangle will have missing values. For example, values may 

be missing from the middle of the triangle, or a triangle may be missing the oldest 
diagonals, if loss data was not kept in the early years of the book of business.

If values are missing, then the following calculations will be affected:

•	 Fitted parameters
•	 Variance-Covariance Matrix
•	 Fitted triangle
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•	 Residuals
•	 Degrees of freedom

There are several solutions. The missing value may be estimated using the surround-
ing values. Or the parameterization of the model can exclude the missing values as long 
as the missing value is not compromising the surrounding incremental values, or for 
the chain ladder model the cumulative values. In any case, zero weights are applied to 
corresponding entries in maximizing log-likelihood functions. The mean and standard 
deviation of the incremental corresponding to the missing value can be derived from 
simulated parameters.

If the missing value lies on the most recent diagonal, parameters can be calibrated 
without any issue except for the chain ladder model, which relies on paid-to-date losses 
to estimate average incremental values. A solution is to use the value in the second 
most recent diagonal to fit the triangle and the average incremental formula should 
be adjusted to be divided by the sum of the first n − w parameters rather than  
n − w + 1 parameters. Of course for other MLE models, simply using the outliers to 
assign zero weight to the corresponding cell will allow the model to be parameterized 
without disturbing the overall framework.

4.5.  Outliers
There may be a few extreme or incorrect values in the original triangle dataset that 

could be considered outliers. These may not be representative of the variability of the 
dataset in the future and, if so, the modeler may want to remove their impact from 
the model. These values could be removed and dealt with in the same manner as 
missing values by applying zero weight to the corresponding incremental.

If there are a significant number of outliers, then this could be an indication that 
the model is not a good fit to the data. For example, since the Hayne MLE models 
include an underlying assumption of normality, too many outliers could imply that 
the underlying claims distribution is too severe for the central limit theorem to apply—
i.e., the model may be fine but the normality assumption is not. Outliers should always 
be removed only after careful consideration of the underlying data to make sure it is 
truly an unusual event.

4.6.  Heteroscedasticity
As noted earlier, the Hayne MLE models include variance parameters that 

adjust the variance for each cell instead of assuming a constant variance throughout. 
In essence, the modeling framework assumes heteroscedasticity. However, since the 
variance for the incremental value is only specified using two parameters, it is still 
possible that the modeled heteroscedasticity does not match up well with the variances 
in the data. In this case, additional variance parameters can be specified as described 
in Hayne [8], but that is outside the scope of this monograph.
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4.7.  Heteroecthesious Data
The basic Hayne MLE framework assumes both a symmetrical shape (e.g., annual 

by annual, quarterly by quarterly, etc., triangles) and homoecthesious data (i.e., similar 
exposures).9 Other non-symmetrical shapes (e.g., annual x quarterly data) can also 
be modeled with the Hayne MLE framework as assumptions are independent from 
triangle shapes.

Most often, the actuary will encounter heteroecthesious data (i.e., incomplete or 
uneven exposures) at interim evaluation dates, with the two most common data triangles 
being either a partial first development period or a partial last calendar period. For 
example, with annual data evaluated as of June 30, partial first development period data 
would have all development periods ending at 6, 18, 30, etc., months, while partial last 
calendar period data would have development periods as of 12, 24, 36, etc., months for 
all of the data in the triangle except the last diagonal, which would have development 
periods as of 6, 18, 30, etc., months. In either case, not all of the data in the triangle 
has full annual exposures—i.e., it is heteroecthesious data.

4.7.1.  Partial First Development Period Data
For partial first development period data, the first development column has a 

different exposure period than the rest of the columns (e.g., in the earlier example 
the first column has six months of development exposure, while the rest have 12),  
as illustrated in Figure 4.1. In models such as Berquist Sherman, Cape Cod and 
chain ladder, where a parameter is specified for each development period, it is not 
an issue in the parameterization process. Likewise, for the Hoerl Curve or Wright 
models, development age or operational time is embedded in the model so the 
development age component should reflect this partial first development period and 
no further adjustment is required when fitting the model.

Figure 4.1.   Triangle Shape for Partial First Development Period

9	 The terms homoecthesious and heteroecthesious are a combination of the Greek homos (or Ο′ µο′ V) meaning the 
same or hetero (or e′tero) meaning different and the Greek ekthesē (or e′kqesh) meaning exposure. They were 
introduced in Shapland [16].
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After simulation, an additional adjustment for this type of heteroecthesious data 
is applied in the projection of future incremental values. In a deterministic analysis, 
the most recent accident year needs to be adjusted to remove exposures beyond the 
evaluation date. For example, continuing the previous example, the development 
periods at 18 months and later are all for an entire year of exposure, whereas the  
six-month column is only for six months of exposure. Thus, the 18-month incre-
mental values will effectively extrapolate the first six months of exposure in the latest 
accident year to a full accident year’s exposure. Accordingly, it is common practice to 
reduce the projected future payments by half to remove the exposure from June 30 
to December 31.10

The simulation process for Hayne MLE models can be adjusted similarly to 
the way a deterministic analysis would be adjusted. After simulated parameters are 
used to project the future incremental values, the last accident year’s values can be 
reduced (in the previous example by 50%) to remove the future exposure and then 
process variance can be simulated as before. Alternatively, the future incremental 
values can be reduced after the process variance step. For example, Table 4.1 can 
be compared to Table 3.27 to see the reduction in the future exposures for the last 
accident year.

Table 4.1.   Total Values Adjusted to Remove Future Exposures

Adjust Total Incremental Value to Remove Future Exposures (Paid) (in 000’s)

Year 6 18 30 42 54 66 78 90 102 114
Acc Yr 

Unpaid

2008 26,135 27,766 33,070 20,866 14,079 5,091 3,118 278 462 124 0

2009 25,946 32,289 27,996 20,236 15,275 6,859 3,109 1,983 1,578 755 755

2010 29,878 38,029 31,546 33,215 17,183 3,826 2,721 2,270 2,002 1,344 3,346

2011 41,910 31,505 35,368 25,894 18,990 8,972 5,116 1,652 729 233 2,614

2012 38,763 35,888 27,879 32,994 19,792 7,948 3,708 1,746 2,072 118 7,643

2013 30,978 34,000 16,245 28,350 16,377 5,025 2,856 659 1,160 (62) 9,639

2014 43,110 34,979 35,791 37,301 23,682 5,787 8,613 1,801 2,030 1,146 43,059

2015 41,006 35,226 54,590 32,460 19,244 10,120 1,848 2,503 952 977 68,105

2016 42,960 50,106 40,178 38,617 23,103 12,717 4,510 3,200 2,387 1,197 125,908

2017 42,712 27,304 28,461 21,653 20,596 5,117 3,427 766 1,251 329 108,904

369,975

10	 Reduction by half is actually an approximation since it would also make sense to account for the differences in 
development between the first and second half years.
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During the Hayne MLE simulation process, incremental means and standard 
deviations can be calculated from the fully annualized sample parameters and used to 
simulate incremental values. Then, the last diagonal from the sample triangle can be 
adjusted to de-annualize the incremental values in the last diagonal—i.e., reversing  
the annualization of the original last diagonal—as illustrated in Table 4.2. Note that 

Table 4.2.   Total Values Adjusted to De-annualize Incremental Values

Adjust Total Incremental Value for Exposures (Paid) (in 000’s)

Year 12 24 36 48 60 72 84 96 108 120 132
Future 
Totals

2008 26,135 27,766 33,070 20,866 14,079 5,091 3,118 278 462 62 62 62

2009 25,946 32,289 27,996 20,236 15,275 6,859 3,109 1,983 789 1,167 378 1,544

2010 29,878 38,029 31,546 33,215 17,183 3,826 2,721 1,135 2,136 1,673 672 4,481

2011 41,910 31,505 35,368 25,894 18,990 8,972 2,558 3,384 1,191 481 116 5,172

2012 38,763 35,888 27,879 32,994 19,792 3,974 5,828 2,727 1,909 1,095 59 11,618

2013 30,978 34,000 16,245 28,350 8,188 10,701 3,941 1,758 910 549 (31) 17,827

2014 43,110 34,979 35,791 18,650 30,491 14,734 7,200 5,207 1,915 1,588 573 61,710

2015 41,006 35,226 27,295 43,525 25,852 14,682 5,984 2,176 1,728 965 489 95,401

2016 42,960 25,053 45,142 39,397 30,860 17,910 8,613 3,855 2,793 1,792 599 150,961

2017 10,678 59,338 55,765 50,114 42,248 25,713 8,544 4,193 2,017 1,580 329 249,842

598,618

  

 

 

 

 

Figure 4.2.   Triangle Shape for Partial Last Calendar Period

4.7.2.  Partial Last Calendar Period Data
For a partial last calendar period data, most of the data in the triangle has annual 

exposures and annual development periods, except for the last diagonal that, continuing 
the example, only has a six-month development period as illustrated in Figure 4.2.  
A simple approach is to adjust the raw data incremental values along the diagonal 
to a full development period to make them consistent with the rest of the triangle. 
The parameterization process can then be done with the adjusted incremental values.
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Table 4.3.   Total Values Adjusted to Remove Future Exposures

Adjust Total Incremental Value to Remove Future Exposures (Paid) (in 000’s)

Year 12 24 36 48 60 72 84 96 108 120 132
Acc Yr 

Unpaid

2008 26,135 27,766 33,070 20,866 14,079 5,091 3,118 278 462 62 62 62

2009 25,946 32,289 27,996 20,236 15,275 6,859 3,109 1,983 789 1,167 378 1,544

2010 29,878 38,029 31,546 33,215 17,183 3,826 2,721 1,135 2,136 1,673 672 4,481

2011 41,910 31,505 35,368 25,894 18,990 8,972 2,558 3,384 1,191 481 116 5,172

2012 38,763 35,888 27,879 32,994 19,792 3,974 5,828 2,727 1,909 l,095 59 11,618

2013 30,978 34,000 16,245 28,350 8,188 10,701 3,941 1,758 910 549 (31) 17,827

2014 43,110 34,979 35,791 18,650 30,491 14,734 7,200 5,207 1,915 1,588 573 61,710

2015 41,006 35,226 27,295 43,525 25,852 14,682 5,984 2,176 1,728 965 489 95,401

2016 42,960 25,053 45,142 39,397 30,860 17,910 8,613 3,855 2,793 1,792 599 150,961

2017 10,678 29,669 27,883 25,057 21,124 12,856 4,272 2,097 1,009 790 165 124,921

473,697

since the model parameters are annual, the “de-annualization” process includes a partial 
shifting of the future incremental values to the next future period. Finally, the future 
incremental values for the last accident year must be reduced (in the previous example 
by 50%) to remove the future exposure, as illustrated in Table 4.3.11

4.8.  Parameter Adjustments
The Hayne MLE framework will find the optimal parameters for the specified model. 

Like all models, this also means that there will be times that the noise in the data will 
lead to “distortions” in the parameters. This is akin to the need to select age-to-age 
factors to smooth the development pattern. The ability to judgmentally adjust some of 
the parameters is also possible with the Hayne MLE models. For example, consider the 
plot of the decay ratios for the Berquist-Sherman model in Figure 4.3.

In Figure 4.3, notice the “outlier” for the 120 month development period. This is 
an indication that the fitted or modeled parameter for 108 months may be lower than 
would have been expected. Reviewing the development year parameters, the choice for 
the modeler boils down to deciding whether to accept the parameters as reasonable 
or adjusting them to smooth out some of the noise in the data. For this Berquist-
Sherman model example, the manual adjustment in Table 4.4 can be compared to 
the parameters in Table 3.1.12

11	 These heteroecthesious data issues can be addressed in the “Hayne MLE Models.xlsm” file by using the Exposure 
Factors sheet. While not included in the Excel file, it should be noted that these adjustments can add more 
uncertainty and the estimates can be highly sensitive to the adjustments. To address this, extra uncertainty could 
be added to the adjustment factors in the simulation process.

12	 Similar manual adjustments for each of the models are illustrated in Appendix A.
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To adjust the mean for 108 months, the decay ratios were reviewed and the original 
mean of 11.08 was seen to be low compared to the surrounding parameters due to the 
low decay ratio for 108 months and high decay ratio for 120 months. The parameter 
of 26.00 was selected by smoothing the decay ratios for the last three development 
periods.13 Notice that only the mean parameters need to be adjusted since the MLE 
framework allows the variance-covariance parameters to be recalculated based on the 

Figure 4.3.    Decay Ratios for Berquist-Sherman Model

Table 4.4.    User Selected Parameters for Berquist-Sherman

User Selected Parameters:

12 24 36 48 60 72 84 96 108 120

Mean 620.96 760.67 708.16 553.57 350.00 181.39 70.97 43.88 26.00 15.21

Std Dev 40.50 46.55 43.00 35.49 26.17 17.66 10.40 8.75 7.60 7.36

Decay Ratios: 122.5% 93.1% 78.2% 63.2% 51.8% 39.1% 61.8% 59.3% 58.5%

CoV: 6.5% 6.1% 6.1% 6.4% 7.5% 9.7% 14.7% 19.9% 29.2% 48.4%

Accident Year

Trend K p AIC BIC

Mean 0.045 11.216 0.654 647.9 674.0

Std Dev 0.009 1.094 0.089

CoV: 18.9% 9.3% 13.6%

13	 Compared to the original parameter of 11.08, the parameter of 26.00 is more than 3 standard deviations larger, 
which is quite large, but it would be consistent with a strong a priori belief that the decay should be smooth.
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selected parameter. In essence, we are assuming the expected incremental losses are 
derived from selected parameters, or the “true” parameters for the data.

Rather than judgmentally selecting new parameters, another option would be to 
change the parametric setup of the model such that a group of parameters (e.g., the 
last 3 development periods for the Berquist-Sherman model) are not independent. 
The Excel companion files do not include this type of adjustment to the model setup.

As you balance the competing goals of goodness of fit and reasonability of 
assumption, the diagnostics will give an indication of the significance of the changes 
to the model parameters. Finally, while user-selected parameters will tend to move the 
statistics away from optimal, the goal is to reasonably replicate the statistical features of 
the data and other adjustments, like the residual adjustment discussed in section 4.2, 
can also be made if the impact on the residuals is significant.

4.9. Tail Extrapolation
One of the most common data issues is that claim development is not complete 

within the loss triangle and tail factors are commonly used to extrapolate beyond the 
end of the data triangle. There are many common methods for calculating tail factors 
and a useful reference in this regard is the CAS Tail Factor Working Party Report [5]. 
However, for the Hayne MLE models a different approach is required in order to 
extrapolate the parameters so that a multi-variant normal distribution can continue 
to be used. Once extrapolation is used to extend the parameters, incremental values 
can all be extended to include development periods beyond the end of the triangle—
i.e., the tail periods.

For the first family of models (i.e., Berquist-Sherman, Cape Cod, and chain ladder) 
the decay ratios shown in Tables 3.1, 3.5, and 3.9 can be used as a way of extrapolating  
the development parameters for each model similarly to how a tail factor might be 
calculated for a deterministic method. In the “Hayne MLE Models.xlsm” file, five 
different regression models (i.e., average, linear, logarithmic, power, and polynomial) 
can be used to extrapolate decay ratios for up to 5 years from either the modeled or 
user selected parameters.14 For example, Table 4.5 illustrates the extrapolation for the 
Berquist-Sherman model, which is based on the user-selected parameters in Table 4.4, 
so the graph in Table 4.5 can be compared to Figure 4.3.

From these regression models, the implied tail decay mean is the fitted decay ratio 
from the regression and the decay standard deviation is the average deviation for the 
actual decay ratios from the regression curve. The length of the tail period can then 
be determined by reviewing the means of the incremental periods beyond the triangle 
and then including enough periods such that the means in the final development 
column are close to zero. Using the decay ratio statistics and selected number of 
periods in the tail, the Hayne MLE framework will also extend the variance-covariance 

14	 The limit of 5 years in the “Hayne MLE Models.xlsm” file is only based on a practical need to limit the size of 
the file.
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Table 4.5.    Berquist-Sherman Model Tail Extrapolation

Decay Ratio Analysis:

Parameters: User Curve Type: Power 3
Least Squares 
Regression Coefficients: Goodness of Fit Statistics:

xa –0.3916 R2 Statistic 0.710

coefficient 1.1559 Regression Deviation 13.5%

Suggested Decay Parameters:

Mean 45.3%

Standard Deviation 13.7%

Berquist & Sherman MLE Decay Ratio Plot [Paid]

 
Periods

Decay 
Ratio

 
Outliers

Selected 
Age

Decay 
Ratio

Fitted 
Factors

12–24 1.225 0 1 1.225 1.156

24–36 0.931 0 2 0.931 0.881

36–48 0.782 0 3 0.782 0.752

48–60 0.632 0 4 0.632 0.672

60–72 0.518 0 5 0.518 0.615

72–84 0.391 0 6 0.391 0.573

84–96 0.618 0 7 0.618 0.539

96–108 0.593 0 8 0.593 0.512

108–120 0.585 0 9 0.585 0.489

120–132 0.469

132–144 0.452

144–156 0.437

156–168 0.423

168–180 0.411
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matrix to include the tail periods.15 Continuing the Berquist-Sherman example, the 
extended parameters for 3 years are illustrated in Table 4.6, which can be compared 
to Table 4.4.16

15	 The extension of the variance-covariance matrix is shown below the simulated values in the “Hayne MLE” 
sheets in the “Hayne MLE Models.xlsm” file.

16	 The modeled parameters are also extended in the companion file, but they are not illustrated in the monograph.
17	 The “adjusted” tail factor would be for annualized data if there were exposure issues as discussed in Section 4.7, 

whereas the “actual” tail factor would be for the data as is.

One of the interesting features of this extrapolation process is that coefficients 
of variation in the tail parameters are increasing, which is a statistical feature you 
would expect to find. The implied tail factor is also shown in the table in order to 
better compare with other models and traditional methods.17 Finally, two different  
“Tail Sampling Options” are included for use in the simulation process. For the 
“Conditional Variance” option, the parameters in the tail are sampled using the multi-
variate normal along with all the other parameters. For the “Sampling” option, a decay 
ratio is sampled using the mean and standard deviation from the regression and the 
selected distribution (i.e., Gamma, Normal, or Lognormal can be selected).

For the second family of models (i.e., Hoerl Curve and Wright), there are no 
parameters tied specifically to development age, so it is a simple matter to extend the 
“development” ages. The length of the tail period can be determined by reviewing 
the means of the incremental periods beyond the triangle and then including enough 
periods such that the means in the final development column are close to zero.

A key ingredient for all of these considerations is to verify that the simulations 
in the tail are reasonable. For example, the tail period represents the extension of 
development parameters and using just a single period may not produce appropriate 
incremental results.

Accident Year Tail Extrapolation Implied Tail Factor

Trend K p AIC BIC Decay Ratio Periods Distribution Adjusted Actual Tail Sampling Option

Mean 0.045 11.216 0.654 647.9 674.0 45.3% 3 Gamma 1.0034 1.0034 Conditional Variance

Std Dev 0.009 1.094 0.089 13.7%

CoV: 18.9% 9.3% 13.6%

Table 4.6.    Extended Parameters for Berquist-Sherman Model

User Selected Parameters:

12 24 36 48 60 72 84 96 108 120 132 144 156

Mean 620.96 760.67 708.16 553.57 350.00 181.39 70.97 43.88 26.00 15.21 6.89 3.12 1.41

Std Dev 40.50 46.55 43.00 35.49 26.17 17.66 10.40 8.75 7.60 7.36 4.05 2.13 1.09

Decay  
Ratios:

122.5% 93.1% 78.2% 63.2% 51.8% 39.1% 61.8% 59.3% 58.5%

CoV: 6.5% 6.1% 6.1% 6.4% 7.5% 9.7% 14.7% 19.9% 29.2% 48.4% 58.8% 68.4% 77.6%
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4.10.  Incurred Data
The Hayne MLE models can be used to model both paid and incurred loss  

data. Using incurred data incorporates case reserves, thus perhaps improving the 
ultimate estimates. However, the resulting distribution from using incurred data 
will be possible outcomes of the IBNR, not a distribution of the unpaid. There are 
two possible approaches for modeling an unpaid loss distribution using incurred 
loss data: modeling incurred data and converting the ultimate values to a payment 
pattern, or modeling paid and case reserves separately.

Using the first approach, a convenient way of converting the results of an incurred 
data model to a payment stream is to run the paid data model in parallel with the 
incurred data model and use the random payment pattern from each iteration from 
the paid data model to convert the ultimate values from each corresponding iteration 
from the incurred data to a payment pattern for each iteration (for each accident year 
individually). The “Hayne MLE Models.xlsm” file illustrates this concept. It is worth 
noting, however, that this process allows the “added value” of using the case reserves 
to help predict the ultimate results to work its way into the calculations, thus perhaps 
improving the ultimate estimates, while still focusing on the payment stream for 
measuring risk. In effect, it allows a distribution of IBNR to become a distribution of 
IBNR and case reserves.

This process can also be made more sophisticated by correlating the multi-variate 
normal simulation of the paid and incurred models (e.g., the model parameters and/or 
process variance). In order to specify a correlation coefficient between the paid and 
incurred models, the correlation of the standardized residuals can be measured as, for 
example, in Figure 4.4 for the Berquist-Sherman model.

Figure 4.4.    Correlation of Paid and Incurred Standardized Residuals

From Figure 4.4 observe that there is a positive correlation between the paid and 
incurred standardized residuals for the Berquist-Sherman model. This is not surprising, 
as incurred data includes paid data, but using this to correlate the paid and incurred 
simulations is a way of including this statistical feature of the data in the model. In the 
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“Hayne MLE Models.xlsm” file the correlation assumption is specified in the Inputs 
sheet and it will only be used to correlate the process variance portion of the paid and 
incurred data models.

The second approach could be accomplished by applying the Hayne MLE models 
to the case reserve triangle and then “combining” the case reserve and paid claim 
simulations. This has the advantage over the first approach of not modeling the paid 
losses twice, but it would also require specifying the correlation of the paid and out-
standing losses. For both approaches it may be possible to extend the Hayne MLE 
models to include both paid and incurred data in a combined modeling framework, 
but that is beyond the scope of this monograph.

4.11.  Claim Count Data
For a sufficient volume of claims, the count distribution can be approximated 

with a normal distribution and it follows that the Hayne MLE models can also be 
used to model claim count data. Indeed, as the models are typically based on average 
claim severity, this assumes that the ultimate claim count has been estimated. As a 
first step to estimating unpaid amounts, the Hayne MLE models can all be used to 
estimate unclosed and ultimate claim counts using either closed or reported claim 
count triangles.18 Similarly to loss amount models, models based on reported counts  
would result in a distribution of possible outcomes of the IBNR claim count, not a dis-
tribution of the unclosed count. The two possible approaches for modeling an unpaid 
loss distribution using incurred loss data also apply to modeling an unclosed count 
distribution using reported count data: modeling reported count data and converting 
the ultimate values to a closed pattern, or, modeling closed and open counts separately.

Using the first approach, the “Hayne MLE Models.xlsm” file illustrates a convenient 
way of converting the results of a reported count data model to a closed stream by 
running the closed count data model in parallel with the reported count data model 
and using the random closed pattern from each iteration from the closed count data 
model to convert the ultimate values from each corresponding iteration from the 
reported data to a closed pattern for each iteration (for each accident year individually). 
It is worth noting that this process allows the “added value” of using the open count 
to help predict the ultimate results to work its way into the calculations, thus perhaps 
improving the ultimate count estimates, while still focusing on the closed stream for 
measuring risk and combining model results. In effect, it allows a distribution of IBNR 
counts to become a distribution of IBNR and open counts.

This process can also be made more sophisticated by correlating the multi-variate 
normal simulation of the closed and reported models (e.g., the model parameters 
and/or process variance). In order to specify a correlation coefficient between the closed 
and reported models, the correlation of the standardized residuals can be measured as, 
for example, in Figure 4.5 for the Berquist-Sherman model.

18	 In the “Hayne MLE Models.xlsm” file, claim count data and model selections can be made on the Inputs sheet. 
All of the sheets with “(Cnt)” in the sheet name show model details for the claim count models.
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Figure 4.5.    Correlation of Closed and Reported Standardized Residuals

From Figure 4.5 observe that there is a strong positive correlation between the 
closed and reported standardized residuals for the Berquist-Sherman model. This is 
not surprising, as reported count data includes closed count data, but using this to 
correlate the closed and reported simulations is a way of including this statistical 
feature of the data in the model. In the “Hayne MLE Models.xlsm” file, the correlation 
assumption is specified in the Inputs sheet and it will only be used to correlate the 
process variance portion of the closed and reported data models.

The second approach could be accomplished by applying the Hayne MLE models 
to the open count triangle and then “combining” the open count and closed count 
simulations. This has the advantage over the first approach of not modeling the closed 
counts twice, but it would also require specifying the correlation of the closed and 
open counts. For both approaches it may be possible to extend the Hayne MLE models 
to include both closed and reported data in a combined modeling framework, but 
that is beyond the scope of this monograph.

Finally, as noted at the beginning of this section, the normality assumption relies 
on a sufficient volume of claims and, without this, the Hayne MLE models may not 
fit the statistical features of the data. From a practical standpoint, it stands to reason 
that count distributions may be less likely to be diagnostically normal, thus requiring 
extra care, especially for an open count model. It also follows that if the claim count 
distribution is not normal, then it also has implications for the quality of the average 
severity models.

4.12.  Frequency and Severity Modeling
In addition to modeling only the claim counts, including both the count and 

value data allows the modeler to use all of the data in the simulations. This process can 
also be made more sophisticated by correlating the multi-variate normal simulation of 
the paid claims and closed count models (e.g., the model parameters and/or process 
variance). In order to specify a correlation coefficient between the paid and closed 
models, the correlation of the standardized residuals can be measured as, for example, 
in Figure 4.6 for the Berquist-Sherman model.
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From Figure 4.6 observe that there is a negative correlation between the paid and 
closed standardized residuals for the Berquist-Sherman model.19 This is not surprising, 
as average paid would tend to be lower than average when the closed count is higher 
than average, but using this to correlate the paid and closed simulations is a way of 
including this statistical feature of the data in the model. In the “Hayne MLE Models.
xlsm” file the correlation assumption is specified in the Inputs sheet and it will only 
be used to correlate the process variance portion of the paid and closed data models 
when they are run jointly.

In theory it may be possible to extend the Hayne MLE models to include all of 
the paid, incurred, closed, and reported data in a combined modeling framework, 
but that is beyond the scope of this monograph. While it seems this theory would 
need to combine all of the data into a framework for one model at a time, without a 
single cohesive model it is possible to mix and match models between the value data 
(i.e., paid and incurred) and the count data (i.e., closed and reported). This allows for 
a larger number of combinations of models and allows the user to combine the best 
model for each data type.

Figure 4.6.    Correlation of Paid and Closed Standardized Residuals

19	 In practice, a more sophisticated approach could be used, for example, to see if there is more correlation in the 
later development periods.

15663-01_Ch01-04-3rdPgs.indd   3915663-01_Ch01-04-3rdPgs.indd   39 1/7/22   11:05 AM1/7/22   11:05 AM



40	 Casualty Actuarial Society

The quality of any model depends on the quality of the underlying assumptions. 
When a model fails to “fit” the data, it is unlikely to produce a good estimate of the 
distribution of possible outcomes.20 However, a balance must be considered between 
parsimony of parameters and the goodness-of-fit. Over-parameterization may cause 
the model to be less predictive of future losses. On the other hand, no model will 
perfectly “fit” the data, so the best you can hope for with any model is that it reason-
ably represents the data and your understanding of the processes that impact the data. 
Therefore, diagnostically evaluating the assumptions underlying a model is important 
for evaluating whether it will produce reasonable results or not and whether it should 
stay in your selected group of reasonable models.

The CAS Working Party [4], in the third section of their report on quantifying 
variability in reserve estimates, identified 20 criteria or diagnostic tools for gauging the 
quality of a stochastic model. The Working Party also noted that, in trying to deter-
mine the optimal fit of a model, or indeed an optimal model, no single diagnostic tool 
or group of tools can be considered definitive. Depending on the statistical features 
found in the data, a variety of diagnostic tools are necessary to best judge the quality 
of the model assumptions and to adjust the parameters of the model. This monograph 
will discuss some of these tools in detail as they relate to the Hayne MLE models.

The key diagnostic tests are designed for three purposes: to test various assumptions 
in the model, to gauge the quality of the model fit to the data, and to help guide the 
adjustment of model parameters, if needed. Some tests are relative in nature, enabling 
results from one set of model parameters to be compared to those of another, for a 
specific model, allowing a modeler to improve the fit of the model. For the most part, 
however, the tests can’t be used to compare different models. The objective, consistent 
with the goals of a deterministic analysis, is not to find the one best model, but rather 
a set of reasonable models.

Some diagnostic measures include statistical tests, providing a pass/fail deter-
mination for some aspects of the model assumptions. This can be useful even though 
a “fail” does not necessarily invalidate an entire model; it only points to areas where 
improvements can be made to the model or its parameterization. The goal is to find the 

5.  Diagnostics

20	 While the examples are different, significant portions of sections 5 and 6 are based on IAA [10] and Milliman 
[13]. Many of the diagnostic graphs from Hayne [8] have also been reproduced in this monograph.
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sets of models and parameters that will yield the most realistic, most consistent simula-
tions, based on statistical features found in the data.21

5.1.  Residual Graphs
As noted earlier, the Hayne MLE models rely on the normal distribution assumption  

for incremental values and the standardized residuals are independent and identi-
cally distributed about the standard normal distribution conditional on parameters. 
Graphing residuals is a good way to check this. Consider the residual graphs for the 
Berquist-Sherman model in Figure 5.1 for the modeled parameters.

21	 Using the data from Hayne [8], diagnostic graphs and tests for all five of the Hayne MLE models are included 
in Appendix A.

22	 In the graphs that follow, the red dots are outliers as identified in Figure 5.3.

Figure 5.1.    Berquist-Sherman Residual Graphs [modeled parameters]

For each model, going clockwise, and starting from the lower-left-hand corner, 
the graphs in Figure 5.1 show the residuals (blue and red dots22) by calendar period, 
development period, and accident period and against the fitted incremental value 
(in the lower-right-hand corner). In addition, the graphs include a trend line (in green) 
that highlights the averages for each period.

Most residuals from the Berquist-Sherman model appear reasonably random 
and the averages do not deviate significantly from zero by development periods and 
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payment periods. The averages by development period are not surprising, since there 
is a parameter for each development period, but the lack of a trend by payment year is 
more useful since without a calendar year trend parameter this would be problematic 
for the Berquist-Sherman model. The averages by accident period appear significantly 
different from zero, which may indicate that a single trend component is not enough 
to model the level of incremental values by exposure periods.

Also of interest are the three large negative residuals in early development periods 
that are indicated in red as outliers. This could indicate the need to adjust those 
development period parameters, although adjustments to remove outliers is typically 
a last resort compared to other options.

5.2.  Normality Test
To see whether the standardized residuals are normally distributed, tests comparing 

the residuals against a normal distribution are useful. This also enables a comparison 
of the modeled parameters to the user-selected parameter sets and gauging the skew-
ness of the residuals in order to further validate the suitability of the chosen model. 
For example, Figure 5.2 shows the normality tests for the Berquist-Sherman model 
comparing the modeled and user selected parameters.

Figure 5.2.    Normality Plots for Berquist-Sherman

The residual plots appear close to normally distributed, with the data points tightly 
distributed around the diagonal line. While there is an additional outlier for the user-
selected parameters, the p-value, a statistical pass-fail test for normality, improved from 
3.9% to 8.0%, and the R2 improved from 95.5% to 96.3%. The p-value is generally 
considered a “passing” score of the normality test when it is greater than 5.0%.23 The 
graphs in Figure 5.2 also show N (the number of data points).

23	 Note that this doesn’t indicate whether the Hayne MLE model itself passes or fails, it only tests whether the 
residuals can be judged to be normally distributed.
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While the p-value and R2 tests assess the goodness of fit of the model to the data, 
they do not penalize for added parameters. Adding more parameters will almost always 
improve the fit of the model to the data, but the goal is to have a good fit with as few 
parameters as possible. Two other tests, the Akaike information criteria (AIC) and 
the Bayesian information criteria (BIC), address this limitation, using the difference 
between each residual and its normal counterpart from the normality plot to calculate 
the residual sum squared (RSS) and include a penalty for additional parameters,  
as shown in (5.1) and (5.2), respectively.24

= × + × × π ×



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+





AIC p n
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2
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( )= × 
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+ ×BIC n
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n
p nln ln (5.2)

A smaller value for the AIC and BIC tests indicate an improvement, especially with 
respect to overcoming the penalty of adding a parameter. For the Berquist-Sherman 
model test in Figure 5.2, there were no parameters added but the values increased a little, 
which is expected since the user selected parameters are not the optimal parameters.  
It is important to remember that the AIC and BIC tests tend to be model specific in 
the sense that they are less well suited for comparing different models and better suited 
for different parameterizations of the same model.25

5.3.  Outliers
Identifying outliers in the data provides another useful test in determining model 

fit. Outliers can be represented graphically in a box-whisker plot, which shows the 
inter-quartile range (the 25th to 75th percentiles) and the median (50th percentile)  
of the residuals—the so-called box. The whiskers then extend to the largest values  
within three times this inter-quartile range.26 Values beyond the whiskers may  
generally be considered outliers and are identified individually with a point. For 
example, the box-whisker plots in Figure 5.3 compare the modeled and user selected 
parameters for the Berquist-Sherman model.

If the data in those outlier cells genuinely represent events that cannot be expected 
to happen again, the outlier(s) may be removed from the model (by giving it/them zero 

24	 There are different versions of the AIC and BIC formula from various authors and sources, but the general idea 
of each version is consistent. Other similar formulas could also be used.

25	 To be clear, using diagnostic tests to compare different data sets is generally not a good idea. For the same data 
set and different models, using AIC and BIC (and other diagnostics) can help with model comparison, but even 
for similar diagnostic results the models could still produce wildly different estimates.

26	 Various authors and textbooks use widths for the whiskers that tend to span from 1.5 to 3 times the inter-quartile 
range. Changing the multiplier will therefore make the box-whisker plot more or less sensitive to outliers. It is 
also possible to illustrate “mild” outliers with a multiplier of 1.5 and the more “extreme” outliers with a multiplier 
of 3 using different colors and/or symbols in the graphs. Of course, the actual multipliers can be adjusted based 
on personal preference.
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weight). But extreme caution should be taken even when the removal of outliers seems 
warranted. The possibility always remains that apparent outliers may actually represent 
realistic extreme values, which, of course, are critically important to include as part of 
any sound analysis.

Additionally, when residuals are not normally distributed, a significant number of 
outliers tend to result—i.e., the distributional shape of the residuals may be skewed or 
otherwise not normal.27 In this case, it is impossible for the Hayne MLE simulation 
to capture this shape, as it relies on the normality assumption, although adjusting the 
parameters may help “restore” normality. Finally, a significant number of residuals can 
also mean the underlying model is not a good fit to the data, so other models should 
be used or this model given less weight (see Section 6).

While the three diagnostic tests shown above demonstrate techniques commonly 
used with most types of models, they are not the only tests available.28 Next, we’ll take 
a look at the flexibility of the Hayne MLE framework and some of the diagnostic 
elements of the simulation results. For a more extensive list of other tests available, see 
the report “CAS Working Party on Quantifying Variability in Reserve Estimates” [4].

5.4.  Model Results
Once the parameter diagnostics have been reviewed, simulations should be run for 

each model.29 These simulation results provide an additional diagnostic tool to aid in 
evaluation of the model, as described in section 3 of CAS Working Party [4]. As an 
example, the results for the Berquist-Sherman Hayne MLE model will be reviewed. 
The estimated-unpaid results shown in Table 5.1 were simulated using 10,000 iterations 
with the parameters from Table 4.6.

27	 To help assess normality, the interquartile range could be compared to a normally distributed range of ±0.67 
standard deviations.

28	 For an example, see Venter [19].
29	 Throughout the monograph, all simulations include both parameter uncertainty and process uncertainty as 

illustrated in Tables 3.21 through 3.27.

Figure 5.3.    Berquist-Sherman Box-Whisker Plots
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5.4.1.  Estimated-Unpaid Results
It’s recommended to start a diagnostic review of the estimated unpaid results with 

the standard error (standard deviation) and coefficient of variation (standard error 
divided by the mean), shown in Table 5.1. Keep in mind that for books of business 
with relatively stable volume the standard error should increase when moving from 
the oldest years to the most recent years, as the standard errors (value scale) should 
follow the magnitude of the mean of unpaid estimates. In Table 5.1, the standard 
errors conform to this pattern. At the same time, the standard error for the total of 
all years should be larger than any individual year.

Also, the coefficients of variation should generally decrease when moving from 
the oldest year to the more recent years and the coefficient of variation for all years 
combined should be less than for any individual year.

The main reason for the decrease in the coefficient of variation has to do with the 
independence in the incremental claim-payment stream. Because the oldest accident 
year typically has only a few incremental payments remaining, or even just one, the 
variability is nearly all reflected in the coefficient. For more current accident years, 
random variations in the future incremental payment stream may tend to offset one 
another, thereby reducing the variability of the total unpaid loss.30

While the coefficients of variation should go down, they could also start to rise 
again in the most recent years. Such reversals are from a couple of issues:

•	 With an increasing number of parameters used in a model, the parameter uncertainty 
tends to increase when moving from the oldest years to the more recent years, 
particularly for models with accident year parameters, where uncertainty could 
increase in more recent accident years.

Table 5.1.    Estimated Unpaid Results for Berquist-Sherman

Sample Insurance Company  

Hayne Paper Data  

Accident Year Unpaid (in 000’s)  

Paid Berquist & Sherman Model

Accident 

Year To Date

Mean 

Unpaid

Standard 

Error

Coefficient 

of Variation Minimum Maximum

50.0% 

Percentile

75.0% 

Percentile

95.0% 

Percentile

99.0% 

Percentile

2008 123,738 441 573 129.9% (1,475) 2,372 391 823 1,420 1,881

2009 140,983 1,083 825 76.2% (1,675) 4,401 1,048 1,611 2,466 3,113

2010 147,516 2,459 1,168 47.5% (1,527) 6,082 2,417 3,252 4,462 5,274

2011 174,349 4,793 1,595 33.3% (172) 11,597 4,758 5,809 7,391 8,954

2012 173,637 8,629 1,992 23.1% 1,588 16,582 8,542 9,810 11,955 13,951

2013 174,996 18,214 3,136 17.2% 7,989 30,302 18,135 20,292 23,509 25,381

2014 169,224 41,402 5,008 12.1% 25,322 59,952 41,302 44,862 49,756 53,216

2015 134,010 75,281 7,480 9.9% 53,427 105,936 74,961 80,194 87,930 93,542

2016 68,911 127,141 11,108 8.7% 93,649 164,080 127,078 134,809 144,791 152,998

2017 35,798 210,599 16,205 7.7% 159,908 275,851 210,505 221,397 236,756 253,297

Totals 1,343,162 490,041 31,334 6.4% 405,127 622,322 488,329 510,471 542,250 566,151

30	 To visualize this reducing coefficient of variation, recall that the standard deviation for the total of several 
independent variables is equal to the square root of the sum of the squares.
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•	 In the most recent years, parameter uncertainty can grow to overpower process 
uncertainty, which may cause the coefficient of variation to start rising again.  
At a minimum, increasing parameter uncertainty will slow the rate of decrease in 
the coefficient of variation.

The model may be overestimating the uncertainty in recent accident years if the 
increase is significant. In that case, another model may need to be used. Keep in mind 
that the standard error or coefficient of variation for the total of all accident years will 
be less than the sum of the standard errors or coefficients of variation for the individual 
years. This is because the model assumes that the random process generating the 
process uncertainty in each accident year is independent.

It is important to note that this diagnostic review of the model output should 
consider direction and consistency separately from magnitude of the variability. In 
other words, the standard error patterns are about direction and consistency (i.e., is the 
pattern consistent with expectations), but the standard error values are about whether 
the model includes enough uncertainty or not (e.g., does the magnitude indicate 
enough uncertainty has been incorporated).

Minimum and maximum results are the next diagnostic element in the analysis of 
the estimated unpaid claims in Table 5.1, representing the smallest and largest values 
from all iterations of the simulation. These values will need to be reviewed in order 
to determine their veracity. If any of them seem implausible, the model assumptions 
would need to be reviewed. Their effects could materially alter the mean indication.

5.4.2.  Mean, Standard Deviation and CoV of Incremental Values
The mean, standard deviation and coefficients of variation for every incremental 

value from the simulation process can also provide useful diagnostic results, enabling 
a deeper review into potential coefficient of variation issues that may be found in the 
estimated unpaid results. Consider, for example, the mean, standard deviation and 
coefficient of variation results shown in Tables 5.2, 5.3, and 5.4, respectively.

Table 5.2.    Mean of Incremental Values for Berquist-Sherman

Sample Insurance Company  

Hayne Paper Data

Accident Year Incremental Values by Development Period  

Paid Berquist & Sherman Model

Accident 

Year

Mean Values (in 000’s)

12 24 36 48 60 72 84 96 108 120 132 144 156

2008 25,064 31,145 28,656 22,440 14,281 7,309 2,843 1,814 1,079 613 269 116 56

2009 25,835 32,119 29,703 23,223 14,691 7,552 2,961 1,878 1,113 617 278 134 54

2010 29,579 36,189 33,544 26,237 16,817 8,639 3,384 2,100 1,250 695 309 138 66

2011 31,088 38,234 35,446 27,737 17,569 9,087 3,546 2,182 1,318 747 329 139 78

2012 31,976 39,197 36,545 28,680 18,113 9,362 3,640 2,270 1,354 789 336 162 80

2013 32,175 39,680 36,868 29,088 18,350 9,495 3,691 2,294 1,384 767 343 162 78

2014 36,809 45,089 42,259 32,820 20,700 10,715 4,251 2,642 1,571 883 374 184 82

2015 36,915 45,693 42,709 33,487 20,936 10,886 4,241 2,615 1,582 860 396 192 85

2016 40,158 49,481 45,856 36,060 22,785 11,583 4,600 2,882 1,699 972 425 189 88

2017 47,924 58,862 54,790 43,026 27,063 13,895 5,533 3,402 2,037 1,139 498 234 118
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Table 5.3.    Standard Deviation of Incremental Values for Berquist-Sherman

Sample Insurance Company  

Hayne Paper Data

Accident Year Incremental Values by Development Period  

Paid Berquist & Sherman Model

Accident 

Year

Standard Error Values (in 000’s)

12 24 36 48 60 72 84 96 108 120 132 144 156

2008 4,010 4,911 4,418 3,910 2,782 1,895 1,037 776 619 498 365 238 162

2009 4,203 5,015 4,679 3,993 2,819 1,920 1,079 791 626 465 365 254 171

2010 4,524 5,085 4,684 4,094 3,163 1,992 1,185 906 688 533 407 285 191

2011 4,337 5,232 5,277 4,218 3,313 2,126 1,228 929 743 544 439 286 190

2012 4,665 5,270 5,114 4,576 3,282 2,213 1,243 911 708 563 420 301 199

2013 4,639 5,546 5,234 4,562 3,410 2,243 1,240 955 759 589 441 303 196

2014 5,184 6,314 5,718 4,887 3,589 2,420 1,337 996 800 655 473 324 220

2015 5,169 6,197 6,028 5,178 3,800 2,491 1,415 1,022 788 625 479 337 226

2016 5,652 6,619 6,140 5,421 4,013 2,649 1,467 1,142 881 676 548 353 239

2017 6,057 7,346 7,284 6,284 4,601 3,062 l,707 1,244 982 789 605 416 288

Table 5.4.    Coefficient of Variation of Incremental Values for Berquist-Sherman

Sample Insurance Company  

Hayne Paper Data

Accident Year Incremental Values by Development Period

Paid Berquist & Sherman Model

Accident 

Year

Coefficient of Variation Values

12 24 36 48 60 72 84 96 108 120 132 144 156

2008 16.0% 15.8% 15.4% 17.4% 19.5% 25.9% 36.5% 42.8% 57.3% 81.3% 135.7% 204.6% 290.1%

2009 16.3% 15.6% 15.8% 17.2% 19.2% 25.4% 36.4% 42.1% 56.2% 75.4% 131.3% 189.1% 319.2%

2010 15.3% 14.1% 14.0% 15.6% 18.8% 23.1% 35.0% 43.2% 55.1% 76.6% 131.6% 206.4% 291.3%

2011 14.0% 13.7% 14.9% 15.2% 18.9% 23.4% 34.6% 42.6% 56.4% 72.9% 133.3% 206.4% 241.8%

2012 14.6% 13.4% 14.0% 16.0% 18.1% 23.6% 34.1% 40.2% 52.3% 71.4% 125.1% 186.2% 248.6%

2013 14.4% 14.0% 14.2% 15.7% 18.6% 23.6% 33.6% 41.7% 54.8% 76.8% 128.4% 187.1% 249.9%

2014 14.1% 14.0% 13.5% 14.9% 17.3% 22.6% 31.4% 37.7% 50.9% 74.2% 126.3% 175.8% 267.6%

2015 14.0% 13.6% 14.1% 15.5% 18.1% 22.9% 33.4% 39.1% 49.8% 72.7% 121.0% 175.4% 265.3%

2016 14.1% 13.4% 13.4% 15.0% 17.6% 22.9% 31.9% 39.6% 51.9% 69.6% 128.8% 187.2% 271.3%

2017 12.6% 12.5% 13.3% 14.6% 17.0% 22.0% 30.8% 36.6% 48.2% 69.3% 121.4% 177.3% 243.1%
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The mean values in Table 5.2 appear consistent throughout and support the increases 
in estimated unpaid by accident year that are shown in Table 5.1. In fact, the future 
mean values, which lie beyond the stepped diagonal line in Table 5.2, sum to the 
results in Table 5.1. The standard deviation values in Table 5.3 also appear consistent, 
but the standard deviations can’t be added because the standard deviations in Table 5.1 
represent those for aggregated incremental values by accident year, which are less 
than perfectly correlated. The coefficient of variation values in Table 5.4 help the 
user efficiently review both the incremental mean and standard deviation values in 
Tables 5.2 and 5.3, as inconsistencies in a column will highlight issues with either 
the means or standard deviations or both. The coefficients by column in Table 5.4 
all appear consistent, so the other main use of this table is to review the progression 
of CoVs by development period, which should increase over time as they do in 
Table 5.4, indicating that the final incremental payments in the tail tend to be the 
most uncertain.

For comparison with the Berquist-Sherman model, Appendix A contains the 
model parameters, diagnostics and estimated unpaid claims for each of the Hayne 
MLE models using the paid data. While not included in Appendix A, it will generally 
be useful to include the models for incurred data in any comparison. Another possible 
comparison is with the combined frequency and severity models, as described at the 
end of Section 4. Between the various paid and incurred models, the relative vari-
ability of each model doesn’t necessarily conform to any rules, as the variability tends 
to depend on the relative fit of each model. In contrast, the combined frequency and 
severity models should increase the variability of the results, all else being equal, just 
based on the interactions of the simulated ultimate claim counts and simulated severities. 
An example of this is shown in Table 5.5, which can be compared to Table 5.1.

Table 5.5.    Estimated Unpaid Results for Berquist-Sherman (frequency and severity)

Sample Insurance Company

Hayne Paper Data  

Accident Year Unpaid (in 000’s)

Paid Berquist & Sherman Model

Accident 

Year Paid To Date

Mean 

Unpaid

Standard 

Error

Coefficient  

of Variation Minimum Maximum

50.0% 

Percentile

75.0% 

Percentile

95.0% 

Percentile

99.0% 

Percentile

2008 123,738 308 402 130.6% (974) 2,496 256 528 980 1,449

2009 140,983 948 790 83.4% (2,252) 5,003 861 1,387 2,313 3,205

2010 147,516 2,483 1,266 51.0% (844) 7,005 2,399 3,275 4,687 6,123

2011 174,349 5,451 2,029 37.2% (392) 12,879 5,345 6,674 9,030 10,807

2012 173,637 10,316 3,051 29.6% 2,623 21,675 10,119 12,224 15,679 17,875

2013 174,996 23,281 5,344 23.0% 10,049 40,607 22,718 26,710 32,776 36,838

2014 169,224 49,206 9,718 19.7% 20,354 82,036 48,819 55,358 65,983 73,214

2015 134,010 83,591 16,492 19.7% 29,154 151,014 83,194 93,445 111,712 125,440

2016 68,911 121,920 25,036 20.5% 42,859 221,483 120,165 136,883 163,665 192,108

2017 35,798 161,577 33,743 20.9% 44,343 288,934 162,200 182,677 216,533 242,895

Totals 1,343,162 459,081 57,062 12.4% 268,331 687,553 457,132 496,597 554,955 603,727
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So far the focus has only been on one model. In practice, multiple stochastic models 
should be used in the same way that multiple methods should be used in a deter
ministic analysis. First the results for each model must be reviewed and finalized, after 
an iterative process of diagnostic testing and reviewing model output to make sure the 
model “fits” the data, has reasonable assumptions, and produces reasonable results. 
Then these results can be combined by assigning a weight to the results of each model.

Two primary methods exist for combining the results for multiple models:

•	 Run models with the same random variables. For this algorithm, every model 
uses the exact same random variables. In the “Hayne MLE Models.xlsm” file, the  
random values are simulated before they are used to simulate results, which means 
that this algorithm may be accomplished by reusing the same set of random 
variables for each model. At the end, the incremental values for each model, for each 
iteration by accident year (that have a partial weight), can be weighted together.

•	 Run models with independent random variables. For this algorithm, every 
model is run with its own random variables. In the “Hayne MLE Models.xlsm” 
file, the random values are simulated before they are used to simulate results, which 
means that this algorithm may be accomplished by simulating a new set of random 
variables for each model.31 At the end, the weights are used to randomly select a 
model for each iteration by accident year so that the result is a weighted “mixture” 
of models.

Both algorithms are similar to the process of weighting the results of different 
deterministic methods to arrive at an actuarial best estimate. The process of weighting  
the results of different stochastic models produces an actuarial best estimate of a 
distribution. In practice it is also common to further “adjust” or “shift” the weighted 
results by year after considering case reserves and the calculated IBNR. For example, 
in an older year the weighted value could result in a negative IBNR which offsets case 
reserves and a reasonable adjustment could be to accept the case reserves by “shifting” 
the IBNR to zero. This “shifting” can also be done for weighted distributions, either 

6.  Using Multiple Models

31	 In general, in order to simulate new random values, a new seed value must be selected (or a seed value of zero 
can be used), otherwise the same random values will be simulated. In the “Hayne MLE Models.xlsm” file, the 
seed value is incremented for each model and data type so that different seed values are being used as long as new 
random numbers are generated for each model and data type.
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additively to maintain the exact shape and width of the distribution by year or multi-
plicatively to maintain the exact shape of the distribution but adjusting the width of 
the distribution.

By comparing the results for all ten models (or fewer, depending on how many 
are used),32 a qualitative assessment of the relative merits of each model may be deter-
mined. Bayesian methods can be used to determine weighting based on the quality 
of each model’s forecasts.33 The weights can be determined separately for each year. 
The values in Table 6.1 show an example of weights for the Hayne MLE data.34 The 
weighted results are displayed in the “Best Estimate” column of Table 6.2.

32	 Other models in addition to the Hayne MLE models could also be included in the weighting process as long as 
the simulated results are in the form of random incremental payment streams.

33	 Quality of the forecast could be defined in a number of ways, but the essential idea is to measure the relative 
predictive power of competing models.

34	 For simplicity, the weights are only illustrative and not derived using Bayesian methods.

Table 6.1.    Model Weights by Accident Year

Accident 

Year

Model Weights by Accident Year

Paid BS Incd BS Paid CC Incd CC Paid CL Incd CL Paid HC Incd HC Paid WR Incd WR TOTAL

2008 25.0% 25.0% 25.0% 25.0% 100.0%

2009 25.0% 25.0% 25.0% 25.0% 100.0%

2010 25.0% 25.0% 25.0% 25.0% 100.0%

2011 25.0% 25.0% 25.0% 25.0% 100.0%

2012 25.0% 25.0% 25.0% 25.0% 100.0%

2013 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 100.0%

2014 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 100.0%

2015 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 100.0%

2016 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 100.0%

2017 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 100.0%

Table 6.2.    Summary of Mean Results by Model

Sample Insurance Company

Hayne Paper Data

Summary of Results by Model (in 000’s)

Accident 

Year

Mean Estimated Unpaid

Berquist & Sherman Cape Cod Chain Ladder Hoerl Curve Wright Best Est. 

(Weighted)Paid Incurred Paid Incurred Paid Incurred Paid Incurred Paid Incurred

2008 441 528 485 488 168 177 86 91 64 65 471

2009 1,083 1,164 1,201 1,228 477 507 269 281 218 218 1,148

2010 2,459 2,494 2,355 2,427 1,281 1,389 919 937 694 718 2,453

2011 4,793 4,812 5,172 5,182 3,975 4,278 2,872 2,861 2,715 2,769 4,945

2012 8,629 8,400 9,239 8,940 8,073 8,721 7,681 7,516 7,597 7,429 8,642

2013 18,214 17,179 20,571 20,421 19,370 20,588 17,664 16,874 19,119 19,046 19,280

2014 41,402 38,115 44,568 42,079 43,332 44,793 40,416 37,923 42,804 40,657 41,487

2015 75,281 66,959 78,842 74,018 77,959 80,697 73,354 67,037 76,810 72,994 74,398

2016 127,141 110,465 93,698 93,653 93,147 101,410 125,089 112,174 93,415 94,782 107,115

2017 210,599 178,646 147,763 150,595 147,782 162,612 207,924 182,932 147,450 151,814 173,575

Totals 490,041 428,763 403,895 399,031 395,563 425,172 476,274 428,627 390,884 390,491 433,516
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As a parallel to a deterministic analysis, the means from the eight models given 
some weight could be used to derive a reasonable range from the modeled results 
(i.e., from $395,563 to $490,041), as shown in Table 6.3. Alternatively, if only results 
by accident year which are given some weight when deriving the best estimate are  
considered, then the “weighted range” may be a more representative view of the 
uncertainty of the actuarial central estimate.35 In a sense, the range of mean estimates 
reflects some of the uncertainty as it relates to the central estimate and then the 
weighted distribution represents a more complete view of the entire uncertainty.36

Table 6.3.    Summary of Ranges by Accident Year

Sample Insurance Company Sample  

Hayne Paper Data  

Summary of Results by Model (in 000's)

Accident 

Year

Best Est. 

(Weighted)

Ranges

Weighted Modeled

Mininum Maximum Mininum Maximum

2008 471 441 528 86 528

2009 1,148 1,083 1,228 269 1,228

2010 2,453 2,355 2,494 919 2,494

2011 4,945 4,793 5,182 2,861 5,182

2012 8,642 8,400 9,239 7,516 9,239

2013 19,280 17,179 20,588 16,874 20,588

2014 41,487 37,923 44,793 37,923 44,793

2015 74,398 66,959 80,697 66,959 80,697

2016 107,115 93,147 127,141 93,147 127,141

2017 173,575 147,763 210,599 147,763 210,599

Totals 433,516 380,045 502,488 395,563 490,041

When selecting weights for stochastic models, the standard deviations should also 
be considered in addition to the means by model since the weighted best estimate 
should reflect the actuary’s judgments about the entire distribution, not just a central  
estimate. Thus, coefficients of variation by model can be used for this purpose,  
as illustrated in Table 6.4. In addition to the diagnostic considerations discussed 
in section 5.4, judgments about the magnitude of the uncertainty are also important 
to the weighting process as the goal is to estimate the “correct” uncertainty and not to 
minimize the uncertainty.37

35	 The “modeled range” in Figure 6.3 is derived using each model that is given at least some weight for any accident 
year—i.e., if the model is used. Note also that the Totals are based on the models where at least some weight is 
used and not the sum of the values in the respective columns. In contrast, the “weighted range” is derived using 
only the models given weight for each accident year, which are highlighted in grey in Tables 6.2 and 6.4.

36	 For a more complete discussion of ranges and distributions in the reserving context, see Shapland [15]. For a 
more complete discussion of ranges and distributions in an Enterprise Risk Management context, see Shapland 
and Courchene [18].

37	 Note that the selected weights in Table 6.1 are purely illustrative and are not intended to reflect a complete 
analysis of the means in Table 6.2 or the standard deviations in Table 6.4.
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With a focus on the entire distribution, the weights by year are used to randomly 
sample the specified percentage of iterations from each model. A more complete set of 
the results for the “weighted” iterations can be created similar to the tables shown in 
section 5. The companion “Best Estimate.xlsm” file can be used to weight ten different 
models together in order to calculate a weighted best estimate. An example is shown in 
Table 6.5 for the Hayne [8] data.

Table 6.4.    Summary of CoV Results by Model

Sample Insurance Company

Hayne Paper Data

Summary of Results by Model (in 000’s)

Accident 

Year

Coefficient of Variation

Berquist & Sherman Cape Cod Chain Ladder Hoerl Curve Wright

Paid Incurred Paid Incurred Paid Incurred Paid Incurred Paid Incurred

2008 129.9% 118.0% 131.4% 131.3% 239.3% 254.9% 279.2% 281.7% 632.5% 639.9%

2009 76.2% 78.5% 97.7% 98.2% 156.0% 163.8% 166.4% 168.8% 303.7% 311.0%

2010 47.5% 48.6% 64.5% 64.5% 78.5% 82.7% 92.4% 93.5% 146.0% 147.4%

2011 33.3% 33.7% 38.6% 38.3% 39.7% 45.7% 51.1% 51.4% 58.0% 58.2%

2012 23.1% 25.1% 27.2% 27.1% 25.0% 32.5% 32.2% 32.7% 31.1% 30.8%

2013 17.2% 17.0% 15.6% 15.0% 14.1% 24.0% 20.8% 20.6% 17.1% 16.3%

2014 12.1% 13.5% 10.0% 9.8% 9.3% 22.4% 13.4% 13.9% 10.7% 10.1%

2015 9.9% 10.6% 7.7% 7.0% 6.4% 20.8% 10.2% 10.5% 7.7% 6.7%

2016 8.7% 9.4% 8.5% 7.0% 5.9% 24.0% 8.5% 9.0% 8.2% 6.5%

2017 7.7% 8.4% 9.4% 5.8% 5.2% 22.0% 7.2% 7.8% 9.4% 5.4%

Totals 6.4% 6.1% 5.9% 4.6% 4.1% 11.8% 6.0% 5.7% 5.5% 3.9%

Table 6.5.    Estimated Unpaid Model Results (Weighted)

Sample Insurance Company

Hayne Paper Data

Accident Year Unpaid (in 000’s)

Best Estimate (Weighted)

Accident 

Year

Paid  

To Date

Mean  

Unpaid

Standard 

Error

Coefficient  

of Variation Minimum Maximum

50.0% 

Percentile

75.0% 

Percentile

95.0% 

Percentile

99.0% 

Percentile

2008 123,738 471 644 136.7% (2,545) 4,909 405 829 1,576 2,333

2009 140,983 1,148 1,049 91.4% (3,520) 6,314 1,092 l,780 2,957 3,957

2010 147,516 2,453 1,357 55.3% (3,302) 10,083 2,408 3,290 4,714 5,954

2011 174,349 4,945 1,789 36.2% (4,448) 12,718 4,898 6,102 7,933 9,502

2012 173,637 8,642 2,208 25.5% (1,331) 19,227 8,604 10,106 12,319 14,029

2013 174,996 19,280 3,656 19.0% 4,625 39,886 19,143 21,530 25,382 28,830

2014 169,224 41,487 6,136 14.8% 16,382 75,478 41,413 45,225 51,128 58,189

2015 134,010 74,398 9,887 13.3% 25,947 157,876 74,300 79,822 90,176 104,245

2016 68,911 107,115 17,580 16.4% 28,733 187,403 104,724 120,254 137,020 148,299

2017 35,798 173,575 30,419 17.5% 9,842 285,509 170,237 197,558 224,280 240,117

Totals 1,343,162 433,516 38,243 8.8% 254,901 599,252 432,354 460,201 497,529 524,069

Normal Dist. 433,516 38,243 8.8% 433,516 459,310 496,420 522,483

logNormal Dist. 433,522 38,456 8.9% 431,826 458,398 499,520 530,586

Gamma Dist. 433,516 38,243 8.8% 432,392 458,661 498,279 527,410

TVaR 464,489 483,287 513,512 536,643

Normal TVaR 464,029 482,127 512,401 535,442

logNormal TVaR 464,105 483,728 518,630 546,956

Gamma TVaR 463,996 483,043 516,174 542,419
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Table 6.6.    Reconciliation of Total Results (Weighted)

Sample Insurance Company

Hayne Paper Data

Reconciliation of Total Results (in 000’s)

Best Estimate (Weighted)

Accident 

Year

Paid  

To Date

Incurred  

To Date

Case 

Reserves IBNR

Estimate  

of Ultimate

Estimate  

of Unpaid

2008 123,738 124,486 748 (277) 124,209 471

2009 140,983 141,488 505 643 142,131 1,148

2010 147,516 150,057 2,541 (88) 149,969 2,453

2011 174,349 180,737 6,388 (1,443) 179,294 4,945

2012 173,637 182,952 9,315 (673) 182,279 8,642

2013 174,996 193,196 18,200 1,080 194,276 19,280

2014 169,224 199,879 30,655 10,832 210,711 41,487

2015 134,010 189,518 55,508 18,890 208,408 74,398

2016 68,911 132,561 63,650 43,465 176,026 107,115

2017 35,798 110,269 74,471 99,104 209,373 173,575

Totals 1,343,162 l,605,143 261,981 171,535 1,776,678 433,516

As one final check of the weighted results, it would be common to review the 
implied IBNR to make sure there are no issues, as shown in Table 6.6. By reviewing 
this reconciliation, and perhaps also comparing it to deterministic results, additional 
adjustments could be made to various assumptions. For example, from year 2008 in 
Table 6.6 it may be more realistic to revisit the tail factor assumptions or the weights 
by model so that the unpaid estimate is more consistent with the case reserves. Finally, 
after the interactive process of reviewing results and adjusting assumptions is complete, 
it may still be prudent to make adjustments to the best estimate of the unpaid by 
shifting the results as noted earlier in this section.
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This discussion of stochastic modeling is not complete without considering some of the 
additional output and results that can be included as part of the modeling process. 
Much of the additional output and results can be derived simply by reorganizing the 
model output to capture results in a different way. This has important uses, such as 
cash flows for discounting and unpaid claim runoff for calculating risk margins using 
the cost of capital method, that are often obtained using very little additional effort. 
Finally, while the examples in this section are all based on the weighted result, they all 
apply equally well to any individual model.

7.1.  Additional Output
Three rows of percentile numbers for the normal, lognormal, and gamma dis-

tributions, which have been fitted to the total unpaid-claim distribution, may be 
seen at the bottom of Table 6.5.38 The fitted mean, standard deviation, and selected 
percentiles are in their respective columns. The smoothed results can be used to 
assess the quality of fit,39 parameterize a dynamic financial analysis (“DFA”) model, 
or smooth the estimate of extreme values,40 among other applications.

Four rows of numbers indicating the tail value at risk (TVaR), defined as the 
average of all of the simulated values greater than or equal to the percentile value, may 
also be seen at the bottom of Table 6.5. For example, in this table, the 99th percentile 
value for the total unpaid claims for all accident years combined is 524,069, while the 

7.  Additional Output and Results

38	 The fitted distribution values are calculated by matching the selected distribution parameters to the mean and 
standard deviation of the total unpaid claim distribution.

39	 Since the mean and standard deviations for each distribution are generally very close to the same measures for the 
simulated distribution, it makes more sense to base quality of fit considerations on the more extreme percentiles. 
Assuming the fitted distributions are stable, meaning new simulations with different random numbers result 
in similar fitted distributions, the extreme percentiles are typically of greater interest for uses such as capital 
requirements. For example, from Table  6.5 it appears that either the normal or gamma distributions are a 
better fit than the lognormal. The closeness of the normal fit could be evidence that the distribution is close to 
symmetrical or gamma could be the better choice to reflect some skewness.

40	 A random instance of an extreme percentile can be quite erratic compared to the same percentile of a 
distribution fitted to the simulated distribution. This random noise for extreme percentiles could be cause for 
increasing the number of iterations, but if the same percentiles for the fitted distributions are stable, perhaps 
they can be used in lieu of more iterations. Of course, the use of the extreme values assumes that the models 
are reliable.
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average of all simulated values that are greater than or equal to the 99th percentile is 
536,643. The normal TVaR, lognormal TVaR, and gamma TVaR rows are calculated 
similarly, except that they use the respective fitted distributions in the calculations 
rather than actual simulated values from the model.

An analysis of the TVaR values is likely to help clarify a critical issue: if the actual 
outcome exceeds the X percentile value, by how much will it exceed that value on 
average? This type of assessment can have important implications related to risk-based 
capital calculations and other technical aspects of enterprise risk management. But it is 
worth noting that the purpose of the normal, lognormal, and gamma TVaR numbers 
is to provide “smoothed” values—that is, that some of the random statistical noise 
is essentially prevented from distorting the calculations.

7.2.  Estimated Cash Flow Results
A model’s output may also be reviewed by calendar year (or by future diagonal), 

as shown in Table 7.1. A comparison of the values in Tables 6.5 and 7.1 indicates 
that the total rows are identical, because summing the future payments horizontally  
or diagonally will produce the same total. Similar diagnostic issues (as discussed in 
Section 5) may be reviewed in Table 7.1, with the exception of the relative values 
of the standard errors and coefficients of variation moving in opposite directions 
for calendar years compared to accident years. This phenomenon makes sense on an 
intuitive level when one considers that “final” payments, projected to the furthest 
point in the future, should actually be the smallest, yet relatively most uncertain.

Table 7.1.    Estimated Cash Flow (Weighted)

Sample Insurance Company

Hayne Paper Data

Calendar Year Unpaid (in 000’s)

Best Estimate (Weighted)

Calendar 

Year

Mean 

Unpaid

Standard 

Error

Coefficient  

of Variation Minimum Maximum

50.0% 

Percentile

75.0% 

Percentile

95.0% 

Percentile

99.0% 

Percentile

2018 160,184 14,166 8.8% 109,684 222,966 159,583 169,553 184,716 195,263

2019 116,073 12,102 10.4% 72,833 166,146 115,235 124,202 136,915 145,439

2020 75,084 8,938 11.9% 34,373 111,295 74,509 80,772 90,836 97,566

2021 42,212 6,021 14.3% 16,605 71,311 41,859 46,173 52,711 57,524

2022 21,143 3,889 18.4% 8,545 37,308 20,894 23,666 27,935 30,994

2023 9,680 2,613 27.0% (212) 20,773 9,541 11,348 14,156 16,596

2024 4,960 1,802 36.3% (2,713) 13,036 4,900 6,101 8,021 9,492

2025 2,371 1,338 56.4% (3,187) 8,932 2,299 3,229 4,684 5,783

2026 1,102 992 90.0% (2,827) 6,547 1,003 1,691 2,847 3,857

2027 462 632 136.8% (3,435) 4,443 376 790 1,644 2,350

2028 182 383 210.8% (2,728) 2,866 122 357 865 1,365

2029 61 221 363.4% (1,545) 1,829 24 130 460 799

Totals 433,516 38,243 8.8% 254,901 599,252 432,354 460,201 497,529 524,069
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Table 7.2.    Estimated Time Zero to Ultimate Loss Ratio (Weighted)

Sample Insurance Company

Hayne Paper Data

Accident Year Ultimate Loss Ratios (Premiums in 000’s)

Best Estimate (Weighted)

Accident 

Year

Earned 

Premium

Mean 

Loss Ratio

Standard 

Error

Coefficient  

of Variation Minimum Maximum

50.0% 

Percentile

75.0% 

Percentile

95.0% 

Percentile

99.0% 

Percentile

2008 184,450 71.9% 7.2% 10.0% 48.2% 105.4% 70.9% 76.1% 85.2% 91.9%

2009 237,093 60.5% 4.5% 7.5% 38.0% 84.3% 60.4% 63.3% 67.9% 71.8%

2010 297,807 52.3% 3.9% 7.5% 37.0% 71.5% 52.1% 54.7% 59.0% 62.6%

2011 349,324 49.3% 3.6% 7.3% 28.3% 61.3% 49.6% 51.8% 54.8% 56.9%

2012 361,198 48.1% 3.4% 7.1% 32.3% 61.8% 48.3% 50.5% 53.3% 55.2%

2013 374,921 50.0% 6.7% 13.4% 14.0% 100.2% 50.3% 52.8% 60.8% 73.3%

2014 370,904 54.2% 6.3% 11.6% 20.5% 102.4% 54.3% 57.3% 62.8% 77.2%

2015 345,267 58.3% 7.0% 12.0% 21.2% 125.7% 58.3% 61.6% 68.9% 82.2%

2016 301,114 61.4% 9.5% 15.5% 16.3% 104.4% 59.9% 68.8% 76.9% 82.8%

2017 277,987 77.0% 13.1% 17.0% 4.4% 129.2% 75.3% 87.5% 98.8% 105.2%

Totals 3,100,065 57.0% 2.2% 3.9% 48.8% 66.6% 56.9% 58.4% 60.7% 62.5%

7.3.  Estimated Ultimate Loss Ratio Results
Another output, Table 7.2, shows the estimated ultimate loss ratios by accident year. 

Similar to the estimated unpaid and estimated cash-flow tables, the values in this table are 
calculated using all simulated values, not just the values beyond the end of the historical  
triangle. Because the simulated sample triangles represent additional possibilities of 
what could have happened in the past, even as the “squaring of the triangle” and process 
variance represent what could happen as those same past values are played out into the 
future, there is sufficient information to enable estimation of the variability in the loss 
ratio from day one until all claims are completely paid and settled for each accident year.41

41	 If one is only interested in the “remaining” volatility in the loss ratio, then the values in the estimated unpaid 
(Table 6.5) can be added to the cumulative paid values by year and divided by the premiums.

42	 The theoretical consistency of the coefficients of variation by accident year is based on all years having the same 
number of independent incremental payment periods. In practice, the increasing coefficients in Table 7.2 could 
be due to an increasing impact of parameter uncertainty as discussed in section 5.4.

43	 The coefficients of variation measure the variability of the loss ratios, given the movements by year. Without this 
information, it is common to base the future standard deviation on the standard deviation of the historical mean 
loss ratios, but this is not ideal, since the variability of the mean loss ratios is not the same as the possible variation 
in the actual outcomes given movements in the means.

Reviewing the simulated values indicates that the standard errors in Table 7.2 
should be proportionate to the means, while the coefficients of variation should be 
relatively constant by accident year. In terms of diagnostics, any increases in standard  
error and coefficient of variation for the most recent years would be consistent with 
the reasons previously cited in Section 5.4 for the estimated unpaid tables.42 Risk  
management-wise, the loss ratio distributions have important implications for project-
ing pricing risk—the mean loss ratios can be used to view any underwriting cycles 
and help inform the projected mean for the next few years, while the coefficients of 
variation can be used to select a standard deviation for the next few years.43

15663-02_Ch05-10,Acknow,SuppMat-3rdPgs.indd   5615663-02_Ch05-10,Acknow,SuppMat-3rdPgs.indd   56 1/7/22   10:56 AM1/7/22   10:56 AM



Casualty Actuarial Society	 57

Using the Hayne MLE Models: A Practitioner’s Guide

7.4.  Estimated Unpaid Claim Runoff Results
Table  7.3 shows the runoff of the total unpaid claim distribution by future 

calendar year. Like the estimated unpaid and estimated cash-flow tables, the values 
in this table are calculated using only future simulated values, except that future 
diagonal results are sequentially removed so that only the unpaid claims at the end 
of each future calendar period are remaining. These results are quite useful for calculat-
ing the runoff of the unpaid claim distribution when calculating risk margins using 
the cost of capital method.

Table 7.3.    Estimated Unpaid Claim Runoff (Weighted)

Sample Insurance Company

Hayne Paper Data

Calendar Year Unpaid Claim Runoff (in 000’s)

Best Estimate (Weighted)

Calendar 

Year

Mean 

Unpaid

Standard 

Error

Coefficient  

of Variation Minimum Maximum

50.0% 

Percentile

75.0% 

Percentile

95.0% 

Percentile

99.0% 

Percentile

2017 433,516 38,243 8.8% 254,901 599,252 432,354 460,201 497,529 524,069

2018 273,331 27,072 9.9% 142,347 383,736 272,131 292,254 319,167 337,111

2019 157,258 17,542 11.2% 67,252 220,814 156,499 169,104 187,514 200,341

2020 82,174 10,939 13.3% 32,880 123,782 81,702 89,376 100,832 108,855

2021 39,962 6,966 17.4% 14,345 69,981 39,632 44,447 52,029 57,298

2022 18,819 4,746 25.2% 1,463 41,958 18,626 21,805 27,058 30,892

2023 9,139 3,442 37.7% (4,763) 26,381 8,926 11,285 15,161 18,408

2024 4,178 2,466 59.0% (5,361) 15,768 3,933 5,672 8,598 11,114

2025 1,807 1,647 91.2% (7,328) 10,335 1,565 2,713 4,837 6,709

2026 704 938 133.2% (4,654) 6,189 539 1,172 2,474 3,628

2027 243 491 202.5% (3,442) 3,710 152 455 1,135 1,876

2028 61 221 363.4% (1,545) 1,829 24 130 460 799

7.5.  Distribution Graphs
A final model output to consider is a histogram of the estimated unpaid amounts 

for the total of all accident years combined, as shown in the graph in Figure 7.1. The 
histogram is created by counting the number of outcomes within each of 100 “buckets” 
of equal size spread between the minimum and maximum outcome. To smooth the 
histogram, a kernel density function44 is often used, which is represented by the green 
bars in Figure 7.1.

Another useful strategy for graphing the total unpaid distribution may be accom-
plished by creating a summary of the ten model distributions used to determine the 
weighted “best estimate” and distribution. An example of this graph using the kernel 
density functions is shown in Figure 7.2 and dots for the mean estimates, which would 
represent a traditional range,45 are also included.

44	 A kernel density function uses weighed values of the surrounding values, with decreasing weight the further from 
the value in question, in order to smooth the values. There are many choices for kernel density functions, with 
whole books describing different functions.

45	 A traditional range would use deterministic point estimates instead of means of the distributions, but the intent 
is consistent. While the points would technically have an infinitesimal probability and should therefore sit on the 
x-axis, they are elevated above the zero probability level purely for illustration purposes.
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Figure 7.2.    Summary of Model Distributions

Figure 7.1.   Total Unpaid Claims Distribution
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Results for an entire business unit can be estimated, after each business segment has 
been analyzed and weighted into best estimates, using aggregation. This represents 
another area where caution is warranted. The procedure is not a simple matter of 
adding up the distributions for each segment. In order to estimate the distribution of 
possible outcomes for a company as a whole, a correlation of results among segments 
must be used. To illustrate aggregation, data from the “Industry Data.xls” file for 
Parts A, B, and C are used. The various model tables and graphs for the Part A, Part B, 
and Part C results are shown in Appendices B, C, and D, respectively.

Simulating correlated variables is commonly accomplished with a multi-variate 
distribution whose parameters and correlations have been previously specified. This 
type of simulation is most easily applied when distributions are uniformly identical and 
known in advance (for example, all derived from a multi-variate normal distribution). 
Unlike the ODP bootstrap framework, in which the characteristics of the overall dis-
tribution are unknown in advance, the multi-variate normal distribution assumption 
in the Hayne MLE framework could allow model correlation for multiple business 
segments. However, the correlation among parameters from each segment has to be 
defined before consolidating the variance-covariance matrices to simulate parameters 
for all segments. Thus, a fair amount of parameters are needed for correlation and it is 
difficult to visualize the gigantic aggregated variance-covariance matrix, so it is beyond 
the scope of this monograph.

Alternatively, two useful correlation processes for the Hayne MLE model are 
synchronized parameter simulation and re-sorting.46

With synchronized parameter simulation, in each iteration, independent normal 
random values are simulated for each parameter and each segment, then correlation is 
applied to adjust the simulated random numbers for the second segment and beyond, 
and modified random numbers are used for multi-variate normal distribution sampling 
of the parameters used by each segment for each iteration. For each iteration, once the 
correlated parameters are sampled for each segment, the independent random [0,1] 
values used for process risk could also be correlated between segments.

8.  Correlation and Aggregation

46	 For a useful reference see Kirschner, et al. [11]. The Kirschner paper is about correlation for the ODP bootstrap 
model, but the two processes can be used with other models.
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The synchronized simulation process can be implemented in Excel once a correla-
tion matrix has been estimated. There are, however, three potential drawbacks to this 
process. First, since multiple LOB/segments are being simulated simultaneously, either 
the size of the workbook needs to increase to accommodate all of the segments or the 
random number streams need to be correlated in a separate process. Second, it makes 
sense to correlate the parameters and process risk for the same model for all segments, 
but different triangle sizes will create “gaps” wherein some segments may have more 
parameters than other segments. Third, when the multiple models are weighted to get 
a “best estimate” for each segment the coordination of multiple models and segments 
is even more complex.

The second correlation process, re-sorting, can be accomplished with algorithms 
such as Iman-Conover47 or copulas, among others. The primary advantages of re-sorting 
include:

•	 The correlation is a combination of parameter uncertainty and process variance,
•	 Different correlation assumptions may be employed without re-running all of the 

simulations, and
•	 Different correlation algorithms may also have other beneficial impacts on the 

aggregate distribution.

For example, using a t-distribution copula with low degrees of freedom rather than 
a normal-distribution copula will effectively “strengthen” the focus of the correlation in 
the tail of the distribution, all else being equal. This type of consideration is important 
for risk-based capital and other risk modeling issues.

To induce correlation among different segments in the “Aggregation.xlsm” file,  
a correlation matrix can be calculated using Spearman’s Rank Order for each data/
model type combination in order to select a correlation assumption. Using the selected 
correlation, re-sorting based on the ranks of the total unpaid claims for all accident 
years combined can be done. The calculated correlations for Parts A, B, and C based 
on the paid residuals for Berquist-Sherman may be seen in the first part of Table 8.1. 
A second part of Table 8.1 is the p-values for each correlation coefficient, which are 
an indication of whether a correlation coefficient is significantly different than zero as 
the p-value gets close to zero.48

By reviewing the correlation coefficients for each “pair” of segments, along with the 
p-values, from different sets of correlations matrices (e.g., from paid or incurred data 
for each model) judgment can be used to select a correlation matrix assumption. As 
noted above, caution is warranted as these calculated correlation matrices are limited 
to the data used in the calculation and the impact of other systemic issues, such as 
contagion, may also need to be considered.

47	 For a useful reference see Iman and Conover [9] or Mildenhall [12]. In the “Aggregate Estimate.xlsm” file the 
Iman-Conover algorithm is used to “Generate Rank Values” on the Inputs sheet.

48	 While judgment is clearly appropriate, the typical threshold is a p-value of 5%—i.e., a p-value of 5% or 
less indicates the correlation is significantly different than zero, while a p-value greater than 5% indicates the 
correlation is not significantly different than zero.
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Using these correlation coefficients, the “Aggregate Estimate.xlsm” file, and the 
simulation data for Parts A, B, and C, the aggregate results for the three lines of 
business were calculated and summarized in Table 8.2. A more complete set of tables 
for the aggregate results is shown in Appendix E.

Note that using residuals to correlate the lines of business (or other segments), as in 
the synchronized simulation method, and measuring the correlation between residuals, 
as in the re-sorting method, both tend to create correlations that are close to zero. 

Table 8.1.    Estimated Correlation and P-values

Rank Correlation of Residuals Paid BS Model—[Modeled]

LOB HO PPA CA

HO 1.00 0.26 0.22

PPA 0.26 1.00 0.15

CA 0.22 0.15 1.00

P-Value of Rank Correlation of Residuals Paid BS Model—[Modeled]

LOB HO PPA CA

HO 0.00 0.06 0.11

PPA 0.06 0.00 0.29

CA 0.11 0.29 0.00

Table 8.2.    Aggregate Estimated Unpaid

Sample Insurance Company

Aggregate Three Lines of Business

Accident Year Unpaid (in 000’s)

Accident 

Year

Paid  

To Date

Mean 

Unpaid

Standard 

Error

Coefficient  

of Variation Minimum Maximum

50.0% 

Percentile

75.0% 

Percentile

95.0% 

Percentile

99.0% 

Percentile

2006 18,613 146 1,002 688.1% (2,013) 74,778 37 55 421 2,422

2007 20,618 198 993 500.3% (1,523) 37,034 70 94 503 3,069

2008 22,866 246 927 377.4% (5,763) 54,447 128 162 542 3,227

2009 22,842 367 1,286 350.7% (2,918) 90,399 230 268 695 3,778

2010 22,351 535 1,359 254.3% (1,875) 69,139 406 452 860 3,458

2011 22,422 869 1,266 145.7% (3,632) 68,690 760 826 1,253 4,003

2012 24,350 1,589 939 59.1% (4,107) 27,387 1,518 1,633 2,198 4,927

2013 19,973 2,814 1,424 50.6% (8,046) 80,667 2,785 2,963 3,667 6,153

2014 18,919 5,418 4,384 80.9% (8,120) 407,319 5,420 5,768 6,863 9,408

2015 15,961 13,369 3,352 25.1% (11,431) 98,644 13,319 14,627 17,722 21,777

Totals 208,915 25,550 9,304 36.4% (815) 476,278 24,635 26,612 32,642 55,933

Normal Dist. 25,550 9,304 36.4% 25,550 31,826 40,854 47,195

logNormal Dist. 25,528 6,217 24.4% 24,803 29,163 36,812 43,354

Gamma Dist. 25,550 9,304 36.4% 24,430 31,065 42,526 52,000

TVaR 28,995 32,475 48,429 89,074

Normal TVaR 32,974 37,377 44,742 50,348

logNormal TVaR 30,371 33,900 40,865 47,165

Gamma TVaR 32,838 38,140 48,373 57,295
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For reserve risk, the correlation that is desired is between the total unpaid amounts for 
two segments. The correlation that is being measured is the correlation between each 
incremental future loss amount, given the underlying model describing the overall 
trends in the data. This may or may not be a reasonable approximation.

While not the direct measure being sought, keep in mind that some level of implied 
correlation between lines of business will naturally occur due to correlations between 
the model parameters—e.g., similarities in development parameters—so correlation 
based on the correlation between the remaining random movements in the incremental 
values given the model parameters (i.e., residuals) may be reasonable. However, an 
example of an issue not particularly well suited to measurement via residual correlation 
is contagion between lines of business—i.e., single events that result in claims in 
multiple lines of business. To account for this, and to add a bit of conservatism, the 
correlation assumption can be easily changed based on actuarial judgment.

Correlation is often thought of as being much stronger than “close to zero,” but 
in this case the correlation being considered is typically the loss ratio movements by 
line of business. For pricing risk, the correlation that is desired is between the loss ratio 
movements by accident year between two segments. This correlation is not as likely 
to be close to zero, so correlation of loss ratios (e.g., for the data in Table 7.2) is often 
done with a different correlation assumptions compared to reserving risk.
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While common use of the Hayne MLE models may be in its infancy, the hope is that 
this monograph will spur more widespread use of the models. Nevertheless, there are 
many areas where further research can add value, but only a few key areas are offered 
up here.

•	 Use of Other Distributions – The key assumption which allows the framework 
for the Hayne MLE is the normal distribution that is appropriate whenever the 
central limit theorem is reasonable. Other distribution assumptions, while more 
complex mathematically, may provide useful alternatives when the central limit 
theorem does not apply, such as small portfolios or skewed distributions;

•	 Combined Models – Instead of simulating paid and incurred (or closed and 
reported) in parallel and then converting the incurred (reported) estimate to a 
random payment (closed) stream, it is possible that the Hayne MLE could be 
expanded to include both types of data in one combined framework with all 
parameters being correlated. A more ambitious undertaking would be to combine 
all four data types into a single modeling framework;

•	 A Flexible Model – Similar to the GLM bootstrap or incremental log models, 
it may be possible to develop a model using the Hayne MLE framework where the 
user can specify the place for parameters and include a diagonal parameter;

•	 Time Horizon Models – As other models have been adapted for calculation of 
the one-year time horizon for Solvency II purposes, the Hayne MLE models could 
also be so adapted; and

•	 Pricing Models – In order to expand the usefulness of the models, they could be 
extrapolated into future underwriting periods.

9.  Future Research
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While this monograph endeavored to show how the Hayne MLE models can be 
used in a variety of practical ways, and to illustrate the diagnostic tools the actuary 
needs to assess whether the model is working well, it should not be assumed that a 
given Hayne MLE model is well suited for every data set. However, it is hoped that the 
Hayne MLE “toolsets” can become an integral part of the actuary’s regular estimation 
of unpaid claim liabilities, rather than just a “black box” to be used only if necessary or 
after the deterministic methods have been used to select a point estimate. Finally, the 
modeling framework allows the actuary to “adjust” the model parameters to smooth 
anomalies in the data instead of simply accepting the model as is and essentially forcing 
the data to “fit” the model.

10.  Conclusions
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There are several companion files designed to give the reader a deeper understanding  
of the concepts discussed in the monograph. The files are all in the “Hayne MLE 
Practitioners Guide.zip” file. The files are:

Model Instructions.pdf – this file contains a written description of how to use the 
primary Hayne MLE modeling files.

Primary modeling files:
Industry Data.xls – this file contains Schedule P data by line of business for the entire 

U.S. industry and five of the top 50 companies, for each LOB that has 10 years 
of data.

Hayne MLE Models.xlsm – this file contains the detailed model steps described in 
this monograph as well as various modeling options and diagnostic tests. Data can 
be entered and simulations run and saved for use in calculating a weighted best 
estimate.

Best Estimate.xlsm – this file can be used to weight the results from ten different 
models to get a “best estimate” of the distribution of possible outcomes.

Aggregate Estimate.xlsm – this file can be used to correlate the best estimate results 
from 3 LOBs/segments.

Correlation Ranks.xlsm – this file contains examples of ranks used to correlate results 
by LOB/segment.

Simple example calculation files:
Hayne Framework 6 BS.xlsm – this file illustrates the calculations for the Hayne 

MLE framework using the Berquist & Sherman model for a simple 6 × 6 triangle.
Hayne Framework 6 CC.xlsm – this file illustrates the calculations for the Hayne 

MLE framework using the Cape Cod model for a simple 6 × 6 triangle.
Hayne Framework 6 CL.xlsm – this file illustrates the calculations for the Hayne 

MLE framework using the Chain Ladder model for a simple 6 × 6 triangle.
Hayne Framework 6 HC.xlsm – this file illustrates the calculations for the Hayne 

MLE framework using the Hoerl Curve model for a simple 6 × 6 triangle.
Hayne Framework 6 WR.xlsm – this file illustrates the calculations for the Hayne 

MLE framework using the Wright model for a simple 6 × 6 triangle.

Supplementary Material
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In this appendix, the selected parameters, diagnostics, and simulated unpaid claims are 
shown for paid data for each model.

Appendix A—User Selected Parameters 
and Diagnostics

Figure A.1.    User-selected Parameters for Berquist-Sherman
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Figure A.2.    Residual Graphs for Berquist-Sherman [Modeled Parameters]

Figure A.3.    Residual Graphs for Berquist-Sherman [Selected Parameters]
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Figure A.4.    Normality Plots for Berquist-Sherman

Figure A.5.    Box-whisker Plots for Berquist-Sherman

15663-03_AppA-B-3rdPgs.indd   6915663-03_AppA-B-3rdPgs.indd   69 1/7/22   11:10 AM1/7/22   11:10 AM



70	 Casualty Actuarial Society

Using the Hayne MLE Models: A Practitioner’s Guide

Figure A.6.    Model Structure Graphs for Berquist-Sherman

Figure A.7.    Estimated Unpaid Results for Berquist-Sherman
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Figure A.8.    User-selected Parameters for Cape Cod

Figure A.9.    Residual Graphs for Cape Cod [Modeled Parameters]
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Figure A.10.    Residual Graphs for Cape Cod [Selected Parameters]

Figure A.11.    Normality Plots for Cape Cod
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Figure A.12.    Box-whisker Plots for Cape Cod

Figure A.13.    Model Structure Graphs for Cape Cod
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Figure A.14.    Estimated Unpaid Results for Cape Cod

Figure A.15.    User-selected Parameters for Chain Ladder
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Figure A.16.    Residual Graphs for Chain Ladder [Modeled Parameters]

Figure A.17.    Residual Graphs for Chain Ladder [Selected Parameters]
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Figure A.18.    Normality Plots for Chain Ladder

Figure A.19.    Box-whisker Plots for Chain Ladder
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Figure A.20.    Model Structure Graphs for Chain Ladder

Figure A.21.    Estimated Unpaid Results for Chain Ladder

Figure A.22.    User-Selected Parameters for Hoerl Curve
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure A.23.    Residual Graphs for Hoerl Curve [Modeled Parameters]

Figure A.24.    Residual Graphs for Hoerl Curve [Selected Parameters]
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure A.25.    Normality Plots for Hoerl Curve

Figure A.26.    Box-Whisker Plots for Hoerl Curve
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure A.27.    Model Structure Graphs for Hoerl Curve

Figure A.29.    User-Selected Parameters for Wright

Figure A.28.    Estimated Unpaid Results for Hoerl Curve
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure A.30.    Residual Graphs for Wright [Modeled Parameters]

Figure A.31.    Residual Graphs for Wright [Selected Parameters]
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure A.32.    Normality Plots for Wright

Figure A.33.    Box-Whisker Plots for Wright
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure A.34.    Model Structure Graphs for Wright

Figure A.35.    Estimated Unpaid Results for Wright
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In this appendix the results for Schedule P, Part A (Homeowners/Farmowners)  
are shown.

Appendix B—Schedule P, Part A Results
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure B.1.    Estimated Unpaid Model Results (Paid Berquist-Sherman)

Figure B.2.   Total Unpaid Claims Distribution (Paid Berquist-Sherman)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure B.4.   Total Unpaid Claims Distribution (Incurred Berquist-Sherman)

Figure B.3.    Estimated Unpaid Model Results (Incurred Berquist-Sherman)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure B.5.    Estimated Unpaid Model Results (Paid Cape Cod)

Figure B.6.   Total Unpaid Claims Distribution (Paid Cape Cod)

15663-03_AppA-B-3rdPgs.indd   8715663-03_AppA-B-3rdPgs.indd   87 1/7/22   11:10 AM1/7/22   11:10 AM



88	 Casualty Actuarial Society

Using the Hayne MLE Models: A Practitioner’s Guide

Figure B.8.   Total Unpaid Claims Distribution (Incurred Cape Cod)

Figure B.7.    Estimated Unpaid Model Results (Incurred Cape Cod)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure B.9.    Estimated Unpaid Model Results (Paid Chain Ladder)

Figure B.10.   Total Unpaid Claims Distribution (Paid Chain Ladder)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure B.12.   Total Unpaid Claims Distribution (Incurred Chain Ladder)

Figure B.11.    Estimated Unpaid Model Results (Incurred Chain Ladder)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure B.13.    Estimated Unpaid Model Results (Paid Hoerl Curve)

Figure B.14.   Total Unpaid Claims Distribution (Paid Hoerl Curve)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure B.16.   Total Unpaid Claims Distribution (Incurred Hoerl Curve)

Figure B.15.    Estimated Unpaid Model Results (Incurred Hoerl Curve)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure B.17.    Estimated Unpaid Model Results (Paid Wright)

Figure B.18.   Total Unpaid Claims Distribution (Paid Wright)

15663-03_AppA-B-3rdPgs.indd   9315663-03_AppA-B-3rdPgs.indd   93 1/7/22   11:10 AM1/7/22   11:10 AM



94	 Casualty Actuarial Society

Using the Hayne MLE Models: A Practitioner’s Guide

Figure B.20.   Total Unpaid Claims Distribution (Incurred Wright)

Figure B.19.    Estimated Unpaid Model Results (Incurred Wright)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure B.21.    Model Weights by Accident Year

Figure B.22.    Estimated Mean Unpaid by Model

Figure B.23.    Estimated Ranges
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure B.25.    Estimated Unpaid Model Results (Weighted)

Figure B.24.    Reconciliation of Total Results (Weighted)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure B.26.    Estimated Cash Flow (Weighted)

Figure B.27.    Estimated Loss Ratio (Weighted)

Figure B.28.    Estimated Unpaid Claim Runoff (Weighted)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure B.29.    Mean of Incremental Values (Weighted)

Figure B.30.    Standard Deviation of Incremental Values (Weighted)

Figure B.31.    Coefficient of Variation of Incremental Values (Weighted)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure B.32.   Total Unpaid Claims Distribution (Weighted)

Figure B.33.    Summary of Model Distributions
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In this appendix the results for Schedule P, Part B (Private Passenger Auto Liability) 
are shown.

Appendix C—Schedule P, Part B Results
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure C.1.    Estimated Unpaid Model Results (Paid Berquist-Sherman)

Figure C.2.   Total Unpaid Claims Distribution (Paid Berquist-Sherman)

15663-04_AppC-E,Refs-3rdPgs.indd   10115663-04_AppC-E,Refs-3rdPgs.indd   101 1/7/22   10:52 AM1/7/22   10:52 AM



102	 Casualty Actuarial Society

Using the Hayne MLE Models: A Practitioner’s Guide

Figure C.4.   Total Unpaid Claims Distribution (Incurred Berquist-Sherman)

Figure C.3.    Estimated Unpaid Model Results (Incurred Berquist-Sherman)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure C.5.    Estimated Unpaid Model Results (Paid Cape Cod)

Figure C.6.   Total Unpaid Claims Distribution (Paid Cape Cod)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure C.8.   Total Unpaid Claims Distribution (Incurred Cape Cod)

Figure C.7.    Estimated Unpaid Model Results (Incurred Cape Cod)

15663-04_AppC-E,Refs-3rdPgs.indd   10415663-04_AppC-E,Refs-3rdPgs.indd   104 1/7/22   10:52 AM1/7/22   10:52 AM



Casualty Actuarial Society	 105

Using the Hayne MLE Models: A Practitioner’s Guide

Figure C.9.    Estimated Unpaid Model Results (Paid Chain Ladder)

Figure C.10.   Total Unpaid Claims Distribution (Paid Chain Ladder)

15663-04_AppC-E,Refs-3rdPgs.indd   10515663-04_AppC-E,Refs-3rdPgs.indd   105 1/7/22   10:52 AM1/7/22   10:52 AM



106	 Casualty Actuarial Society

Using the Hayne MLE Models: A Practitioner’s Guide

Figure C.12.   Total Unpaid Claims Distribution (Incurred Chain Ladder)

Figure C.11.    Estimated Unpaid Model Results (Incurred Chain Ladder)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure C.13.    Estimated Unpaid Model Results (Paid Hoerl Curve)

Figure C.14.   Total Unpaid Claims Distribution (Paid Hoerl Curve)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure C.16.   Total Unpaid Claims Distribution (Incurred Hoerl Curve)

Figure C.15.    Estimated Unpaid Model Results (Incurred Hoerl Curve)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure C.17.    Estimated Unpaid Model Results (Paid Wright)

Figure C.18.   Total Unpaid Claims Distribution (Paid Wright)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure C.20.   Total Unpaid Claims Distribution (Incurred Wright)

Figure C.19.    Estimated Unpaid Model Results (Incurred Wright)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure C.21.    Model Weights by Accident Year

Figure C.22.    Estimated Mean Unpaid by Model

Figure C.23.    Estimated Ranges
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure C.24.    Reconciliation of Total Results (Weighted)

Figure C.25.    Estimated Unpaid Model Results (Weighted)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure C.26.    Estimated Cash Flow (Weighted)

Figure C.27.    Estimated Loss Ratio (Weighted)

Figure C.28.    Estimated Unpaid Claim Runoff (Weighted)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure C.29.    Mean of Incremental Values (Weighted)

Figure C.30.    Standard Deviation of Incremental Values (Weighted)

Figure C.31.    Coefficient of Variation of Incremental Values (Weighted)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure C.32.   Total Unpaid Claims Distribution (Weighted)

Figure C.33.    Summary of Model Distributions

15663-04_AppC-E,Refs-3rdPgs.indd   11515663-04_AppC-E,Refs-3rdPgs.indd   115 1/7/22   10:52 AM1/7/22   10:52 AM



116	 Casualty Actuarial Society

In this appendix the results for Schedule P, Part C (Commercial Auto Liability)  
are shown.

Appendix D—Schedule P, Part C Results
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure D.1.    Estimated Unpaid Model Results (Paid Berquist-Sherman)

Figure D.2.   Total Unpaid Claims Distribution (Paid Berquist-Sherman)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure D.4.   Total Unpaid Claims Distribution (Incurred Berquist-Sherman)

Figure D.3.    Estimated Unpaid Model Results (Incurred Berquist-Sherman)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure D.5.    Estimated Unpaid Model Results (Paid Cape Cod)

Figure D.6.   Total Unpaid Claims Distribution (Paid Cape Cod)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure D.8.   Total Unpaid Claims Distribution (Incurred Cape Cod)

Figure D.7.    Estimated Unpaid Model Results (Incurred Cape Cod)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure D.9.    Estimated Unpaid Model Results (Paid Chain Ladder)

Figure D.10.   Total Unpaid Claims Distribution (Paid Chain Ladder)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure D.12.   Total Unpaid Claims Distribution (Incurred Chain Ladder)

Figure D.11.    Estimated Unpaid Model Results (Incurred Chain Ladder)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure D.13.    Estimated Unpaid Model Results (Paid Hoerl Curve)

Figure D.14.   Total Unpaid Claims Distribution (Paid Hoerl Curve)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure D.16.   Total Unpaid Claims Distribution (Incurred Hoerl Curve)

Figure D.15.    Estimated Unpaid Model Results (Incurred Hoerl Curve)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure D.17.    Estimated Unpaid Model Results (Paid Wright)

Figure D.18.   Total Unpaid Claims Distribution (Paid Wright)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure D.20.   Total Unpaid Claims Distribution (Incurred Wright)

Figure D.19.    Estimated Unpaid Model Results (Incurred Wright)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure D.21.    Model Weights by Accident Year

Figure D.22.    Estimated Mean Unpaid by Model

Figure D.23.    Estimated Ranges
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure D.25.    Estimated Unpaid Model Results (Weighted)

Figure D.24.    Reconciliation of Total Results (Weighted)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure D.26.    Estimated Cash Flow (Weighted)

Figure D.27.    Estimated Loss Ratio (Weighted)

Figure D.28.    Estimated Unpaid Claim Runoff (Weighted)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure D.29.    Mean of Incremental Values (Weighted)

Figure D.30.    Standard Deviation of Incremental Values (Weighted)

Figure D.31.    Coefficient of Variation of Incremental Values (Weighted)
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure D.32.   Total Unpaid Claims Distribution (Weighted)

Figure D.33.    Summary of Model Distributions
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In this appendix the results for the correlated aggregate of the three Schedule P lines  
of business (Parts A, B, and C) are shown, using the correlation calculated from the paid 
data for the Berquist-Sherman model.

Appendix E—Aggregate Results

Figure E.1.    Estimated Unpaid Model Results

Figure E.2.    Estimated Cash Flow
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure E.3.    Estimated Loss Ratio

Figure E.4.    Estimated Unpaid Claim Runoff

Figure E.5.    Mean of Incremental Values

Figure E.6.    Standard Deviation of Incremental Values
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Using the Hayne MLE Models: A Practitioner’s Guide

Figure E.7.    Coefficient of Variation of Incremental Values

Figure E.8.    Calculation of Risk Based Capital

Figure E.9.   Total Unpaid Claims Distribution
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Collect here in alphabetical order all abbreviations and notations used in the monograph

AIC, akaiki information criteria	 CoV, coefficient of variation
BIC, bayesian information criteria	 HC, hoerl curve
BS, berquist-sherman	 CC, cape cod
WR, wright 	 CL, chain ladder
TVaR, tail value at risk	 VaR, value at risk

Abbreviations and Notations
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