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FOREWORD

Actuarial science originated in England in 1792 in the early days of life insurance.
Because of the technical nature of the business, the first actuaries were mathematicians.
Eventually, their numerical growth resulted in the formation of the Institute of Actuaries
in England in 1848. Eight years later, in Scotland, the Faculty of Actuaries was formed.
In the United States, the Actuarial Society of America was formed in 1889 and the
American Institute of Actuaries in 1909. These two American organizations merged in
1949 to become the Society of Actuaries.

In the early years of the 20th century in the United States, problems requiring actuar-
ial treatment were emerging in sickness, disability, and casualty insurance—particularly
in workers compensation, which was introduced in 1911. The differences between the
new problems and those of traditional life insurance led to the organization of the Casualty
Actuarial and Statistical Society of America in 1914. Dr. I. M. Rubinow, who was respon-
sible for the Society’s formation, became its first president. At the time of its formation,
the Casualty Actuarial and Statistical Society of America had 97 charter members of the
grade of Fellow. The Society adopted its present name, the Casualty Actuarial Society, on
May 14, 1921.

The purposes of the Society are to advance the body of knowledge of actuarial science
applied to property, casualty, and similar risk exposures, to establish and maintain stan-
dards of qualification for membership, to promote and maintain high standards of conduct
and competence for the members, and to increase the awareness of actuarial science. The
Society’s activities in support of this purpose include communication with those affected
by insurance, presentation and discussion of papers, attendance at seminars and work-
shops, collection of a library, research, and other means.

Since the problems of workers compensation were the most urgent at the time of the
Society’s formation, many of the Society’s original members played a leading part in
developing the scientific basis for that line of insurance. From the beginning, however, the
Society has grown constantly, not only in membership, but also in range of interest and in
scientific and related contributions to all lines of insurance other than life, including auto-
mobile, liability other than automobile, fire, homeowners, commercial multiple peril, and
others. These contributions are found principally in original papers prepared by members
of the Society and published annually in the Proceedings of the Casualty Actuarial
Society. The presidential addresses, also published in the Proceedings, have called atten-
tion to the most pressing actuarial problems, some of them still unsolved, that have faced
the industry over the years.

The membership of the Society includes actuaries employed by insurance companies,
industry advisory organizations, national brokers, accounting firms, educational institu-
tions, state insurance departments, and the federal government. It also includes indepen-
dent consultants. The Society has two classes of members, Fellows and Associates. Both
classes require successful completion of examinations, held in February, and in the spring
and fall of each year in various cities of the United States, Canada, Bermuda, and select-
ed overseas sites. In addition, Associateship requires completion of the CAS Course on
Professionalism.

The publications of the Society and their respective prices are listed in the Society’s
Yearbook. The Syllabus of Examinations outlines the course of study recommended for
the examinations. Both the Yearbook, at a charge of $40 (in U.S. funds), and the Syllabus
of Examinations, without charge, may be obtained from the Casualty Actuarial Society,
1100 North Glebe Road, Suite 600, Arlington, Virginia 22201.
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Volume LXXXV, Part 1 No. 162

PROCEEDINGS
May 17, 18, 19, 20, 1998

A COMPARISON OF PROPERTY/CASUALTY INSURANCE
FINANCIAL PRICING MODELS

STEPHEN P. D’ARCY AND RICHARD W. GORVETT

Abstract

A number of property/casualty insurance pricing mod-
els that attempt to integrate underwriting and investment
performance considerations have been proposed, devel-
oped, and/or applied. Generally, empirical tests of these
models have involved examining how well the models fit
historical data at an industry level. This paper demon-
strates how to apply a variety of property/casualty in-
surance financial pricing techniques to a single hypo-
thetical, but representative, company. Both company and
economic parameters are varied in order to examine the
sensitivity of indicated underwriting profit margins from
these techniques to different company situations and eco-
nomic environments, and to highlight the differences be-
tween the techniques at a practical level. This paper
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2 FINANCIAL PRICING MODELS

also serves as a practical guide for applying these mod-
els in order to encourage more widespread use of these
approaches.

1. INTRODUCTION

The determination of a “fair,” or competitive, rate of return
for property/casualty insurance underwriting operations has been
the subject of increasing scrutiny over the last several decades
among both academics and insurance practitioners. The five per-
cent target underwriting profit margin promulgated by the Na-
tional Convention of Insurance Commissioners in 1921 repre-
sented the first of many techniques that have been considered,
and in some cases employed, to determine a fair rate of return.
Although that first approach had little, if any, statistical or finan-
cial foundation, subsequent methods have attempted to deter-
mine insurance prices more rigorously, and with due considera-
tion given to relevant insurance, economic, and financial market
characteristics. An appropriate determination of fair insurance
prices is important because capital will be attracted to—and re-
tained by—the insurance industry only if its rates of return are
comparable to those in other industries that are perceived to have
similar levels of risk.

A variety of financial pricing models has now been proposed
for property/casualty insurance, including the Target Total Rate
of Return approach, the Capital Asset Pricing Model, several
Discounted Cash Flow approaches, the Option Pricing Model,
and the Arbitrage Pricing Model. In general, these models have
been applied individually and without clearly showing how the
necessary parameters can be determined from insurance finan-
cial statements. Several important studies do provide a degree
of comparison among the different models. Myers and Cohn
[25] compare the discounted cash flow model and the insurance
CAPM, including sensitivity analysis of the various parameters.
Cummins [9] provides a comparison of the discounted cash flow
model and internal rate of return approach and illustrates the re-
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sults of each method on one set of data. Doherty and Garven [15]
contrast the insurance CAPM and the option pricing models over
a range of values for each parameter. However, there has been no
systematic comparison of all the financial pricing models or any
documentation explaining how the relevant parameters should be
determined for a particular insurer. This paper addresses those
needs, first generating a financial statement for a hypothetical,
but representative, insurer, and then applying each pricing model
to this insurer to determine the appropriate premium level and un-
derwriting profit margin. Finally, the models are examined over
a range of parameter values that occur across insurers and over
time to demonstrate which parameters need to be measured most
accurately, and which models are most impacted by changes in
different variables. This analysis illustrates potential strengths
and weaknesses of each technique. By comparing the indications
of fair underwriting profit margins under each of these pricing
methods, their differences will be highlighted. This will allow
both company management and regulators to better gauge the
potential impact on prices of adopting one or another technique
in various business environments.

The insurance pricing techniques applied to our representative
insurance company include:

! target underwriting profit margin model,
! target total rate of return model,
! insurance capital asset pricing model,
! discounted cash flow (Myers–Cohn) model,
! internal rate of return model,
! option pricing model,
! arbitrage pricing model.
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The company to which these techniques are applied is a fic-
titious entity, but quite representative of companies actively in-
volved in the property/casualty insurance industry. As many of
the techniques examined are best applied in a single line of busi-
ness framework, we have chosen to model a company that writes
only private passenger automobile (PPA) insurance. Representa-
tive financial values and ratios, as well as payout patterns, were
selected based on an examination of both aggregate industry and
individual company values. Values for other economic and in-
surance industry variables are derived from appropriate sources
as described in Section 3 of the paper. The considerations in-
volved in obtaining each of the parameters used in the models
are shown, in order to illustrate how a company could use each
technique.

2. REVIEW OF THE ALTERNATIVE PRICING MODELS

In 1921, the National Convention of Insurance Commission-
ers, by an overwhelming margin, approved the Majority report
of the Committee on Fire Insurance. For two years, the Com-
mittee had been considering the issue of what was a reasonable
underwriting profit margin. The report’s conclusions included
the following items:

! “Underwriting profit (or loss) is arrived at by deducting from
earned premiums, all incurred losses and incurred expenses.”

! “A reasonable underwriting profit is 5 percent, plus 3 percent
for conflagrations : : : ”

(See National Convention of Insurance Commissioners [28] and
National Association of Insurance Commissioners [26] for more
details.) A minority report recommended that investment income
also be considered in determining a reasonable profit provision,
but this recommendation was defeated (see Webb [35]). Thus,
the position of the insurance regulatory community at that time



FINANCIAL PRICING MODELS 5

was that only underwriting, and not investment, operations were
relevant to the determination of a reasonable property/casualty
profit level. Furthermore, the specific profit level recommended,
five percent, was established apparently without meaningful sta-
tistical support.

Subsequent studies and reports began to question the appro-
priateness of ignoring investment income. This concern intensi-
fied in the 1960s and 1970s, as interest rates, and their volatility,
increased. The National Association of Insurance Commission-
ers (NAIC) in 1970 [27] said that, “In determining profits, it is
submitted that income from all sources should be considered.”
The NAIC, however, while criticizing the 1921 formula, did
not recommend an alternative until its 1984 Investment Income
Task Force Report, which recommended that the total rate of
return on net worth should be used to measure insurance profit-
ability.

In the meantime, actuaries started to develop (and sometimes
use) several alternative pricing techniques that attempt to ad-
dress both underwriting and investment considerations in pricing
property/casualty insurance policies. Initially, something of a di-
chotomy existed among the techniques proposed: some concen-
trated on the underwriting side of the insurance process, with lit-
tle consideration given to meaningful analysis of the investment
process; others focused primarily on the investment side, without
adequate understanding of the unique aspects of the insurance
underwriting process. Recent research has attempted to give ap-
propriate consideration to both aspects of the property/casualty
insurance business.

This paper examines seven different pricing models, and ap-
plies each to a fictitious but representative insurance company.
Each of the seven techniques is described below; additional de-
tails regarding specific calculations for each of the financial mod-
els are included in the Appendix. Variables used in the following
formulas include:
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P = premium

UPM= underwriting profit margin

L= losses and loss adjustment expenses

E = other expenses

S = equity (or adjusted statutory surplus)

IA= invested assets

IR= investment return

re = return on equity

rf = risk-free rate of return

rm =market rate of return

¯e = beta of the insurance company’s stock

¯u = beta of the insurance underwriting process

k = funds-generating coefficient

ti = tax rate on investment income

tu = tax rate on underwriting income:

A. Target Underwriting Profit Margin Model

The Target Underwriting Profit Margin (Target UPM) Model
determines an appropriate premium for a property/casualty insur-
ance policy based upon a pre-selected underwriting profit mar-
gin. Thus, no consideration is given to the investment earnings
produced by the insurance policy due to either the allocation of
surplus in support of the policy or the delay between receipt of
the premium and payment of the losses and expenses. The pre-
mium is determined strictly as a function of the expected losses,
expenses, and the target underwriting profit margin as a per-
centage of premium. Historically, the target UPMs used have
typically been 2.5 percent for workers compensation, and 5 per-
cent for all other lines in most jurisdictions. However, in 1986,
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Florida adopted rule 4ER86-1 that established a formal proce-
dure for including investment income in the ratemaking process
by adjusting the target UPM downward to reflect the additional
investment income attained in long-tailed lines over short-tailed
lines.

For our representative PPA insurance company, the pricing
and profit equations are:

UPM= 0:05 (2.1)

P =
L+E
1"UPM or UPM= 1" L

P
" E
P
: (2.2)

While this approach has been used in the property/casualty in-
surance industry for decades, and is relatively simple to apply, it
is clearly the least “financially sophisticated” of the pricing mod-
els examined in this study, and in fact—efforts such as Florida’s
notwithstanding—the Target UPM model is not supported by
financial considerations.

B. Target Total Rate of Return Model

A straightforward way of incorporating investment income
into the ratemaking calculation is simply to target, rather than
merely the underwriting margin, the combined underwriting and
investment returns of an insurance policy. The total rate of return
of a policy is viewed as having two components: investment and
underwriting. If two of these three items are known, the third can
be derived. Thus, in the Target Total Rate of Return (Target TRR)
Model, the underwriting profit margin is determined based on a
selected total rate of return and an estimate of the investment
income on a policy. This is analogous to the process that has
been historically used for the utility industry.

The target total rate of return can be calculated as

TRR=
(IA# IR)+ (P#UPM)

S
: (2.3)
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The TRR reflects both investment income (the first term in Equa-
tion 2.3) and underwriting income (the second term) as a propor-
tion of equity. Solving Equation 2.3 for the underwriting profit
margin yields

UPM=
(S#TRR)" (IA# IR)

P
: (2.4)

Now we need to specify an appropriate target total rate of
return. As with utility regulation, this is the crux of the model.
Although any number of methods might be viable, the Capital
Asset Pricing Model (CAPM) has typically been used to select
the TRR. This approach will be used in this paper. The CAPM
formula is:

E[re] = rf +¯e(E[rm]" rf), (2.5)

where ¯e is defined as

¯e =
Cov(re,rm)
Var(rm)

:

The TRR is then set equal to the expected return on equity, or
the cost of equity capital, E[re]. Thus, substituting Equation 2.5
into Equation 2.4 yields:

UPM=
(S# [rf +¯e(E[rm]" rf)]" (IA# IR)

P
or

UPM=
S

P

!
[rf +¯e(E[rm]" rf)]"

IA# IR
S

" (2.6)

C. Insurance Capital Asset Pricing Model

The CAPM was first introduced into the finance literature in
the mid-1960s by Sharpe [32], Lintner [22], and Mossin [24].
The CAPM, as described in Equation 2.5, expresses expected
return on equity as consisting of two components: a risk-free
component and a risk premium, which is essentially a reward
for taking on risk. The degree of compensation for risk-taking
is measured by the equity beta, which quantifies systematic, as
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opposed to nonsystematic (or diversifiable), risk. Diversifiable
risk is not compensated by the market, since it can be eliminated
through an appropriate investment diversification strategy.

The CAPM has been applied to insurance by several authors.
Among the first were Biger and Kahane [5]. Fairley [16] devel-
oped the following underwriting profit margin formula based on
the CAPM:

UPM="krf +¯u(E[rm]" rf): (2.7)

Here, the appropriate underwriting profit margin is calculated as
the risk premium associated with the systematic risk of the insur-
ance underwriting process, offset by investment income, which
is credited at the risk-free rate of return. The funds-generating
coefficient reflects the fact that the insurance process produces
investable assets generated by premium income prior to payout
of expenses and claims. This coefficient is often estimated by
a reserves-to-premium ratio. For a steady state insurer, this ap-
proach would be correct; if the company has changed premium
or exposure volume, however, this calculation would need to be
refined.

In addition to Fairley, Hill [18] and Hill and Modigliani [19]
have also developed CAPM applications to property/casualty
insurance. In particular, Hill and Modigliani have developed a
model that considers the impact of taxes and in fact allows for
differential tax rates. Letting ti and tu be tax rates as defined
above, the Hill and Modigliani model can be expressed as:

UPM="krf
1" ti
1" tu

+¯u(E[rm]" rf) +
S

P
rf

ti
1" tu

: (2.8)

It is Equation 2.8 that is modeled in this study.

D. Discounted Cash Flow Model (Myers–Cohn)

The Discounted Cash Flow (DCF) Model was developed for
use in Massachusetts as a counterpart to the CAPM model that
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had been used there beginning in the 1970s. The model is de-
scribed by Myers and Cohn [25] and takes the following general
form:

P = PV(L+E)+PV(UWPT) +PV(IBT), (2.9)

where

PV = present value operator,

UWPT= tax generated on underwriting income, and

IBT= tax generated on income from the investment balance.

One of the keys to using the DCF model is to properly determine
a method of discounting each component of the above equation.
Those cash flows that are certain should be discounted at the
risk-free rate, while risky cash flows must be discounted at an
appropriate risk-adjusted rate.

D’Arcy and Garven [14] test the following DCF model, where
all cash flows are discounted based on the risk-free rate (which
is equivalent to assuming that ¯u = 0 in the CAPM):

1 = PV
!
E

P

"
+PV

!
L

P

"
+PV

!
t

#
1" E

P
" L
P

$"

+PV
!
t

#
1+

S

P

$
L

P
LPP

"
, (2.10)

where LPP= the loss payout pattern. This equation is solved for
L=P, the loss ratio. Then, the indicated UPM is calculated as
1" (L=P)" (E=P).
In this study, we use this general approach, but refine it to

reflect the discounting of risky cash flows at a risk-adjusted rate.
Specifically, in order to determine an indicated DCF premium
level, we have used Equation 6.2 of D’Arcy and Dyer [13], with
the enhancement that different tax rates are allowed on under-
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writing versus investment operations. The UPM is then deter-
mined as (P"E"L)=P.

E. Internal Rate of Return Model

Whereas the Myers–Cohn discounted cash flow model de-
scribed above considers flows between the insurer and the poli-
cyholder, the internal rate of return (IRR) model, for example
as used by the National Council on Compensation Insurance
(NCCI), looks at flows between the investor and the company.
In particular, the flows under the IRR model include the com-
mitment of surplus, the release of surplus, the investment in-
come, and the underwriting profit (both of the last two being net
of applicable taxes). The discount rate of these flows is solved
for, so that the present value of the flows is zero; then, this dis-
count rate is compared to the cost of capital. A financially fair
premium is determined by setting the IRR equal to the cost of
capital.

In this study, we have used the same approach as Cummins
[9]. The cost of capital is determined by the CAPM. Exhibit 6,
Part 2 displays the calculation of the IRR model fair premium
for the base case.

F. Option Pricing Model

Recently, the option pricing model (OPM) has received in-
creasing attention among both insurance academics and practi-
tioners. The OPM is seen as having a great deal of promise as
a property/casualty insurance pricing framework since an insur-
ance policy can, essentially, be viewed as a package of contingent
claims. The primary application of the OPM to property/casualty
insurance to date is Doherty and Garven [15], who show that the
present values of the claims held by the three claimholders to
an insurance contract—shareholders, policyholders, and the tax
authorities (government)—can be modeled as European call op-
tions. In order to actually value these claims, and then determine
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a competitive UPM and premium, Doherty and Garven assume
two alternative valuation frameworks:

! asset returns are normally distributed, and investors exhibit
constant absolute risk aversion (CARA) with regard to their
preferences;

! asset returns are lognormally distributed, and investors exhibit
constant relative risk aversion (CRRA) with respect to their
preferences.

Although closed-form solutions are not derived, the premiums
and UPMs can be found for both frameworks via a straight-
forward iteration process. The appropriate formulas in Doherty
and Garven relating to these two valuation assumptions are their
Equations 19 and 30, respectively. We apply the first of these
two models in this study. (See the Appendix for further details.)
A spreadsheet was created wherein the difference between the
market value of the residual claim of the shareholders (V) and
the initial paid-in equity (S) is “backsolved” to zero by varying
the premium; the solving value represents the fair premium in-
dication. This premium is net of expenses, which are then added
in. The UPM is calculated as (P$ "L"E)=P$, where P$ includes
expenses.

G. Arbitrage Pricing Model

The Arbitrage Pricing Theory (APT), developed initially by
Ross [31] and extended by Roll and Ross [30] and others, is, like
the CAPM, an equilibrium model of security returns. However,
the APT makes fewer assumptions than does the CAPM, and it
also admits the possibility of more than one “factor” to which
security returns are sensitive. The theory behind the APT speci-
fies neither the number of such factors, nor their identity. Unlike
the CAPM, the APT does not posit a special, or even necessarily
any, role for a market return in determining individual security
returns.
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According to the Arbitrage Pricing Theory, security returns
follow the process

ri =E[ri]+
J%
j=1

¯ijfj + ²i, (2.11)

where

ri = return on the ith security,

¯ij = the sensitivity of the return on the ith security to the
jth factor, and

fj = a factor that influences security returns.

Then, the absence of arbitrage requires that the excess return on
each security be a linear combination of the betas:

E[ri]" rf =
J%
j=1

¯ij¸j, (2.12)

where

¸j = the risk premium corresponding to the factor fj:

The APT has been applied to insurance by Kraus and Ross
[21] and Urrutia [34]. Urrutia derives UPM formulae for an Ar-
bitrage Pricing Model (APM), based on the above theoretical
relationships. His differential-tax UPM equation takes the form

UPM=" 1" ti
1" tu

rfk+
J%
j=1

¯UPM,j¸j + rf

!
S

P

"
ti

1" tu
,

(2.13)
where

¯UPM,j =
Cov(UPM,fj)

Var(fj)
:

Generally, there are two approaches to testing the APT model.
The first involves factor analysis, a statistical methodology that
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determines factors and betas that best “explain” the data (i.e.,
that minimize the covariance of residual returns). The second in-
volves the pre-specification of variables that are hypothesized to
influence returns, as in Chen, Roll, and Ross [7]. This second
approach allows for economic intuition in the interpretation of
results; it is this approach which we use in this paper. In particu-
lar, a number of macroeconomic variables were tested, with the
inflation rate and the growth in industrial production being the
two variables that appear most significant in explaining historical
underwriting profit margins. Multivariate regression analysis is
used to determine sensitivities of UPMs to these two variables.
Selected parameter values are incorporated into Equation 2.13 to
determine fair UPMs.

3. DATA AND METHODOLOGY

In addition to the selection of the pricing techniques and
the identification of the appropriate formulas for each, as docu-
mented above, the following steps were involved in this study:

! development of the representative statutory company model,
! collection and development of information regarding company
and economic variables,

! application of each of the pricing techniques to the represen-
tative company, and

! sensitivity tests of the models by varying certain company and
economic parameters.

Each of these steps is discussed below.

A. Development of the Representative Statutory Company Model

It was decided, for the sake of simplicity and clarity of pre-
sentation, to concentrate on a fictitious but representative prop-
erty/casualty insurance company that writes only one line of
business in one state. Private passenger automobile insurance was
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selected due to its size and significance in the industry. Other
lines can easily be modeled by the same techniques presented
here, with appropriate changes in parameters.

The 1994 editions of several A. M. Best publications pro-
vided the basis for the development of the representative com-
pany model. The most recent statement year reflected in these
editions is 1993. To begin, some basic financial values for the
largest PPA companies in the industry were accumulated. Ex-
hibit 9 summarizes the asset, liability, surplus, and net written
premium values for the main PPA companies within each of
the 20 largest PPA groups. The calculated ratios vary consider-
ably, sometimes due to different operating philosophies, some-
times because a company writes a large amount of other business
in addition to PPA. These ratios served as the basis for certain
company parameter ranges, discussed later, to test model sen-
sitivity.

Pages 2, 3, and 4 of the Property/Casualty Annual Statement
are simulated for the representative insurance company in Exhibit
10. These simulated pages were developed from the consolidated
data from A. M. Best. First, 0.1% of consolidated industry (all
lines) earned premium was taken as the starting point for the
fictitious company (Exhibit 10, Part 3). Then, company asset,
liability, and surplus values were derived. Total assets for the
company were calculated by applying an industry asset/earned
premium ratio to the selected company earned premium. Con-
solidated industry total values for specific asset, liability, and
income categories were compared to aggregate figures for com-
panies in which private passenger automobile and homeowners
predominate. Comparisons were generally made on the basis of
percentages relative to the appropriate major item—e.g., each
asset item as a percentage of total assets. These percentages are
shown on the first three sheets of Exhibit 10. Generally, the per-
centages applying to PPA-and-homeowners-predominating com-
panies were used as the basis for our selected company values.
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The selected percentages—as well as the resulting asset, liability,
and income items—for the representative company are shown on
Exhibit 10, Parts 1 through 3.

PPA loss development patterns for the representative com-
pany were determined by analyzing the consolidated Schedule P
data from A. M. Best, using standard actuarial techniques. PPA
liability/medical and physical damage patterns were analyzed
separately. The derivation of these patterns is included in Exhib-
it 11.

B. Collection and Development of Company and Economic
Information

Exhibit 1 documents the information required by each of the
pricing techniques in order to apply it to property/casualty in-
surance ratemaking. The initial or “base case” value assumed in
this study for each variable, as well as a range of reasonable
values, is included in the table. The variables are classified into
three categories: Company Variables, Economic Variables, and
Government Policy Variables, depending upon whether a par-
ticular variable is most influenced by company operating deci-
sions, general economic conditions, or governmental policy deci-
sions.

The Company Variables include equity, investment rate of re-
turn, standard deviation of investment returns, equity beta, and
the funds-generating coefficient. The rationale for placing these
variables in this category is that the company, through operat-
ing and investment decisions, determines the premium-to-surplus
level, the investment policy (which affects both the investment
rate of return and the standard deviation), internal factors which
influence the beta of the firm’s equity, and—to some extent—the
claims payment patterns and philosophy.

The Economic Variables include the risk-free rate, market risk
premium, risk adjusted discount rate, underwriting beta (and,
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analogously, the investment-claims correlation), the standard de-
viation of market returns, the standard deviation of losses, and
annual growth rates and betas for inflation and industrial produc-
tion. These parameters vary primarily due to effects exogenous
to the company.

The final category of factors are considered Government Pol-
icy Variables, which include the tax rate, the ratio of the invest-
ment tax rate to the total tax rate, and the annual tax discount
factor. Obviously, the government has sole control over the basic
tax rate. The ratio of investment/total tax rate can be affected by
the company, by changing the investment allocation, or by the
government, by changing the rules about taxability of various in-
vestments. In light of the significant effect of such tax regulations
as the Tax Reform Act of 1986, the government is assumed to
have the greater influence over this variable. Similarly, although
the tax discount factor is currently the 60-month moving av-
erage of mid-maturity Treasury issues, which would tend to
make this an Economic Variable, the definition and calculation
of this parameter could be changed by the government at any
time.

The most critical step in applying any of the financial mod-
els is determining the values for the variables. No matter how
accurate a particular model is felt to be, unless the correct pa-
rameters are included, the results will not be useful. Many of the
prior applications of financial pricing models have either simply
assumed particular values for certain variables or determined the
values based on a one-time study of industry results. These ap-
proaches do not provide much guidance for someone who wants
to apply these techniques to an individual company situation on
an ongoing basis. In order to facilitate future applications of these
models, the determination of parameter values is shown by bas-
ing the calculation, where possible, on the fictitious insurer’s an-
nual statement or supplementary financial reports, or on general
economic information.
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C. Company Variables

! Equity: Each of the financial pricing models requires either
the premium-to-surplus ratio or a value for surplus itself. Al-
though this may appear straightforward, it is not. The reason
for the difficulty is the different definitions and uses of the
surplus value. For example:

— In the Target Total Rate of Return model, surplus relates
to the amount of assets that an investor chooses to invest
in any insurance operation, as opposed to deploying those
assets in another investment.

— In the Discounted Cash Flow model, surplus relates to the
amount of invested funds that generate taxes that need to
be covered by the premium.

— In the Insurance CAPM, Internal Rate of Return, Option
Pricing, and Arbitrage Pricing models, the surplus is both
the amount of capital invested in the firm in support of
writing a particular amount of business and the invested
assets earning taxable investment income.

Although each model terms this value “surplus,” each model
technically requires a slightly different definition of surplus.
For consistency, the same value is used as the starting point
for each method. As this parameter is extremely important,
care should be taken in selecting the appropriate figure. In
this study, the value for surplus is an adjusted statutory surplus
value, or equity, that is determined as follows:

Equity = (Statutory Surplus)

+ (Equity in the Unearned Premium Reserve)

+ (Difference Between Nominal and Risk-Free-
Discounted Loss Reserves)

+ (Excess of Statutory Over Statement Reserves)
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+ (Difference Between Market Value and
Book Value for Bonds)

+ (Non-Admitted Assets)

" (Tax Liability on Equity in Unrealized
Capital Gains):

For the fictitious company, equity equals $189,360 (dollar val-
ues in thousands). Premium-to-statutory surplus ratios for the
top twenty private passenger auto insurers (Exhibit 9) range
from 0.67 for ITT Hartford to 2.89 for American Premier Un-
derwriters. This range, combined with the adjustments to statu-
tory surplus, which were held constant, determined the range
for equity values to be $122,132 to $399,692, as documented
in Exhibit 10, Part 4.

Another way to determine the economic value of the in-
surer, which could be used for publicly traded firms, is to use
market value, calculated by multiplying the number of shares
outstanding times the current stock price. Our fictitious com-
pany is assumed to have a market value of $220,399, reflecting
the average market-to-book ratio for stock property/casualty
insurance companies at the end of 1993 of 1.46 multiplied
by the statutory surplus. The market value could differ from
the equity value for any number of reasons, including addi-
tional accounting conventions that cause a divergence between
reported and economic value or other assets that are not re-
flected in an insurer’s balance sheet (reputation, market niche,
a book of business that will generate profits on renewal). For
the models that consider surplus to be the investor’s value in
an insurer (all the models illustrated in this paper except the
discounted cash flow), the market value represents the amount
that the investor could obtain for giving up its investment in
insurance. The market-to-book value ratio ranged from a low
of 0.92 (market value of $138,881) to a high of 2.43 (market
value of $366,828) for personal lines insurers. As these values
all fall within the range obtained by varying only the premium-
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to-statutory surplus ratio, no further adjustments were made.
However, the size of this range illustrates the importance of
the selection of the appropriate equity value.

! Investment rate of return: The investment rate of return was
calculated by summing net investment income, realized cap-
ital gains and unrealized capital gains and dividing the total
by the average investable assets during the year. All invest-
ment income, realized or unrealized, was used to reflect the
full effect of investment earnings. A base case value of eight
percent was selected based on this calculation, with a range
of plus or minus two percent. In practice, the average returns
over a number of years should be taken to avoid distortions
that could be caused by short-term fluctuations in investment
results.

! Standard deviation of investment returns: The base case of 20
percent is the same value as used by Doherty and Garven
[15]. This value could be calculated for a particular insurer
by obtaining the standard deviation of the company’s total in-
vestment rate of return (including both realized and unrealized
capital gains). Our selected range is plus or minus ten percent
around the base case.

! Equity beta: The base case is 1.0, which is the overall market
beta. With regard specifically to insurance stocks, Hill [18]
found equity betas averaging 0.61, and Hill and Modigliani
[19] and Fairley [16] found betas of approximately 1.00. Fama
and French [17] formed portfolios based on beta, and the port-
folio betas ranged from .81 to 1.73. Thus, the selected range
for insurance betas was .60 to 1.70, ranging from the value
determined by Hill to approximately the 95th percentile based
on Fama and French. Note that, rather than separately testing
the sensitivity of UPMs to a selected range of internal rate of
return values, we have assumed that the IRR values are de-
termined via a CAPM approach and so have embedded UPM
sensitivity to internal rates of return in our equity beta range.
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! Funds-generating coefficient: k is the average length of time
that the insurer holds (and invests) premiums before they are
used to pay expenses and losses. The coefficient is calculated
by multiplying the loss payments in the first year by 0.5, the
loss payments in the second year by 1.5, and so forth. These
values are then summed and divided by premiums. (Expenses
are assumed to be paid when the premium is received, so they
do not increase the total time-weighted sum of outgo.) For the
base case, the ratio is 1.18. The sensitivity of UPM indications
to the coefficient is examined by assuming that the company
pays its losses and expenses, on average, one quarter of a year
either faster, k = :93, or slower, k = 1:43, than the base case.

The calculation of the coefficient for the Option Pricing
Model is similar, but as this method calculates premiums net of
expenses, the appropriate adjustment is to divide the weighted
sum of loss payments by total losses, rather than premiums.
This produces a k value of 1.5 for the base case, with a range
of 1.18 to 1.81 to correspond with the insurance CAPM adjust-
ment. The Discounted Cash Flow and Internal Rate of Return
models both also depend on the loss payment pattern, but as
the actual payments are used instead of a weighted average,
the adjustment must be made to each payment. The calcula-
tion of the funds-generating coefficient for each model and
the adjusted loss payout patterns are displayed in Exhibit 10,
Part 4.

D. Economic Variables

! Risk-free rate: As is frequently done, we used the interest
rate on U. S. Treasury bills as a proxy for the risk-free rate.
As of February, 1996, both three- and six-month Treasury bills
had a yield to maturity of approximately five percent. As the
appropriate rate for this variable is the current, and not a past,
rate, the base case value was set at five percent. This rate has
ranged from 2.9 percent to 14.7 percent over the period 1974
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to 1993 based on Ibbotson [20] data. The range was set at the
twenty-year high and low values.

! Market risk premium: This is generally determined as the av-
erage excess return in the stock market over an investment in
short-term Treasury bills. The time period 1926 through the
most recent year is frequently used based on the Ibbotson As-
sociates data series. For 1926 through 1994, the market risk
premium is eight percent. Depending on the number of years
included in the measurement and the selected years, the mar-
ket risk premium fluctuates. The selected range is six to ten
percent.

! Risk-adjusted discount rate: The RADR is used in the dis-
counted cash flow model to discount risky cash flows, primar-
ily losses. The consensus of research on the issue of discount-
ing loss reserves indicates that the appropriate risk-adjusted
discount rate is less than the risk-free rate. (See, for example,
Butsic [6], Cummins [9], and D’Arcy [12].) This is because
the RADR reflects a risky liability to the insurer, and the in-
surer may be viewed as a risk-averse entity. Conversely, the
insurance policy can be viewed as a risky asset for the poli-
cyholder, an asset that has a negative beta since it increases in
value when the value of the other assets of the policyholder
decline due to a loss. Thus, the policyholder would expect to
earn a rate of return below the risk-free rate based on either the
Capital Asset Pricing Model or the Arbitrage Pricing Model.
How much less, however, is an unsettled issue. If the CAPM
is used to determine the risk-adjusted discount rate, then the
differential will be a constant value, regardless of the level
of interest rates. For extremely low interest rates, the RADR
could even turn out to be negative. Conversely, if the RADR is
proportional to the level of interest rates, then the differential
will increase as interest rates increase and, regardless of how
low interest rates were to fall, would be non-negative as long
as interest rates were non-negative. This is an area requiring
further research. For this paper, the RADR is assumed to be
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proportional to the level of interest rates. The risk-adjusted rate
is held at 60 percent of the risk-free rate, with the RADR-to-
risk-free ratio ranging from zero percent to 100 percent. (The
zero percent is consistent with undiscounted loss reserves.)
Given the base case risk-free rate assumption of five percent,
the base case risk-adjusted discount rate is selected as three
percent.

! Underwriting beta: There is no generally-accepted theoreti-
cal reason why underwriting results should be correlated with
market returns, so measuring the value of the underwriting beta
and the investment-claims correlation must be based on em-
pirical results. Cummins and Harrington [10] test underwrit-
ing betas over the period 1970 to 1981 and find that values ap-
pear to range from ":20 to +:20, although the average is not
significantly different from zero. D’Arcy and Garven [14]
calculate a long-term correlation (1926 through 1985) of
0.0763. The base case is set at zero, with a range of "0:40 to
+0:40.

! Standard deviation of stock market returns: This variable has
historically been 22 percent (Doherty and Garven [15]), which
is used here as the base case. The range of 12 to 40 percent
was selected judgmentally.

! Standard deviation of losses: This should be measured by
comparing actual losses with expected losses over a number
of years. There is no information about initial expected losses
in any financial statement of an insurer, although Schedule
P shows loss development after the first accident year has oc-
curred. Doherty and Garven [15] assume a value of 25 percent
of losses for this parameter (i.e., a coefficient of variation, or
Cov, of 25 percent), and that value is used here as the base
case. The range of 12.5 percent of losses to 50 percent was
determined judgmentally; these values correspond to assuming
a Cov of one-half to twice the base case Cov.
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! CPI change: Historical values were taken from Ibbotson As-
sociates [20]. Based on recent inflation rates, an annual growth
rate of three percent was chosen as the base case value, with
a range from zero to six percent.

! Industrial production growth rate: Historical values were
taken from Federal Reserve data—log-differences of index
values were used. Based on recent growth rates, a base case
value of two percent was chosen, with a range of zero to four
percent.

! CPI and industrial production betas: The beta values were
determined by running multivariate regressions of annual in-
flation and industrial production growth rates against the fol-
lowing dependent variable: historical auto UPMs (taken from
A. M. Best Aggregates and Averages), plus the historical risk-
free rate multiplied by the estimated historical funds generat-
ing coefficient. (See Urrutia [34], Equation 13.) Examination
of the coefficients of the regressions, as well as covariance
and variance calculations, over different periods of time led
to the selection of base case values and ranges. (See Exhibit
8, Part 2.) While there is some evidence from the regressions
for a base case inflation beta closer to 0.70 than to 0.50 based
on much of the historical data period from 1948 to 1993, the
last ten years of this period indicate an inflation beta much
closer to zero. We have chosen a wide and symmetric range
around our selected base case of 0.50 to indicate that these esti-
mates require refinement; this could be the subject of future re-
search.

E. Government Policy Variables

! Tax rate: The current corporate tax rates range from 15 to
39 percent, based on taxable income level. The base rates are
15, 25, 34 and 35 percent, with surcharges of three and five
percent applying to segments of taxable income in order to
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equalize average and marginal tax rates. The appropriate tax
rate is the projected marginal tax rate for the tax year in which
the coverage will apply. This necessarily involves a projec-
tion. For the fictitious insurer, taxable income is projected to
be between $335,000 and $10,000,000 for which a 34 percent
marginal tax rate applies. The range is selected to be 28 to 40
percent, reflecting uncertainty over future, potentially retroac-
tive, government tax policy.

! Investment/total tax ratio: Investment income is taxed at dif-
ferent rates depending on the source. Interest on federal and
corporate bonds is fully taxable. Interest on municipal bonds
purchased after August 7, 1986, is taxed at the 15 percent
level. Seventy percent of dividends from non-controlled cor-
porations are taxed at the 15 percent level, with the remainder
fully taxed. Long-term capital gains are subject to a maximum
tax rate of 28 percent. Based on the distribution of investment
income earned by the fictitious insurer for the most recent
year, the tax rate on investment income is 80 percent of the
maximum level. This calculation is illustrated in Exhibit 10,
Part 4. This value is allowed to range from 60 to 100 per-
cent.

! Tax discount factor: The tax discount factor based on the 60-
month moving average of mid-maturity Treasury issues ending
February 1996 is 6.55 percent (Massachusetts Workers’ Com-
pensation Rate Filing [23]). The value for the period ending
October 1994 was 7.03 percent. Thus, the base case value is
seven percent. The range of four to ten percent was selected
judgmentally.

F. Application of Techniques to the Representative Company

Exhibits 3 through 8 document the application of each of the
six financial pricing techniques to the representative company
described above and in Exhibit 10. Each exhibit shows, for the
respective pricing model, the relevant parameter values and the
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indicated base case UPM. In addition, the sensitivity of the UPM
indications to different premium/equity ratios is shown both nu-
merically and graphically. For three of the models, an additional
parameter is also varied in the graphs. For each model, UPM is
an inverse function of premium/equity ratio.

G. Sensitivity Tests

For each pricing model, the sensitivity of UPM indications
to each relevant parameter is determined by allowing the pa-
rameter to vary from the base case to the low and high ends
of the reasonable range, keeping all other parameters constant
at their base case values. The results of these sensitivity tests
are summarized in Exhibit 1. In addition, Exhibit 2 summarizes
the sensitivity of UPM indications to simultaneous changes in
groups of variables. Relevant variables in each of the three cat-
egories (company, economic, and government policy) are varied
while keeping the other groups constant; in addition, all relevant
variables across all groups are varied simultaneously.

4. EMPIRICAL RESULTS AND ANALYSIS

A. Evaluation of Base Case Results

The six base case underwriting profit margin indications dis-
played on Exhibit 1 range from "4:9 percent to 1.7 percent. The
Insurance CAPM, which produces the lowest value, is known to
under-price, as it ignores insurance-specific risk (Ang and Lai
[4] and Turner [33]). (This deficiency also applies to the Arbi-
trage Pricing model, at least in the form presented in this paper.)
The next lowest value, the Target Total Rate of Return, does not
consider the effect of taxes. The Discounted Cash Flow, Internal
Rate of Return and Option Pricing models all cluster between
0.1 percent and 1.7 percent. A good case can be made for select-
ing the average of these three models, 0.7 percent, as the under-
writing profit margin target for this insurer under base case econ-
omic and company conditions. Coincidentally, this is the same
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value that the Target Total Rate of Return model indicates for an
equity beta of 1.7, which would produce a target rate of return,
before taxes, of 18.6 percent. Note that this underwriting profit
margin, and in fact the entire range of base case values, is sig-
nificantly below the Target UPM model provision of five per-
cent.

B. Sensitivity Analysis

B.1. Single Factor Variation

By examining the effect of changing each parameter over the
range of reasonable values, the sensitivity of the pricing models
to different conditions, as well as the importance of accurately
measuring each variable, can be discerned. Examination of Ex-
hibit 1 suggests that the variables most affecting the results are
the equity, or premium-to-surplus ratio (for all except the Insur-
ance CAPM and Arbitrage Pricing models), and the risk-free rate
(for all except the Discounted Cash Flow model). For example,
over the range of equity values examined, the underwriting profit
margin changes by 14.6 percentage points for the Target Total
Rate of Return model, 4.9 percentage points for the Discounted
Cash Flow model, 12.7 percentage points for the Internal Rate of
Return model, and 4.8 percentage points for the Option Pricing
model. In each case, the higher the initial equity, the higher the
indicated underwriting profit margin; the greater the amount that
the insurance company has invested for a given volume of pre-
mium, the higher the price needs to be to provide an adequate
return on capital. This volatility is a problem for the financial
pricing models since it is difficult to measure true equity for a
single-line, single-state insurer. The problem is vastly more com-
plicated for a multiline, multistate insurer. The effect of varying
the equity is illustrated in Exhibit 1, Part 2, which compares UPM
indications across all models under a range of premium/equity
ratio assumptions. In the graph, the low premium/equity ratio
corresponds with a high equity value.
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For an insurer that had the highest amount of equity, the indi-
cated underwriting profit margins are 7.5 percent for the Target
Total Rate of Return, "3:2 percent for the Insurance CAPM, 3.8
percent for the Discounted Cash Flow, 11.0 percent for the In-
ternal Rate of Return, 3.2 percent for the Option Pricing model,
and "1:2 percent for the Arbitrage Pricing model. Determining
the appropriate underwriting profit margin target in this situation
is difficult. Even ignoring the Insurance CAPM and Arbitrage
Pricing models, the results vary by 7.8 percentage points, with
an average of 6.4 percent. Selecting the appropriate value will
be a difficult judgment call.

Similarly, the results are highly sensitive to the risk-free rate:
across the range of reasonable parameter values, the results vary
by 9.1 percentage points for the Target Total Rate of Return
model, 11.6 percentage points for the Insurance CAPM and Ar-
bitrage Pricing models, 0.8 percentage points for the Discounted
Cash Flow model, 12.6 percentage points for the Internal Rate
of Return model, and 11.0 percentage points for the Option Pric-
ing model. Also, the effect of increasing the risk-free rate affects
the results differently. For the Target Total Rate of Return and
the Internal Rate of Return models, increasing the risk-free rate
raises the indicated underwriting profit margin (given the model
assumptions previously described). However, the indications for
the Insurance CAPM, the Discounted Cash Flow, the Option
Pricing, and the Arbitrage Pricing models all decline as the risk-
free rate increases. Thus, if the risk-free rate were 14.7 percent,
as it was in 1981, then the indicated underwriting profit mar-
gins vary from "14:5 percent for the Insurance CAPM model to
11.4 percent for the Internal Rate of Return model. Fortunately,
the value of the risk-free rate is easy to obtain. Unfortunately,
the models are very sensitive, in opposite directions, to this
value.

On the opposite extreme, the results are not very sensitive, for
example, to the tax discount factor. Since private passenger auto
losses are paid relatively quickly, the effect of the tax discount
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factor is minimal. This would not be the case for a longer-tailed
line. Also, neither the investment rate of return, the market risk
premium nor the standard deviation of market returns affect the
results of the Option Pricing model. This occurs because the
base case underwriting beta is zero. In some respects, the choice
of zero as a underwriting beta is not an ideal choice because
the sensitivity analysis does not illustrate the effect of chang-
ing values that are multiplied by beta. However, all empirical
analyses measuring the underwriting beta indicate that it is not
significantly different from zero; taken in aggregate, zero is the
best a priori estimate of the underwriting beta. (See, for exam-
ple, Cummins and Harrington [10], Fairley [16], and Hill and
Modigliani [19].) The effect of altering more than one variable
at a time is discussed next.

B.2. Multiple Factor Variation

A point of critical importance in evaluating the results summa-
rized on Exhibit 1 is that each of the high/low UPM indications
reflects a change in only one parameter, while all of the others
are kept fixed. In many cases, such a simplistic scenario will
understate the potential sensitivity of a model to changes in a
parameter. Often, this is because the selection of the base case
value of another parameter minimizes the parameter’s impact on
a model’s UPM calculation. For example, changes in the mar-
ket risk premium do not influence the UPM indications for the
Option Pricing Model, according to Exhibit 1—however, this is
because we have selected an investment-claim correlation of zero
for our base case assumption. This assumption, when incorpo-
rated into the option formulae, “zeroes out,” or makes irrelevant,
the market risk parameter.

Because of examples like this, in order to determine the true
magnitude of potential impact of certain parameters on the vari-
ous models, it is necessary and instructive to vary more than one
of the parameters simultaneously. This is in keeping with real-
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ity, as it is entirely possible—and even probable—that multiple
parameters will change concurrently.

The impact of selected multi-parameter changes on UPM in-
dications for various models is demonstrated in Exhibit 2. The
results vary markedly. Changing all the Company Variables from
the lowest values to the highest values only changes the indi-
cated underwriting profit margin by 9.1 percentage points for the
Option Pricing model, 4.8 percentage points for the Discounted
Cash Flow model and 5.1 percentage points for the Insurance
CAPM and Arbitrage Pricing models. At the other extreme, the
same changes shift the indicated underwriting profit margin by
34.5 percentage points for the Internal Rate of Return model and
46.8 percentage points for the Target Total Rate of Return model.
Thus, the impact of different financial positions for companies
will differ depending on the model.

The effect of changing the Economic Variables affects all
the models significantly. The effect ranges from 12.1 percent-
age points for the Target Total Rate of Return model to 61.9
percentage points for the Option Pricing model. Changing eco-
nomic conditions will affect all insurance companies and must
be reflected in the parameters selected.

The impact of changing the Government Policy Variables,
which all relate to taxation, is not as significant as the Com-
pany or Economic Variables. The indicated underwriting profit
margins shift by only 2.6 percentage points for the Insurance
CAPM and Arbitrage Pricing models, 5.6 percentage points for
the Internal Rate of Return model, 5.7 percentage points for the
Option Pricing model, and 6.1 percentage points for the Dis-
counted Cash Flow model. They have no effect on the Target
Total Rate of Return model, which ignores taxation.

Predictably, based on the above results, the impact of chang-
ing all variables simultaneously is extremely significant for each
model.
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5. PRACTICAL GUIDE TO USING FINANCIAL PRICING MODELS

When using a variety of financial pricing models to select
an appropriate underwriting profit margin, the different models
can be expected to generate different indications. Selecting the
appropriate profit margin requires actuarial judgment, including
a thorough understanding of the reliability of the inputs used
in the models and the strengths and weaknesses of the different
techniques. For example, if current interest rates are high, but
there is considerable uncertainty about future levels, then the
models that are least sensitive to changes in the risk-free interest
rate (in this example the discounted cash flow model) should be
given greater weight. If the value of the insurer’s equity cannot
be easily valued, such as in the case of a mutual insurer, then
the models that are very sensitive to the initial equity value (in
this case the Target Total Rate of Return and the Internal Rate of
Return) should be given less weight than they would if the initial
equity could be valued more accurately. When writing a line of
business that is considered to have little insurance-specific risk
(for example, fidelity), then models that ignore this factor, the
Insurance CAPM or Arbitrage Pricing Model (as formatted in
this study), would be more appropriate than they would be for
lines with a high degree of insurance-specific risk (for example,
homeowners).

For this study, all of the models are tested based on the same
input data. These values were intentionally selected to be repre-
sentative of the property/casualty insurance industry in general
and of current economic conditions. Thus, the different indica-
tions result from differences in the basic structure of the individ-
ual models, and the effect of these differences for a representative
insurance company can be quantified. Specifically, the Target
Total Rate of Return model, which ignores taxes, produces an
indication three to four percentage points below the level where
other models tend to cluster. The Insurance CAPM, which ig-
nores insurance-specific risk, produces a value approximately
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five percentage points below the cluster level, and the Arbi-
trage Pricing Model, which in the form used here also ignores
insurance-specific risk, produces an indication about three per-
centage points lower than the cluster level. These differences can
provide some guidance about adjustments that can be made to
reflect omitted factors. However, the differences will need to be
recalculated when applied in situations that differ from the ex-
ample provided in this study, if, for example, the type of business
or the financial parameters were to change.

Knowledge about the assumptions inherent in the models is
also important for proper application. For example, the Internal
Rate of Return model assumes that any underwriting losses are
funded at the inception of the policy. Conversely, underwriting
profits would also be reflected at the inception of the policy, re-
ducing the initial surplus allocation for the policy. Although this
assumption would have little effect when the indicated under-
writing profit margins are approximately zero, it could introduce
distortions in the case of sizeable underwriting profits or losses.
Also, the Discounted Cash Flow model relies heavily on the ap-
propriate risk-adjusted discount factor, a value that is difficult
to measure given the lack of a public and liquid market trading
insurance liabilities. Care must be taken, when using this model,
that the risk-adjusted discount rate reasonably accounts for the
risk involved in writing a particular line of business.

Selecting an appropriate underwriting profit margin is as
much of an actuarial art as selecting the appropriate loss reserve
level. The financial pricing models described in this study, al-
though none is perfect, can be used to determine this value if
properly applied and if used in conjunction with other models.
Knowing the likely relationships among the respective indica-
tions and the sensitivity of the indications to specific parameters
can help direct the user to select reasonable underwriting profit
margins.
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6. CONCLUSION

A. Implications for Insurance Companies and Regulators

The diverse results for the indicated underwriting profit mar-
gin, depending on the pricing model selected and the nature of
the company and economic environment, should be convincing
evidence that no one pricing model can be relied upon to provide
the appropriate underwriting profit margin in all situations. In-
stead, insurers should apply a number of different pricing meth-
ods and evaluate the results in combination to select the target
underwriting profit margin. The models discussed in this paper
are possible techniques for companies to use. However, each
model should be understood and its shortcomings noted in order
to apply the techniques most appropriately.

Another conclusion that can be drawn from this research is
that insurance is a very complex financial transaction. For people
working in the insurance industry, this may seem to be an un-
usual statement. An insurance company collects premiums and
pays losses and expenses: what is so complex about that? How-
ever, compared to stocks, bonds and options, for which the finan-
cial pricing models were originally developed, insurance is very
complex. Owners of stock receive a periodic stream of dividends
and the value of the stock when it is sold. Bondholders receive
a fixed stream of income and a predetermined principal amount
at maturity, subject only to default risk or an early call. Option
holders receive at maturity the difference between the price of
the underlying asset and the exercise price, if this is greater than
zero.

Insurance, on the other hand, involves collecting a stream of
premium payments over time in return for the promise to pay
losses, if they occur, for which both the amount and timing are
unknown. The mathematics for dealing with this degree of un-
certainly have not been perfected. This complexity means that
techniques that are readily applicable to other financial trans-
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actions are not necessarily going to provide reasonable results
when applied to insurance. Thus, regulating insurance involves
more than importing a financial technique that has been applied
in another setting.

B. Future Research

Our goal in this paper has been to compare and contrast dif-
ferent asset pricing models in terms of their indicated fair rates of
return for property/casualty insurance policies given various cor-
porate and economic environments. We have focused on those
pricing models that have been suggested and (at least somewhat)
developed in the literature to date. Several of the models would
benefit from more extensive development—perhaps the findings
of this paper will help to suggest where such resources are best
applied.

To date, the Arbitrage Pricing Model has received relatively
little theoretical or empirical attention in terms of insurance ap-
plications. We have used a very basic pre-specified factors model
for purposes of illustrative model comparisons in this paper. Two
macroeconomic variables—inflation and industrial production
growth rates—were found to be relatively significant in explain-
ing adjusted (for investment income) UPMs over the 1948–1993
period (the other variables tested were a bond default premium, a
bond horizon premium, and a New York Stock Exchange value-
weighted stock return series). The positive relationship we found
between inflation and adjusted UPM is interesting in light of the
finding in Kraus and Ross [21] that the competitive premium
should be affected by inflation only in so far as real rates of
interest are impacted. This relationship should be analyzed fur-
ther, perhaps by separately determining the sensitivity of UPMs
to expected and unexpected inflation. Other insurance specific
variables—e.g., catastrophe losses, leverage—should also be ex-
amined for significance. In addition, historical tax rates may
well have an impact on historical UPM regressions with the pre-
specified variables, and should be incorporated into the process
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of determining beta coefficients. Also, instead of assuming the
relevancy of specific macroeconomic and insurance variables, a
factor analysis approach might be worth investigating. We intend
to examine these and other issues in a separate paper.

There are several other areas in which additional research
might prove fruitful. For example, the Option Pricing Model re-
quires distributional and risk preference assumptions in order to
price the contingent claims. It would be instructive to examine the
impact on OPM pricing indications of assuming return and loss
distributions other than the normal and lognormal distributions.
Another area involves surplus allocation: for practical applica-
tions of these models, a multiline and/or multistate insurer must
be able to appropriately allocate surplus to its various business
segments. Finally, additional research into appropriate parameter
values for each model is certainly warranted before the models
are actually used for insurance pricing purposes.
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APPENDIX

In this appendix, we show examples of specific calculations
for each of the six financial pricing models examined in this
paper. It is hoped that these examples will provide further insight
into the models, as well as encourage actuaries to implement
some of these techniques themselves.

Target Total Rate of Return

Underwriting profit margins resulting from the Target Total
Rate of Return model are shown in Exhibit 3. These UPMs are
generated directly from Equation 2.6 in the text, assuming the
parameters given on the exhibit. The Target TRR method equates
the sum of an insurance company’s underwriting and investment
returns with a target total rate of return; this target, in our paper,
is based on the Capital Asset Pricing Model. Thus, calculations
of UPMs according to the Target TRR model require assump-
tions regarding values for the following parameters: the risk-free
interest rate, the expected return on the equity market (which is
equal to the risk-free rate plus an equity “risk premium”), the
equity beta of the insurer, the company’s invested assets and the
rate of return on those investments, and the company’s equity
and its premium-to-equity ratio. Assumptions regarding five of
these seven variables are documented at the top of Exhibit 3; al-
ternative assumptions regarding the premium-to-equity ratio and
the equity beta are shown below those, and on the graph on the
exhibit.

As an example, the 0.236 UPM that is shown on the exhibit
(assuming an equity beta of 1.70 and a premium-to-equity ratio
of 0.50) is derived from Equation 2.6 as follows:

UPM=
!
1
0:50

"&''([0:05+1:70(0:13"0:05)]" 417,338#0:08
189,360# 1:30

0:50

)**+
= 0:236,
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where the (1.30/0.50) factor is an adjustment to equity to bring
the premium-to-equity ratio to the assumed value of 0.50. (It
is assumed that, for the base case corresponding to an equity
value of 189,360, the premium-to-equity ratio is 1.30; thus, to
test the sensitivity of the model to a different leverage and a
different premium-to-equity ratio, the equity is adjusted in the
UPM calculation—the premium level is held constant. Assuming
that an equity value of 189,360 corresponds to a premium-to-
equity ratio of 1.30, a ratio of 0.50 implies an equity of 492,336.)

Insurance Capital Asset Pricing Model

Underwriting profit margins resulting from the Insurance
CAPM are shown in Exhibit 4. These UPMs are generated di-
rectly from Equation 2.8 in the text, assuming the parameters
given on the exhibit. We use a differential tax version of the In-
surance CAPM, and show the sensitivity of UPMs to changes
in the underwriting beta and the premium-to-equity ratio on the
exhibit and in the graph.

As an example, the 0.008 UPM on Exhibit 4, under under-
writing beta and premium-to-equity ratio assumptions of 0.40
and 0.50, respectively, is calculated as follows:

UPM="1:18#0:051" 0:272
1" 0:340 +0:40(0:13"0:05)

+
1
0:50

0:05
0:272

1"0:340 = 0:008:

Discounted Cash Flow Model

Underwriting profit margins resulting from the DCF Model
are shown in Exhibit 5. These UPMs are based on the con-
cepts underlying Equation 2.9 in the text. In this framework, the
present value of the premiums is set equal to the present value of
all the cash flows emanating from the policy, including expenses,
losses (and LAE), taxes on underwriting and taxes on investment
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income. The specific formula used (with one adjustment—see
below) is as follows:

P
N%
i=0

ai
(1+ rf)i

= L
N%
i=0

bi
(1+ rL)i

+E
N%

i="M

ci
(1+ rf)i

+

,
P"E-N

i="M
ci

(1+ rf)i

.
t

1+ rf

"Lt

&'''(
-N
i=1

bi
(1+ rT)i"1

1+ rL
+

N%
j=2

-N
i=j

rTbi
(1+ rT)i"j+1

(1+ rL)j

)***+

+ rft

&( N%
j=1

/0S
1-N

i=j bi

2
+P"E"L-j"1

i=0 bi

(1+ rf)j

34)+ ,
where

ai = fraction of premium received in time period i,

bi = fraction of losses paid in time period i,

ci = fraction of expenses paid in time period i,

S = owners’ equity in insurer,

P = premiums,

L= losses and loss adjustment expenses,

E = underwriting expenses,

t= tax rate,

rT = discount rate required for tax purposes,
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rf = risk free rate,

rL = risk adjusted rate for losses,

M = number of time periods before policy effective date that
the first prepaid expenses are paid, and

N = number of time periods after policy effective date that
the last loss payment is made.

The above DCF formula—with an adjustment to allow
for differential tax rates between underwriting and investment
income—is implemented via a spreadsheet program in which
future annual expected loss, expense, and tax cash flows are
discounted to determine a fair premium. In order to solve this
equation, we need to know the rates at which premium income
is received and expenses, losses (including LAE) and taxes are
paid, and the discount rates to use to calculate the present val-
ues. The cash flows are discounted at different rates. Premiums,
expenses and investment income (which is assumed to be earned
based on the risk-free rate) are discounted based on the risk-free
rate. Losses (and LAE) and taxes on underwriting income based
on losses, are discounted at a risk-adjusted rate. As indicated on
Exhibit 5, for the base case, the risk-free interest rate is 5%, the
risk-adjusted discount rate is 3% and the tax discount rate is 7%.

For the base case, it is assumed that the premium is received
and expenses paid entirely when the policy is written. Losses
(and LAE) are assumed to be paid in the middle of each year,
with the loss payout pattern shown in Table 1 (based on Best’s
Aggregates and Averages, 1994). The discounted values of the
loss payments are determined by dividing the percent of losses
paid by (1:03)(Year"0:5).

Taxes are assumed to be paid at the end of each year. Taxes
on underwriting income are determined based on the difference
between premiums, and expenses and losses, with the loss re-
serves discounted based on the provisions of the Tax Reform
Act of 1986. Thus, the incurred losses for tax purposes are the
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TABLE 1

Year % of Losses Paid Discounted Value

1 0.531 0.523210
2 0.241 0.230548
3 0.105 0.097521
4 0.056 0.050496
5 0.030 0.026264
6 0.015 0.012749
7 0.009 0.007427
8 0.005 0.004006
9 0.002 0.001556
10 0.001 0.000765
11 0.001 0.000733
12 0.001 0.000712
13 0.001 0.000691
14 0.001 0.000671
15 0.001 0.000651
Total 1.000 0.957989

paid losses each year plus the ending reserves (discounted at the
mandated seven percent rate) minus the beginning loss reserves
(discounted at seven percent). Since losses are paid out over a
15-year period in this example, then the taxes are also paid out
over the same 15-year period.

The calculation of taxes based on underwriting income is de-
termined by a spreadsheet, which is available from the authors,
that runs over the entire 15-year period. For the fifteenth (last)
year, the incurred losses are the paid losses of 193.605 (.001
times the incurred losses of $193,605) minus the beginning re-
serve (discounted for half a year based on the mandated seven
percent discount rate) of 187.165, or 6.44. This incurred loss
is multiplied by the tax rate applicable to underwriting, 34 per-
cent. This negative tax payment is then discounted back for 15
years, based on the risk-adjusted rate of three percent. Similar
calculations are performed for every other year to determine the
effect of the underwriting tax on losses. In addition, for the first
year, the tax rate is multiplied by the difference between the pre-
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miums and expenses (both assumed to be paid at the inception
of the policy). This tax payment is discounted back for one year
(taxes are paid at the end of the year) at the risk-free rate of five
percent.

The calculation of taxes based on investments is also deter-
mined by a spreadsheet that runs over the 15-year period dur-
ing which losses are paid. Investment income is earned on the
surplus allocated to the policy, which is released in proportion
with loss payments, and the difference between the premiums re-
ceived and expenses and cumulative losses paid out. Investment
income is assumed to be earned based on the risk-free rate and
discounted at the risk-free rate. For the first year, the entire sur-
plus plus the premiums less expenses is invested. For the second
year, 46.9 percent of the inital surplus (since 53.1 percent of the
losses have been paid in the first year) plus the premiums less
expenses and less 53.1 percent of the losses are invested. This
pattern continues until all the losses are paid after 15 years.

For the base case, Equation (2.9) can be broken down as fol-
lows:

PV(P) = P.

PV(L) = 193,605# (:957989).
PV(E) = 59,062.

PV(UWPT) = PV(tax on premiums)"PV(tax on expenses)"
PV (tax on losses).
PV(tax on premiums)= 0:34# (1=1:05)#P =0:323810P.
PV(tax on expenses) = 0:34# (59,062)# (1=1:05) =
19,125.
PV(tax on losses) = 0:34# (193,605)# (:968011) =
63,720.

PV(IBT) = PV(taxes on investment income from surplus)+
PV(taxes on investment income from premiums minus
expenses minus paid losses).
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PV(taxes on investment income from surplus) = 0:05#
(0:272)# (189,360)# (1:887415)=(1:05).
PV(taxes on investment income from premiums minus ex-
penses minus paid losses) = 0:05# (:272)# (P" 59,062"
losses paid to date)/(1.05).

Solving for P yields 253,040. The underwriting profit margin
associated with this premium is:

UPM=
253,040"193,605" 59,062

253,040
= 0:001:

Internal Rate of Return Model

Underwriting profit margins resulting from the IRR model
are shown in Exhibit 6, Part 1, along with the relevant parameter
assumptions. The spreadsheet underlying the UPM calculations
is shown in Exhibit 6, Part 2—the numbers on the sheet represent
base case calculations, with an internal rate of return of 13%
(equal to the expected market return of 5% risk-free plus an 8%
market risk premium). The leftmost column indicates the timing
of the cashflows; quarterly for the first two years and then an-
nual. This spreadsheet can accomodate 25 years of payouts, but
for the base case example all losses are settled within 15 years
(60 quarters). The next column, labeled (1), is the premium in-
come, which is calculated by the backsolver routine. Column 2
shows the expenses, an outgo, which are given and assumed to
be all paid in the first quarter. Column 3 shows the loss pay-
ments. Column 4 shows the federal tax cash flow, calculated as
t(P"E"discounted losses). The taxes are calculated on an an-
nual basis and, for the first two years, spread evenly over the
four quarters.

Column 5 is the cash flow from underwriting, which is the
sum of Columns 1 through 4. This cash flow totals $2,866. The
insurer is assumed, under this model, to receive this sum as soon
as the policy is written. (This model was originally developed for
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workers compensation, which operated at an underwriting loss.
The insurer was assumed to have to fund this underwriting loss
at the inception of the policy. The same timing is assumed in this
situation.) Column 6 is the accumulated value of the underwriting
account. For the first quarter, the value is half of Column 5 plus
the initial underwriting flow. For subsequent rows, the value is
the average of Column 5 and Column 5 lagged one period plus
Column 6 lagged one period.

Column 7 is the total required loss reserve, which is the total
losses (193,605) minus paid to date. For the first year, losses
are assumed to be incurred evenly over the year. Column 8 is
the remaining surplus. The initial surplus allocated to the line is
189,360. Surplus is released as losses are paid. Column 9 is the
average surplus, the average of Column 8 and Column 8 lagged
one period. Column 10 is investment income on surplus; for the
first eight quarters it is Column 9 times two percent; after that
it is Column 9 times eight percent. Column 11 is the investment
income on underwriting, which is two (or eight) percent of Col-
umn 6.

Column 12 shows the cash flows from surplus. For the top
row, it is the sum of Columns 5 and 8. For each remaining row,
it is Column 8 lagged by one period minus Column 8. Column
13, the net cash flow to capital providers, is the sum of the sur-
plus cash flow (Column 12) and the after-tax investment returns
(0.728 times the sum of Columns 10 and 11). Column 14 is the
discount factor at the IRR rate; in this example, 13 percent an-
nually. For the first quarter it is (1=1:13):125 (since the payment
occurs midway through the first quarter). For the last row it is
(1=1:13)24:5. Column 15 is Column 13 times Column 14.

UPMs for non-base case parameter assumptions are derived
by changing the parameter values, and then “backsolving” the
Part 2 spreadsheet by changing the fair premium in Column 1
until the total discounted net cash flow in Column 15 is zero.
(This can typically be done in spreadsheet programs by using
a “backsolver” function.) As for the DCF model, the indicated
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UPMs are then calculated based on the relationships between the
premiums and expected losses and expenses. For example, the
base case UPM of 0.017 on Exhibit 6, Part 1, is calculated as
follows:

UPM=
255,680"193,605" 57,733

255,680
= 0:017:

Option Pricing Model

Underwriting profit margins resulting from the OPM are
shown in Exhibit 7. These UPMs are generated from a spread-
sheet modeled after Equation 19 in Doherty and Garven [15]:

Ve = R
"1
f

!
E$(X)N

#
E$(X)
¾x

$
" ¿E$(W)N

#
E$(W)
¾w

$
+¾xn

#
E$(X)
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$
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#
E$(W)
¾w

$"
,

where

Ve = the market value of the residual claim
of the shareholders,

Rf = 1+ rf ,

E$ = the certainty-equivalent expectation operator,

¿ = the corporate tax rate,

¾ = standard deviation,

X = random variable representing the insurer’s pre-tax
end-of-period value after paying claims costs
# (initial equity+premium income
+ investment income" claims costs),

W = random variable representing the insurer’s taxable
income (from both underwriting and investments),



86 FINANCIAL PRICING MODELS

N[ ] = standard normal distribution value, and

n[ ] = standard normal density value.

This equation can be solved iteratively to determine the fair pre-
mium (in the spreadsheet, by using backsolver), since the pre-
mium level (net of expenses) is embedded in the X and W ran-
dom variables above. The “fair” premium is defined where the
market value of the residual claim of the shareholders is equal to
the initial equity. For the base case, the following values apply:

Ve = 189,360:

Rf = 1:05:

¸= [E(rM)" rf]=s2(M) = 1:594388:
E$[L] = E[L]" [¸=¯(i)]# [½(iL)# s(i)# s(L)] = 193,605:
E$[X] = S(0)+ [(S(0)+ (k#P(0)))# rf]+P(0)"E$[L]

= 189,360+ [(189,360+1:5P(0))0:05]+P(0)" 193,605
= 213,837:

s(X) = %[(S(0)+ (k#P(0)))2# s2(i)] + s2(L)
" [2# (S(0)+ (k#P(0)))# ½(iL)# s(i)# s(L)]&0:5

= 107,592:

E$[W] = [h# (S(0)+ (k#P(0)))# rf] +P(0)"E$[L]
= [0:8# (189,360+1:5P(0))#0:05]+P(0)"193,605
= 19,673:

s(W) = %[(S(0)+ (k#P(0)))2# s2(i)#h2]+ s2(L)
" [2# (S(0)+ (k#P(0)))#h# ½(iL)# s(i)# s(L)]&0:5

= 90,840,
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where
M = the market,

i= investment returns, and

L= claims costs.

The system is then solved for P(0), which turns out to be
194,060. To check that this value is correct, substitute the above
values into the equation:

189,360 = (1=1:05)

#%(213,837)#N[213,837=107,592]
"0:34# (19,673)#N[19,673=90,840]+107,592
#n[213,837=107,592]"0:34# (90,840)
#n[19,673=90,840]&

= 0:952381#%[(213,837)# (0:976566)]
" [0:34# (19,673)# (0:585726)]
+ [(107,592)# (0:55354)]
" [0:34# (90,840)# (:389696)]&

= 189,360:

Finally, expenses are added in to the premium, and the UPM
is calculated in the usual way—for example, for the base case
on Exhibit 7:

UPM=
(194,060+59,062)"193,605"59,062

(194,060+59,062)
= 0:002:

Arbitrage Pricing Model

Underwriting profit margins resulting from the APT are
shown in Exhibit 8, Part 1. These UPMs are generated directly
from Equation 2.13 in the text, assuming the parameters given
on the exhibit. We use a differential tax version of the Insur-
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ance APT and show the sensitivity of UPMs to changes in the
premium-to-equity ratio on the exhibit and in the graph. Part 2
of Exhibit 8 shows the results of regressions of five different
macroeconomic variables against historical underwriting profit
margins. Based on these regressions, it was decided to use infla-
tion and the growth in industrial production as the explanatory
factors in the Arbitrage Pricing formula.

As an example, the -0.029 base case UPM on Part 1 is calcu-
lated as follows:

UPM="1"0:272
1"0:340 #0:05#1:18+ (0:50# 0:03)

+ (0:25#0:02)+0:05
!
1
1:3

"!
0:272

1"0:340
"
="0:029:



SMOOTHING WEATHER LOSSES: A TWO-SIDED
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Abstract

This paper presents a method for smoothing wind
losses when calculating rate indications, but it can ap-
ply equally well to other weather events such as hail
or freezing. It can be used in other situations such as
smoothing out the effects of large losses or other large,
but infrequent, events. The model is relatively easy to
explain to non-actuaries, and it is not difficult to imple-
ment. The traditional approach applies a one-sided cap
to losses. This paper presents a two-sided model that
bounds losses on both the low and high sides.

1. INTRODUCTION

The current state-of-the-art in pricing for major loss-pro-
ducing events lies in sophisticated computer models that combine
both the damageability of risks and the damage causing poten-
tial for events such as hurricanes or earthquakes. Much effort
and expense are being directed towards applying these models
to insurance ratemaking. But the actuary, like any skilled crafts-
man, still needs simple, basic tools to handle tasks where more
sophisticated methods cannot be readily applied.

2. STABILIZING RATEMAKING LOSS RATIOS

Although premiums and losses over a span of several years
provide the basis for calculating a rate change indication, irreg-
ular events during that period can produce large swings in the
rate indication. One weekend of tornadoes in a state can cause a
large increase in a state’s property rate indication even though it

89
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TABLE 1

Earned Wind All Other Combined
Accident Premium Loss Loss Loss
Year ($000) Ratio Ratio Ratio

1992 $ 714 9.9% 45.0% 54.9%
1993 654 14.0 54.9 68.9
1994 750 3.0 43.4 46.4
1995 870 17.4 49.5 66.9
1996 907 40.0 61.0 101.0

Total $3,895 17.9% 51.1% 69.0%

may be based on five years of data. Conversely, several years of
exceptionally good weather in a state may drive the indication in
the opposite direction. Table 1 contains an example of five years
of ratemaking data for a line of insurance that includes coverage
for wind losses. Partial loss ratios have been computed for wind
losses and all other losses. The wind loss ratio ranges from a low
of 3.0% in 1994 to a high of 40.0% in 1996.

The starting point for applying this smoothing procedure is to
collect the wind loss data in the state for a longer time period.
Seventeen years1 of earned premium and wind loss ratios are
displayed in Columns 1 and 2 of Table 2. From Column 2, two
percentiles are computed and displayed: a 33rd percentile and a
67th percentile.2 Normal wind loss ratios as shown in Column 3
are defined to be those loss ratios limited to the range of 5.5%
to 14.0%, the 33rd and 67th percentiles. If a wind loss ratio falls
below this range, then the 33rd percentile value is substituted.
Correspondingly, if a wind loss ratio is above this range then the
67th percentile is used.

1Seventeen years of data was available for this line of insurance and state. The procedure
does stabilize ratemaking loss ratios using data from this relatively short time period. But,
this is too short a record to recognize the potential impact of catastrophic weather losses.
2Arranging the data from smallest to largest, n1,n2 : : : ,nm, then n1 is the 0th percentile
and nm is the 100th percentile. For data points in between, nk is the 100! (k" 1)=(m"1)
percentile. Other percentiles are computed by interpolation.
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TABLE 2

CALCULATION OF NORMAL WIND LOSSES AND ADDITIONAL
WIND LOAD

(6)
Adjusted

(3) Wind
(1) (2) Normal (5) Loss Ratio

Earned Wind Wind (4) Load = (3)+
Premium Loss Loss Difference = (1)! (4) Wind

Year ($000) Ratio Ratio = (2)" (3) ($000) Load

1980 402 0.0% 5.5% "5:5% " 22 7.6%
1981 462 9.6 9.6 0:0 0 11.7
1982 560 19.7 14.0 5:7 32 16.1
1983 601 1.4 5.5 "4:1 " 25 7.6
1984 664 13.7 13.7 0:0 0 15.8
1985 691 4.4 5.5 "1:1 " 8 7.6
1986 736 4.0 5.5 "1:5 " 11 7.6
1987 620 13.9 13.9 0:0 0 16.0
1988 669 0.5 5.5 "5:0 " 34 7.6
1989 673 8.4 8.4 0:0 0 10.5
1990 659 21.7 14.0 7:7 51 16.1
1991 710 14.8 14.0 0:8 6 16.1
1992 714 9.9 9.9 0:0 0 12.0
1993 654 14.0 14.0 0:0 0 16.1
1994 750 3.0 5.5 "2:5 " 19 7.6
1995 870 17.4 14.0 3:4 30 16.1
1996 907 40:0 14.0 26:0 236 16:1
Total $11,342 12.4% $237 12.4%

Calculation of Normal Range

33rd Percentile 5.5%
67th Percentile 14.0%

Calculation of Wind Load
Load = 237=11,342 = 2:1%

Normal Wind Loss Ratio
1. If “Wind Loss Ratio”< 33rd Percentile, then “Normal Wind Loss Ratio” =

33rd Percentile
2. If “Wind Loss Ratio”> 67th Percentile, then “Normal Wind Loss Ratio” =

67th Percentile
3. Otherwise, “Normal Wind Loss Ratio” = “Wind Loss Ratio”



92 SMOOTHING WEATHER LOSSES: A TWO-SIDED PERCENTILE MODEL

The average off-balance of this bounding procedure is com-
puted to determine a wind load. Column 4, the difference be-
tween Columns 2 and 3, represents how many loss ratio points
to add or subtract to bring the wind loss ratio into the “normal”
range. Column 5, the product of Columns 1 and 4, is the dollar
impact of this bounding procedure. A load that recognizes the
off-balance of the bounding is calculated by dividing the sum of
Column 5 by the sum of Column 1.3 An alternative calculation
for the load would be to use the average of Column 4 rather than
the earned premium weighted average. The last column, the Ad-
justed Wind Loss Ratio, is the sum of the Normal Wind Loss
Ratio and the Wind Load.

Now the results of the calculation can be applied to the
ratemaking data in Table 1. There are two steps to adjusting
the wind loss ratios: (i) restrict each wind loss ratio to the nor-
mal range [5:5,14:0], the 33rd and 67th percentiles, and (ii) add
the balancing wind load factor to each loss ratio. The results are
displayed in Table 3.

Compare Columns 1 and 2. Note that three out of five, or
60%, of the Unadjusted Wind Loss Ratios were capped by the
bounding procedure. This outcome is consistent with the selec-
tion of the 33rd percentile to the 67th percentile as the normal
range for the seventeen-year period. On average about 66% of the
observed wind loss ratios would fall outside of the normal range.
The total Adjusted Wind Loss Ratio (Column 4) is 13.7%, which
lies between the unadjusted 17.9% in the five years of ratemak-
ing data and 12.4%, the seventeen-year average wind loss ratio
(Table 2, Column 2). The procedure blends both current and
long-term experience.

3This method of calculating a wind load has the effect of allocating the excess wind
losses based on earned premium. Sometimes excess losses are allocated using losses, for
example by computing the ratio of excess losses to losses and then applying this factor
to observed losses, but relating the excess losses to premium usually gives a more stable
result.
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TABLE 3

(1) (2) (3) (4) (5) (6)
Unadjusted Normal Adjusted All Combined
Wind Wind Wind Other Loss

Accident Loss Loss Wind Loss Loss Ratio
Year Ratio Ratio Load Ratio Ratio = (4)+ (5)

1992 9.9% 9.9% 2.1% 12.0% 45.0% 57.0%
1993 14.0 14.0 2.1 16.1 54.9 71.0
1994 3.0 5.5 2.1 7.6 43.4 51.0
1995 17.4 14.0 2.1 16.1 49.5 65.6
1996 40.0 14.0 2.1 16.1 61.0 77.1

Total 17.9% 11.6% 2.1% 13.7% 51.1% 64.8%

3. SELECTION OF NORMAL LOSS RATIO RANGE

The selection of a normal loss ratio range from the 33rd per-
centile to the 67th percentile was based on judgment. Table 4
shows a sample of ranges.

The first row in the table results in no wind smoothing,
whereas the last row is equivalent to uniformly spreading the
average wind loss ratio to all years. Although the table displays
minimum and maximums which are symmetric about the mid-
point, a symmetric range is not necessary.

Typically, wind smoothing models only cap “upside” events
that push loss ratios above some selected amount. The model pre-
sented here also adjusts for years that have very good weather
because these years can drive ratemaking indications towards in-
adequate rates. For this reason, a two-sided capping model can
be more effective at smoothing out loss ratios than a one-sided
model. In fact, the one-sided model is just a special case of the
two-sided where the lower cap is set at the 0th percentile. Be-
cause a two-sided model uses two parameters, it offers the oppor-
tunity for a better fit to the data than a one-sided, one-parameter
model.
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TABLE 4

Percentiles Normal Loss Ratio Range Wind
Lower Upper Lower Upper Load

0% 100% 0.0% 40.0% 0.0%
10 90 1.0 20.5 1.6
20 80 3.2 16.9 1.9
30 70 4.3 14.2 2.4
33 67 5.5 14.0 2.1
40 60 8.9 13.8 1.0
45 55 9.7 12.9 1.1
50 50 9.9 9.9 2.5

In selecting a percentile range, the actuary is confronted with
the eternal tradeoff in ratemaking: stability versus responsive-
ness. A narrow percentile range will produce more stable loss
ratios. But a narrow range may not be responsive to longer term
changes in weather patterns, the geographic distribution of in-
sureds, construction techniques, underwriting, or other factors
that contribute to the level of risk. A wider range allows the
ratemaking model to adjust more quickly for the changing level
of risk, but at the cost of more year-to-year variability in the loss
ratios.

4. FINDING A GOOD FIT TO THE HISTORICAL DATA

The selection of a normal loss ratio interval does not have to
be left entirely to judgment. Quantitative measures can help elim-
inate weaker choices. To demonstrate this, the one-sided capping
model mentioned above will be compared to the [33rd percentile,
67th percentile] bounding procedure. The last column of Table 2
shows the Adjusted Wind Loss Ratios after the bounding and
load operations. The difference between the highest and lowest
loss ratios in Column 6 of Table 2 is 8.5%. The width of the
range can be considered a measure of the stability of the loss ra-
tios resulting from application of the procedure with the selected
percentiles.
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When using one-sided capping for excess wind loss ratios, the
lower bound is set at 0.0%. This forces the upper bound to be set
at the 38th percentile in order to generate a range between the
highest and lowest Adjusted Wind Loss Ratios as low as 8.5%!
Any higher upper bound (with the lower bound fixed at the 0th
percentile) will result in a wider range between the highest and
lowest Adjusted Wind Loss Ratios, reducing stability. Table 5
compares the selected two-sided model and the one-sided model
with the same level of year-to-year stability.

The difference between the high and low values of the Ad-
justed Wind Loss Ratios equals the width of the range of the
Normal Wind Loss Ratios because the Wind Load is added to
both of the endpoints of the normal range.

The range for each set of adjusted loss ratios is displayed at the
bottom of Table 5. Below these ranges are two measures of how
well the Adjusted Wind Loss Ratios fit the raw data in Column
2. The first measure is the sum of the squares of the differences
between the adjusted and raw data, and the second measure is
the sum of the absolute values of the differences. Under both of
these measures the [33rd percentile, 67th percentile] bounding
beats the one-sided capping for a given level of stability. For a
selected level of stability represented by the range, the two-sided
model produces a better fit to the raw data.

The average Wind Loss Ratio over the seventeen-year period
is 12.4%. Year-to-year fluctuation in wind losses could be elimi-
nated by taking all of the wind losses out of the ratemaking data
and substituting this long-term average. Note that this 12.4% lies
closer to the midpoint of the two-sided range [7.6%, 16.1%] than
it does to the midpoint of the one-sided range [6.0%, 14.5%].
The two-sided model produces results which are better balanced
about the long-term average for the sample data.

Frequently the actuary must rely on judgment to select
ratemaking parameters. With this model the actuary does need
to rely on judgment to select the desired degree of stability (i.e.,
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the range in the Adjusted Wind Loss Ratios), but can also quan-
titatively search for minimum and maximum percentiles that fit
the historical data well for the chosen level of stability. (It is
possible that the sum-of-squares and the sum-of-absolute-values
measures may give conflicting signals. The actuary will have to
decide which measure is more meaningful for the situation.)

Table 6 shows various ranges for the Adjusted Wind Loss
Ratios and corresponding percentiles that produce good fits to the
data. The first column shows the stability constraint, how much
variability is allowed in the Adjusted Wind Loss Ratios. Then
the next columns display percentiles which satisfy the stability
constraint and have low values for the sum-of-squares errors of
the fit.4 The last column shows the five-year Total Adjusted Wind
Loss Ratio after application of the procedure to the ratemaking
data in Table 1.

In the first row of Table 6 the Adjusted Wind Loss Ratio
is a constant 12:4%= 9:9%+2:5%; the long-term average wind
loss ratio would be substituted for the actual wind loss ratios
in the ratemaking experience period. In the last row, there is
no smoothing on the data which itself has a 40 point range. Of
course, as the stability constraint is loosened, the fit to the data
improves.

5. CONCLUSION

The two-sided capping model presented here achieves the
same end as the traditional “upside” capping model: the sta-
bilization of loss ratios used in ratemaking. But, for the same
degree of stabilization, two advantages of the two-sided model
with the sample data were noted: (1) it fits the historical data

4The percentiles were computed by solving for the two percentiles that satisfied the
stability constraint in the first column and that minimized the sum-of-squares error using
the “Solver” routine in a Microsoft Excel spreadsheet. The iteration stopping point of the
routine depended on the initial values. It was necessary to try a number of initial starting
points and compare sum-of-squares errors for the resulting iteration stopping points and
then pick the one with the lowest error.
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better, and (2) the range of resulting loss ratios is more evenly
balanced around the long-term average loss ratio. Also, the two-
sided model tempers the impact on the rate indication of unusu-
ally good weather during the ratemaking period.

This model offers the actuary considerable flexibility in stabi-
lizing the effects of volatile losses on ratemaking. Choices range
from a high degree of stabilization by choosing a [50th per-
centile, 50th percentile] range to complete responsiveness with a
[0th percentile, 100th percentile] range, or anything in between.

Since percentiles involve ranking and counting, the concept
is easier to explain to non-actuaries than a less intuitive concept
such as standard deviation. Standard deviation has been used in
some actuarial models to define the acceptable range of vari-
ability in weather losses, but when dealing with highly skewed
distributions, a percentile is more meaningful and easier to un-
derstand.
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INVESTMENT-EQUIVALENT REINSURANCE PRICING

RODNEY E. KREPS

Abstract

Reinsurance pricing is usually described as market-
driven. In order to have a more theoretical (and prac-
tical) basis for pricing, some description of the eco-
nomic origin of reinsurance risk load should be given. A
special-case algorithm is presented here that allows any
investment criteria concerning return and risk to be ap-
plied to a combination of reinsurance contract terms and
financial techniques. The inputs are the investment cri-
teria, the loss distributions, and a criterion describing a
reinsurer’s underwriting conservatism. The outputs are
the risk load and the time-zero assets allocated to the
contract when it is priced as a stand-alone deal. Since
most reinsurers already have a book of business and
hence contracts mutually support each other, the risk
load here can be regarded as a reasonable maximum.
The algorithm predicts the existence of minimum pre-
miums for rare event contracts, and generally suggests
a reduction in risk load for pooling across contracts
and/or years. Three major applications are: (1) pricing
individual contracts, (2) packaging a reinsurance con-
tract with financial techniques to create an investment
vehicle, and (3) providing a tool for whole book manage-
ment using risk and return to relate investment capital,
underwriting, and pricing.
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1. INTRODUCTION

There has been an evolution over the last few years toward
looking at an insurance or reinsurance enterprise as a whole,
rather than seeing underwriting, investments, dividend policy,
and so forth as a set of disjoint pieces. Whereas in modern fi-
nancial theory various approaches to the interaction of risk and
reward are reasonably well developed, for insurance in general
and reinsurance in particular the measurement of risk has been
(and arguably still is) more of an art than a science. It is gen-
erally agreed that surplus creates capacity and writing business
uses up surplus, but there is no agreement on how that happens.

This paper proposes a way of obtaining models for the special
case where the contract is priced on a stand-alone basis; i.e., it is
the reinsurer’s only business. The risk loads (and hence pricing)
derived here are maximal because reinsurers generally have an
ongoing book of business. This book is mutually supporting in
that usually it does not all go bad at the same time. Pricing on a
stand-alone basis is equivalent to assuming that the whole book
is fully correlated. Thus stand-alone pricing in general will result
in larger risk loads than are actually needed.

Although the give and take of the market will ultimately deter-
mine what prices are actually charged for contracts, both insur-
ers and reinsurers can use an economic pricing model in order to
help decide whether to write a contract. For the insurer, the deci-
sion not to reinsure externally is a decision to self-reinsure. The
intent of this paper is to present a paradigm that will allow the
combination of a reinsurance arrangement and suitable financial
techniques to be thought of as an investment alternative. This
allows a firm’s investment criteria to be applied to the decision.

What is actually done is to assume investment criteria in the
form of a target mean return and risk measure thereon. From the
paradigm, the necessary risk load and notionally allocated assets
for the reinsurance arrangement are obtained.
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The paradigm is as follows: When the reinsurer accepts a
contract, it arranges to have available at every time of loss suf-
ficient liquid assets to cover possible losses up to some safety
level. These assets arise from premium and from surplus, both
of which are invested in appropriate financial instruments. The
reinsurer wishes to have at least as favorable return and risk over
the period of the contract as it would target in other investments
of the allocated assets.

Note that this is not, at least to the author’s knowledge, how
reinsurers currently do their pricing, nor is it advocated (except in
special circumstances) as an operating procedure for reinsurers.
It is a way of deriving risk loads by relating them to investment
criteria. At the same time, it makes intuitive sense. Certainly
reinsurers had better plan to have assets available to pay losses;
otherwise they are planning for bankruptcy. This paradigm es-
sentially looks at risk load as an opportunity cost and represents
it as a (partially offset) cost of liquidity. This is not the only way
to look at risk loads, but it is a simple and intuitive one.

The loss safety level is essentially a measure of reinsurer com-
pany conservatism. It is intuitive that some measure of company
conservatism would be present in a risk load paradigm.1 The
more conservative the company, the higher the safety level and
the less probable it is that the safety level will be exceeded.
Higher safety levels will typically result in more expensive con-
tracts.

A mundane example of a safety level occurs when a person
decides to build a house in snow country. The question is, how
strong to build the roof for snow load? If it is a cabin intended

1A financial economics point of view suggests that there is a market equilibrium price,
and that it reflects a risk load independent of specific company attitudes. However, with-
out wanting to get into a complex discussion, the author feels that many of the assump-
tions of an efficient market are not particularly well satisfied in the reinsurance arena.
A reinsurer with a large portfolio of Florida Homeowners’ policies may very well not
take any more at all, much less at the price that some other reinsurer is willing to accept.
What constitutes “large” depends upon the reinsurer management.
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for use for only a few years, perhaps building to survive the ten
year storm will be enough. If it is meant for the grandchildren,
perhaps surviving the two hundred year storm is more appropri-
ate. It is, of course, more expensive to build it stronger. In any
case, some level is chosen depending on the builder’s criteria.

The safety level used in the examples here will be the amount
of loss associated with a previously chosen probability, such as
the 99.9% level; i.e., the loss associated with a one thousand
year return time. In some circumstances (see Section 2.3), the full
amount of the contract may be the appropriate safety level. There
are, of course, alternatives to a probability level. One would be to
choose a loss safety level high enough so that the average value
of the excess loss over that level is an acceptably small fraction
of the mean loss. Another is when the average excess loss over
the safety level times the probability of hitting the safety level
is below some value. While it would be interesting to examine
various choices in the context of different management styles,
the essential point is that any quantifiable measure can be used.

Clearly, a risk load paradigm must involve the cost of capital
and, more specifically, measures of investment return and risk
for comparison to the capital markets. A reductio ad absurdum
shows the argument: If capital were free and freely available,
insurance, much less reinsurance, would be unnecessary. A firm
in temporary trouble would simply borrow through difficulties.

The measure of investment risk used here will be the stan-
dard deviation (or variance) of the rate of return. Equally ap-
plicable would be one of the more sophisticated, strictly down-
side measures such as the semi-variance or the average value
of the (negative) excess of return below some trigger point such
as the risk-free rate. Especially where very large losses may
generate negative results, such a downside risk measure may be
desirable. These measures do not give pretty formulae but are
easily used numerically. Again, any quantifiable measure is fea-
sible.
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There are two types of financial techniques that will be con-
sidered. Other techniques are possible; these are just two of the
simplest. The first is where the reinsurer takes the capital that
it would have put into the target investment (which could be,
for example, corporate bonds) and puts it into a risk-free instru-
ment such as government securities. This will be referred to as
a switch.2 The cost associated with this is the loss of investment
income, but there is also a gain in that investment default risk is
reduced.

This technique results in simple formulae;3 but it often results
in a higher risk load and, hence, is more expensive (to the cedent)
and therefore less competitive than the second technique: buying
“put” options. These options are the right to sell the underlying
target investment at a predetermined strike price at maturity. We
only consider European options which can be exercised only at
maturity. Here the strike price will be what an investment in risk-
free securities would have brought, so that the reinsurer is buying
the right to sell the target investment at a return not less than the
risk-free rate.

The Black–Scholes4 formula is used to price the option. The
distribution of price for the reinsurer’s target investment is as-
sumed lognormal, so that this formula applies. The cost of these
options will contribute to the risk load, but this is partly offset
because the options both increase the return and decrease the
variance of the target investment.

This treatment will not include the effects of reinsurer ex-
penses, nor of taxes. However these could be included, especially
in the simulation models in the latter part of the paper. For taxes,
one would have to make some assumptions as to whether the

2To the author’s knowledge, this is not a technical financial term. If it is, apologies are
offered. The meaning intended is only what is stated here.
3For the variance measure of investment risk. As remarked earlier, other measures in
general will not give simple formulae.
4See the discussion of Black–Scholes in the standard Part 5 reading [1, page 502 ff.]
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contract would affect any possible Alternative Minimum Tax sit-
uation. Probably this could best be treated by looking at the rein-
surer’s whole underwriting book and investment structure with
and without the contract of interest. This is beyond the scope of
this paper.

In Section 2, the paper addresses the case of a single loss
payment at the end of one year. In Section 2A, the switch is
treated and in Section 2B, the option. These simple discussions
will illustrate the general principles so that they will hopefully
not be obfuscated by the details of the subsequent development.
For readability, technical details are relegated to appendices. In
Section 2C the limiting case of a high excess layer is presented,
where it is shown that a minimum premium results. This is in
accord with actual market behavior. In Section 3, the single pay-
ment case is extended to an arbitrary known time of loss. Section
3A is a numerical example, and Section 3B includes some gen-
eral remarks on pooling and other subjects.

The multiple payment case is discussed in Section 4. In this
case, there are no simple formulae available, and simulation mod-
eling must be explicitly used. Section 5 contains concluding re-
marks on the whole paradigm.

2. SINGLE PAYMENT AT ONE YEAR

Let the principal determinants be:

S = the dollar safety level associated with the loss distribution;

L= the mean value of the loss;

¾L = the standard deviation of the loss;

rf = the risk-free rate;

y = the yield rate of the target investment;

¾y = the standard deviation of the investment yield rate; and

P = the premium net to the reinsurer after expenses.
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Quantities derived from the above are:

A= the assets allocated by the reinsurer;

F = the funds initially invested = premium and assets less op-
tion cost, if applicable; and

R = the risk load.

The premium in all cases is the risk load plus the expected loss
discounted at the risk-free rate. Note that this premium does not
include any reinsurer expenses. For a single payment at one year,

P = R+
L

1+ rf
: (2.1)

The constraints of the paradigm may now be stated as: (1) the
investment result from F as input must be at least S, and (2) the
standard deviation of the overall result must be no larger than
¾y.

Although the fundamental cash flow relations are stochastic,
it is possible in this Section to get explicit formulae for the mean
and variances involved, and hence get explicit forms for the risk
load. In Section 4, the mean is easily obtained, but the variance
of the final outcome of the stochastic cash flows has to be de-
termined by simulation.

A. Switch Case

At time zero, the reinsurer has an inflow of P and an outflow
of

F = (P+A): (2.2)

Since the investment is in risk-free securities, at the end of the
year the reinsurer has an inflow of (1+ rf)F and an outflow of
the loss. The internal rate of return (IRR) on these cash flows is
defined by the fundamental stochastic relation

(1+ IRR)A= (1+ rf)F! loss, (2.3)
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where both the loss and the IRR are stochastic variables. Taking
the mean value of this equation and asking that the mean value
of the IRR be the yield rate y gives

(1+ y)A= (1+ rf)F!L, (2.4)

which may be expressed as5

R =
(y! rf)
(1+ rf)

A: (2.5)

Another equation is needed to solve the system, and there are
two constraints that must be satisfied—a loss safety constraint
and an investment variance constraint. In general, it is clear that
by making the asset base large enough, the fractional variability
of results can be made as small as desired and the funds available
as large as desired. Hence there is always a solution. Both con-
straints may be phrased as placing lower limits on the allocated
assets, so satisfying the more restrictive will satisfy both.

For the safety constraint, requiring the funds available at the
year end to be greater than or equal to the safety level gives

(1+ rf)F " S: (2.6)

Combining Equations 2.4 and 2.6 to eliminate F,

A" (S!L)
1+ y

, (2.7)

and consequently, from Equations 2.5 and 2.7, the risk load at
the equality is

R =
(y! rf)(S!L)
(1+ rf)(1+ y)

: (2.8)

Having the risk load, Equation 2.1 gives the premium before
expenses.

This is the result for the safety constraint. For the variance
constraint, since there is no variability in the investment return

5For readability, derivations of more than one line are done in Appendix C.



INVESTMENT-EQUIVALENT REINSURANCE PRICING 109

(because it is risk-free), the standard deviation of the IRR is given
by Equation 2.3 as

A¾IRR = ¾L: (2.9)

The investment constraint is that the IRR should have a variance
less than or equal to that of the target investment, which gives

A" ¾L=¾y (2.10)

and, using Equation 2.5 again,

R =
(y! rf)
(1+ rf)

(¾L=¾y): (2.11)

Given typical values for the loss distribution and the target in-
vestment, the latter is likely to be the more stringent constraint.
This will be true when

(S!L)=¾L < (1+ y)=¾y: (2.12)

For a one-in-a-thousand safety level and a normal distribution,
the number on the left is around 3. For more positively skewed
distributions, it will be larger; but, in the experience of the au-
thor, it is seldom as large as five for typical reinsurance layers.
However, in the example used later of an unlimited cover with
a lognormal distribution with coefficient of variation two, the
ratio on the left is over ten. The unlimited cover is a mathemati-
cal convenience for illustration rather than a realistic contract, at
least since pollution losses began to develop extremely adversely.
Plausible values for the ratio on the right are easily around twelve
for bonds and higher than five for equities. For example, for a
bond with an 8% yield and an 8% standard deviation, the ratio
is 1:08=0:08 = 13:5; for a stock with a 12% yield and a 20%
standard deviation, the ratio is 1:12=0:20 = 5:6.

B. Option Case

At time zero, the reinsurer will receive the premium but keep
the initial assets invested in the target investment. It will also
buy an option to sell the target investment at the end of the year
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for the value that a risk-free investment would have reached. By
doing so it has an instrument that eliminates that portion of the
investment return distribution that lies below the risk-free rate.
This will have the effect both of increasing the mean return from
the investment and decreasing its standard deviation.

The rate of the put option (cost per dollar of investment pro-
tected) is here denoted c, and depends upon the underlying in-
vestment parameter ¾, which is determined by y and ¾y and
defined in Appendix A. For small values of the ratio of ¾y to
(1+ y), it is approximately true6 that

¾ = ¾y=(1+ y), and (2.13)

c=
1#
2¼
¾(1!¾2=24): (2.14)

However, the examples below use the exact formula from Ap-
pendix A. At time zero, the reinsurer has an inflow of P and
an outflow of (P+A). The funds available for investment have
decreased by the cost of the option. Specifically, Equation 2.2
becomes

F = P+A! cF, (2.15)

so F = (P+A)=(1+ c): (2.16)

Since the investment is now in risky securities (hedged at the
bottom end to stay above or equal to the risk-free rate), at the
end of the year the reinsurer has an inflow of (1+ invest)F and
an outflow of the loss. The internal rate of return on these cash
flows is defined by a fundamental stochastic relation similar to
Equation 2.3:

(1+ IRR)A= (1+ invest)F! loss: (2.17)

Again, requiring that the mean value of IRR be the target yield
rate gives

(1+ y)A= (1+ i)F!L, (2.18)

6See Appendix A.
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where i is the mean investment return (determined in Appendix
B). This does not simplify easily, but fundamentally we have two
unknowns, R and A, and this is one equation relating them. The
other equation will come from whichever is the more restrictive
constraint, as before.

The loss safety constraint on the funds available is again Equa-
tion 2.6:

(1+ rf)F " S: (2.6)

It should be noted that the actual funds available are likely to
be larger than this, since rf represents the minimum value of the
realizable investment return, thanks to the option. Combining
Equations 2.6 and 2.18 to eliminate F, the allocated assets are

A" 1
1+ y

!
1+ i
1+ rf

S!L
"
: (2.19)

This is larger than in the switch case since i > y > rf . The ex-
pression for the risk load at equality is7

R =
1

(1+ rf)(1+ y)
$S[(1+ y)(1+ c)! (1+ i)]!L[y! rf]%:

(2.20)
For i= rf and r = 0, the results of the previous section are, of
course, obtained in the above two formulae.

In order to express the investment variance constraint, it is
necessary to decide the correlation between the loss and the in-
vestment return. The linkage by inflation suggests that there may
be a negative correlation. If inflation rises, typically claims costs
rise and bond values fall. In the interest of simplicity the assump-
tion will be made that the correlation is zero, although there is
no essential complication introduced by taking a non-zero value.
The standard deviation of the investment return is derived in
Appendix B and written as ¾i. When the variance of the IRR is

7See Appendix C.
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required to be that of the target investment, Equation 2.17 (with
zero correlation) implies that

(A¾y)
2 = (F¾i)

2 + (¾L)
2: (2.21)

The value of the initial fund F from Equation 2.18 may be sub-
stituted into this, resulting8 in a quadratic equation for A of the
form

!aA2 +2bA+ c= 0, (2.22)

with

a= (¾y)
2(1+ i)2! (¾i)2(1+ y)2,

b = L(1+ y)(¾i)
2, and

c = L2(¾i)
2 + (¾L)

2(1+ i)2:

All three coefficients are positive; the last two because of their
explicit construction, and the first because the option both de-
creases the variance and increases the mean of the investment
return compared to the target values.

The positive solution is

A=
b+

#
b2 + ac
a

(2.23)

and9

R = A
(1+ c)(1+ y)! (1+ i)

1+ i
+L

#
1+ c
1+ i

! 1
1+ rf

$
:

(2.24)

As ¾i& 0, the solution for A goes back to the ratio of standard
deviations. With i= rf and c= 0, the risk load returns to the
earlier form found in the switch case, as it should.

8See Appendix C. The forms corresponding to a non-zero correlation are also given
there.
9See Appendix C.
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C. High Excess Layer and Minimum Premium

An interesting application of these formulae is in the case of
a high excess layer or any similar finite rare event cover. A non-
zero rate on line (ratio of premium to limit) is predicted even for
cases where the loss probability goes to zero.

For simplicity, take the loss distribution to be binomial: there
is a probability p of hitting the layer, and if it does get hit, it is
a total loss. Note that the 99.9% level is not an appropriate way
to get the safety level (especially for p < 0:001). There is still in
fact an intuitive value: the safety level S is taken to be the limit
(total amount payable) of the layer.

The mean loss L is pS and the variance of the loss is
p(1!p)S2. As the probability p gets smaller, corresponding to
higher and higher layers, in both the switch and option cases the
variance constraint forces A and R both to zero as

#
p. However,

the safety constraint in both cases is linear in p with a non-zero
intercept. In the option case, the rate on line (ROL) in the limit
as p goes to zero is

ROL =
(1+ y)(1+ c)! (1+ i)

(1+ rf)(1+ y)
: (2.25)

This is obtained by setting L= 0 in Equation 2.20 and recog-
nizing ROL as the ratio of R to S. As usual, the switch version
may be obtained by letting c= 0 and i= rf , which results in

ROL=
1

1+ rf
! 1
1+ y

=
y! rf

(1+ rf)(1+ y)
: (2.26)

The latter form suggests that the minimum ROL is of the or-
der of the real target return; i.e., the excess of the return over
the risk-free rate. However, often the option form Equation 2.25
will produce a smaller number. For the investment values used
below it is typically half as large. As the investment standard
deviation gets small, the switch ROL stays the same (of course)
and the option ROL gets small because the option cost gets small
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and the mean investment return approaches the target yield. It
is important to remember that Equations 2.25 and 2.26 and this
discussion are all at the limit where p= 0. For this value, the
standard deviation of the loss distribution is zero, which implies
that the variance constraint is always satisfied. However, for a
small but fixed probability, say in the range from 2% to 0.1%,
which is typical of catastrophe contracts, as the target standard
deviation of investment is made small, the variance constraint
will eventually become dominant.

In the market, a minimum ROL is generally justified by under-
writers as a charge for using surplus. This approach is consistent
with that view and also allows for quantification of the charge.

3. SINGLE PAYMENT AT VARIABLE TIME

If all the returns in the preceding are interpreted as total return
up to time t, then the formulae hold without modification. When
we wish to express the returns in terms of the equivalent annu-
alized returns, the results hold after the following replacements
are made:

(1+ i)& (1+ i)t,

(1+ y)& (1+ y)t, and

(1+ rf)& (1+ rf)
t:

The forms for the option rate and the standard deviations given
in Appendix B contain the time dependence.

A. Numerical Example

For any one-payment situation, the recommended procedure
is as follows: (1) calculate the four risk loads and allocated
assets under the safety and variance constraints for the option
and switch cases; (2) find for each financial technique the con-
straint with the larger allocated assets—this is the dominant one;
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(3) compare the dominant risk loads for different techniques and
choose the smaller—this is the preferred10 solution.

This calculation is easily put on a spreadsheet. For a specific
example, the following annualized values are used:11 yield rate
y = 5:3%; standard deviation of the yield rate ¾y = 8:4%; risk-
free rate rf = 3:6%. The loss distribution is assumed to be lognor-
mal with mean of $1M (million) and standard deviation of $2M.
The loss safety level is taken as the 99.9% level, $22,548,702.
For a one-year interval this makes the left-hand side of Equation
2.12 equal to 10.8, while the right-hand side is 12.5, suggesting
that variance will be the dominant constraint for the switch. For
a two-year interval, the right-hand side changes to 8.9 and safety
is dominant in the switch. The large value of the left-hand side
is due to the fact that this is an unlimited contract.

As an example of the recommended procedure, the following
results can be derived from the formulae in the preceding sections
for a time of two years.

SWITCH OPTION

constraint variance safety variance safety
assets $15,963,111 $19,434,097 $23,024,033 $20,737,421

risk load $528,184 $643,031 $316,332 $283,248

The results are incorporated in Table 1.

For the switch, the safety constraint is dominant; for the option
the variance constraint is dominant. Of the two, the option risk
load is smaller, and hence preferred.

10Preferred from the point of view of the cedent, and preferred from the point of view of
offering competitive advantage to the reinsurer—less charge for the same return and risk.
On the other hand, the reinsurer may prefer to charge more if the market will bear it. Of
course, a higher market rate can always be recast as a more profitable target investment
return.
11These values are long-term rates from [1, Table 7-1, page 131] except for the standard
deviation, which is a private estimate. The return rates are clearly too small to represent
current (January 1997) conditions where returns are high and deviations apparently small.
Anyone using the pricing technique will use current values appropriate to their own
targets.
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TABLE 1

VALUES FOR THE OPTION TECHNIQUE ON A SINGLE PAYMENT

Time (years) 1 2 3 4
Option rate 3.18% 4.49% 5.50% 6.35%
Risk load $235,225 $316,332 $399,548 $502,444
Risk-loaded premium 1,200,476 1,248,042 1,298,882 1,370,526
Total premium 1,379,857 1,434,531 1,492,967 1,575,317
Allocated assets 32,522,839 23,024,033 20,095,065 19,446,192
Initial investment 32,685,050 23,228,830 20,278,801 19,574,132
Determining constraint variance variance safety safety
Safety value 3,087 years 1,309 years 1,000 years 1,000 years
Annualized Std/target std 100% 100% 97% 93%

In order to get, for example, the second column of Table 1,
time is taken as two years. Following the formulae and no-
tation of the appendices for the investment, 2¹= 9:69% and
¾
#
2 = 11:26% at two years. The target investment mean and

standard deviation are 10.88% and 12.53% as calculated from
the lognormal formulae. The option rate is 4.49%. The mean
and standard deviation of the option-protected investment are
14.21% and 8.95%, respectively higher and lower than the tar-
get, as previously advertised. The investment minimum value is
7.33%, the risk-free cumulative return.

The calculated risk loads and asset values are given above
for both the option and the switch, and the option-variance
technique-constraint combination is chosen.

Please note again that any form of loss distribution could have
been used, including underwriter’s intuition or simulation result.
All that is needed for this choice of risk load is the mean, stan-
dard deviation, and safety level. Reinsurer expenses, needed to
calculate total premium from risk loaded premium, are taken as
13% of the total.

The table also lists the safety level implied by the chosen
asset allocation, and the ratio of the standard deviations of the
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annualized yield to the target standard deviation. Whichever is
not the determining constraint is, of course, more than satisfied.
It is noteworthy that as the contract period becomes longer, the
safety constraint becomes the more restrictive. In numerical ex-
plorations this often seems to be true.

B. Pooling and Other Remarks

It is an intuitive expectation that the total risk load may be
reduced by pooling. Pooling over contracts will be considered
here; pooling over years will be considered later. The one-year
contract from Table 1 has a risk load of $235,225. If two con-
tracts are combined into a single contract, then the safety level
on the combined contract is generally less than the sum of the in-
dividual safety levels, unless the contracts are fully correlated.12

Specifically, taking the approximation that the sum of two un-
correlated lognormals may, for these purposes, be represented
by a lognormal, the safety level for the combined contract is
$29,455,245, which is only 65.3% of the sum.13

The risk load for the combined contract over one year is
$331,156, which is 70.4% of the sum of the individual risk loads.
This risk load results from the option-variance technique and
constraint. However, one may question whether some other in-
vestment risk measure might have given a different result. The
author knows of no general theorem, but experimentation has
given consistent reduction in risk load from pooling.

More intuitively, both the safety levels and investment risk
measures will be primarily sensitive to the tail of the loss distri-
bution. When two contracts are imperfectly correlated, the bulk

12Or effectively taken as such, as in the high excess example.
13The sum is represented by a lognormal with mean and variance equal to twice the mean
and variance of the individual contract. Since the individual contract has mean $1,000,000
and standard deviation $2,000,000, the sum has mean is $2,000,000 and standard de-
viation is $2,828,427, which implies the 99.9% level mentioned. The 99.9% level on
the individual contract is $22,548,701, so twice that level (which would correspond to
perfect correlation) is $45,097,403. The ratio is 65.3%.
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of the tail results from one or the other of the contracts going
bad, not both. The effect generally is to shorten the tail relative
to the mean, making measures that depend on extreme values
take on less dangerous significance.

A glance at the values in Table 1 shows that it is possible
that if the loss is very bad, say at the 0.001% level, then the
ending value will be negative. That is, the reinsurer will lose all
the premium and allocated assets, and still have to put in more
money to fulfill the contract. At the very least, this result cannot
be from a lognormal distribution, which never becomes negative.

Nevertheless, it is convenient to express the mean and stan-
dard deviation of the distribution of the ending values in terms
of the annualized parameters of a geometric Brownian motion
investment with the same mean and standard deviation at the
time horizon. This allows a direct comparison with the original
investment possibility. It is in this sense that the combination of
reinsurance contract and switch/option can be thought of as an
equivalent investment, if the return and standard deviation are
the same as the target.

To the extent that the investment risk measure is valid for
general distributions, a comparison can always be made.

Should a reinsurer actually follow through on the indicated
financial technique for each contract? Almost surely not, unless
the reinsurer is very conservative or this is the only contract.
The latter could be the case for a specialty reinsurer set up for
a single contract—for example for a large catastrophe contract.
In general, a method relating investment criteria to reinsurance
contracts could be useful when specifically engineered deals are
made to connect reinsureds and investors looking for new op-
portunities. Considering the hunger of capital for uncorrelated
risks, this kind of bundling would seem natural.

This procedure takes as input the financial targets and safety
criterion and produces as output the risk load and the allocated
assets. It is also possible to take the financial targets and allocated
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assets as input (more the financial point of view). The two con-
straints then become requirements on the loss distribution. The
corresponding risk loads will emerge. Knowing the desired loss
characteristics and the necessary risk loads, market knowledge
can be used to do selective underwriting and keep the overall
distribution within acceptable risk levels at the target rate of re-
turn. This point of view is really more applicable to the book as
a whole and requires a treatment of multiple payments.

4. MULTIPLE PAYMENTS

When there are multiple loss payments possible, the same
basic paradigm is used but needs a more complex formulation.
In the single payment case, simultaneously enforcing the safety
constraint and the rate of return through the mean value of the
stochastic equation gave an easy solution for the risk load. The
risk load appropriate to a particular safety constraint is almost
as easy to find in the multiple payment case. However in con-
trast to the single payment case, there is no simple formula from
the variance constraint, but the constraint can be evaluated by
simulation for any given level of allocated assets.

The main complication lies in the construction of the safety
constraint: in the definitions appropriate to safety levels at dif-
ferent times and in different circumstances. For example, if the
first year has a very large loss, do the safety levels for subsequent
years change? There are many different formulations possible, all
of which will lead to risk loads. Competitive efficiency would
suggest looking for a formulation with the smallest possible risk
load. This usually will involve using the least possible capital for
the shortest period of time, and may depend upon the specifics
of the payout pattern expected.

The suggested general procedure is:

1. Express the fundamental stochastic process on a spread-
sheet. It is now more complex than a simple equation be-
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cause of the interaction of the fund, loss, and investment
levels at different times but it is still easily expressed. The
complications come from the fact that there are separate
simulations of the loss and investment variables at each
time. Further, there may have to be other cash flows in
either direction between the reinsurer’s general assets
and the fund set up for this contract, depending upon
how the safety levels are defined.

2. Define the safety levels. Since the whole point of this
exercise is to use notionally allocated funds to obtain
the opportunity cost of capital, the definitions need to
be fixed at time zero so the pricing can be done. The
simplest version would be to define a single safety level,
say 99.9% on the distribution of ending cumulative loss
values or the largest 99.9% loss level encountered at any
time. The problem with this formulation is that much
of the time there will be unnecessary liquidity available
which will add to the risk load. A more sophisticated
version would be to define levels dependent on the loss
distributions at each time. The definitions need not nec-
essarily even result in fixed amounts; the amounts could
be conditional on how the losses manifest over time dur-
ing each particular simulation. A general rule of thumb
suggested for safety level definitions is that, if the losses
are almost entirely at one time, then the outcome of what-
ever definitions are used should closely approximate the
single payment case for that time.

3. Use the definitions of the safety levels to determine what
funds need to be available at various points in time and
what options need to be bought (notionally) to protect the
values of those funds. Funds not totally consumed at a
given time can be carried forward and should be option
protected for the expected carryforward. For example,
if it is decided to use the 99.9% level at year one as a
safety level, in almost all simulations the loss in year one
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will be considerably smaller than this safety level. If so,
the net can be carried forward to form part of, all of,
or more than the safety level for year two. In the latter
case it may be that funds flow back to the reinsurer’s
general account. The option cost on the carryforward
will depend on the actual amount of funds carried and
the time period when they exist. The time zero present
value of the projected average cost is probably not a
bad prescription for the initial funds necessary for these
options. The switch case is an easier problem because of
the lack of option costs, but it does not give the advantage
of reducing the standard deviation of the investment and
increasing its average return. Hence it will usually give
larger risk loads.

4. Find the risk load corresponding to the target return for
the safety constraint chosen. This can be done by using
a trial risk load and running simulations to ascertain the
value of the average final cash result of all the trans-
actions. If this value does not correspond to the desired
average return, then try another risk load until the desired
target is attained. A faster, simpler, and usually almost
as accurate procedure begins by putting all the stochas-
tic variables at their mean values. Then the value of the
final cash result of all the transactions is deterministic
and can be adjusted to the desired value by varying the
risk load.14 This latter procedure can also be used as a
starting point for the former.

5. Simulate to see if the variance constraint is satisfied. If
it is and the return is acceptable, stop. It is convenient
to represent the variability of the final cash result of all
the transactions in terms of the annualized standard de-
viation of a lognormal investment with the same return
and variance at the horizon.

14Using Goal Seek in Excel, for example.
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6. If the variance constraint is not satisfied, then add more
initial capital and simulate again. Clearly, the addition of
enough capital beyond that required by the safety con-
straint can reduce the variability to any desired point. If
during the course of iterations the variance constraint is
more than satisfied, then take away some capital.

7. Repeat step 6 until both constraints are satisfied. The
whole process can be treated numerically like a root-
finding procedure, but it is necessary to be careful of the
simulation uncertainty in the mean and standard devia-
tion in creating the estimates of the next value of initial
capital to be tried.

If it is decided to work with cumulative loss values in estab-
lishing definitions of safety levels, the time value of money for
the loss in year one must be accounted for with an appropriate
rate in order that that loss be economically comparable to a loss
in year two. Since the reinsurer can think of this as borrowing
from itself, the rate used is the risk-free rate. In the switch case,
this is obvious, since the securities held are risk-free. In the op-
tion case, this still seems appropriate, since the lower limit which
will be realized is the risk-free rate.

5. CONCLUDING REMARKS

The usefulness of safety levels is that they make explicit the
minimum funds to be allocated. Unless the safety level is 100%,
there is always the possibility in a particular realization of loss
and investment that some safety level(s) will be breached. In this
case the general account of the reinsurer will have to contribute
to the cedent. This does not affect the validity of the original
pricing, but the reinsurer’s attitude toward this possibility will
influence how the safety level was set and hence the price.

For convenience the losses are assumed to occur at the end of
each year, although there is no great difficulty in generalizing to
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arbitrary times. Since simulations are being used, any measures
of risk and return that can be defined on individual results can be
used. Also, in real-world scenarios the individual years of multi-
year contracts may well have some correlation simply because
they are from the same firm or exposures. In the simulation en-
vironment, the overall contract can still be evaluated if one is
willing to quantify the correlation.

A simplification used here is to ignore the fact that the spot
rates for risk-free investment depend upon the length of time in-
vested, usually rising with time. For example, incremental losses
could be discounted back to time zero using the different spot
rates. Here only one single risk-free rate is assumed to apply, for
all times of a contract. However, if desired the calculations can
be reformulated to include the current spot rates and the view of
what the future values of the spot rates are likely to be over the
contract period.

In the single payment case, the IRR is used because it is un-
equivocally defined and provides a natural way of talking about
returns. It is not actually necessary to look at the IRR, and only
the end result need be considered. In the multiple payment case,
the IRR may not even be definable as a real number. This is
particularly obvious when the final value is negative because of
large losses, but can also happen otherwise. In order to consider
the end value (future value of the cash flows), it is necessary to
set up some description of the investment policy on the released
funds. The target investment is the obvious choice.

It is intuitive that there should be a reduction in risk load
from pooling over years, even allowing for the increased cost of
liquidity of the later contract. Numerical experimentation seems
to indicate that the benefits of pooling over time are usually
present for uncorrelated contracts.

The pricing here is extremal pricing, in that each contract is
priced as a stand-alone entity. In reality, each contract written is
supported by the whole surplus of the reinsurer. A more accurate
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treatment of the actual risk load needed to satisfy investment
criteria would be to consider the whole book with and without
the proposed contract. Perhaps a satisfactory compromise would
be to scale the extremal risk load contemplated here by the ratio
of the overall portfolio risk charge to the sum of the extremal
risk loads.

If this paradigm is to be used in connection with a complete
book of business, both the general unavailability of options for
periods of more than one year and the changing nature of the
ongoing book suggest something like looking at the distribution
of the one-year forward value of the discounted payment streams,
and re-evaluating the necessary risk load annually.
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APPENDIX A

The form of the Black–Scholes formula for the price of a
European call option on a security is15

call price =©(¢1)P0!©(¢2)PV(E),
where

PV(E) = present value of the exercise price discounted
at the risk-free rate,

P0 = price of the security at time zero,

¢1 =
ln
%

P0
PV(E)

&
¾
#
t

+¾
#
t=2, and

¢2 =¢1!¾
#
t,

¾ is a parameter of the distribution of the underlying security,
and

©(x) is the cumulative distribution function for the normal
distribution; that is

©(x) =
' x

!'

exp

(
!z

2

2

)
#
2¼

dz:

This function is available in at least one standard spreadsheet
program.

A call option is the right to buy an underlying security at an
exercise price at time t. The logarithm of the value of the security
is assumed to follow a normal distribution with parameters ¹t and
¾
#
t for the mean and standard deviation, respectively.16 Given

15See Brealey and Myers [1, page 502].
16This is known as a geometric Wiener process or geometric Brownian motion process.
See the development of Black–Scholes in [2] pages 220–223, and the discussion of the
Brownian motion on pages 36-38, especially equation (7.13) and the development leading
to it.
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the expected annual yield rate y and its standard deviation ¾y,
then

¾2 = ln$1+ [¾y=(1+ y)]2%,
and

¹= ln(1+ y)!¾2=2:
These equations are simply the inversion of the results for the
mean and standard deviation of a log-normal distribution for
1+ y. The approximation in Equation 2.13 comes from the first-
order Taylor expansion of the relation for ¾2:

ln(1+ x)( x,
so ¾2 ( [¾y=(1+ y)]2:

The price for a put option, which is actually the contract of in-
terest here, is given by put-call parity as

put price = call price+PV(E)!P0:
Here, PV(E) equals P0 since we want the exercise price to be
the same as the value which would result from growth at the
risk-free rate. Hence the put price equals the call price, and for
either option the

option cost = P0©(¾
#
t=2)!P0©(!¾

#
t=2)

so the

option rate = ©(¾
#
t=2)!©(!¾#t=2)

=

*
2
¼

' ¾
#
t=2

0
exp

(
!z

2

2

)
dz:

The exponential may be expanded as (1! z2=2) and integrated
to get the approximation of Equation 2.14 for t equal one. For
the order of magnitude of numbers used here this approximation
is actually rather good.



128 INVESTMENT-EQUIVALENT REINSURANCE PRICING

APPENDIX B

As stated in Appendix A, the probability density function for
the investment value (which is 1+ return) is lognormal with pa-
rameters ¹t and ¾

#
t. That is,

f(x) =
1

¾x
#
2¼t

exp

!
!(ln(x)!¹t)2

¾2t

"
:

The investment hedged with the option to time t has the charac-
teristics (rf is the risk-free rate):

investment = x for x" (1+ rf)t

= (1+ rf)
t for x < (1+ rf)

t:

What is needed are the moments of the investment, in particular
its mean and standard deviation.

Define

Fn=
' (1+rf)

t

0
xnf(x)dx

=©(³ !n¾#t)exp$n¹t+n2¾2t=2%,
where ³ =

#
t(ln(1+ rf)!¹)=¾. In general,

moment(n) =
' '

0
investmentnf(x)dx

= (1+ rf)
nt
' (1+rf)

t

0
f(x)dx+

' '

(1+rf )
t
xnf(x)dx:

Using the results for Fn above, the moment of order n of the
investment is

moment(n) = (1+ rf)
tnF0 +exp$n¹t+n2¾2t=2%!Fn

= (1+ rf)
tn©(³) + exp$n¹t+ n2¾2t=2%

) [1!©(³ !n¾#t)]:
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The mean value is just moment(1) and the variance of the in-
vestment is $moment(2)!moment(1)2%. The standard deviation
¾i of the investment is, of course, the square root of the variance.
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APPENDIX C

Derivation of Equation 2.5: Substitute for L and F in Equa-
tion 2.4:

Equation 2.1 may be solved for L as

L= (1+ rf)(P!R): (C.1)

Substitute F from Equation 2.2 and L from Equation C.1 into
Equation 2.4:

(1+ y)A= (1+ rf)(P+A)! (1+ rf)(P!R)
= (1+ rf)A+(1+ rf)R:

Solving for R gives Equation 2.5.

Derivation of Equation 2.20: Equation 2.16 can be written

(1+ r)F = P+A= A+L=(1+ rf)+R,

from Equation 2.1. Rearranging to solve for R, and subsequently
using Equations 2.6 for F and 2.19 for A,

R = (1+ r)F!A!L=(1+ rf)

= (1+ r)
S

1+ rf
! 1
1+ y

!
1+ i
1+ rf

S!L
"
!L=(1+ rf)

=
S

1+ rf

+
(1+ r)! 1+ i

1+ y

,
+L

#
1

1+ y
! 1
1+ rf

$

=
1

(1+ rf)(1+ y)
$S[(1+ y)(1+ r)! (1+ i)]!L[y! rf]%:

Derivation of Equation 2.22: Equation 2.18 can be written

F =
(1+ y)A+L

1+ i
:

Substituting for F in Equation 2.21 gives

A2¾2y = [(1+ y)
2A2 +2AL(1+ y)+L2]

¾2i
(1+ i)2

+¾2L:
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Multiplying through by the denominator and collecting terms,

0 = A2[(1+ y)2¾2i !¾2y (1+ i)2]
+2AL(1+ y)¾2i +L

2¾2i +¾
2
L(1+ i)

2:

This is Equation 2.22. If there is a correlation ½iL between
investment and loss, then this equation becomes

0 = A2[(1+ y)2¾2i !¾2y (1+ i)2]
+2A(1+ y)¾i[L¾i!¾L½iL(1+ i)]
+L2¾2i +¾

2
L(1+ i)

2!2L¾i¾L(1+ i)½IL:

Derivation of Equation 2.24: By substituting for F from
Equation 2.16 into Equation 2.18, we get

(1+ y)A= (1+ i)
P+A
1+ r

!L:
Multiplying through by the denominator and using Equation 2.1
for P,

A(1+ y)(1+ r) = (1+ i)

(
R+

L

1+ rf
+A

)
!L(1+ r):

Rearranging terms,

(1+ i)R = A[(1+ y)(1+ r)! (1+ i)]

+L

#
(1+ r)! 1+ i

1+ rf

$
:

Equation 2.24 for R results immediately.



WORKERS COMPENSATION EXCESS RATIOS:
AN ALTERNATIVE METHOD OF ESTIMATION

HOWARD C. MAHLER

Abstract

This paper presents an alternative method of calcu-
lating excess ratios for workers compensation insurance.
While the method shares many similarities with that pre-
sented by Gillam [1], there are important differences in
approach. The (adjusted) data is relied upon directly for
lower limits. For higher limits this is supplemented by a
mixed Pareto-exponential distribution fitted to the (ad-
justed) data.

1. INTRODUCTION

The excess ratio for a limit L is defined as the ratio of losses
excess of L to the total ground-up losses. If f(x) is the probability
density function for the size of loss distribution, then the excess
ratio is defined as:

R(L) =
!!
L (x"L)f(x)dx!!

0 xf(x)dx
:

The excess ratio can also be written in terms of the limited
expected value E[X;L] and the mean E[X]: R(L) = 1"E[X;L]=
E[X]. See for example Hogg and Klugman [2].

The excess ratio is an important statistic with many applica-
tions. For example, it can be used to calculate excess loss factors
for workers compensation insurance, as discussed in Gillam [1].
Generally, the excess loss factor for a limit is the product of an
excess ratio and a permissible loss ratio with the possible addi-
tion of a risk load.1

1The similar excess loss and allocated expense factors (ELAFs) are for use in the ALAE
option for retrospective rating. Let 1+ a be the factor to load losses for allocated loss
adjustment expense. Then for an accident limit L, one computes R(L=(1+ a)) and multi-

132
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Since excess loss factors are typically calculated by hazard
group and accident limit, excess ratios need to be estimated by
hazard group and by accident limit. This paper will show one
method of estimating such excess ratios, with an emphasis on
general principles rather than on the important details that may
affect the estimate in specific situations.

2. DATA

As always, the first step is to collect the appropriate data. As
in Gillam [1], Unit Statistical Plan data is used at third, fourth,
and fifth report. All medical only losses are assumed to be below
any accident limit. For lost time claims, the Unit Statistical Plan
data has the individual claim size2 for those claims greater than
$2,000. (Those claims of size less than $2,000 may be reported
on a grouped basis; all of their losses are below any accident
limit.)

The reported class codes can be used to divide the data into
hazard groups.3 Using the reported information the proportion
of loss dollars excess of any accident limit can be calculated.4

In order to illustrate the method in this paper, it will be ap-
plied to Massachusetts workers compensation data from com-
posite policy years 1988/1989 at 5th report,5 1989/1990 at 4th
report and 1990/1991 at 3rd report. In practice it is often appro-
priate to examine indications using data from several evaluation
dates.

plies by a permissible loss and allocated LAE ratio, in order to get an ELAF. This method
of calculating ELAFs assumes that the expected ALAE ratio is approximately the same
for all claim sizes. The effects of variations in this assumption are beyond the scope of
this paper. (ALAE data by claim has only recently started to be collected by workers
compensation rating bureaus.)
2Paid losses plus case reserves, divided between medical and indemnity.
3There are four hazard groups, with hazard group 4 having the highest expected claim
severity.
4Provided the accident limit is greater than $2,000 (times any adjustment factors).
5Composite policy year 1988/1989 includes all data from policies with effective dates
from July 1, 1988 to June 30, 1989. Fifth report is evaluated 66 months from policy
inception.
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3. ADJUSTMENTS TO DATA

The claim severity is adjusted from that observed in the data
to that expected in the policy effective period at the appropri-
ate report.6 Each claim is multiplied by an appropriate trend,
law amendment and development factor. The product of these
adjustment factors for a particular example is shown in Exhibit
1. These adjustment factors should be calculated in a manner
consistent with the procedures that produced the rates.7 In other
words, whatever procedure was used to project past losses to ul-
timate in the effective period in order to estimate rates, should
also be applied to the data in order to estimate excess ratios on
a consistent basis.

In the example presented in Exhibit 1, the adjustment factors
vary by injury kind and between medical and indemnity. To the
extent that expected severity trend, development, or law changes
differ significantly by claim size within injury kind, the adjust-
ment factors could be varied by claim size interval as well. This
refinement is beyond the scope of this paper.

The excess loss factors are used in pricing excess coverage
on a per occurrence basis, as discussed in Gillam [1]. Therefore,
we are interested in a distribution of loss values for accidents
rather than claims. After the above adjustments, all claims are
grouped into accidents except medical only claims.8 A computer
program was used which groups data by hazard group, accident
date, and policy number, on the assumption that a single policy
will not incur two or more accidents on one particular date.9

6The factors in Exhibit 1 include an estimate of average development to ultimate. How-
ever, the impact of the dispersion of claim sizes due to development beyond fifth report
has not been taken into account.
7While the adjustment factors are an important part of the process, they do not represent
a difference in the method presented. Therefore, the details are beyond the scope of this
paper. Gillam [1] gives an example. See Feldblum [3] for a general discussion of workers
compensation ratemaking.
8Medical only losses are much smaller than the accident limits purchased, and thus none
of them will exceed a relevant loss limit. All medical only losses are assumed to be
primary.
9Claims without a reported accident date are grouped by hazard group and claim number.
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Exhibit 2 shows a comparison of excess ratios computed us-
ing ungrouped claim data and data grouped into accidents. For
ungrouped data, the excess ratios obtained after adjusting the
limit by dividing by a factor of 1.1 were also examined.10

The differences between excess ratios calculated from the un-
grouped and grouped data were relatively small. At lower limits
the 1.1 factor seemed to produce too much of an adjustment, but
at higher limits it approximated the effect of the grouping of the
data into accidents.

It should be noted that while these results may be interesting,
they are far from conclusive. They represent the results for one
state for one point in time. At the higher limits random fluctu-
ations are expected to produce differing results over time. Even
more importantly, the method used to group claims into acci-
dents is far from perfect. Thus, it is inappropriate to assume the
difference represents an error in either method of accounting for
multi-claim accidents.

The accident data resulting from the grouping process forms
the basis of the analysis.11 The excess ratios computed from this
data are shown in Exhibit 3.

4. CURVE FITTING PROCEDURE

The mean residual life statistic provides a convenient way to
examine the tails of loss distributions.12 The mean residual life
at a limit x is defined as e(x) = (dollars excess of x)=(number
of accidents larger than x). Figure 1 displays the mean residual
lives for each of the four hazard groups. As expected, the higher
the hazard group the larger the mean residual life. However, as
we reach higher limits the data in the two smaller hazard groups,

10This is similar to the method in Gillam [1].
11For the three composite policy years combined there were a total of 157,726 lost-time
accidents of which 13,699 had adjusted values greater than $100,000.
12See for example Hogg and Klugman [2]. The mean residual life is the average excess
cost of a claim that exceeds a given limit.
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FIGURE 1

OBSERVED MEAN RESIDUAL LIVES ($000) BY HAZARD GROUP

1 and 4, becomes sparse. The chance of a very large claim ap-
pearing in the data for these hazard groups is too small13 to get
a reliable estimate of the mean residual life at high limits.

The hazard groups seem to have a similar pattern, with the
mean residual life increasing, at least up to an accident limit of
several million dollars. A number of adjustments are made to the
accident data in order to fit a distribution to it.

13For example, we can estimate that on average we expect about 0.4 accidents greater than
$1 million for hazard group 1. This is based on 96 accidents greater than $100,000 in the
data set for hazard group 1 and a tail probability of the fitted mixed Pareto-exponential
distribution of .0038 at an entry ratio of 12.4. (:0038)(96)# :4. In the reported data there
were 39 accidents greater than $1 million of which none were in hazard group 1, 11
were in hazard group 2, 27 were in hazard group 3, and 1 was in hazard group 4.
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FIGURE 2

MEAN RESIDUAL LIVES BY HAZARD GROUP
Data Truncated and Shifted at $100,000 and then Normalized

to a Mean of Unity

First, the accident data for third, fourth, and fifth report are
combined. Next, for each of the four hazard groups, the data are
truncated and shifted at $100,000.14 Finally, each of these four
sets of data is normalized to a mean of unity. Figure 2 shows the
mean residual lives for the resulting truncated, shifted and then
normalized data by hazard group. Bearing in mind the limited
data for hazard groups 1 and 4, it is plausible that the normalized

14Accidents with losses less than or equal to $100,000 are eliminated from consideration
(for now). Those of size x > $100,000 have $100,000 subtracted from them and appear
in the truncated and shifted data as x" $100,000.
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FIGURE 3

MEAN RESIDUAL LIVES, OBSERVED VS. FITTED
Data Truncated and Shifted at $100,000 and then Normalized

to a Mean of Unity

hazard group data might all come from approximately the same
distribution. These four sets of normalized data are combined,
as displayed in Figure 3.

A mixture15 of Pareto and exponential distributions is fit
to this combined data16 using the method of maximum likeli-

15See for example, Hogg and Klugman [2] for a discussion of the mixture of loss dis-
tribution models. The probability density function is f(x) = pg(x)+ (1"p)h(x), where g
and h are each probability density function.
16The data has been combined across reports, injury kinds, and hazard groups, repre-
senting over 13,000 accidents over $100,000 in size.
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hood.17 The Pareto and exponential curves are standard size of
loss distributions, described in Exhibits 5 and 6. The mixed dis-
tribution is (p) (Pareto distribution)+ (1"p) (exponential distri-
bution) where p is a fitted parameter with a value between zero
and one. Together with the two Pareto parameters (shape and
scale) and the single exponential parameter, the mixed distribu-
tion has a total of four parameters.

The fitted parameters are displayed in Exhibit 4. Figure 3
compares the mean residual lives for the fitted curve and the ob-
served data. Figure 4 shows the probability density functions for
the mixed Pareto-exponential as well as the Pareto and exponen-
tial distributions. For small entry ratios the mixed curve behaves
as the short-tailed exponential, while for larger entry ratios it
behaves as the long-tailed Pareto.

Figure 5 compares the excess ratios for the mixed distribution
to that of the exponential and the Pareto. As derived in the Ap-
pendix, the excess ratio for the mixed distribution is a weighted
average of the excess ratios of the individual distributions, with
the weights being (p) (mean of Pareto) and (1"p) (mean of the
exponential). In this case, the weights are .2132 and .7868.18

Thus, for lower entry ratios the excess ratio of the mixed dis-
tribution is close to that for the exponential. At higher limits,
the excess ratio for the short-tailed exponential is too small to
contribute significantly. Therefore, the excess ratio of the mixed
distribution for higher entry ratios is approximately 21% of that
for the Pareto.

17The result of the maximum likelihood method has a mean slightly different from unity,
so the scale parameters of the Pareto and exponential have been adjusted so as to have the
desired mean of unity. The method of maximum likelihood is a commonly used method
for fitting size of loss distributions to either grouped or ungrouped data, as discussed
in Hogg and Klugman [2]. In this case, the method was applied to the individual data
points rather than data grouped into intervals.
18This is based on p= :04294, a mean of the Pareto of 12:83704=(3:58490" 1) = 4:9662
and a mean of the exponential of .82205, as shown in Exhibit 4. :2132 = (:04294)(4:9662)
=$(:04294)(4:9662)+ (:95706)(:82205)%.
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FIGURE 4

PROBABILITY DENSITY FUNCTIONS
Data Truncated and Shifted at $100,000 and then Normalized

to a Mean of Unity

5. ESTIMATION OF EXCESS RATIOS

For each hazard group this fitted curve, scaled to the observed
mean, is used in Exhibit 7 to estimate the excess ratios for the
data truncated and shifted at $100,000.

The excess ratios for accident limits less than or equal to
$100,000 are determined directly from the data. For accident
limits L above $100,000, the excess ratio is estimated from the
product of (empirical excess ratio at $100,000)& (excess ratio es-
timated from mixed Pareto-exponential curve for L" $100,000).
See the Appendix. The former is shown in Exhibit 2, the latter in
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FIGURE 5

EXCESS RATIOS
Data Truncated and Shifted at $100,000 and then Normalized

to a Mean of Unity

Exhibit 7, while the product is in Exhibit 8.19 Figure 6 compares
the estimated and observed excess ratios.

This method provides a smooth transition from relying on data
for lower accident limits to relying on a fitted curve to provide
some of the information at higher accident limits. It is important
to note that even at higher accident limits an important contribu-
tion to the excess ratio is R(100,000) which is calculated directly
from the data.

19It should be noted that for a limit of $100,000 the two methods automatically give the
same answer since the excess ratio estimated from the curve at 0 is always unity.
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FIGURE 6

EXCESS RATIOS BY HAZARD GROUP
Observed versus Estimated

6. SELECTION OF A TRUNCATION POINT

The $100,000 truncation point was selected to permit the max-
imum reliance on reported data while still retaining enough data
above the truncation point to permit the reasonable fitting of a
loss distribution. For this technique and data set, a truncation
point around $100,000 achieves the desired balance. Other val-
ues such as $50,000 or $150,000 could also have been used
without substantially altering the estimated excess ratios.

In general, the truncation point should be a round number
prior to the “thinning out” of the data. In this data set there
are over 13,000 accidents with values greater than $100,000,
with the two smallest hazard groups having about 100 or 200
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accidents.20 For the two larger hazard groups, a higher truncation
point could have been selected, but for hazard groups 1 and 4 a
higher truncation point would make it difficult to get a reliable
average value to use to normalize the data.21

7. FEATURES OF THE PROCEDURE

This procedure allows us to rely on the actual data for the
lower layers where there is a larger volume of data less subject
to random fluctuation. The task of fitting curves to the smaller
accidents is avoided totally.

Fitting curves to the combined data regardless of injury kind
allows claims to be grouped into accidents.22 It also avoids rely-
ing on the sometimes arbitrary or judgmental division of claims
between injury kind.23 The mixed Pareto-exponential distribu-
tion fit to the truncated and shifted data assigns the preponder-
ance of weight to the short-tailed exponential distribution.24 The
long-tailed Pareto distribution models the behavior of the ex-
treme tail of the accident distribution and has a very large effect
on the estimated excess ratios for limits over $500,000.

Thus, the estimation procedure can be viewed in terms of three
layers. The layer of losses below $100,000 is estimated with-
out curve fitting. The layer from $100,000 to about $500,000 is

20There are 96 accidents from hazard group 1 and 228 accidents from hazard group 4.
21These average values are used in Exhibit 7 in order to calculate excess ratios by hazard
group.
22An accident may consist of claims of several different injury kinds. For the calculation
of the effect of accident limits it is not inherently necessary to divide dollars between
injury kinds.
23Note, however, that prior to grouping by accident, claims of differing injury kinds have
somewhat different adjustment factors applied to them, as shown in Exhibit 1.
24As is common in the use of mixed distribution, a mixture of a longer and shorter tailed
distribution was selected. Originally, the short-tailed distribution was a Weibull. However,
the fitted Weibull portions of the mixed distribution were very close to an exponential.
Therefore, the one parameter exponential was substituted for the two parameter Weibull
of which the exponential is a special case.
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modeled largely by the exponential distribution. The layer above
about $500,000 is modeled largely by the Pareto distribution.25

8. CONCLUSION

Actuaries should be familiar with the Pareto distribution, the
exponential distribution, and truncated and shifted data. These
basic concepts have been employed together in a procedure with
a powerful ability to fit the observed data. This procedure of
estimating excess ratios is likely to be useful in various practical
applications.

25The parameters of the fitted Pareto-exponential determine the approximate layers above
$100,000. Although it may be conceptually useful to think of it that way, there is no actual
division into layers above $100,000.
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EXHIBIT 1

COMBINED TREND, LAW, AND DEVELOPMENT FACTORS

INDEMNITY

Composite Injury Injury Injury Injury Injury
Pol. Yr. Kind 1 Kind 2 Kind 3 Kind 4 Kind 5

88/89 1.79 1.82 1.41 1.28 1.04
89/90 1.53 1.87 1.38 1.26 0.95
90/91 1.42 1.56 1.44 1.31 0.91

MEDICAL

Composite Injury Injury Injury Injury Injury Injury
Pol. Yr. Kind 1 Kind 2 Kind 3 Kind 4 Kind 5 Kind 6

88/89 2.29 2.29 2.29 1.85 1.85 1.85
89/90 3.93 2.06 2.15 1.74 1.61 1.67
90/91 3.30 1.96 2.00 1.62 1.38 1.50

Notes: Product of separate factors calculated to bring all losses to ultimate and a common level,
consistent with a 10/1/96 effective date. Injury Kind 1 = Fatal, Injury Kind 2 = Permanent Total,
Injury Kind 3 =Major Permanent Partial, Injury Kind 4 =Minor Permanent Partial, Injury Kind
5 = Temporary Total, Injury Kind 6 =Medical Only.

EXHIBIT 2

OBSERVED EXCESS RATIOS FOR UNADJUSTED DATA1

Hazard Group 2

Claim Data

Limit ($000) Accident Data2 Using Limit Using Limit' 1:1
25 .5230 .5130 .5373
100 .1417 .1342 .1553
500 .0167 .0157 .0171

1,000 .0087 .0078 .0087
2,000 .0042 .0039 .0043

Hazard Group 3

25 .6335 .6259 .6465
100 .2369 .2276 .2560
500 .0311 .0295 .0324

1,000 .0128 .0118 .0138
2,000 .0042 .0041 .0047

1The data for three separate reports, 88/89 at 3rd, 87/88 at 4th, 86/87 at 5th have been combined and
then an excess ratio has been calculated. The data have not been adjusted for trend, law amendments,
or development.
2Claims with the same hazard group, accident date, and policy number are grouped into the same
accident.
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EXHIBIT 3

EXCESS RATIOS BASED ON ADJUSTED DATA1

Accident
Limit Hazard Hazard Hazard Hazard
($000) Group 12 Group 2 Group 3 Group 42

25 0.5950 0.6288 0.7283 0.8064
30 0.5530 0.5888 0.6960 0.7817
35 0.5142 0.5521 0.6655 0.7581
40 0.4791 0.5184 0.6366 0.7353
50 0.4177 0.4586 0.5831 0.6918
75 0.2974 0.3441 0.4709 0.5935
100 0.2106 0.2643 0.3832 0.5098
125 0.1494 0.2072 0.3146 0.4353
150 0.1086 0.1647 0.2604 0.3715
175 0.0804 0.1327 0.2171 0.3165
200 0.0622 0.1081 0.1827 0.2699
250 0.0400 0.0754 0.1333 0.2011
300 0.0252 0.0559 0.1021 0.1526
500 0.0044 0.0271 0.0541 0.0730

1,000 0.0000 0.0126 0.0286 0.0317
2,000 0.0000 0.0045 0.0118 0.0033
3,000 0.0000 0.0021 0.0066 0.0000
4,000 0.0000 0.0009 0.0047 0.0000
5,000 0.0000 0.0000 0.0034 0.0000

1Massachusetts Workers Compensation, Composite Policy Years 88/89 at 5th, 89/90 at 4th, 90/91 at
3rd.
2Note there is relatively little data for hazard groups 1 and 4 since they each represent only between 1
and 2 percent of total premiums. In this reported data there were no accidents greater than $1,000,000
for hazard group 1 and only one for hazard group 4. Thus the empirical excess ratios at higher limits
for these hazard groups are poor estimates of future expected excess ratios.
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EXHIBIT 4

MIXED PARETO-EXPONENTIAL DISTRIBUTION

Parameters:

Pareto Shape = s 3.58490
Pareto Scale = b 12.83704
Exponential Scale = c 0.82205
Weight to Pareto = p 0.04294

Mean = 1 Coef. of Var. = 1:94
Variance = 3:75 Skewness = 30

Excess Ratios

Entry Ratio Excess Ratio Entry Ratio Excess Ratio

0.1 0.9057 11 0.0431
0.2 0.8217 12 0.0387
0.3 0.7470 13 0.0350
0.4 0.6806 14 0.0317
0.5 0.6214 15 0.0288
0.6 0.5687 20 0.0188
0.7 0.5217 25 0.0131
0.8 0.4797 30 0.0095
0.9 0.4422 35 0.0071
1.0 0.4088 40 0.0055
1.25 0.3397 45 0.0044
1.5 0.2872 50 0.0035
1.75 0.2469 55 0.0029
2.0 0.2157 60 0.0024
2.5 0.1722 65 0.0020
3.0 0.1444 70 0.0017
3.5 0.1255 75 0.0015
4.0 0.1118 80 0.0013
4.5 0.1014 85 0.0011
5.0 0.0929 90 0.0010
6.0 0.0797 95 0.0009
7.0 0.0694 100 0.0008
8.0 0.0610
9.0 0.0540
10.0 0.0481

Note: See the Appendix for a sample calculation of an excess ratio.
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EXHIBIT 5

PARETO DISTRIBUTION

F(x;s,b) = 1"
"
1+

x

b

#"s
f(x;s,b) =

s

b

"
1+

x

b

#"(s+1)
E(Xy) =

by¡ (y+1)¡ (s" y)
¡ (s)

, "1< y < s

If y is an integer N,

E(XN ) =
bNN!$N

i=1(s" i)
N < s

Mean =
b

s" 1 Variance =
b2s

(s"1)2(s" 2)

Coefficient of Variation =

%
s

s"2 s > 2

Skewness =
2(s+1)
s"3

%
s" 2
s

s > 3

Excess Ratio = R(x) =
"
1+

x

b

#1"s
Mean Residual Life = e(x) =

b+ x
s"1

Note: s is the shape parameter, b is the scale parameter.
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EXHIBIT 6

EXPONENTIAL DISTRIBUTION

F(x;c) = 1" e"x=c

f(x;c) =
1
c
e"x=c

E(Xy) = cy¡ (1+ y) y >"1
If y is an integer N,

E(XN) = cNN! N >"1
Mean = c

Variance = c2

Coefficient of Variation = Standard Deviation'Mean = 1
Skewness = 2

Excess Ratio = R(x) = e"x=c

Mean Residual Life = e(x) = c

Note: c is the scale parameter.
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EXHIBIT 8

ESTIMATED EXCESS RATIOS BASED ON ADJUSTED DATA AND
CURVES FIT TO DATA TRUNCATED AND SHIFTED AT $100,000

Accident
Limit Hazard Hazard Hazard Hazard
($000) Group 1 Group 2 Group 3 Group 4

25 0.5950 0.6288 0.7283 0.8064
30 0.5530 0.5888 0.6960 0.7817
35 0.5142 0.5521 0.6655 0.7581
40 0.4791 0.5184 0.6366 0.7353
50 0.4177 0.4586 0.5831 0.6918
75 0.2974 0.3441 0.4709 0.5935
100 0.2106 0.2643 0.3832 0.5098
125 0.1509 0.2064 0.3143 0.4379
150 0.1109 0.1633 0.2598 0.3779
175 0.0839 0.1311 0.2168 0.3278
200 0.0655 0.1070 0.1826 0.2857
250 0.0439 0.0750 0.1337 0.2210
300 0.0330 0.0563 0.1024 0.1753
500 0.0180 0.0293 0.0517 0.0890

1,000 0.0078 0.0141 0.0256 0.0434
2,000 0.0025 0.0053 0.0107 0.0203
3,000 0.0012 0.0026 0.0056 0.0114
4,000 0.0006 0.0015 0.0033 0.0071
5,000 0.0004 0.0010 0.0021 0.0047

Note: For accident limits of $100,000 or less the excess ratio is taken directly from Exhibit 3. For
accident limits larger than $100,000, the excess ratio is a product of that for $100,000 in Exhibit 3
and the excess ratio shown in Exhibit 7. For example, for hazard group 3 at a limit of $1 million,
(:3832)(:0669) = :0256.
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APPENDIX

Excess Ratios, Truncated and Shifted Data

Let f(x) be the size of loss probability density function. Then
the excess ratio for limit L is given by:

R(L) =
!!
L (x"L)f(x)dx!!

0 xf(x)dx

=
average dollars of loss excess of L

average size of loss

=
total dollars of loss excess of L

total dollars of loss
:

Assume we have a truncation point of T. Assume we look at
the size of loss distribution for the data truncated and shifted at
T. So for a loss x > T, we instead look at x"T. Then the excess
ratio for the truncated and shifted data for ground up limit L > T
can be written as

R̂(L"T):
Assume we were computing the (observed) excess ratio for a

$500,000 accident limit, for hazard group 3 data26

R($500,000) =
HG3 Losses Excess of $500,000

Total HG3 Losses (including Medical Only)
:

We can also express this in terms of the data truncated and
shifted at $100,000 as follows:

R($500,000) =
HG3 Losses Excess of $500,000
HG3 Losses Excess of $100,000

& HG3 Losses Excess of $100,000
Total HG3 Losses (including Medical Only)

:

26For 3rd, 4th, and 5th report combined, adjusted for trend, law changes, and devel-
opment.



154 WORKERS COMPENSATION EXCESS RATIOS

However, the second term is the excess ratio at $100,000,
R($100,000), while the first term is R̂($400,000) = excess ratio
at $400,000 for the data truncated and shifted at $100,000. Thus

R($500,000) = R̂($400,000)&R($100,000):
In general, for limits L > $100,000

R(L) = R̂(L" $100,000)&R(100,000):
In the methodology used here, R̂(L"$100,000) is estimated

via a curve fit to the data truncated and shifted at $100,000, while
R(100,000) is estimated from the data.

Excess Ratios, Mixed Distributions

Let a (mixed) distribution be a weighted average of two other
distributions:

f(x) = pg(x)+ (1"p)h(x):
Then the mean is a weighted average of the two means:

mf =
& !

0
xf(x)dx=

& !

0
x$pg(x)+ (1"p)h(x)%dx

= p
& !

0
xg(x)dx+(1"p)

& !

0
xh(x)dx

= pmg+(1"p)mh:
The excess ratio for limit L is given by:

Rf(L) =
!!
L (x"L)f(x)dx!!

0 xf(x)dx

=
p
!!
L (x"L)g(x)dx+(1"p)

!!
L (x"L)h(x)dx

pmg +(1"p)mh

=
pmgRg(L)+ (1"p)mhRh(L)

pmg+(1"p)mh
:

So the excess ratio for a mixed distribution is a weighted
average of the excess ratios for the individual distributions, with
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weights equal to the product of the mean of each distribution
times the weight in the mixture of each distribution.27

For example, for the mixed Pareto-exponential distribution
with parameters: 3.5849, 12.83704, .82205, .04294, at an entry
ratio of 2, the excess ratio is computed as follows:

excess ratio for Pareto (3:5849,12:83704) at entry ratio 2
(of the mixed distribution)

=
'
1+

2
12:83704

(1"3:5849
= :6878

excess ratio for exponential (.82205) at entry ratio 2
(of the mixed distribution)

= e"2=:82205 = :0878

mean for Pareto (3:5849,12,83704)

=
12:83704
3:5849"1 = 4:9662

mean for exponential (:82205) = :82205

excess ratio for Pareto-exponential at entry ratio 2

=
(:04294)(4:9662)(:6878)+ (1" :04294)(:82205)(:0878)

(:04294)(4:9662)+ (1" :04294)(:82205)
= :2157=1 = :2157:

This matches the value shown on Exhibit 4.

Moments of Mixed Models

Moments of a mixed model are a weighted average of the
moments of the individual distributions. For example, for the
mixed Pareto-exponential distribution with parameters: 3.5849,

27This is closely related to the similar result for increased limit factors discussed in Venter
[4].
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12.83704, .82205, .04294, the moments are a weighted average
using weights of .04294 applied to the moments of the Pareto and
1" :04294 = :95706 applied to the moments of the exponential.

Moment Pareto Exponential Pareto-exponential

1 4.9662 .82205 1
2 80.4478 1.35153 4.7479
3 5296.86 3.3331 230.64

Then the variance of the Pareto-exponential is 4:7479"12 =
3:7479. Note that the variance of the mixed distribution is not
the weighted average of the individual variances. The skewness
of the Pareto-exponential is

$230:64" (3)(4:7479)(12)+2(13)%=3:74791:5 = 30:1:
The coefficient of variation is (

(
3:7479)=1 = 1:94. These match

the values shown on Exhibit 4.



AN APPLICATION OF GAME THEORY:
PROPERTY CATASTROPHE RISK LOAD
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Abstract

Two well known methods for calculating risk load—
Marginal Surplus and Marginal Variance—are applied
to output from catastrophe modeling software. Risk loads
for these marginal methods are calculated for sample
new and renewal accounts. Differences between new and
renewal pricing are examined. For new situations, both
current methods allocate the full marginal impact of the
addition of a new account to that new account. For re-
newal situations, a new concept is introduced which we
call “renewal additivity.”
Neither marginal method is renewal additive. A new

method is introduced, inspired by game theory, which
splits the mutual covariance between any two accounts
evenly between those accounts. The new method is ex-
tended and generalized to a proportional sharing of mu-
tual covariance between any two accounts. Both new
approaches are tested in new and renewal situations.
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1. INTRODUCTION

The calculation of risk load continues to be a topic of interest
in the actuarial community—see Bault [1] for a recent survey
of well known alternatives. One area of great need, where the

157
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CAS literature is somewhat scarce, is calculation of risk loads
for property catastrophe insurance.

Many of the new catastrophe modeling products produce
occurrence size-of-loss distributions for a series of simulated
events. These output files might contain an event identifier, event
probability, and modeled loss amount for that event for the se-
lected portfolio of exposures. Given such output files for a port-
folio before and after the addition of a new account, one could
calculate the before and after portfolio variance and standard
deviation. The difference will be called the marginal impact of
that new account on the portfolio variance or standard devia-
tion.1

Two of the more well known risk load methods from the CAS
literature—what shall be called “Marginal Surplus” (MS) from
Kreps [3] and “Marginal Variance” (MV) from Meyers [6]—use
the marginal change in portfolio standard deviation (variance)
due to the addition of a new account to calculate the risk load for
that new account. However, problems arise when these marginal
methods are used to calculate risk loads for the renewal of ac-
counts in a portfolio. These problems can be traced to the order
dependency of the marginal risk load methods.

Order dependency is a perplexing issue. Many marginal risk
load methods—whether based on variance, standard deviation, or
even a selected percentile of the loss distribution—suffer from
it. It is also not just an actuarial issue; even the financial com-
munity struggles with it. “Value at Risk” (VAR) is an attempt
by investment firms to capture their risk in a single number. It
is a selected percentile of the return distribution (e.g., 95th) for
a portfolio of financial instruments over a selected time frame
(e.g., 30 days). VAR can be calculated for the entire portfolio or
for a desired subset (e.g., asset class). But so-called “marginal”

1The variance and standard deviation are “between account” and “between event,” and
ignore any parameter uncertainty associated with the modeled loss amount for a given
event and account.
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or “component” VAR has, to this point, eluded satisfactory so-
lution in the finance community precisely because of what will
be termed renewal additivity. Finance professionals charged with
assessing how much VAR a certain financial instrument or asset
class contributes to the total VAR are dealing with the same un-
resolved order dependency issue. As the finance and insurance
worlds blend more and more, perhaps actuaries will combine
forces with quantitative analysts and Certified Financial Analysts
(CFAs) to determine a solution.

The remainder of this paper is organized as follows. Section
2 describes the basic characteristics of a catastrophe occurrence
size-of-loss distribution. Sections 3 and 4 describe the applica-
tion of the MV and MS methods to a simplified occurrence size-
of-loss distribution. Sections 5 and 6 calculate risk loads both in
assembling or building up a portfolio of risks and in subsequently
renewing that portfolio. Section 7 discusses the differences be-
tween build-up and renewal results.

Section 8 introduces a new concept to the theory of property
catastrophe risk loads—renewal additivity. However, the concept
is not new to the field of game theory. Section 9 introduces game
theory concepts underlying a new approach. Section 10 extends
and generalizes the effect of the new approach to sharing of
covariance between accounts. Section 11 concludes by applying
the new approach to some examples.

2. THE CATASTROPHE OCCURRENCE SIZE-OF-LOSS
DISTRIBUTION

For demonstration purposes throughout the paper, a simplified
version of an occurrence size-of-loss distribution will be used.
It captures the essence of typical catastrophe modeling software
output, while keeping the examples understandable.2

2In particular, only single event or occurrence size-of-loss distributions will be consid-
ered. Many models also produce multi-event or aggregate loss distributions. Occurrence
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A modeled event denoted by identifier i is considered an in-
dependent Poisson process with occurrence rate3 ¸i. To simplify
the mathematics, following Meyers [6], the binomial approxima-
tion with probability of occurrence pi [where ¸i =! ln(1!pi)]
will be employed. This is a satisfactory approximation for small4

¸i.

For an individual account or portfolio of accounts, the model
produces a modeled loss for each event Li. A table containing
the event identifiers i, the event probabilities pi and modeled
losses Li will be referred to as an “occurrence size-of-loss distri-
bution.”

From Meyers [6], the formulas for expected loss and variance
are

E(L) =§i[Li"pi], and (2.1)

Var(L) =§i[L
2
i "pi" (1!pi)], (2.2)

where §i = sum over all events.

The formula for covariance of an existing portfolio L (with
losses Li) and a new account n (with losses ni) is

Cov(L,n) = §i[Li"ni"pi" (1!pi)]: (2.3)

Note that Cov(L,n) is always greater than zero when each of Li,
ni, pi, and (1!pi) are greater than zero.
The total variance of the combined portfolio (L+n) is then

Var(L+n) = Var(L)+Var(n)+2Cov(L,n): (2.4)

size-of-loss distributions reflect only the largest event that occurs in a given year. Aggre-
gate loss distributions reflect the sum of losses for all events in a given year. Clearly, the
aggregate distribution would provide a more complete picture, but for purposes of the
exposition here, the occurrence distribution works well and the formulas are substantially
less complex.
3This implies that the loss for a given event and account is fixed and known.
4An event with a probability of 0.001 (typical of the more severe modeled events) would
have ¸= 0:0010005.
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3. THE MARGINAL SURPLUS (MS) METHOD

This is a translation of the method described in Rodney
Kreps’s paper, “Reinsurer Risk Loads from Marginal Surplus
Requirements” [3] to property catastrophe calculations.

Consider:

L0 = losses from a portfolio before a new account is added,

L1 = losses from a portfolio after a new account is added,

S0 = Standard deviation of L0,

S1 = Standard deviation of L1,

R0 = Return on the portfolio before new account is added, and

R1 = Return on the portfolio after new account is added:

Borrowing from Mr. Kreps, assume that needed surplus, V, is
given by5

V = z" standard deviation of loss! expected return, (3.1)

where z is, to cite Mr. Kreps [3, p. 197], “a distribution per-
centage point corresponding to the acceptable probability that
the actual result will require even more surplus than allocated.”
Then

V0 = z" S0!R0, and

V1 = z" S1!R1:
(3.2)

The difference in returns R1!R0 = r, the risk load charged to
the new account. The marginal surplus requirement is then

V1!V0 = z" [S1! S0]! r: (3.3)

Based on the required return, y, on that marginal surplus (which
is based on management goals, market forces and risk appetite),

5Mr. Kreps sets needed surplus equal to z" standard deviation of return! expected
return. If one assumes premiums and expenses are invariant, then Var(Return) =
Var(P!E!L) = Var(L).
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the MS risk load would be

r = [yz=(1+ y)][S1! S0]: (3.4)

4. THE MARGINAL VARIANCE (MV) METHOD

The Marginal Variance Method is based on Glenn Meyers’s
paper, “The Competitive Market Equilibrium Risk Load Formula
for Catastrophe Ratemaking” [6].

For an existing portfolio L and a new account n, the MV risk
load r would be

r = ¸"Marginal Variance of adding n to L
= ¸" [Var(n)+2Cov(L,n)], (4.1)

where ¸ is a multiplier similar to yz=(1+ y) from the MS method
although dimensioned to apply to variance rather than standard
deviation.6

5. BUILDING UP A PORTFOLIO OF TWO ACCOUNTS

Exhibit 1 shows the occurrence size-of-loss distribution and
risk load calculations for building up (assembling) a portfolio of
two accounts, X and Y. It is assumed X is written first and is the
only risk in the portfolio until Y is written.

5.1. MS Method

Pertinent values from Exhibit 1 for the Marginal Surplus
method are summarized in Table 1.

Item 1 is the change in portfolio standard deviation from
adding each account, or marginal standard deviation.

6Mr. Meyers develops a variance-based risk load multiplier by converting a standard
deviation-based multiplier using the following formula [6, p. 573]: ¸= (Rate of Return"
Std Dev Mult2)=(2"Avg Capital of Competitors).
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TABLE 1

BUILDING UP X AND Y: MARGINAL SURPLUS METHOD

Account X Portfolio
Account X Account Y +Account Y (X+Y)

(1) Change in Standard
Deviation $4,429.00 $356.00 $4,785.00 $4,785.00

(2) Risk Load Multiplier 0.33 0.33 — 0.33
(3) Risk Load = (1)" (2) $1,461.71 $117.43 $1,579.14 $1,579.14

Item 2 is the Risk Load multiplier of 0.33. Using Kreps’s
formula, a return on marginal surplus y of 20% and a standard
normal multiplier z of 2.0 (2 standard deviations, corresponding
to a cumulative non-exceedance probability of 97.725%) would
produce a risk load multiplier of

yz=(1+ y) = 0:20"2=1:20 = 0:33 (rounded): (5.1)

Item 3 is the Risk Load, the product of Items 1 and 2.

Since X is the first account, the marginal standard deviation
from adding X equals the standard deviation of X, Std Dev (X) =
$4,429. This gives a risk load of $1,461.71.

The marginal standard deviation from writing Y equals Std
Dev (X+Y)!Std Dev (X) or $356, implying a risk load of
$117.43.

The sum of these two risk loads X +Y is $1,461:71+
$117:43 = $1,579:14. This equals the risk load that this method
would calculate for the combined account (X +Y).

5.2. MV Method

Pertinent values from Exhibit 1 for the Marginal Variance
method are summarized in Table 2.
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TABLE 2

BUILDING UP X AND Y: MARGINAL VARIANCE METHOD

Account X Portfolio
Account X Account Y +Account Y (X+Y)

(1) Change in Variance 19,619,900 3,279,059 22,898,959 22,898,959
(2) Risk Load Multiplier 0.000069 0.000069 — 0.000069
(3) Risk Load = (1)" (2) $1,353.02 $226.13 $1,579.14 $1,579.14

Item 1 is the change in portfolio variance from adding each
account, or marginal variance.

Item 2 is the Variance Risk Load multiplier ¸ of 0.000069. To
simplify comparisons between the two methods (recognizing the
difficulty of selecting a MV-based multiplier7), the MS multiplier
was converted to a MV basis by dividing by Std Dev (X +Y):

¸= 0:33=4,785 = 0:000069: (5.2)

This means the total risk load calculated for the portfolio by the
two methods will be the same, although the individual risk loads
for X and Y will differ between the methods.

Item 3 is the Risk Load, the product of Items 1 and 2.

Since X is the first account, the marginal variance from adding
X equals the variance of X, Var(X) = $19,619,900. This gives a
risk load of $1,353.02.

The marginal variance from writing Y equals Var(X +Y)!
Var(X), or $3,279,059, implying a risk load of $226.13.

The sum of these two risk loads is $1,353:02+$226:13 =
$1,579:14. This equals the risk load which this method would
calculate for the combined account (X +Y).

7Mr. Meyers [6, p. 572] admits that in practice “it might be difficult for an insurer to
obtain the (lambdas) of each of its competitors.” He goes on to suggest an approxi-
mate method to arrive at a usable lambda based on required capital being “Z standard
deviations of the total loss distribution” [6, p. 574].
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TABLE 3

RENEWING X AND Y: MARGINAL SURPLUS METHOD

Account X Portfolio
Account X Account Y +Account Y (X+Y)

(1) Change in Standard
Deviation $4,171.00 $356.00 $4,526.00 $4,785.00

(2) Risk Load Multiplier 0.33 0.33 — 0.33
(3) Risk Load = (1)" (2) $1,376.27 $117.43 $1,493.70 $1,579.14
(4) Build-Up Risk Load $1,461.71 $117.43 $1,579.14 $1,579.14
(5) Difference ($85.45) $0.00 ($85.45) $0.00

6. RENEWING THE PORTFOLIO OF TWO ACCOUNTS

Exhibit 2 shows the natural extension of the build-up
scenario—renewal of the two accounts, in what could be termed
a “static” or “steady state” portfolio (one with no new entrants).

As for applying these methods in the renewal scenario, renew-
ing policy X is assumed equivalent to adding X to a portfolio of
Y; renewing Y is assumed equivalent to adding Y to a portfolio
of X.

6.1. MS Method

Pertinent values from Exhibit 2 for the Marginal Surplus
method are summarized in Table 3.

The marginal standard deviation for adding Y to X is $356.00,
same as it was during build-up—see Section 5.1. The risk load
of $117.43 is also the same.

However, adding X to Y gives a marginal standard deviation
of Std Dev (X +Y)!Std Dev (Y) = $4,171:00. This gives a risk
load for X of $1,376.27, which is $85.45 less than $1,461.71,
the risk load for X calculated in Section 5.1.
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TABLE 4

RENEWING X AND Y: MARGINAL VARIANCE METHOD

Account X Portfolio
Account X Account Y +Account Y (X+Y)

(1) Change in Variance 22,521,000 3,279,059 25,800,059 22,898,959
(2) Risk Load Multiplier 0.000069 0.000069 — 0.000069
(3) Risk Load = (1)" (2) $1,553.08 $226.13 $1,779.21 $1,579.14
(4) Build-Up Risk Load $1,353.02 $226.13 $1,579.14 $1,579.14
(5) Difference $200.06 $0.00 $200.06 $0.00

The sum of these two risk loads in Table 3 is $1,376:27+
$117:43 = $1,493:70. This is also $85.45 less than the total risk
load from Section 5.1.

6.2. MV Method

Pertinent values from Exhibit 2 for the Marginal Variance
method are summarized in Table 4.

The marginal variance for adding Y to X is 3,279,059, same
as it was during build-up—see Section 5.2. The risk load of
$226.13 is also the same.

However, adding X to Y gives a marginal variance of
Var(X +Y)!Var(Y), or 22,521,000. The risk load is now
$1,553.08, which is $200.06 more than the $1,353.02 calculated
in Section 5.2.

The sum of these two risk loads is $1,553:08+$226:13 =
$1,779:21. This is also $200.06 more than the total risk load
from Section 5.2.

7. EXPLORING THE DIFFERENCES BETWEEN NEW AND RENEWAL

Why are the total Renewal risk loads different from the total
Build-Up risk loads?
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In Section 5.1 (Build-Up), the marginal standard deviation for
X, ¢Std Dev(X), was

¢Std Dev(X) = Std Dev (X)

=
!
§i[X

2
i "pi" (1!pi)] , (7.1)

where Xi =modeled losses for X for event i, while in Section
6.1 (Renewal), the marginal standard deviation was

¢Std Dev(X) = Std Dev(X+Y)!Std Dev(Y)
=
!
§i[(Xi+Yi)2"pi" (1!pi)]

!
!
§i[Y

2
i "pi" (1!pi)] : (7.2)

For positive Yi, this value is less than Std Dev (X). Therefore, one
would expect the Renewal risk load to be less than the Build-Up.8

Unfortunately, when the MS method is applied in the renewal
of all the accounts in a portfolio, the sum of the individual risk
loads will be less than the total portfolio standard deviation times
the multiplier. This is because the sum of the marginal standard
deviations (found by taking the difference in portfolio standard
deviation with and without each account in the portfolio) is less
than the total portfolio standard deviation.9 Please recall that the
square root operator is sub-additive: the square root of a sum is
less than the sum of the square roots.10

8For example, assume Var(X) = 9, Var(Y) = 4, Cov(X,Y) = 1:5; then

¢Std Dev(X) =
"
Var(X) =

#
9 = 3, for X alone,

¢Std Dev(X) =
"
9+4+2" 1:5!

#
4 = 4! 2 = 2< 3, for X added to Y:

9The same issue is raised in Mr. Gogol’s discussion. He suggests correcting for this sub-
additivity by using a weighted average of the contract’s own standard deviation and its
last-in marginal standard deviation. The weight is chosen so the sum of these redefined
marginal impacts equals the total portfolio standard deviation [2, p. 363].
10For example,

#
9+16<

#
9+

#
16.
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What about marginal variance? In Section 5.2 (Build-Up), the
marginal variance ¢Var(X) was

¢Var(X) = Var(X)

=§i[X
2
i "pi" (1!pi)], (7.3)

while in Section 6.2 (Renewal) the marginal variance was

¢Var(X) = Var(X +Y)!Var(Y)
= [Var(X)+2Cov(X,Y)+Var(Y)]!Var(Y)
= Var(X)+2Cov(X,Y)

>Var(X): (7.4)

Since 2Cov(X,Y) is greater than zero, one would expect the Re-
newal risk load to be greater than the Build-Up.

However, when the MVmethod is applied in the renewal of all
the accounts in a portfolio, the sum of the individual risk loads
will be more than the total portfolio variance times the multi-
plier. This is because the sum of the marginal variances (found
by taking the difference in portfolio variance with and without
each account in the portfolio) is greater than the total portfolio
variance. The covariance between any two risks in the portfo-
lio is double counted: when each account renews, it is allocated
the full amount of its shared covariance with all the other ac-
counts.

8. A NEW CONCEPT: RENEWAL ADDITIVITY

The renewal scenarios point out that these two methods are
not what I call renewal additive, defined as follows:

For a given portfolio of accounts, a risk load method
is renewal additive if the sum of the renewal risk loads
calculated for each account equals the risk load cal-
culated when the entire portfolio is treated as a single
account.
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Neither the MS nor the MV method is renewal additive: MS
because the square root operator is sub-additive; MV because the
covariance is double counted. So why should renewal additivity
matter? Consider what happens when either of these non-renewal
-additive methods is used to renew the portfolio. The MV method
would result in quoted renewal premiums the sum of whose risk
loads would be greater than the required total risk load of (¸"
total portfolio variance). One would in essence overcharge every
account. The opposite is true for the MS case, where one would
undercharge every account.

In order for the MS or MV methods to be renewal additive,
one must assume an entry order for the accounts. Since the
marginal impacts depend on the size of the existing portfolio,
the entry order selected for an account could determine whether
it is written or declined.

Renewal additivity reduces the renewal risk load calculation to
an allocation of the total portfolio amount back to the individual
accounts. An objective, systematic allocation methodology for
renewals would be desirable. Examples of many such allocation
methodologies can be found in the field of game theory.

9. A NEW APPROACH FROM GAME THEORY

Two ASTIN papers by Jean Lemaire—“An Application of
Game Theory: Cost Allocation” [4], and “Cooperative Game
Theory and Its Insurance Applications” [5]—focus on general
insurance applications of game theory. Lemaire also provides
an extensive list of real world applications of game theory [4,
p. 77], including tax allocation among operating divisions of
McDonnell-Douglas, maintenance costs of the Houston medical
library, financing of large water resource development projects
in Tennessee, construction costs of multi-purpose reservoirs in
the U.S., and landing fees at Birmingham airport. Consider this
example from [5]:

“The Treasurer of ASTIN (player 1) wishes to invest
the amount of 1,800,000 Belgian francs on a short term
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(3 months) basis. In Belgium, the annual interest rate
is a function of the sum invested.

Deposit Annual Interest
(in Belgian Francs) Rate

0–1,000,000 7.75%
1,000,000–3,000,000 10.25%
3,000,000–5,000,000 12.00%

The ASTIN Treasurer contacts the Treasurers of the
International Actuarial Association (I.A.A.–player 2)
and of the Brussels Association of Actuaries (A.A.Br.–
player 3). I.A.A. agrees to deposit 900,000 francs in
the common fund, A.A.Br. 300,000 francs. Hence the
3-million mark is reached and the interest rate will be
12%. How should the interests be split among the three
associations?” [5, p. 18]

Games such as this are referred to as “cooperative games with
transferable utilities.” They typically feature:

1. participants (players) that have some benefits (or costs)
to share (political power, savings, or money),

2. the opportunity to share benefits (costs) results from co-
operation of all participants or a sub-group of partici-
pants,

3. freedom for players to engage in negotiations, bargain-
ing, and coalition formation, and

4. conflicting player objectives: each wants to secure the
largest part of the benefits (smallest share of the costs)
for himself. (See [5, p. 20].)

Cooperative games can be used as models for situations where
participants must share or allocate an amount of money. Players
may want to maximize or minimize their allocation depending
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on the nature of the problem. If the group is deciding who pays
what share of the total tax bill, players will want to minimize
their share. If on the other hand the group is deciding how to
split a pot of bonus money, players will want to maximize their
share.

The total amount to be allocated is determined by the char-
acteristic function, which associates a real number v(S) to each
coalition (group) S of players. It can be either sub-additive or
super-additive, defined as follows:

Sub-Additive

v(S)+ v(T)> v(S union T) for every disjoint S and T:

Super-Additive

v(S)+ v(T)< v(S union T) for every disjoint S and T:

In the actuarial association example above, the characteristic
function would be the money earned by each coalition (com-
bination) of associations. It is an example of a super-additive
characteristic function where the players seek to maximize their
allocation. An example of a sub-additive characteristic function
would be the insurance premium for a risk purchasing group:
the sum of the individual members’ insurance premiums is more
than the insurance premium for the risk purchasing group as a
whole. These players would seek to minimize their allocations,
since they want to be charged the lowest premium. (Equivalently,
these players want to maximize their savings as a result of joining
the group—savings being the difference between their allocation
from the group and their stand-alone premium.)

Allocation Rules

A player’s marginal impact depends on its entry order. In the
example, the “allocation [to the three associations] of course de-
pends on the order of formation of the grand coalition” [5, p. 27].
In the interests of fairness and stability, a new member should
probably receive an allocation amount somewhere between its
stand-alone value and its full marginal impact on the coalition



172 AN APPLICATION OF GAME THEORY

characteristic function—but where in between? How much is
fair? These questions must be answered simultaneously for all
the players, balancing questions of stability, incentives to split
from the group, bargaining power, and marginal impact to the
coalition characteristic function value.

To help answer the allocation question, game theory has de-
veloped a set of standards or rules for allocations. First, legiti-
mate allocation methods must be additive—the sum of the play-
ers’ allocations must equal the total amount to be allocated. The
MV and MS methods are not (renewal) additive: they either al-
locate too much (MV) or too little (MS) in the renewal case.

Second, a coalition should be stable, which roughly translates
to fair. There must not be incentives for either a single player or
a sub-group of players to split from the group and form a fac-
tion. These “rules of fairness” are referred to as the conditions of
individual and collective rationality (see [4, p. 66–68]). Individ-
ual rationality means a player is no worse off for having joined
the coalition. Collective rationality means no subgroup would be
better off on its own.

These rules can be formalized into a set of acceptable ranges
of allocations for each player. This set defines what is known
as the core of the game. It consists of all allocations satisfying
these fairness and stability conditions.

Consider the Brussels Association of Actuaries (A.A.Br.–
player 3) from the example. They have 300,000 francs, and on
their own could earn 7.75%. If they join as the third player, they
will push the coalition rate of return from 10.25% to 12.00%.
How much should they earn? Certainly not less than 7.75%—it
would not be individually rational for them to join. Conversely,
they should not earn so much that players 1 and 2 end up earn-
ing less than 10.25%—that would not be collectively rational for
them. In that case, players 1 and 2 would be better off forming
their own faction. Similar exercises can be performed from the
perspective of players 1 and 2. The resulting set of acceptable
allocations defines the boundaries of the core (see [5, p. 26]).
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TABLE 5

TRANSLATION FROM GAME THEORY TO PROPERTY CAT RISK
LOAD

Game Theory Property Cat Risk Load

Player Account
Coalition Portfolio

Characteristic
Function

Portfolio Variance or Standard
Deviation

Translating to Property Cat Risk Load

Given this brief introduction, a reasonable first attempt at
translating from the game theory context might be as shown in
Table 5.

Because of the covariance component, portfolio variance is a
super-additive characteristic function: the variance of a portfolio
is greater than the sum of the individual account variances. Stan-
dard deviation, on the other hand, is a sub-additive characteristic
function because of the sub-additivity of the square root opera-
tor: the standard deviation of a portfolio is less than the sum of
the individual account standard deviations.

This means, from the game theory perspective at least, that
the choice between variance and standard deviation is material.
It determines whether the characteristic function is sub-additive
or super-additive. This is a fundamental paradox of the game the-
ory translation of the risk load problem, and will require further
research to resolve.

Setting aside this paradox for the moment, however, the risk
load problem fits remarkably well into the game theory frame-
work. The “players” want to minimize their allocations of the
portfolio total risk load. The allocation should fairly and objec-
tively assign risk loads to accounts in proportion to their contri-
bution to the total. Using the current definition of marginal im-
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pact of a renewal account, however, an entry order would have to
be assumed in order to make the allocation additive. The results
of that allocation would be heavily dependent on the selected
order, however.

How can one choose the entry order of a renewal? A well
known allocation method from game theory may provide the
answer.

The Shapley Value

The Shapley value (named for Lloyd Shapley, one of the early
leaders of the game theory field) is an allocation method that is:

1. additive,

2. at the centroid of the core, and

3. order independent.

It equals the average of the marginal impacts taken over all possi-
ble entrance permutations—the different orders in which a new
member could have been added to the coalition11 (i.e., a new
account could have been added to a portfolio).

For example, consider a portfolio of accounts A and B to
which a new account C is added. Shown in Table 6 are the
marginal variances for adding C in the 6 possible entrance per-
mutations (“ABC ” in Column 1 below means A enters first, then
B, then C).

11Lemaire provides this more complete definition of the Shapley value [5, p. 29]: “The
Shapley value can be interpreted as the mathematical expectation of the admission value,
when all orders of formation of the grand coalition are equiprobable. In computing the
value, one can assume, for convenience, that all players enter the grand coalition one
by one, each of them receiving the entire benefits he brings to the coalition formed just
before him. All orders of formation of N are considered and intervene with the same
weight 1=n! in the computation. The combinatorial coefficient results from the fact that
there are (s!1)!(n! s)! ways for a player to be the last to enter coalition S: the (s!1)
other players of S and the (n! s) players of N$S (those players in N which are not in S)
can be permuted without affecting i’s position.”
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TABLE 6

ENTRY PERMUTATIONS FOR ACCOUNT C

(1) (2) (3)
Permutation C Enters : : : Marginal Variance

ABC After A & B Var(C)+2"Cov(C,A)+2"Cov(C,B)
ACB After A Var(C)+2"Cov(C,A)
BAC After B & A Var(C)+2"Cov(C,A)+2"Cov(C,B)
BCA After B Var(C)+2"Cov(C,B)
CAB First Var(C)
CBA First Var(C)

The Shapley value is the straight average of Column 3,
Marginal Variance, over the six permutations:

Shapley Value = [Sum(Column 3)]=6

= [6Var(C)+ 6Cov(C,A)+6Cov(C,B)]=6

=Var(C)+Cov(C,A)+Cov(C,B): (9.1)

Or, to generalize, given
L= existing portfolio and

n= new account,

Shapley Value = Var(n)+Cov(L,n):

(9.2)

Before seeing this result, there might have been concerns about
the practicality of this approach—how much computational time
might be required to calculate all the possible entrance permu-
tations for a portfolio of thousands of accounts? This simple
reduction formula eliminates those concerns. The Shapley value
is as simple to calculate as the marginal variance.

Comparing the Shapley value to the marginal variance for-
mula from Section 4:

Marginal Variance = Var(n)+ 2Cov(L,n), (9.3)

whereas the Shapley value only takes 1 times the covariance of
the new account and the existing portfolio.
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One can also calculate the Shapley value under the marginal
standard deviation method. However, due to the complex na-
ture of the mathematics—differences of square roots of sums
of products—no simplifying reduction formula was immediately
apparent.12

Therefore, the remainder of the paper will focus on the MV
method and the variance-based Shapley value. Life will be much
easier (mathematically) working with the variances, and very lit-
tle is lost by choosing variance. Citing Mr. Bault [1, p. 82], from
a risk load perspective, “both (variance and standard deviation)
are simply special cases of a unifying covariance framework.” In
fact, Bault goes on to suggest “in most cases, the ‘correct’ answer
is a marginal risk approach that incorporates covariance.”13

10. SHARING THE COVARIANCE

The risk load question, framed in a game-theoretical light, has
now become:

How do accounts share their mutual covariance for
purposes of calculating risk load?

The Shapley method answers, “Accounts split their mutual co-
variance equally.” At first glance this appears reasonable, but
consider the following example.

Assume two accounts, E and F. F has 100 times the losses
of E for each event. Their total shared covariance is

2Cov(E,F) = 2§i[Ei"Fi"pi" (1!pi)]
= 2§i[Ei"100Ei"pi" (1!pi)]: (10.1)

12Those wishing to employ standard deviation can use approximate methods to calculate
the Shapley value. Two approaches suggested by John Major are (i) taking the average
of marginal value if first in and last in; and (ii) employing Monte Carlo simulation
to sample a subset of the possible entrance permutations, presumably large enough to
achieve satisfactory convergence while being much more computationally efficient.
13Kreps also incorporates covariance in his “Reluctance” R [3, p. 198], which has the
formula R = [yz=(1+ y)]=(2SC+¾)=(S%+ S), where C is the correlation of the contract
with the existing book. The Risk Load is then equal to R¾.
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The Shapley value would equally divide this total covariance
between E and F, even though their relative contributions to the
total are clearly not equal. There is no question that E should
be assessed some share of the covariance. The issue is whether
there is a more equitable share than simply half.

One could develop a generalized covariance sharing (GCS)
method which uses a weight WX

i (X,Y) to determine an account
X’s share of the mutual covariance between itself and another
account Y for event i:

CovShareXi (X,Y) =W
X
i (X,Y)"2"Xi"Yi"pi" (1!pi):

(10.2)

Then Y’s share of that mutual covariance would simply be

CovShareYi (X,Y) = [1!WX
i (X,Y)]"2"Xi"Yi"pi" (1!pi):

(10.3)

The total covariance share allocation for account X over all
events would be:

CovShareXTot = §Y§i[CovShare
X
i (X,Y)], (10.4)

where §Y = sum over every other account Y in the portfolio.

The Shapley method is in fact an example of the generalized
covariance sharing method with WX

i (X,Y) = 50% for all X, Y
and i.

Returning to the example with E and F, one could develop
an example of a weighting scheme that assigns the shared co-
variance by event to each account in proportion to their loss for
that event.WE

i (E,F), account E’s share of the mutual covariance
between itself and account F for event i, equals

WE
i (E,F) = [Ei=(Ei+Fi)]

= [Ei=(Ei+100Ei)] = (1=101)

= roughly 1% of their mutual covariance for event i:

This shall be called the “Covariance Share” (CS) method.
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TABLE 7

BUILDING UP X AND Y: SHAPLEY VALUE METHOD

Account X Portfolio
Account X Account Y +Account Y (X+Y)

(1) Change in Variance 19,619,900 1,828,509 21,448,409 22,898,959
(2) Risk Load Multiplier 0.000069 0.000069 — 0.000069
(3) Risk Load = (1)" (2) $1,353.02 $126.10 $1,479.11 $1,579.14

TABLE 8

BUILDING UP X AND Y: COVARIANCE SHARE METHOD

Account X Portfolio
Account X Account Y +Account Y (X+Y)

(1) Change in Variance 19,619,000 950,658 20,570,558 22,898,959
(2) Risk Load Multiplier 0.000069 0.000069 — 0.000069
(3) Risk Load = (1)" (2) $1,353.02 $65.56 $1,418.57 $1,579.14

11. APPLYING THE SHAPLEY AND CS METHODS TO THE
EXAMPLE

Consider the Shapley and CS methods applied to the two Ac-
count example for both Build-Up and Renewal.

11.1. Portfolio Build-up

Exhibit 3 shows the Build-Up of accounts X and Y from Sec-
tion 5, but for the Shapley and CS methods. Pertinent values for
the Shapley value are summarized in Table 7.

Pertinent values for the Covariance Share are summarized in
Table 8.

Both Shapley and CS produce the same risk load for X as the
MV method on Build-Up: $1,353.02. This is because there is no
covariance to share: X is the entire portfolio at this point. How-
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TABLE 9

COMPARISON OF BUILD-UP RISK LOADS FOR ACCOUNT Y

Marginal Variance (MV)—Section 5.2 $226.13
Shapley Value $126.10

Difference from MV $100.03
Covariance Share (CS) $ 65.56
Difference from MV $160.57

TABLE 10

RENEWING X AND Y: SHAPLEY VALUE METHOD

Account X Portfolio
Account X Account Y +Account Y (X+Y)

(1) Change in Variance 21,070,450 1,828,509 22,898,959 22,898,959
(2) Risk Load Multiplier 0.000069 0.000069 — 0.000069
(3) Risk Load = (1)" (2) $1,453.05 $126.10 $1,579.14 $1,579.14
(4) Build-Up Risk Load $1,353.02 $126.10 $1,479.11 $1,579.14
(5) Difference $100.03 $0 $100.03 $0

ever, compare the results of the three variance-based methods for
account Y (see Table 9).

Compared to MV, which charges account Y for the full in-
crease in variance Var(Y)+ 2Cov(X,Y), the Shapley method only
charges Y for Var(Y)+Cov(X,Y). The same can be said for the
CS method, although the share of the mutual covariance depends
on each account’s relative contribution by event, weighted and
summed over all events. Now consider what happens to that dif-
ference from MV upon renewal.

11.2. Renewal

Exhibit 4 shows the renewal of X and Y for the Shapley and
CS methods. Pertinent values for the Shapley method are sum-
marized in Table 10.
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TABLE 11

RENEWING X AND Y: COVARIANCE SHARE METHOD

Account X Portfolio
Account X Account Y +Account Y (X+Y)

(1) Change in Variance 21,948,301 950,658 22,898,959 22,898,959
(2) Risk Load Multiplier 0.000069 0.000069 — 0.000069
(3) Risk Load = (1)" (2) $1,513.59 $65.56 $1,579.14 $1,579.14
(4) Build-Up Risk Load $1,353.02 $65.56 $1,418.57 $1,579.14
(5) Difference $160.57 $0 $160.57 $0

TABLE 12

COMPARISON OF BUILD-UP AND RENEWAL RISK LOADS FOR
ACCOUNT X

Shapley Cov Share

Renewal $1,453.05 $1,513.59
Build-Up $1,353.02 $1,353.02

Additional Renewal Risk Load over Build-Up $100.03 $160.57
Difference from MV $100.03 $160.57

Pertinent values for the Covariance Share method are summa-
rized in Table 11.

With both the Shapley and CS methods, the sum of the risk
loads for Account X and Account Y equals the risk load for
Account (X +Y), namely $1,579.14. This means that both new
methods are renewal additive.

To see what happened to the difference from MV, compare the
risk loads calculated at Renewal for X with those at Build-Up
(see Table 12).

The difference from MV during Build-Up is simply the por-
tion of X’s risk load attributable to its share of covariance with
Y. It was missed during Build-Up because it was unknown—
account Y had not been written.
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12. CONCLUSION

This paper introduces two new approaches to determination
of renewal risk load that address concerns with renewal additivity
and point out the issue of covariance sharing between accounts.
The ideal solution in practice might involve using a marginal
method for the pricing of new accounts, and a renewal additive
method for renewals.

This paper also represents a first step in addressing the per-
plexing question of order dependency. As mentioned in the in-
troduction, order dependency stretches beyond the confines of
actuarial pricing to the finance community at large. It will likely
take a joint effort between finance professionals and actuaries to
reach a satisfactory solution.

Finally, this paper brings important information from game
theory to the Proceedings. Game theory is a rich field for ac-
tuaries to find new ideas on cost allocation, fairness, and order
dependency. Many sticky social issues (taxation, voting rights,
utility costs) have been resolved using ideas from game theory.
Further research can be done on several questions raised dur-
ing the review of this paper, including the relative bargaining
power of accounts, portfolio departure rules, lack of account in-
formation, and the unresolved paradox of the sub-additive MS
characteristic function versus the super-additive MV characteris-
tic function.
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EXHIBIT 1

BUILD UP PORTFOLIO OF TWO ACCOUNTS
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EXHIBIT 2

RENEW THE PORTFOLIO OF TWO ACCOUNTS
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EXHIBIT 3

BUILD UP A PORTFOLIO OF TWO ACCOUNTS—ALTERNATIVES
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EXHIBIT 4

RENEW THE PORTFOLIO OF TWO ACCOUNTS—ALTERNATIVES



A BUYER’S GUIDE FOR OPTIONS ON A CATASTROPHE
INDEX

GLENN MEYERS

Abstract

In the wake of recent catastrophes, a new way of trans-
ferring insurance risk was born. In December 1992, the
Chicago Board of Trade began trading contracts on an
index sensitive to insurer catastrophe experience. Such
indices provide an insurer a means to transfer a portion
of its catastrophe risk to the capital markets by buying
future and option contracts.
The cost of using these contracts to transfer catas-

trophe risk is compared to the cost of raising sufficient
capital to retain the risk and the cost of conventional
reinsurance. We derive equations that give the optimal
participation in the future and option contracts, and in
reinsurance. The cost of using these contracts can be
compared to the cost of the capital that they replace.

1. INTRODUCTION

In the wake of recent catastrophes, a new way of transferring
insurance risk was born. In December 1992, the Chicago Board
of Trade began trading contracts on an index sensitive to insurer
catastrophe experience.

These contracts gave insurers an additional financial strategy
for handling catastrophe risk. Two other common strategies are:

1. buying reinsurance; and

2. raising sufficient capital to maintain solvency while re-
taining the risk.

187
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Another innovation that has gained popularity in the wake of re-
cent catastrophes is the use of catastrophe models in insurance
ratemaking and underwriting. These models combine meteoro-
logical and geological science with engineering damageability
studies and insurance exposure information to estimate potential
losses for an insurance portfolio.

The purpose of this paper is to show how to use catastrophe
models to estimate the costs and benefits of contracts on a catas-
trophe index relative to other means of managing the catastrophe
risk.

2. MOTIVATION FOR TRADING CONTRACTS ON A CATASTROPHE
INDEX

Risk of loss is usually transferred from one with insufficient
capital to absorb a loss to one(s) who can absorb it. The size
of an insurance catastrophe, which at its worst is measured in
billions, is small compared to the money invested in the capital
markets, which is measured in trillions. There are insurers with
a demand for risk transfer, and there are investors who can meet
this demand. However, one needs to find a contract that meets
the institutional needs of the investors and the insurers.

Investors are ill-equipped to deal with counterparty risk, i.e.,
the risk that the insurer knows something about the transfer that
will be to the investors disadvantage. One way to reduce this
risk is to base the contract on the combined results of several
insurers, i.e., a catastrophe index.

Trading contracts on an index introduces additional risk for
the insurer in that the money it recovers from a catastrophe index
contract may differ substantially from its own catastrophe losses.
In investment language, this is referred to as basis risk.1

1For a more complete explanation of basis risk, see Hull [5, p. 32].
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The insurer would like its losses to be highly correlated with
the index, as is the case for reinsurance,2 so that its basis risk is
small.

The investor seeks to maximize profit while adding the least
amount of risk to its total investment portfolio. Usually the re-
turns on available investments tend to be positively correlated
over time. For example, the returns on stocks tend to be cor-
related with the general economy. If the value of the index is
uncorrelated with the seller’s other investments, the investor will
take on less risk by selling contracts on the index than he would
if he took on an otherwise equivalent investment on the stock
market.

Both the insurer and the investor want their risk to be quan-
tified. As this paper will illustrate, both risks can be quantified
with the use of a catastrophe model and a tabulation of the un-
derlying exposures.

3. A STATISTICAL DESCRIPTION OF THE CONTRACTS

This paper will focus on catastrophe index contracts as they
are traded on an exchange such as the Chicago Board of Trade.
The form of the contracts that are traded is explained below. The
scale of the index is arbitrary. In this paper we set the scale so
that the expected value of the index at expiration is $1.00.

A call option contract gives the buyer the right to buy the
index at an agreed upon price at a specified date. The agreed
upon price is called the strike price.

As an example, suppose an investor sells a one year option
contract with a strike price of $1.00 for a premium of $0.20 to
an insurer. If there are no catastrophes during the year and the
value of the index is zero on December 31, the insurer would

2The coefficient of correlation between losses and reinsurance recoveries will be 1.00
for quota share reinsurance agreements. If there is a reinsurance limit, the coefficient of
correlation will be less than 1.00.
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not want to buy the index for $1.00, so it would not exercise
its option. The investor would keep the $0.20. However, if the
index is valued at $3.00 on December 31, the insurer would buy
the index for $1.00 and the investor would lose $1.80.

A call option spread is a package of two option contracts
where one buys an option at one strike price and simultaneously
sells another option at a higher strike price. The difference be-
tween the two strike prices is called the covered layer of the
spread.

To continue our example, suppose the investor sells a call
option spread to an insurer for the $1.00 to $2.00 layer for a
net premium of $0.10. This means that the insurer is buying
insurance on the index for the $1.00 to $2.00 layer for $0.10.

In terms of the transaction details, this means that the investor
sells the insurer an option with a strike price of $1.00 for a
premium of $0.20, and insurer sells the investor an option with
a strike price of $2.00 for a premium of $0.10. If the final value
of the index is zero, neither party exercises its option and the
investor keeps its $0.10. If the final value of the index is $3.00,
the investor exercises its option to buy the index from the insurer
for $2.00 and the insurer exercises its option to buy the index
from the investor for $1.00. The net effect is that the investor
gives the insurer (and loses) $0.90. This is the most that the
investor can lose on this contract.

If the final value of the index is $1.50, the insurer exercises
its option and the investor does not. The investor pays the insurer
$0.50 and ends up losing $0.40.

The purpose of the call option spread is to limit the liability
of the seller, in much the same way that reinsurers limit their
liability on catastrophe reinsurance contracts. If an insurer wants
the full coverage, it can buy a series of call option spreads from
different sellers, with the cost of the coverage being the sum of
the premiums for the call option spreads.
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When an insurer buys these contracts, it reduces the overall
variability of its financial results and, at least in principle, it will
need less capital to support its business.

We illustrate these points with a statistical argument. Let:

! X be a random variable for the insurer’s losses prior to buying
contracts on a catastrophe index;

! Y be a random variable for the final contract value;

! ½ be the coefficient of correlation between X and Y; and
! ¾Z be the standard deviation of any random variable, Z.

If an insurer buys n contracts on the index, the random variable
for its net loss is X "nY, and a quantification of its risk is given
by:

¾X"nY =
!
¾2X "2n½¾X¾Y+n2¾2Y: (3.1)

Note that the insurer will reduce its risk if 2½¾X > n¾Y . There
may be motivation to buy an options contract if ½ is positive and
n is not too large. Exactly how many contracts will be bought
depends upon the price. More on this below.

Let:

! U be a random variable for the investor’s gain on its current
portfolio;

! V be a random variable for the investor’s gain on a prospective
investment; and

! v be the coefficient of correlation between U and V.
Further suppose that ¾2V = n

2¾2Y and that U and Y are uncorre-
lated.

If the investor buys the prospective investment, a quantifica-
tion of its risk is given by:

¾U+V =
!
¾2U+2º¾U¾V+¾

2
V: (3.2)
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If an investor sells n contracts on the index, the random variable
for its net return is U+nY, and the equivalent quantification of
its risk is given by:

¾U+nY =
!
¾2U+n

2¾2Y: (3.3)

Since ¾2V = n
2¾2Y, the investor will face less risk by selling the

catastrophe contracts when º > 0 . Thus the investor should have
a preference for selling the catastrophe contracts.3 Again, it de-
pends upon the price.

4. THE COST OF CAPITAL

The ultimate reason an insurer would want to purchase con-
tracts on a catastrophe index is to reduce its cost of doing busi-
ness. One of the key costs of the insurance business is the cost
of capital. In this paper, we assume that the amount of capital
needed for an insurer to adequately support the risks it writes is
given by:

C = T¾X: (4.1)

Our choice of Equation 4.1 deserves some discussion since
there is no universal agreement on a capitalization formula. For
example, the NAIC risk based capital formula might be one pos-
sible alternative, but it does not recognize the catastrophe risk.
Another alternative is the “expected policyholder deficit,” which
is the expected payment by the policyholders (or guaranty fund)
in case the insurer goes insolvent (see AAA Report [1]). This
formula is sensitive only to the tail of the loss distribution.

We offer the following two arguments in favor of Equation
4.1. First, we feel that most insurers are worried about losing
even a small portion of their capital. Equation 4.1 is sensitive to
the entire range of losses. Second, the mathematics needed to im-

3This is often called the “zero beta” argument. This is in reference to the Capital Asset
Pricing Model. See Chapter 8 of Brealy and Myers [3].
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plement this formula are relatively simple. However, many of the
ideas in this paper can be implemented with other capitalization
formulas.

Continuing, if the insurer buys n contracts on the catastrophe
index, the needed capital becomes:

C(n)# T¾X"nY = T
!
¾2X "2n½¾X¾Y+ n2¾2Y: (4.2)

To obtain the reduction of capital indicated by the difference
between Equations 4.1 and 4.2, the insurer must buy n contracts
at a price determined by the market forces of supply and demand.
Let P be equal to the price of a single contract less the expected
return on the contract, i.e., the net cost of the contract. Then nP
is the net cost of the contracts being substituted for capital.

Let K denote the rate of return the insurer pays to secure the
needed capital. K will depend on the riskiness of the insurer’s
enterprise and the cost of competing investments.

When the insurer buys n contracts, its cost of capital plus its
capital substitute is:

R(n)#KT
!
¾2X "2n½¾X¾Y+n2¾2Y+nP: (4.3)

To minimize its cost of providing insurance, the insurer will
choose the value of n that minimizes R(n). To determine this
n, we find:

R$(n) =
KT(n¾2Y" ½¾X¾Y)!
¾2X "2½n¾X¾Y+ n2¾2Y

+P: (4.4)

Setting R$(n) = 0, and then solving for n yields:4

n=
½¾X
¾Y

" ¾X
¾Y

"##$ P2(1" ½2)
K2T2¾2Y"P2

: (4.5)

4The details of this derivation are provided in the Appendix.
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Here we see that the number of contracts needed to minimize
the cost of providing insurance decreases:

1. as the price of the contracts, quantified by P, increases;

2. as ½ decreases, i.e. as the basis risk, quantified by ½,
increases;

3. as the cost of capital, quantified by K and T, decreases;
and

4. as the scale of the index, quantified by ¾Y, increases.

If you set P = 0, Equation 4.5 reduces to a familiar expression
for the “optimal hedge postion” otherwise known as the “hedge
ratio”.5

The quantities P and K depend upon market conditions. K
also depends on the overall risk of the insurer. T depends upon
the risk aversion of the insurer. To obtain the quantities ¾X , ¾Y
and ½ you need a catastrophe model. It is to this we now turn.

5. AN ILLUSTRATIVE CATASTROPHE MODEL

The following information can be provided by a catastrophe
model:

1. h—the natural event causing the catastrophe, numbered
from 1 to s;

2. ph—the probability of event h;

3. i—the location, e.g. county or ZIP code, numbered from
1 to m;

4. Ei—the number of exposure units at location i for all
the insurers in the index, appropriately scaled so that the
expected value of the index at expiration is $1.00;

5See, for example, Hentschel and Smith [4]. There are several articles that may be of
interest in this volume of the JRI, which is titled Symposium on Financial Risk Management
in Insurance Firms.
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5. ei—the number of exposure units for the insurer at lo-
cation i; and

6. Lih—the damage caused to a unit of exposure at location
i by event h.

For the examples in this paper, we will assume only one class of
property. In practice one should add another subscript to allow
for different classes each with different Lihs.

The assembling of this information is a formidable task, and
those who have done so regard the results of their efforts as
proprietary. In this paper we use an illustrative catastrophe model
published by Glenn Meyers [6]. Meyers’ model has the following
properties.

1. The covered area consists of a state with 50 counties.
The east coast is exposed to the ocean and therefore to
hurricanes.

2. Hurricanes travel only from east to west. They come in
various strengths and affect either five or ten counties.

3. For the inland counties, the damage per exposure unit is
70% of the damage per unit in the county immediately
to the east.

Table 1 provides a schematic map of the state along with the
index exposures, Ei.

Tables 2A and 2B provide the probability, ph, of each event
h, and the loss per unit of exposure, Lih, by each landfall county
for each event. Lih decreases by 70% as each event moves inland
by one county. The index loss for each event h is given by:

Index(h) =

50%
i=1

pheiLih

Average Annual Hurricane Loss
: (5.1)
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TABLE 1

INDEX EXPOSURES BY COUNTY

i Ei i Ei i Ei i Ei i Ei Ocean

1 0.010 2 0.030 3 0.030 4 0.010 5 0.010 OOO
6 0.010 7 0.030 8 0.030 9 0.010 10 0.010 OOO
11 0.010 12 0.010 13 0.010 14 0.010 15 0.010 OOO
16 0.010 17 0.010 18 0.010 19 0.010 20 0.010 OOO
21 0.010 22 0.010 23 0.010 24 0.090 25 0.090 OOO
26 0.010 27 0.010 28 0.010 29 0.010 30 0.010 OOO
31 0.010 32 0.010 33 0.010 34 0.010 35 0.010 OOO
36 0.050 37 0.010 38 0.050 39 0.050 40 0.010 OOO
41 0.050 42 0.010 43 0.050 44 0.050 45 0.010 OOO
46 0.010 47 0.030 48 0.010 49 0.010 50 0.010 OOO

In this example we assume that only one hurricane can happen
in a given year. To allow for multiple hurricanes in a year, one
could create synthetic “events” by randomly selecting hurricanes
that can happen in a single year, and simulating a very large
version of Table 2.

The probability of a hurricane happening is 0.5000.

We also give the probability distribution of the final index
values in Table 2. We consider this information to be valuable
to potential investors who want to estimate the risk they are tak-
ing. This probability distribution is also shown graphically in
Figure 1.

6. CALCULATING ¾X , ¾Y, AND ½

Given the information from the previous section, we calculate:

¾Y =

"###$ s%
h=1

&
m%
i=1

EiLih

'2
ph"

&
s%
h=1

m%
i=1

EiLihph

'2
: (6.1)

It is possible for a large multiline insurer to have the same catas-
trophe exposure as a small monoline property insurer. The capital
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TABLE 2A

SMALL HURRICANES

i, at Index Loss
h Landfall Lih ph for h

1 5 41.46 0.016181 0.4601
2 5 82.91 0.012945 0.9201
3 5 124.37 0.004854 1.3802
4 10 41.46 0.016181 0.4601
5 10 82.91 0.012945 0.9201
6 10 124.37 0.004854 1.3802
7 15 41.46 0.016181 0.2874
8 15 82.91 0.012945 0.5748
9 15 124.37 0.004854 0.8622
10 20 41.46 0.016181 0.2874
11 20 82.91 0.012945 0.5748
12 20 124.37 0.004854 0.8622
13 25 41.46 0.016181 1.6969
14 25 82.91 0.012945 3.3938
15 25 124.37 0.004854 5.0907
16 30 41.46 0.016181 0.2874
17 30 82.91 0.012945 0.5748
18 30 124.37 0.004854 0.8622
19 35 41.46 0.016181 0.2874
20 35 82.91 0.012945 0.5748
21 35 124.37 0.004854 0.8622
22 40 41.46 0.016181 0.8803
23 40 82.91 0.012945 1.7605
24 40 124.37 0.004854 2.6408
25 45 41.46 0.016181 0.8803
26 45 82.91 0.012945 1.7605
27 45 124.37 0.004854 2.6408
28 50 41.46 0.016181 0.3585
29 50 82.91 0.012945 0.7170
30 50 124.37 0.004854 1.0755

carried by each insurer depends on its entire book of business
and should be taken into account when calculating the coefficient
of correlation of its losses with the catastrophe index. To do this
let:

X = X1 +X2 (6.2)



198 A BUYER’S GUIDE FOR OPTIONS ON A CATASTROPHE INDEX

TABLE 2B

LARGE HURRICANES

Lih at 1st
i, at 1st i, at 2nd and Index

h Landfall Landfall 2nd Landfall ph Loss for h

31 5 10 124.37 0.004854 2.7604
32 5 10 165.82 0.006472 3.6806
33 5 10 207.28 0.003236 4.6007
34 10 15 124.37 0.004854 2.2424
35 10 15 165.82 0.006472 2.9899
36 10 15 207.28 0.003236 3.7374
37 15 20 124.37 0.004854 1.7244
38 15 20 165.82 0.006472 2.2992
39 15 20 207.28 0.003236 2.8740
40 20 25 124.37 0.004854 5.9530
41 20 25 165.82 0.006472 7.9373
42 20 25 207.28 0.003236 9.9216
43 25 30 124.37 0.004854 5.9530
44 25 30 165.82 0.006472 7.9373
45 25 30 207.28 0.003236 9.9216
46 30 35 124.37 0.004854 1.7244
47 30 35 165.82 0.006472 2.2992
48 30 35 207.28 0.003236 2.8740
49 35 40 124.37 0.004854 3.5030
50 35 40 165.82 0.006472 4.6707
51 35 40 207.28 0.003236 5.8384
52 40 45 124.37 0.004854 5.2816
53 40 45 165.82 0.006472 7.0422
54 40 45 207.28 0.003236 8.8027
55 45 50 124.37 0.004854 3.7163
56 45 50 165.82 0.006472 4.9551
57 45 50 207.28 0.003236 6.1939
58 5 124.37 0.004854 1.3802
59 5 165.82 0.006472 1.8403
60 5 207.28 0.003236 2.3003
61 50 124.37 0.004854 1.0755
62 50 165.82 0.006472 1.4340
63 50 207.28 0.003236 1.7925

where:

! X1 represents the catastrophe losses that are estimated with a
catastrophe model; and
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FIGURE 1

INDEX LOSS EXCEEDING PROBABILITY

! X2 represents the other insurer losses, which are assumed to
be uncorrelated with X1.

Then:

¾X1 =

"###$ s%
h=1

&
m%
i

eiLih

'2
"
&

s%
h=1

m%
i=1

eiLihph

'2
: (6.3)

¾X2 must be obtained from an analysis of the insurer’s other
business.

Let ½k be the coefficient of correlation of Xk with the index.
We assume ½2 = 0.

Then:

½1 =

s%
h=1

&
m%
i=1

(eiLij)

'&
m%
i=1

(EiLih)

'
ph

"
&

s%
h=1

m%
i=1

eiLihph

'
%
&

s%
h=1

m%
i=1

EiLihph

'
¾X1¾Y

(6.4)



200 A BUYER’S GUIDE FOR OPTIONS ON A CATASTROPHE INDEX

and
½=

½1¾X1¾Y+ ½2¾X2¾Y
¾X1+X2¾Y

=
½1¾X1!
¾2X1

+¾2X2

: (6.5)

7. EXAMPLES USING THE ILLUSTRATIVE MODEL

The examples given in this section will be based on an option
with a zero strike price contract as described in Section 2. We
chose this contract because it offers the insurer the maximum
amount of protection and can be replicated by a series of the
more popular call option spreads.

Using Table 1 as a reference, we create six sample insurers.
Each insurer’s book of business has a different geographical dis-
tribution.

1. All County Insurance Company has exposure in all coun-
ties in proportion to the industry as charted in Table 1.

2. Uni-County Insurance Company has the same exposure
in all counties.

3. Northern Counties Insurance Company has exposure in
counties 1–25 in proportion to the industry as charted in
Table 1. It has no exposures in counties 26–50.

4. Big County Insurance Company has all its exposure in
county 25.

5. Southern Counties Insurance Company has exposure in
counties 26–50 in proportion to the industry as charted
in Table 1. It has no exposures in counties 1–25.

6. Small County Insurance Company has all its exposure
in county 1.

To facilitate comparisons among the six insurers, we have scaled
the exposure of each so that ¾Xi is the same for each insurer.
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TABLE 3
INSURER PARAMETERS

Parameter Value

K 0.20
T 10
¾X1

30,000,000

¾X2
40,000,000

¾Y 1.819

TABLE 4
INSURER PARAMETERS

Insurer # Expected Loss ½1 ½

1 16,496,571 1.000 0.600
2 19,404,690 0.867 0.520
3 11,246,179 0.743 0.446
4 6,942,082 0.693 0.416
5 11,255,277 0.609 0.365
6 6,942,082 0.147 0.088

Table 2 lists the parameters, both selected and calculated from
the model, common to each insurer.

The parameters in Table 3 are sufficient to describe the cost
of providing coverage without buying any contracts on the catas-
trophe index. The needed insurer capital is:

C(0) = T¾X = 10
!
30,000,0002 +40,000,0002 = 500,000,000:

The cost of providing this capital is:

R(0) = KC(0) = 100,000,000:

We now introduce option contracts on the catastrophe index. Ta-
ble 4 gives the expected loss for each insurer resulting from
scaling the exposure, along with ½1 and ½ calculated from the
illustrative model using Equations 6.4 and 6.5.
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FIGURE 2

COST OF CAPITAL+NET COST OF CONTRACTS

As discussed in Section 4, the insurer wants to choose n so
as to minimize its cost of capital, KC(n), plus the net cost of the
n contracts, nP. Figure 2 shows the cost for selected insurers as
a function of n for P = 0.

As Figure 2 illustrates, there is an optimal number, n, of con-
tracts that will minimize the cost of writing insurance subject
to catastrophes. The number n can be calculated using Equation
4.5. Tables 5 and 6 show the ns calculated from Equation 4.5 for
each of the insurers in our example. The cost of insuring is then
given by Equation 4.3 for these ns.

Table 5 is sorted in order of P to illustrate the effect of the
contract price. As the price increases, the optimal number of
contracts decreases and the cost of insuring increases.

Table 6 is sorted in order of insurer to illustrate the effect
of the insurer’s correlation with the catastrophe index. As the
correlation increases, the optimal number of contracts increases,
and the cost of insuring decreases.

Without the catastrophe contracts, All County must raise an
additional $20,000,000 in capital. This provides a yardstick for
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measuring the efficiency of the contracts. For example, if P =
0:6, the cost of insuring catastrophes for All County is only an
additional $8,801,889 if it buys the optimal number of contracts.
All County reduces its cost of insuring its catastrophe exposure
by 56%. At the same time, Big County Insurance’s additional
cost of insuring its catastrophe exposure is reduced by only
17%.

It is possible for n to be negative. This simply indicates that
if the price of the contract is sufficiently high, it is better to be a
seller than a buyer of the catastrophe contracts.

8. CONTRACTS ON A CATASTROPHE INDEX VS. REINSURANCE

The examples given show that contracts on a catastrophe in-
dex can reduce the cost of providing insurance, even if the cor-
relation between the insurer’s catastrophe losses are not highly
correlated with the index. However, it is possible that conven-
tional reinsurance may be an even lower cost of providing in-
surance. In this section we show how to investigate this possi-
bility.

Reinsurance can be viewed as an option contract on a catas-
trophe index, with the index being the insurer’s own experience.
We take this view here. Properly interpreted, Equations 4.3 and
4.5 provide the means of finding out how much reinsurance to
buy, and the expected benefit of buying it.

We will use the examples in the preceding section to show
that reinsurance can give a lower cost of providing insurance.

A quota-share reinsurance contract corresponds to the option
contract with ½1 = 1. We find a net cost of reinsurance, denoted
by PR, that provides the same cost of insurance as the corre-
sponding contract on the catastrophe index. If reinsurance can
be obtained for a lower net cost, we conclude that insurance can
be provided at a lower cost.
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TABLE 5

THE EFFECT OF THE CONTRACT PRICE

Number of Cost of
Insurer # Contracts Insuring P

1 16,496,571 80,000,000 0.0
1 15,285,243 83,178,275 0.2
1 14,062,815 86,113,360 0.4
1 12,817,677 88,801,889 0.6
1 11,537,127 91,238,074 0.8

2 14,306,818 85,394,944 0.0
2 13,013,800 88,127,104 0.2
2 11,708,935 90,599,676 0.4
2 10,379,829 92,809,065 0.6
2 9,012,923 94,749,092 0.8

3 12,264,212 89,500,107 0.0
3 10,909,035 91,817,535 0.2
3 9,541,442 93,862,895 0.4
3 8,148,442 95,632,421 0.6
3 6,715,825 97,119,635 0.8

4 11,428,496 90,951,642 0.0
4 10,051,340 93,099,730 0.2
4 8,661,567 94,971,339 0.4
4 7,245,975 96,562,639 0.6
4 5,790,124 97,867,049 0.8

5 10,048,063 93,082,705 0.0
5 8,638,639 94,951,482 0.2
5 7,216,303 96,537,301 0.4
5 5,767,543 97,836,244 0.6
5 4,277,580 98,841,576 0.8

6 2,425,986 99,609,960 0.0
6 917,729 99,944,446 0.2
6 " 604,346 99,976,132 0.4
6 " 2,154,698 99,700,825 0.6
6 " 3,749,142 99,111,318 0.8

The PRs were calculated by trial and error as follows:

1. Select a PR.

2. Find nR using Equation 4.5.
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TABLE 6

THE EFFECT OF INSURER CORRELATION WITH THE INDEX

Number of Cost of
Insurer # Contracts Insuring P

1 16,496,571 80,000,000 0.0
2 14,306,818 85,394,944 0.0
3 12,264,212 89,500,107 0.0
4 11,428,496 90,951,642 0.0
5 10,048,063 93,082,705 0.0
6 2,425,986 99,609,960 0.0

1 15,285,243 83,178,275 0.2
2 13,013,800 88,127,104 0.2
3 10,909,035 91,817,535 0.2
4 10,051,340 93,099,730 0.2
5 8,638,639 94,951,482 0.2
6 917,729 99,944,446 0.2

1 14,062,815 86,113,360 0.4
2 11,708,935 90,599,676 0.4
3 9,541,442 93,862,895 0.4
4 8,661,567 94,971,339 0.4
5 7,216,303 96,537,301 0.4
6 "604,346 99,976,132 0.4

1 12,817,677 88,801,889 0.6
2 10,379,829 92,809,065 0.6
3 8,148,442 95,632,421 0.6
4 7,245,975 96,562,639 0.6
5 5,767,543 97,836,244 0.6
6 "2,154,698 99,700,825 0.6

1 11,537,127 91,238,074 0.8
2 9,012,923 94,749,092 0.8
3 6,715,825 97,119,635 0.8
4 5,790,124 97,867,049 0.8
5 4,277,580 98,841,576 0.8
6 "3,749,142 99,111,318 0.8

3. Find the cost of insurance using Equation 4.3 with P =
PR and n= nR.

4. If the cost of insurance is not equal to the target cost, try
another PR.
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TABLE 7

OPTIONS VS. REINSURANCE

Cost of
Insurer # Insuring P PR

1 88,801,889 0.6000 0.6000
2 92,809,065 0.6000 0.7820
3 95,632,421 0.6000 2.0073
4 96,562,639 0.6000 5.6528
5 97,836,244 0.6000 2.0165
6 99,700,825 0.6000 8.1631

We use the option contract from Table 6 with P = 0:6. The PRs
that provide the same cost of providing insurance are given in
Table 7.

For Insurer 1, All County Insurance Company, there is no
difference because its losses correlate perfectly with the index
losses. If the net cost for reinsurance to Insurer 2, Uni-County
Insurance Company, is between 0.6000 and 0.7820, reinsurance
is less expensive. There is more leeway for reinsurance for the
regional insurers, Insurers 3 and 5, and considerably more leeway
for reinsurance with the single-county insurers, Insurers 4 and 6.

9. SUMMARY

The cost of capital and its substitutes is determined by a va-
riety of market conditions that are beyond the control of the
insurer. To efficiently use its capital, the insurer has to con-
stantly analyze the opportunities that are presented to it. This
paper shows how a catastrophe model can be used to evaluate
the costs and benefits of alternative catastrophe risk management
tools for insurers. The alternatives include:

1. raising sufficient capital to contain the catastrophe risk;

2. buying options on a catastrophe index; and

3. buying reinsurance.
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These alternatives are quantified by the cost of providing insur-
ance, which depends upon:

1. the price of the contracts and/or reinsurance, as quanti-
fied by P and PR;

2. the basis risk, as quantified by ½; and

3. the cost of capital, as quantified by K, T and ¾X .

The quantities P and K depend upon market conditions, and
T depends upon the risk aversion of the insurer. The quantities
¾X , ¾Y, and ½ are obtained from the catastrophe model.

With these quantities one can calculate the optimal number
of contracts (or the optimal amount of reinsurance) to buy with
Equation 4.5 and then quantify the cost of providing insurance
with Equation 4.3. The cost of the various alternatives can be
compared to provide the best insurance value.
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APPENDIX

DERIVATION OF EQUATION 4.5

We seek to solve the equation:

K %T % (n¾2Y" ½¾X¾Y)!
¾2X "2n½¾X¾Y+n2¾2Y

+P = 0:

Moving the P and the denominator to the other side of the equa-
tion, and squaring yields:

P2(¾2X "2n½¾X¾Y+ n2¾2Y) = K2T2(n¾2Y" ½¾X¾Y)2

= K2T2(n2¾2Y"2n½¾X¾3Y+ ½2¾2X¾2Y)
The above equation can be put into the form: an2 +bn+ c= 0with

a= ¾2Y(K
2T2¾2Y"P2);

b ="2½¾X¾Y(K2T2¾2Y"P2); and

c= ¾2X(K
2T2¾2Y½

2"P2):
The solution for n is of the form

"b&
'
b2"4ac
2a

with:

"b
2a

=
2½¾X¾Y(K

2T2¾2Y"P2)
2¾2Y(K

2T2¾2Y"P2)
=
½¾X
¾Y
; and

b2" 4ac
4a2

=

4¾2X¾
2
Y½
2(K2T2¾2Y"P2)2

"4¾2Y(K2T2¾2Y"P2)¾2X(K2T2¾2Y½2"P2)
4¾4Y(K

2T2¾2Y"P2)2

=
¾2X½

2(K2T2¾2Y"P2)"¾2X(K2T2¾2Y½2"P2)
¾2Y(K

2T2¾2Y "P2)

=
¾2X
¾2Y
% P2(1" ½2)
K2T2¾2Y"P2

:
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Then:

n=
"b"'b2"4ac

2a
=
½¾X
¾Y

" ¾X
¾Y

"##$ P2(1" ½2)
K2T2¾2Y"P2

:

Squaring the equation in the first step introduces an extraneous
root. The solution with the positive square root is the extraneous
root since it indicates one should buy more contracts when P > 0
than when P = 0.



THE IMPACT OF INVESTMENT STRATEGY ON THE
MARKET VALUE AND PRICING DECISIONS OF A

PROPERTY/CASUALTY INSURER

TRENT R. VAUGHN

Abstract

This paper examines the impact of investment strat-
egy on the market value and pricing decisions of a prop-
erty/casualty insurance company. Section 2 utilizes clas-
sic financial theory to demonstrate the irrelevance of
investment policy in perfect capital and product mar-
kets. Sections 3 through 6 illustrate four possible sources
of investment policy relevance: imperfect information
in property/casualty (P/C) insurance product markets,
guaranty funds, conflicts of interest between sharehold-
ers and current policyholders, and taxes.
Lastly, Section 7 will discuss the implications of the

optimal investment strategy on an insurer’s pricing de-
cisions. This section will close with a discussion of three
commonly posed questions: (1) Is insurance a negative-
net present value (NPV) transaction to the policyholder?
(2) Does excess capital depress insurance prices? and
(3) Does diversification create value?

1. INTRODUCTION

In 1995 and 1996, the bullish stock market produced large
investment earnings for the property/casualty insurance industry.
In fact, the increase in the industry’s net income in 1996 was
driven largely by continued growth in realized capital gains [12].
Not all insurers, however, benefited equally from the booming
equity market. P/C insurance companies vary considerably in
the proportion and composition of funds invested in the equity
market.

211
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Historically, long-term investment returns on common stocks
have outperformed returns on bond portfolios [11, page 33].
Likewise, riskier common stock portfolios have generally pro-
duced better returns over the long run. In general, investors re-
quire some payoff for accepting greater investment risks, and this
payoff comes in the form of higher expected returns. Given this
relationship, many insurance managers may adopt a riskier in-
vestment strategy in order to increase earnings, return on equity
(ROE), and shareholder value.

However, will adopting a riskier investment strategy, such as
a higher proportion of equity investments, really increase share-
holders’ wealth?1 In other words, can insurance management
change the total value of the company by changing its asset al-
location?

Section 2 of this paper utilizes classic financial theory to
demonstrate the irrelevance of investment policy in perfect cap-
ital and product markets. In perfect markets, the only decision
capable of creating or destroying value is the firm’s underwriting
decisions. Asset allocation does not matter.

In reality, however, insurers do not operate in perfect markets,
and the insurer’s investment choices can affect value. Sections
3 through 6 illustrate four possible sources of investment policy
relevance: imperfect information in P/C insurance product mar-
kets, guaranty funds, conflicts of interest between shareholders
and current policyholders, and taxes.

Given these relevant market imperfections, a value-maximiz-
ing asset allocation is possible. But what impact does this optimal
investment portfolio have on competitive insurance prices? And
how should this impact be reflected in insurance pricing models?
Section 7 will discuss the implications of the optimal investment
strategy on an insurer’s pricing decisions.

1Shareholders’ wealth is a measure of the total market value of the shareholders’ invest-
ment in the firm.
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Lastly, Section 7 will close with a discussion of three com-
monly posed questions: (1) Is insurance a negative-NPV trans-
action to the policyholder? (2) Does excess capital depress in-
surance prices? and (3) Does diversification create value?

2. INVESTMENT POLICY IRRELEVANCE IN PERFECT MARKETS

Nonfinancial Firms vs. Insurance Companies

Most of modern financial management theory focuses on de-
cisions by nonfinancial firms, such as manufacturing and retail-
ing concerns. Nonfinancial firms differ significantly from insur-
ance firms in their investments, operations, and financing.

Nonfinancial firms make investments in product markets, the
markets that bring together the buyers and sellers of goods and
services. The structure of the various product markets ranges
from pure monopoly to perfect competition. Those companies
that acquire assets and capabilities in attractive product markets
will earn superior profits [4]. Conversely, nonfinancial firms ob-
tain financing in the capital markets, where competition is intense
and profits are difficult to achieve.

Insurance companies operate in the reverse manner. Insurers
make investments in the intensely competitive capital markets,
where economic profits are elusive. On the right-hand side of
the balance sheet, they obtain financing partially from insurance
product markets. These markets may not be perfectly competitive
in all niches at all times, allowing the possibility for superior
profits.

A classic problem in finance considers the optimal capital
structure, or financing decisions, for a nonfinancial firm. Given
highly efficient capital markets, can the nonfinancial firm’s fi-
nancing decisions create value? In order to isolate the effect of
the firm’s financing decisions on value, its current assets and
operations are usually considered fixed.

Given the inherent differences in their operating environment,
it is logical to modify this problem for insurance companies. As
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mentioned, insurance companies deal with capital markets on
the asset side. For insurers, we must consider the optimal in-
vestment strategy, given fixed financing from policyholders and
shareholders.

Modigliani and Miller’s Propositions I and II

In their famous Proposition I, Modigliani and Miller (abbre-
viated as “MM” throughout this paper) proved that the value of
the nonfinancial firm is determined entirely on the left side of
the balance sheet by the assets it owns [16]. The firm’s capital
structure, the mix of different securities it has issued, does not
impact firm value. MM’s proof assumes (1) perfect capital mar-
kets, including no taxes, and (2) the firm’s financing decisions
have no impact on the firm’s investment decisions.

The implications of Proposition I are shown graphically in
Figure 1. In perfect capital markets, the firm’s debt ratio has
no impact on its operating income (since investment strategy is
fixed) or on the total firm value. As such, the expected rate of
return on the firm’s assets (rA) is independent of the firm’s debt
ratio and is displayed as a horizontal line.

For low debt levels, the expected return on the debt (rD) equals
the risk-free rate of interest. As the firm borrows past a certain
point, the firm’s debtholders demand a higher interest rate; and
the rD curve slopes upward.

The expected return on the levered equity (rE) is shown as
the top curve on the graph. For low debt levels, rE increases
linearly with the debt ratio. Eventually, the slope of rE decreases,
as debtholders bear more of the business risk of the firm. The
exact formula for the rE curve is given by MM’s Proposition
II:

rE = rA+(D=E)! (rA" rD):
Here, D=E represents the debt-to-equity ratio, expressed in mar-
ket values.
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FIGURE 1

MODIGLIANI AND MILLER’S PROPOSITION I

The Insurer as a Levered Equity Trust

In a 1968 Proceedings paper, J. Robert Ferrari proposed view-
ing the P/C insurer as a levered equity trust [9]. In other words,
Ferrari visualized the insurer as borrowing funds from policy-
holders, then investing the combined policyholder and share-
holder funds in financial assets.
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The interest rate on the funds borrowed from policyholders
is reflected in the premium charged. In the absence of taxes,
the premium equals the present value of the expected losses and
expenses under the policy.2 In this sense, the “debt” issued by
insurers is comparable to zero-coupon debt issued by corpora-
tions. That is, the return to the insurance “debtholders” is not
provided by a regular interest payment, but by discounting the
expected loss payment.3

Assuming a tax-free, perfectly competitive economy, the ex-
pected rate of return on the insurer’s levered equity is given by
the MM Proposition II formula. In this context, rA represents
the expected return on the insurer’s asset portfolio, rD represents
the expected return on the insurer’s liabilities, and the “D” term
represents the present value of the insurer’s liabilities.

Figure 2 displays the Proposition II formula graphically for a
hypothetical insurance company. The company depicted in this
figure holds a very conservative investment portfolio, as evi-
denced by the close proximity of the expected investment return
(rA) to the risk-free rate. Furthermore, the company’s liabilities
are risk-free at the current debt ratio. In other words, rD is equal
to the risk-free rate.4

Now assume that the company in Figure 2 decides to imple-
ment a more aggressive investment stance, perhaps investing a
larger proportion of the portfolio in blue-chip stocks.

Figure 3 displays the consequences of this new investment
policy. As shown, the riskier investment strategy results in an
increased expected investment return (rA). As rA increases, the
expected return to shareholders (rE) increases according to the
Proposition II formula.

2This fact is demonstrated in the Myers and Cohn [18] article discussed in Section 7.
3See page 685 of [2] for a comparison of interest-paying bonds and pure-discount bonds.
4The covariance of insurance losses with the capital market return is often very low. In
terms of the capital asset pricing model (CAPM), the beta of insurance losses is often
close to zero, implying an expected return equal to the risk-free rate. However, this is
not a necessary assumption for the proof.
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FIGURE 2

MODIGLIANI AND MILLER’S PROPOSITION II
(Conservative Investment Portfolio)

Does this higher expected return make shareholders better off?
Unfortunately, the MM theory implies that the higher expected
return will be exactly offset by a higher required return by share-
holders. Specifically, the beta of the levered equity is expressed
by an equation very similar in form to Proposition II: BE = BA+
(D=E)! (BA"BD). Therefore, the systematic risk and required
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FIGURE 3

MODIGLIANI AND MILLER’S PROPOSITION II
(Riskier Investment Strategy)

return on the levered equity increase exactly in lockstep with
the expected return, leaving shareholder wealth unchanged [2, p.
456].

While the riskier investment policy displayed in Figure 3 in-
creased rA and rE , the insurer’s liabilities remained risk-free at
the current debt ratio. Assume that our hypothetical insurer now
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FIGURE 4

MODIGLIANI AND MILLER’S PROPOSITION II
(Riskiest Investment Portfolio)

decides to go for broke, investing entirely in risky stocks, collat-
eralized mortgage obligations (CMOs), and derivatives.5 Figure
4 shows the results of this new investment policy. Not surpris-
ingly, the rA line and the rE curve each notch further up.

5In the U.S., investment regulations would most likely preclude such a risky asset
allocation.
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But from the policyholders’ standpoint, the new investment
policy results in a much greater risk that the insurer will default
on its promises. Accordingly, the policyholders will mark down
the value of the insurer’s promise and demand a lower premium.
Equivalently, the insurer will now have to assume more expected
losses and expenses to maintain the same level of premium—and
the same ongoing “debt” ratio. That is, the insurer is now paying
a higher interest rate on the funds borrowed from policyholders.
This is reflected in Figure 4, as rD now exceeds the risk-free rate.

The systematic risk of the levered equity in Figure 4 is again
given by the formula: BE = BA+(D=E)! (BA"BD). The BD
term adjusts to reflect the additional risk assumed by policyhold-
ers. Once again, required return increases in accordance with
expected return, leaving shareholders’ wealth unchanged. The
critical assumption is that policyholders correctly identify and
adjust for the investment change.

Thus, assuming perfectly competitive capital markets and in-
surance product markets, an insurance company’s investment
policy has no impact on the value of the company and the wealth
of its shareholders. In reality, perfect MM conditions rarely exist,
and investment policy can affect value. This paper explores the
implications of several possible market imperfections on invest-
ment strategy, beginning with imperfect information in insurance
markets.

3. IMPERFECT INFORMATION IN INSURANCE PRODUCT
MARKETS

Section 2 demonstrated that a riskier investment strategy will
increase the expected and required rate of return on levered eq-
uity. Moreover, a dramatic investment change may also increase
the default risk and systematic risk of the insurer’s liabilities,
thereby eliciting an increase6 in the insurer’s rD; new policy-
holders will then demand lower premiums.

6Any investment strategy that increases rA will also increase rE (Figure 3). However,
we did not discuss the degree of investment risk required to induce an increase in rD
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The Section 2 proof assumes perfect competition as an insur-
ance product market model. In a perfectly competitive market,
every buyer possesses perfect information regarding the price
and quality of the insurance promise. If the riskier investment
policy forces an increase in rD, new policyholders will recognize
this.

In real world insurance markets, buyers rarely have perfect
information. For instance, how many drivers are aware of the
investment policies of competing personal auto carriers? And
could a P/C insurer modify its investment strategy enough to
increase the risk of its liabilities without policyholders noticing?

Fortunately, most market participants would agree that P/C in-
surance in the U.S. is a tremendously competitive business. Sev-
eral thousand U.S. and foreign insurance companies compete
for the business of millions of domestic customers. Consumer
groups, state insurance departments, rating agencies, agents and
brokers all work to ensure that sufficient information is pro-
mulgated to insurance buyers. These market conditions ensure
that any investment change dramatic enough to impact the risk
of the insurer’s liabilities would be fully appreciated by buy-
ers.

4. GUARANTY FUNDS

In a competitive insurance market, policyholders will recog-
nize an investment shift that increases the risk of the insurer’s
liabilities. By shifting to a very risky investment policy, the in-
surance company will force the policyholders to share in the in-
vestment risk. While the policyholders are now sharing in these
risks, they are also getting paid for it, by paying a lower insur-
ance premium for the same policy. As long as these premium
changes are conducted on fair terms, shareholders’ wealth will
not increase.

(Figure 4). For an insurer with a strong surplus position and a reasonably diversified
underwriting portfolio, it may take a hair-curling investment change to increase rD .
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Under the U.S. guaranty fund system, however, policyholders
will not bear all of the risks and costs of insolvency. A large part
of these risks and costs will be absorbed by the guaranty fund.7

In this case, shareholders will gain8 from an investment change
that increases rD.

For example, assume that policyholders of insolvent insurance
companies will be reimbursed on a full and timely basis by the
guaranty fund. The riskiness of an insurance company’s invest-
ment strategy is then irrelevant to the policyholder. Policyholders
will discount expected losses and expenses at the risk-free rate
regardless of the company’s investment risk.

Thus, if an investment change increases rD, the value of the
shareholders’ stake in the firm is increased. In effect, the guar-
anty fund’s promise allows the company to obtain a subsidized
loan from new policyholders. The value of the company is in-
creased by the NPV of this loan. Provided that all parties are
aware of the loan guarantee prior to the transaction, the entire
increase in value will fall to the shareholders. The riskier the in-
vestment policy, the more valuable this loan guarantee becomes.

5. CONFLICTS OF INTEREST BETWEEN SHAREHOLDERS AND
CURRENT POLICYHOLDERS

An investment policy which increases the insurer’s rD also
creates a transfer of value from current policyholders to share-
holders—even without the assumption of imperfect information
or guaranty funds.

How does this transfer of value work? At the time the cur-
rent policyholders purchased their policies, they discounted the
insurer’s promises at the lower risk-free rate. But after the invest-

7Guaranty funds do not protect all policyholders. For instance, guaranty fund protection
does not apply to policyholders of non-admitted insurance companies. Guaranty funds
also do not provide “full” coverage in terms of amounts or certain lines of business.
8Remember: While every riskier investment strategy will increase rA (see Figure 3), not
every investment change will increase rD (see Figure 4).
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ment change, rD exceeds this risk-free rate. If these policyholders
were free to renegotiate the outstanding portion of their policies,
the premium they would be willing to pay would be lower.9

Yet, these contracts are not typically renegotiable—many, in fact,
have already expired.

The total value of the insurance company’s assets, however,
is not changed by the switch into riskier investments. Assuming
efficient capital markets, all financial assets are bought and sold
at their fair value. With the value of the assets unchanged, the
current policyholders’ loss is the shareholders’ gain.

Clearly, only a company that is already in financial trouble
would adopt a riskier investment strategy for the purpose of cre-
ating a transfer of value from current policyholders to sharehold-
ers. However, the example serves to illustrate the general rule that
a shift in the risk of the firm’s assets benefits shareholders at the
expense of debtholders.10

In sum, the imperfect information, guaranty funds, and trans-
fer of value effects all encourage the insurer to invest in riskier
securities.11 Section 6 discusses the possibility that taxes may
have an opposite effect, encouraging the insurer to invest signif-
icant amounts in bonds.

6. TAXES AND INVESTMENT POLICY

The proof of investment policy irrelevance in Section 2 relies
on the assumption of a perfectly competitive, tax-free economy.

9Assuming no guaranty fund applies.
10See Brealey and Myers [2, p. 492] for a general discussion, and Galai and Masulis [10,
pp. 62–64] for a rigorous proof.
11In practice, increasing the riskiness of an insurance company’s assets may actually
have the perverse effect of decreasing shareholder wealth for two other reasons: (1) in-
surance buyers generally prefer not to share in the investment risk of the company, and
(2) since insurance companies are subject to regulatory solvency constraints, increasing
the volatility of its investments will increase the likelihood of losing an important intangi-
ble asset—franchise value. For insurers with valuable growth opportunities, the reduction
in franchise value may dominate the guaranty fund and transfer of value effects. See [14,
pp. 450–457 and 644].
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The impact of taxes on the optimum capital structure and value
of the corporation has been a source of debate in financial theory.
Three competing theories have emerged: MM’s original theory
corrected for taxes, Miller’s equilibrium theory, and a compro-
mise theory. This section will briefly describe the three com-
peting theories and discuss the implications of each theory on
an insurer’s choice between taxable bonds and common equity.
The section will conclude with a brief discussion of municipal
securities and dividend-paying stocks.

MM—The “Corrected” Theory

The original MM theory described in Section 2 concludes that
a company’s decision to borrow or lend money does not impact
its market value. In 1963, MMmodified the original theory to ac-
commodate corporate taxes [17]. This modified theory stresses
the corporate tax advantage of borrowing: debt interest is de-
ductible at the corporate level, whereas dividends and retained
earnings are not.

The “corrected” MM theory does not explicitly address in-
vestor taxes; only corporate taxes are relevant. This simplifica-
tion implies that investor taxes are independent of the firm’s debt
policy; in other words, the effective personal tax rate on corporate
debt equals the effective personal tax rate on corporate equity.

Under MM’s revised theory, there is a clear tax disadvantage
to corporate lending. A firm’s decision to invest in taxable bonds
decreases the value of the firm; this decrease in value is equal to
the present value of corporate taxes paid on the investment.

For instance, suppose a hypothetical firm decides to issue
$1,000 of new equity and invest the money in a perpetual, risk-
free, taxable bond with a 10% coupon. Assume the corporate
tax rate is 35%. The firm’s value is then reduced by the present
value of a perpetual tax payment of 0:10!$1,000! :35 = $35.
The correct discount rate for these tax payments is generally as-
sumed to be the interest rate on the bond; thus, the value of the
company is reduced by $35=0:10 = $350.
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However, suppose the same hypothetical firm were to invest
the newly raised capital in risk-free (zero beta) common equity.12

Given that the effective personal tax rates on equity income and
bond income are equivalent, the expected return on the common
stock equals the risk-free rate of interest. Yet, the firm is taxed
at a lower rate on the common stock at the corporate level. This
lower tax rate results from two provisions of the tax code: (1)
corporations are only taxed on 30% of the dividends received
from other corporations, and (2) equity income in the form of
unrealized capital gains escapes taxation entirely. The result is a
higher after-tax return to the firm on the common stock than the
taxable bond.

Of course, to the extent that taxable interest income is offset
by underwriting losses, investing in corporate bonds creates no
tax disadvantage to the insurer. Yet, since the insurer cannot be
certain of the actual underwriting losses, the safest strategy in
this simplified MM world would be to invest solely in common
stocks. Common stocks will offer the firm a higher after-tax
return than taxable bonds of equivalent risk.

Varying Personal Tax Rates—Miller’s Debt and Taxes

MM’s corrected theory implies that an insurer’s optimal in-
vestment strategy is to invest solely in common stock. Of course,
we don’t see any insurance companies doing this in practice.

The MM theory also leads to unrealistic implications for the
optimal behavior of nonfinancial firms. At its extreme, the MM
theory implies that industrial firms should employ entirely debt-
financed capital structures. This extreme prediction, however, ig-
nores an important cost of higher debt levels—the increased cost
of bankruptcy and financial distress.

12Zero beta common stock is not “risk-free” in the same sense as government debt; in
this context, risk-free merely implies that the stock possesses no systematic, or undiver-
sifiable, risk.
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Specifically, MM’s corrected theory asserts that a borrowing
firm creates value through the corporate tax shield of debt. In
practice, the value of this corporate tax shield will be partial-
ly offset by the expected cost of bankruptcy and financial dis-
tress.

Yet, many financial economists still worried about the impli-
cations of the theory. Compared to the enormous value of cor-
porate tax shields, the expected costs of financial distress were
generally low—implying that most firms should operate at ex-
tremely high debt levels. Merton Miller compared the situation to
making horse-and-rabbit stew: mix in one horse and one rabbit,
and it tastes an awful lot like horse stew.

Miller resolved the horse-and-rabbit stew dilemma by specifi-
cally introducing investor taxes into the mix [15]. Miller’s revised
theory assumed that the effective tax rate on equity is zero (due
to the deferring of capital gains), but that individual tax rates on
interest income varied from zero (for example, investments in
pension funds) to rates that exceeded the corporate tax rate (for
high-income individuals).

In Miller’s world, the total amount of corporate debt would
adjust to minimize the sum of corporate and personal taxes. All
investors in tax brackets less than or equal to the corporate tax
rate would hold corporate debt. Investors in higher tax brack-
ets would hold equity or municipal (tax-free) bonds. The ex-
pected rate of return on risk-free common stocks would equal
rf ! (1"Tc), the risk-free interest rate times the complement of
the corporate tax rate.

Under Miller’s theory, there is no tax disadvantage to a firm
investing in taxable bonds. For example, consider the hypothet-
ical firm discussed in the previous subsection. The bond pur-
chased earns interest of 10% before corporate taxes, but 6.5% af-
ter corporate taxes. The required return to the firm’s shareholders
on a risk-free investment is also 6.5% (10%! (1" 0:35)). Thus,
the investment has an NPV of zero and firm value is unchanged.
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Miller’s theory implies that an insurance company should in-
vest solely in taxable bonds. Specifically, risk-free taxable bonds
will offer investors a (pre-tax) return of rf; risk-free common
stock will offer a (pre-tax) return of rf ! (1"Tc). Hence, tax-
free investors gain value by investing in corporate bonds, which
offer a higher return than common stocks of equivalent risk. To
the extent that interest income is shielded by underwriting losses,
the company is a tax-free investor. To the extent that interest is
not shielded by underwriting losses, the company earns the same
after-tax return on bond income as it would on risk-free equity
income (rf ! (1"Tc)).
Miller coined the term “bondholders’ surplus” to describe the

extra (pre-tax) return on taxable bonds. According to the Miller
model, this extra return is largest in the case of risk-free bonds
[15, p. 271]. Therefore, the theory implies that insurers should
invest in super-safe government debt to maximize bondholders’
surplus. This results in a fortunate counterweight to the Sections
4 and 5 argument, which implied that insurers should invest in
risky assets at the expense of the guaranty fund and current pol-
icyholders.

A Compromise Theory

DeAngelo and Masulis [6] and others have described a com-
promise theory that avoids the extreme assumptions and im-
plications of the MM and Miller theories. The adherents of
this view contend that Miller’s assumptions are somewhat ex-
treme and were not intended to be a realistic description of
the tax code. Instead, most economists would agree that there is
a moderate tax advantage to corporate borrowing (and corre-
sponding tax disadvantage to corporate lending). However, this
tax effect is less than the MM corrected theory predicts [2, p.
484].

Specifically, under this compromise theory, the tax code’s ef-
fect on common stock returns is described by the factor T#, which
is between zero (MM) and the full corporate tax rate (Miller).
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That is, the expected return on risk-free common stock is given
by rf ! (1"T#).
To the extent that bond interest is shielded by underwriting

losses, the company is a tax-free investor and benefits by in-
vesting in taxable bonds.13 To the extent that interest income is
not shielded by underwriting losses, the company generally
earns a higher after-tax return on equity income than on bond
income. For instance, if we assume that equity income escapes
taxation at the corporate level,14 the expected after-tax return on
risk-free common stock is given by rf ! (1"T#); the expected
after-tax return on risk-free bonds is rf ! (1"Tc), where Tc is
greater than T#. Thus, the company should attempt to invest in
taxable bonds up to the point where bond interest equals expect-
ed underwriting losses, with the balance invested in common
stocks.

Fortunately, this optimal investment strategy under the com-
promise theory also works well in both the MM and Miller
worlds. It satisfies Miller’s mandate that the portion of invest-
ment returns shielded by underwriting losses should be derived
from taxable bonds. It also satisfies the MM belief that common
stocks offer a higher after-tax return than bonds for corporate
investors in a tax-paying position.

While the theory to this point indicates that insurers should
invest significant amounts in common stocks, it does not sug-
gest which stocks are most appealing to insurers. For example,
should insurers invest in high-dividend stocks to capitalize on
the corporate dividend exclusion? Or should they invest in low-
dividend stocks and benefit from the tax exclusion on unrealized
capital gains?

13Under the compromise theory, risk-free taxable bonds will offer the company a (pre-
tax) return of rf ; risk-free common stock will offer a (pre-tax) return of rf ! (1"T#).
14 In Section 7, Table 1 will demonstrate how an insurer can structure its asset portfolio
so that equity returns escape taxation at the corporate level.
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Common Stocks and Dividend Policy

Under the current (1996) tax law, many individual investors
pay higher tax rates on dividends than capital gains. Today’s tax
code prescribes a maximum marginal tax rate of 39.6% on div-
idends and 28% on realized capital gains.15 Furthermore, since
capital gains taxes are deferred until the stock is sold, the effec-
tive tax rate on capital gains could be much less than 28%.

Many economists contend that the higher effective tax rate
on dividends implies that high-dividend stocks must be priced
to offer a higher pre-tax rate of return than low-dividend stocks
of equivalent risk.16 This differential compensates for the tax
disadvantage of dividends and provides that both types of stocks
offer identical after-tax returns.

In this case, the implication to corporate stock purchasers is
clear. The higher pre-tax return on high-dividend stocks allows
the benefits of the corporate dividend exclusion to overwhelm the
tax deferral on capital gains. Insurers should respond by selecting
stocks with high-dividend payouts—for example, utilities, real
estate investment trusts (REITs), and oil companies.

Another group of economists, led by the late Fischer Black
[1], offers a different view. This group agrees that a large class
of high-income investors would prefer to invest in companies
with low-dividend payouts. Other investors, such as corporate
investors with short investment horizons, would pay lower taxes
on dividends than capital gains and would prefer high-dividend
stocks. And tax-free investors would remain neutral, paying no
taxes on either dividends or capital gains.

The proponents of the alternative theory argue that a wide
enough variety of stocks already exists to satisfy investors of

15At the time of writing, the Taxpayers Relief Act of 1997 had not yet been finalized.
The Act promises to lower the capital gains tax rate for certain long-term investments.
16See [2, pp. 430–431], for a detailed explanation. Also, Table 16-2, on p. 433, summa-
rizes the research findings on the effect of dividend yield on returns.
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any tax position. No company can increase (or decrease) its share
price by modifying its dividend strategy; consequently, high-
dividend stocks offer the same expected pre-tax return as low-
dividend stocks of equivalent risk.

This alternative theory provides a simple prescription for all
common stock investors, whether businesses or individuals: given
the equality of pre-tax returns on all stocks of the same risk, the
equity investor should pick those stocks that minimize his or her
taxes.

For the corporate investor, the tax-minimizing stock selection
depends on the investment time horizon. Suppose the corporation
is merely looking for a short-term parking spot for some extra
cash that will be needed in one year. The effective tax rate on
dividends will be 10.5% (assuming 30% of dividends are taxed
at 35%), while the effective tax rate on capital gains is 35%. This
corporation should choose a high-dividend stock.

But the longer the corporation’s investment time horizon, the
lower the effective tax rate on capital gains becomes. For long-
term corporate investors, low-dividend stocks become the invest-
ment vehicle of choice.

This suggests an optimal common stock strategy for the P/C
insurer. The common stock portion of the investment portfolio
is intended as a relatively permanent capital base for support-
ing current and future underwriting. In this sense, the insurer
should select zero-dividend growth stocks, selling only as re-
quired to pay larger-than-expected insurance losses. If the in-
surer is forced to realize capital gains to pay insurance losses,
these realized gains will be offset by underwriting losses, and
still escape taxation.

Of course, an insurer that followed this strategy precisely
would have no extra cash to pay out as shareholder dividends.
Would this zero-payout strategy affect the value of the insurer’s
shares? Provided that the “dividends-are-irrelevant” school is
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right, the market value and pre-tax return of the insurance com-
pany would not be impacted by its dividend policy.

A Comment on Municipal (Tax-Exempt) Bonds and Preferred
Stock

The discussion above concentrates on the broad asset classes
of taxable bonds and common equity. Historically, insurers have
also purchased large amounts of preferred stock and tax-exempt
bonds. The standard investment approach has emphasized tax-
exempt bonds and the dividends-received deduction to minimize
federal income taxes and maximize net income [13, pages 4: 66–
67].

Prior to the Tax Reform Act (TRA) of 1986, tax-exempt bonds
and preferred dividends offered special tax advantages to insur-
ers. The TRA of 1986 eliminated most of these tax advantages,
rendering these investments inferior to other alternatives. For ex-
ample, tax-exempt bonds should offer similar pre-tax returns as
growth stocks of identical risk.17 But the insurer will now be
taxed on the tax-exempt bond income according to the prora-
tion and Alternative Minimum Tax (AMT) provisions of the tax
code, while unrealized capital gains on the growth stocks remain
tax-exempt.

Likewise, many insurance company portfolio managers in the
past espoused the view that high-dividend stocks offered higher
pre-tax yields. The TRA of 1986 equalized personal tax rates on
dividends and realized capital gains, converting many investment
managers to the Fischer Black school. The new mantra became
minimizing taxes on stock purchases, and preferred stocks lost
much of their original appeal.

17For the individual investor, municipal bonds are taxed at a lower rate than equity
returns: municipal bond interest is tax-free, while investors still pay taxes on dividends
and realized gains from stocks. Moreover, the vast majority of municipal bonds are
held by individuals [3, p. 43]. Due to the personal tax advantages of municipals, these
securities should actually offer a slightly lower pre-tax yield than common stock of
equivalent risk. For a detailed proof, see [6, p. 26].
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7. INTERACTION OF INVESTMENT POLICY AND INSURANCE
PRICING

The Traditional DCF Pricing Model Under MM Assumptions

Myers and Cohn [18] describe a Discounted Cash Flow (DCF)
insurance pricing model that is widely used for internal prof-
itability studies and regulatory purposes. The model derives the
fair insurance premium, which provides shareholders with an
adequate expected rate of return. This fair premium is partly a
function of the present value of expected losses and expenses
resulting from the policy.

In theory, the discount rate used to capitalize expected losses
and expenses should vary by line of business. Certain lines of
business, such as credit or unemployment insurance, possess a
high degree of systematic risk and deserve a correspondingly
high discount rate. Most of the risk of other lines, such as
crop/hail or earthquake, is diversifiable—the risk-free rate may
be appropriate for these coverages.

Moreover, the theory presented in this paper demonstrates that
the correct discount rate for insurance liabilities also depends on
the insurer’s asset allocation. Insurers with very risky investment
strategies merit higher hurdle rates.

The DCF model also includes two adjustments to the fair pre-
mium. First, the present value of taxes on investment income
from both policyholder-supplied and shareholder-supplied funds
must be included in the fair premium. Second, the fair premium
is reduced by the present value (PV) of the corporate tax shield
from underwriting losses. This tax shield is calculated as 35%
of expected underwriting losses.

In sum, the traditional DCF pricing formula calculates the fair
premium as follows:



INVESTMENT STRATEGY IMPACT ON MARKET VALUE AND PRICING 233

fair insurance premium

= PV of expected losses and expenses

+PV of expected tax on investment income
from policyholder and shareholder supplied funds

"PV of corporate tax shield from underwriting losses

Most DCF pricing models in practical use assume the MM
(corrected) theory of debt and taxes. These models typically as-
sume that (1) the MM model correctly describes the tax disad-
vantage of corporate lending, and (2) insurers invest solely in
taxable bonds. As such, the common equity value of the insurer
is reduced by the tax disadvantage of corporate investment.

But given the tax disadvantage of corporate lending in the MM
world, why would the insurance company invest solely in tax-
able bonds? The discussion in Section 6 indicates that the safest
strategy in this scenario would be to invest entirely in risk-free
(zero beta) common stock, selling only enough shares at the end
of the period to pay actual indemnity losses. The insurer will
pay taxes in good years—for example when indemnity losses
are less than expected (perhaps even leading to an underwriting
profit), and investment returns are positive (shares sold to pay
the indemnity losses are sold at a capital gain). In bad years, the
insurer will earn tax carry-overs—for example, when indemnity
losses are high (a large underwriting loss) and investment re-
turns are negative (shares sold to pay indemnity losses generate
a capital loss).

On average, expected underwriting losses will offset expected
realized capital gains. Provided that all equity returns come as
capital gains, and tax credits can be carried forward or back, the
insurer’s expected tax bill will be zero.

Thus, the present value of expected insurance company tax is
zero. The DCF insurance premium is given by the present value
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of expected losses and expenses—there is no need to adjust the
DCF premium for insurance company tax or tax shields.

The DCF Model Under Miller and Compromise Theories

Under the Miller theory of debt and taxes, the optimal in-
vestment strategy comprises 100% taxable bonds. Since Miller’s
model implies that there is no tax disadvantage to corporate lend-
ing, there is no need to include the present value of corporate
taxes on investment income as part of the insurance premium.
Likewise, corporate tax shields on debt create no value in Miller’s
world and the third term in the DCF equation drops off as well.
The DCF pricing model then indicates that the market insur-
ance premium equals the present value of expected losses and
expenses.

Under the compromise theory, the optimal investment port-
folio includes the proper proportion of both taxable bonds and
growth stocks. As in the optimal MM strategy of all-equity in-
vesting, the insurer will pay taxes in some years and earn tax
credits in other years. Provided the insurer has correctly esti-
mated expected underwriting losses, the expected tax amount
will be zero. As such, the market premium will also be given by
the discounted value of expected losses and expenses.

An Illustrative Example

Table 1 provides an illustrative one-period example to demon-
strate the impact of the optimal investment decision on the in-
surer’s pricing decision. The model assumes that expected losses
and expenses of $500 will be paid at the end of the period. The
appropriate discount rate for the expected losses equals the risk-
free rate of 6%. Surplus of $500 has been allocated to support
the business. As noted in the previous two subsections, the fair
premium is equal to the present value of expected losses and
expenses, or $500=1:06 = $471:70.

The insurer will invest in some combination of risk-free com-
mon stock and taxable bonds. Since the insurer’s assets and li-
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abilities are both risk-free, the insurer’s shareholders require a
total return equal to the expected return that they could achieve
from other risk-free common stocks. The marginal corporate tax
rate is 35%.

Column 1 displays the expected tax and ROE in an MMworld.
As noted in Section 6, the insurer will invest entirely in risk-free
growth stocks, selling only as necessary to pay losses and ex-
penses. As shown in the table, expected realized capital gains are
offset by expected underwriting losses and the $471.70 premium
provides the insurer’s shareholders with the required 6% return.

Next, recall that in the Miller world the expected return on
risk-free common stock equals rf ! (1"Tc). Therefore, the in-
surer’s shareholders require an expected return of 6%! (1"
0:35) = 3:9%. Also, recall that the optimum strategy holds only
taxable bonds. As shown, this strategy provides shareholders
with the required return of 3.9%.

Finally, we must specify T# for the compromise world, which
lies somewhere between 0% and 35%. Let’s assume T# = 25%.
Thus, risk-free common stock offers an expected return of
rf ! (1"0:25) = 4:5%. As described in Section 6, the insurer’s
optimum strategy equates taxable bond interest and expected un-
derwriting losses, with the balance invested in risk-free growth
stocks. Again, this strategy will provide the required return to
shareholders.

Is Insurance a Negative-NPV Transaction for the Insured?

In the popular version of the DCF model (that is, an MM
world with all insurers investing 100% in taxable bonds) the
PV of tax on investment income outweighs the PV of the cor-
porate tax shield from underwriting losses. Therefore, the fair
insurance premium exceeds the discounted value of expected in-
demnity losses and insurance expenses. From the policyholder’s
standpoint, the insurance purchase is a negative-NPV transaction.
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But provided that the insurer follows an optimal investment
strategy, the DCF model implies that the fair premium is given
by the discounted value of expected losses and expenses under
each of the three theories of debt and taxes.

Since each prospective policyholder pays a premium equal
to the discounted value of expected losses and expenses, insur-
ance is a zero-NPV transaction to the policyholder—assuming
problems such as adverse selection and moral hazard are not
significant, and that the insured could not handle the risks at a
lower expense level than the insurance company.

Does Excess Capital Depress Insurance Prices?

In the traditional DCF model, the present value of taxes on the
investment income from shareholder-supplied funds is included
in the fair premium. The greater the marginal surplus required for
a given insurer to write a policy, the higher this tax amount will
be. This logic is the foundation of the popular idea that excess
surplus contributes to lower pricing in our industry.

For example, assume two insurance companies are competing
for the same account. Insurer A has excess capital and requires no
additional marginal capital to write the account. Insurer B is al-
ready operating at a high premium-to-surplus ratio and requires
$500 of additional capital. The traditional DCF model implies
that the fair premium for insurer B is higher than the fair pre-
mium for Insurer A18 by the discounted value of the investment
income tax on the $500.

Yet, provided that Insurer B follows an optimal investment
strategy, the additional capital required creates no tax disadvan-
tage. Under all three theories of debt and taxes, the expected
return on the additional capital equals the shareholders’ required
return.

18Assuming Insurer B has ready access to capital markets and ignoring issue costs.
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For instance, assume that Insurer B decides to invest the
marginal capital in risk-free securities. Table 2 summarizes the
investment choice, expected return and required return under
each of the theories:

TABLE 2

SUMMARY OF RETURNS

Pre-tax After-tax Shareholders’
Investment Expected Expected Required

Theory Choice Return Return Return

MM Common stock rf rf rf
Miller Taxable bonds rf rf ! (1"Tc) rf ! (1"Tc)
Compromise Common stock rf ! (1"T#) rf ! (1"T#) rf ! (1"T#)

Does Diversification Create Value?

The traditional view in the insurance industry has held that a
diversified underwriting portfolio reduces risk and creates value.
As in the previous subsection, this view is based on the notion
that there is a tax disadvantage associated with excess surplus.
The greater the marginal surplus required to write a given policy,
the higher the premium.

For instance, the loss experience for a given policy may be
negatively correlated with the current loss exposures in an in-
surer’s book. The marginal surplus required to support the policy
may be very low, perhaps even negative. Under the traditional
DCF assumptions, such a policy would be very attractive to the
insurer: the insurer can offer a lower premium and still meet its
financial goals.

According to this view, present values do not add up. The
insurer must evaluate every policy as a potential addition to its
current book of business. Underwriting decisions become ex-
tremely complex.
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If we instead assume that every insurer follows an optimal
investment strategy, then value additivity is restored. Insurance
pricing is independent of marginal surplus, and every policy can
be evaluated on its own merits. Diversification for its own sake
does not increase value.

Optimal Asset Allocation—The Theory Versus Reality

Do insurers really follow an optimal investment strategy? If
so, fair premium equals the discounted value of expected losses
and expenses. Furthermore, the insurer’s expected tax bill in both
the MM and compromise worlds is zero, and the insurer pays no
shareholder dividends.

However, insurance companies on average do pay taxes. In-
surers also pay shareholder dividends. One possible explanation
for this discrepancy may lie in investment laws and regulations
imposed on the industry. For example, investment laws may pre-
clude the insurer from holding stocks without established divi-
dend records. Also certain laws and regulations may limit com-
mon stock holdings to a certain percentage of assets or surplus.
This maximum amount may be below the theoretically optimal
amount.

If these investment restrictions do indeed preclude insurers
from holding optimal investment portfolios, competitive insur-
ance premiums will adjust until insurance shareholders earn their
required return. In this case, insurance premiums will exceed
the discounted value of expected losses and expenses. Insurance
would be a negative-NPV transaction to the insured, even in the
absence of adverse selection and moral hazard problems. There
would also be a moderate tax disadvantage to holding excess
surplus, and insurers with excess surplus would price at a lower
level.

Still, many insurers have the capacity to increase common
stock holdings and enjoy increased tax advantages. Moreover,



240 INVESTMENT STRATEGY IMPACT ON MARKET VALUE AND PRICING

part of the industry’s tax bill may result from excessive trading
and unnecessary realized capital gains. Insurers are often moti-
vated to realize capital gains unnecessarily in an effort to “dress
up” the income statement. Statutory accounting rules allow real-
ized capital gains to contribute to earnings, whereas unrealized
capital gains are direct contributions to surplus. In an efficient
market, investors see through transparent accounting conventions
to real value. In this case, efforts to boost earnings through pre-
mature asset sales offer no benefit, while only resulting in higher
taxes.

8. CONCLUSION

Actuaries are becoming more involved in the insurer’s asset
allocation decision. Recently, dynamic financial analysis (DFA)
models have been utilized to maximize investment income and
earnings subject to certain solvency constraints. But in an effi-
cient market, the asset allocation decision is irrelevant. Indeed,
any investment change that increases earnings will simultane-
ously increase the riskiness of those earnings, leaving share price
unchanged.

When it comes to asset allocation decisions, a little finan-
cial theory may be much better than a thousand simulations. Spe-
cifically, one must specify the source of value from changing
the asset mix. For instance, a riskier investment strategy may
increase value by creating a loan subsidy from the guaranty
fund.19

As noted earlier, only a financially troubled company would
attempt to prop up share price at the expense of the guaranty
fund or current policyholders. A better approach to the problem
focuses on the impact of government taxation on the insurer’s

19The guaranty fund mechanism, of course, was not intended to subsidize riskier in-
vestment strategies. To this end, regulators could take a page out of the Pension Benefit
Guarantee Corporation’s (PBGC) book, varying the guaranty fund assessment according
to the riskiness of the insurer’s asset portfolio.
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optimum investment choice. This requires an understanding of
the theories of debt and taxes, as well as the relationship between
dividend yield and common stock returns. Section 6 of this paper
analyzed these issues and recommended an optimum investment
approach for each view of debt and taxes.

Moreover, under an optimum investment strategy, the fair pre-
mium for the property/liability policy will be given by the dis-
counted value of expected losses and expenses—no adjustment
will be required for the tax disadvantage of corporate invest-
ments.20 This implies that the fair insurance premium is inde-
pendent of the amount of surplus allocated to the policy.

Here we have an apparent contradiction with current actuarial
practice. Actuaries expend a great deal of time and energy allo-
cating surplus to line of business, profit center, etc., as part of
the normal ratemaking process [5, pp. 541–547]. Furthermore,
many pricing models take this exercise a step further and require
the actuary to specify the release of this surplus over time [8,
pp. 20–25]. Instead of directing so much energy to these en-
deavors, one may be better served to ask, “How can we modify
our asset allocation to make surplus less tax-inefficient?”

Of course, more research still remains to determine the opti-
mum asset portfolio for an insurer and the impacts of this portfo-
lio on the actuary’s financial pricing models. In closing, a quote
from Myers and Cohn’s classic DCF paper still remains relevant
today [18, p. 65]:

There is little in the insurance literature regarding the
optimal asset portfolio, given taxes, for an insurance
company. Are insurance companies’ common-stock
values reduced by the seeming tax disadvantage asso-
ciated with corporate purchases of taxable marketable

20The traditional view has held that the fair insurance premium must include a provision
for the tax disadvantage of corporate investments, even assuming the insurer has adopted
an optimum asset allocation. See, for instance, Derrig’s recent paper. [7]



242 INVESTMENT STRATEGY IMPACT ON MARKET VALUE AND PRICING

securities? : : : The present-value approach as it is em-
ployed in this report : : : [is] probably not exactly cor-
rect in specifying fair insurance premiums, and it is
not clear just how the approach should be modified so
as to take corporate taxes properly into account.
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REINSURER RISK LOADS FROM
MARGINAL SURPLUS REQUIREMENTS

RODNEY E. KREPS

DISCUSSION BY PAUL J. KNEUER

1. INTRODUCTION

Writing an insurance risk increases the variability of an in-
surer’s results. This has direct economic costs to the insurer,
such as not being able to write other attractive risks or to com-
fortably maintain the desired degree of risk in its asset portfolio.
Extra risk also reduces the value of its future profits in the cap-
ital market, that is, its stock price or similar valuation. Insurers
require premiums that allow enough expected profit to overcome
these costs.

In “Reinsurer Risk Loads from Marginal Surplus Require-
ments” and “Investment-Equivalent Reinsurance Pricing,” pub-
lished in this volume, Rodney Kreps has increased our under-
standing of how a reinsurer (actually, any insurer) commits its
capital to risks. Based on simple microeconomic assumptions
and consequential expressions, Kreps has developed powerful
models relating an insurer’s capitalization and a prospective con-
tract’s risk profile to develop a minimum acceptable premium for
the contract. Premiums below this minimum cause an insurer to
dilute its earnings and should be rejected. Even though reinsurers
do not appear to manage their capital on an individual contract
basis as Kreps’ calculations assume, the model has received the
highest actuarial compliment: it is actively used to price business.
This is notable at several of the newly established catastrophe
reinsurance markets.

245
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2. THE KREPS MODEL

Fill your bowl to the brim and it will spill.
Keep sharpening your knife and it will blunt.

— The Tao1

Kreps begins by assuming that every insurance contract can
be uniquely associated with a marginal amount of an insurer’s
surplus. This amount is computed assuming that each insurer se-
lects and maintains a certain probability of ruin and then finds
the amount by which its surplus must increase to maintain that
probability if a proposed contract is written. For proposed con-
tracts that are small relative to the insurer’s existing business, this
is equivalent to requiring that the ratio of the insurer’s surplus
to the standard deviation of its results does not change after the
contract is written. A proposed contract must have an expected
profit that adequately rewards the required marginal amount of
surplus, or else it would dilute the insurer’s return and is thus
declined.

To see how Kreps’ results are used, recall his Equation 2.4,

Minimum premium for a contract = ¹+¾R+E! yB=(1+ y),
where ¹ and ¾ are the mean and standard deviation of the losses
on the proposed contract and y is the insurer’s target return on
equity. E is the insurer’s marginal expense. B is the “bank,”
if any, that the insured has “built up.” Kreps defines R as the
insurer’s “reluctance” to assume additional degrees of risk.

1See Mitchell [11, Chapter 9]. The Tao, literally the “Way,” is a short collection of
Chinese philosophical writing that was probably first gathered in the sixth century B.C.,
but which is still influential for its simple, natural, and organic way of describing human
perception and behavior.
This excerpt and others from Mitchell’s readable translation help illustrate the forces

that insurers must seek to balance. Readers may want to consider that critical thinking
about focus, competition, success, and control is much older and deeper than our current
microeconomic analysis of insurers.
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For high-level catastrophe coverage on national ceding com-
panies, each proposed contract has a correlation close to 1, since
these treaties are only exposed by a very few physical hazards
that already expose the reinsurers’ other business. Kreps argues
that for contracts that are relatively small additions to the reinsur-
ers’ portfolio, the average ratio of marginal surplus to marginal
standard deviation is equal to the average ratio. With a correlation
of 1, and using z to represent the ratio of the insurer’s current
surplus to the standard deviation of the losses on its existing
portfolio, Kreps’ reluctance becomes:

R= yz=(1+ y): (2.1)

At this writing, few reinsureds claim large positive “banks” (to
be kind) and few reinsurers see “banks” as economic rather than
rhetorical obligations; so the B term is ignored as well, and
Kreps’ conclusion (with a simple substitution) shows that the
minimum premium must be:

¹+(yz=(1+ y))¾+E: (2.2)

This minimum premium has two contract-specific terms: the ex-
pected losses plus a charge for the marginal contribution to the
insurer’s standard deviation. The latter term can be thought of
as an interest rate, y=(1+ y), applied to a marginal amount of
surplus, z¾. The two terms are generally independent. This con-
clusion is in sharp contrast to earlier actuarial theory and prac-
tice, which based risk charges either directly on the expected
losses (incurred or unpaid) or, indirectly, through the premiums
on notional allocations of surplus.

The values of R= yz=(1+ y) are similar at many catastrophe
reinsurance markets and share derivations based on similar views
of acceptable ruin scenarios and required returns to capital. While
it is inappropriate to detail specific market pricing in an industry
forum, I can also note that prices often show similar variations
in the relative contribution of the ¹ and R¾ terms for different
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contracts. The following four examples are several brokers’ con-
sensus estimates of prices at a recent date for different property
catastrophe reinsurance layers for a hypothetical U.S. nationally-
exposed cedant, expressed as annual rates-on-line (ROL):2

Annual Layer Layer Penetration Estimated Pure Standard Implied
and Retention Recurrence Time Price Premium Deviation Loss
($ Millions) (Years) (ROL) (ROL) (ROL) Ratio

10 xs 10 10 18.00% 10.0% 30.0% 55.5%
10 xs 20 40 9.50% 2.5% 15.6% 26.3%
30 xs 30 100 5.00% 1.0% 9.9% 20.0%
40 xs 60 1,000 2.25% 0.1% 3.1% 4.4%

For many cedants, the expected loss ratios vary across the dif-
ferent layers of their programs by this factor of ten or more, de-
creasing in the higher layers as the risk charge contribution takes
on more importance compared to the expected losses. Kreps’ for-
mula easily explains this and other surprising3 variations in risk
loads visible in the current reinsurance market.

2The annual losses to each layer are approximated as a binomial process. Pure Premium=
1=Recurrence Time. Standard deviation is the square root of the product of pure premium
and the complement of pure premium.
3Another excellent reinsurance example where Kreps’ approach improves our under-
standing of current pricing is “second event” covers. Reinsurance actuaries frequently
treat prices expressed as rate-on-line as if they were probabilities. This common short-
hand cannot explain second-event cover prices.
For the hypothetical cedant reviewed earlier, a $10 million excess $10 million second-

event layer (i.e., pays up to $10 million for a second loss during the year in excess
of $10 million) has a pure premium of approximately 1/2% (as a rate-on-line). Using
Poisson assumptions, the pure premium for the original layer, when expressed as a rate-
on-line, is actually the probability of one or more losses; so the complement of the pure
premium is the probability of no losses, here 90%. This produces a Poisson frequency of
! ln(90%) = 10:54%. It follows that the probability of exactly one loss is 90%" 10:54%
or 9.48%. (The Poisson probability of exactly one loss is the probability of no losses
times the frequency.) The probability of no more than one loss is 99.48%. The probability
of two or more losses is 0.52%.
Many actuaries are tempted to perform a similar calculation on the price for the original

layer, which is an 18% rate on line. If 18% is a fair compensation for assuming the risk
of one or more losses to the layer, including the value of assuming the variability in the
layer, then 82.0% is the consistent price for a “no losses” cover. Continuing with this
common logic, and treating the price as a risk-adjusted probability, produces a Poisson
“risk-adjusted” frequency of 19.8%; and the risk-adjusted price for coverage of exactly
one loss is 16.3%. Thus the price for a second-event coverage, under this logic, would be
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The Kreps minimum premium formulation is clear, under-
standable and powerful. It also avoids the problematic assump-
tions4 needed to allocate an insurer’s total surplus to product.
However, the model ignores important considerations:

# Other things equal, an insurer prefers to reduce its probability
of ruin below the current level.

# If marginal results are very attractive, an insurer may choose
to grow and increase its probability of ruin beyond the current
target.

# The market capitalization rate applied to an insurer’s future
profits must depend on the kind and amount of business that
the insurer assumes.

# Insurers identify and separately manage distinct risk cate-
gories, such as lines of business and exposure zones. They
do not directly examine the covariance between a proposed
contract and their entire existing portfolios. This is particu-
larly true for catastrophe reinsurers that analyze contracts us-
ing modern event-modeling software.

# Insurers do not always calculate unlimited means of the losses
for their contracts. They generally evaluate expectations only
over scenarios with realistic probabilities. For example, current
event-modeling software includes only foreseeable events with

1.7% (100%, less 82.0% for the value of “covering” the no loss case, less 16.3% for the
value of exactly one loss.) In financial economics, this probability-like measure is called
a martingale, and some recent research has developed utility functions that produce risk
loaded prices that are martingales.
Unfortunately, brokers agree that in today’s market this second-event cover would ac-

tually cost something above a 5% rate-on-line. Real-world prices are not martingales and
the common arithmetic of treating a reinsurance rate-on-line as a risk-adjusted frequency
is empirically wrong. Kreps’ approach correctly indicates the higher price by noting that
the standard deviation of the second-event layer is above that of the third excess layer
and is even more highly correlated with reinsurers’ results. The risk load must be a sig-
nificantly greater part of the limit than the 4% in that higher layer (5% price less 1%
pure premium).
Second-event cover pricing, as well as the up-front discount for a mandatory 100%

reinstatement premium, is strong empirical evidence for a formulation like Kreps’.
4See Kneuer [6], Miller and Rapp [10], Roth [12], and Bass and Khury [1].
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estimated annual recurrence probabilities above 10!4 to 10!7.
Less frequent (or apparent) events are omitted, so the reported
means are understated. There is no theoretical reason why the
unlimited mean even needs to be finite.

# Kreps’ process is circular.5 Insurers evaluate proposed con-
tracts based on their expected return on marginal surplus.
But the marginal surplus requirements depend on the order
in which proposed contracts are evaluated. In Kreps’ calcula-
tion, an insurer compares each proposed contract’s contribu-
tion to the variance of a portfolio consisting of every other
current contract. This is equivalent to assuming, a priori, that
each contract is equally desirable. That may not be the case
because some contracts may be selected before others. A dif-
ferent amount of imputed marginal surplus will be found when
the comparison base is some contracts, rather than all. Differ-
ent minimum premiums result.

These considerations matter and the users of Kreps’ formula
need to consider how the limitations in his assumptions may
distort their analyses. Fortunately, the distortions are not fatal.
We can avoid the first five considerations listed above. Starting
with similar, but broader assumptions, a more realistic model can
support results much like Kreps’ contributions. However, the last
concern, circularity, is not directly avoided (at least, not yet).

Let’s explore a model that allows an insurer the flexibility to
pick a portfolio of risks so as to adjust its level of risk compared
to its capital base. The alternative model, like Kreps’, will omit
tractable real world considerations including taxes and reserves
and their associated investment income. A more complete model
would reflect multiple risk factors, but is also deferred here for
simplicity.

5See Gogol [5] and Mango [9] for illustrations of these differences and a suggested cure
to the problem.
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3. AN ALTERNATIVE MODEL

Nothing in the world is as soft and yielding as water.
As for dissolving the hard and inflexible nothing can surpass it.6

An insurer’s job, like any firm’s, is to maximize its worth,
the expected present value of its future free cash flows. This
present value reflects the riskiness of its business, among other
things. We simplistically assume that the insurer’s management’s
only decision variables are the portion of each proposed contract
that the insurer will assume. That is, it can choose to assume
between 0% and 100% of each contract that has been offered
to it. Further, with Kreps, we assume that the insurer is a price-
taker. Its individual decision does not change the price at which
a contract is offered.

Like Kreps, let’s also assume that our insurer is looking for-
ward one period and examining how a proposed contract changes
its probability of ruin. However, we do not assume an inflexible
maximum probability of ruin. Instead we consider a fluid distri-
bution of the insurer’s future value to its owners (stockholders,
or policyholders if a non-stock insurer). We use a nearly lin-
ear relationship to (GAAP) surplus that seems close to current
market valuations:

V1 = Value of Insurer (at t= 1)

=

!
0, if Surplus is less than some value, G1;

M"Surplus, if Surplus$G1:
(3.1)

Like a shark, when an insurer stops moving, it drowns. G1, which
is significantly greater than zero, represents the t= 1 surplus
level below which the insurer ceases to be a going concern. The
discontinuity point is likely much less than S0, the current sur-

6The Tao [11, Chapter 78].
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plus level. M, the insurer’s book-value multiple,7 is a number
that is rarely below 1.0 nor often as high as 3.0.

If there were an absolutely efficient market in insurer capi-
tal, then G1 = 0 and M = 1, because V1 would always equal S1
(or zero, when S1 is negative). However, regulation and clients’
security concerns limit the flexibility to move capital through in-
surers8 and this allows market valuations higher than book values
(M > 1). Let us assume that the franchise value, this capitalized
value above the break-up value, (M !1)S0, is positive and much
larger than the expected value of the losses that might be avoided
by bankruptcy. Our insurer is solid now and underwrites believ-
ing it will stay that way.

We can analyze our insurer’s microeconomic underwriting
decision in light of this more general model. Our insurer has
already selected a portfolio of contracts with premium P and
random losses L, with known expectation, E(L). Our insurer is
considering a new contract with premium p and random losses
`. The insurer will choose to insure some part of the risk, Q,
between 0 and 1.

Thus its total premium will be P+Qp and its total losses will
be L+Q`. Ignoring investments, taxes and operating expenses
for simplicity here, and assuming that the proposed contract ex-
pires in time for the measurement of the insurer’s value that we
assume occurs at t= 1, we find that the insurer’s final surplus
is:

S1 = max(0,S0 +P!L+Q(p! `)), (3.2)

where L and ` are random variables and S0, P, and p are known
to the insurer.

Consider how our insurer looks at the distribution and expec-
tation of the net present value (NPV) of its total future value,

7Investment bankers often use book-value multiples for valuations of P/C insurers be-
cause these multiples are more stable than Price/Earnings ratios and also control for
leverage differences.
8See Kneuer [7].
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including the franchise value:

NPV =

!
0, if S1 <G1;

NPV(M" S1), if S1 $G1:
(3.3)

E(NPV) =M "Prob(S1 $G1)"E(S1 % S1 $G1)=(1+ y):
(3.4)

Abbreviating, E(NPV)=M"Z"ª=(1+y), where Z is the prob-
ability that S1 $G1, ª is the conditional expectation of S1,
given that S1 $G1, and y is Kreps’ assumed management tar-
get yield rate, which approximates in concept the appropriately
risk-adjusted market discount rate in effect between t= 0 and
t= 1.

For any price on the proposed contract, our insurer seeks to
maximize its current worth, its expected NPV, by choosing a
value of Q. It will maximize this market value by differentiating
E(NPV) over Q and examining the derivative at Q = 0. If the
derivative is positive, the insurer will decide to assume at least
some of the proposed contract. The insurer will decide to assume
more as long as this derivative remains positive at higher values
of Q:

d=dQE(NPV) = d=dQ(Z"M "ª=(1+ y)) (3.5)

=M

"
Z&ª
1+ y

+
ª &Z
1+ y

! ªZy&

(1+ y)2

#
(3.6)

where Z&, ª &, and y& are derivatives with respect to Q.

The interpretation of this formula is direct. The present value
that our insurer expects to add (or subtract) by writing some of
the proposed contract (in other words, the derivative with respect
to Q) is:

# the increase (decrease) in the probability of remaining a going
concern (Z&) times the current present value of the firm as a
going concern (Mª=(1+ y)), plus
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# the increase (decrease) in the current present value of the firm
as a going concern (Mª &=(1+ y)), times the current probabil-
ity of remaining a going concern (Z), minus

# the current present value of the firm (MZª=(1+ y)) times the
relative increase (decrease) in the risk-adjustment in the market
discount rate (y&=(1+ y)).

When is d=dQ of E(NPV) positive? Since 1+ y and M are
both greater than zero for any conceivable insurer, this derivative
has the same sign as:

Z&ª(1+ y)+Zª &(1+ y)!Zªy&: (3.7)

d=dQE(NPV) will be positive whenever

Zª &(1+ y)>ªZy& !ªZ&(1+ y): (3.8)

Or since Z > 0,

ª & >
ªZy& !ªZ&(1+ y)

Z(1+ y)
(3.9)

=ª

"
y&

1+ y
! Z

&

Z

#
: (3.10)

But ª & is just the increase in the expected value of the insurer
(assuming it survives) caused by assuming some of the proposed
contract.

Define ¹̂=E(` % S1 $G1), the limited expectation of the losses
on the proposed contract, given that our insurer is not impaired.
Many insurers implicitly calculate something like ¹̂ by modeling
contract losses only under certain not-too-extreme scenarios.9

9For example, event-modeling software analyzes the probabilities of the 1906 San Fran-
cisco earthquake and the 1938 New England Hurricane, but not of the 1906 earthquake
recurring in Boston! For some familiar loss distributions, such as the Pareto, ¹ may not
be finite, so a limited mean is essential for any pricing analysis.
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This definition allows us to find ª &:

ª (Q) = E(S1 % S1 $G1) = E(S0 +P!L+Qp!Q` % S1 $G1)
(3.11)

= E(S0 +P!L % S1 $G1) +QE(p! ` % S1 $G1), or
(3.12)

=ª(0)+Q(p! ¹̂), and thus (3.13)

ª & = p! ¹̂. Substituting, we find that d=dQ of E(NPV) is posi-
tive when

ª & = p! ¹̂ > ª(y&=(1+ y)!Z&=Z), or, (3.14)

p > ¹̂+ª(y&=(1+ y)!Z&=Z): (3.15)

If p is greater than the right-hand side then our insurer would ac-
cept more of the proposed contract, expecting to increase its own
present value. This offers a minimum premium for the proposed
contract without the concept of marginal surplus. The calcula-
tion also allows the probability of ruin to vary. The minimum
premium is equal to the sum of:

# the losses that our insurer expects from the proposed contract,
ignoring here any loss scenario that would impair it, plus,

# its expected amount of surplus (at t= 1) multiplied by
# the relative increase in the discount on that future surplus
caused by adding the risk of the additional contract, and

# the relative decrease in the probability of surviving as a go-
ing concern, reflecting here those extreme loss scenarios not
considered above in ¹̂.

Like Kreps’ result, this minimum premium consists of the
sum of expected losses and a “reluctance” term that is positively
related to the insurer’s surplus and the variability of the proposed
contract. ªy& is analogous to Kreps’ z¾; however, there is an ad-
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ditional component here (ªZ&=Z) reflecting the reduction in the
probability of survival. While ªZ&=Z is denominated in terms
of the insurer’s surplus, it is not Kreps’ marginal surplus. Kreps
allocates an amount of surplus to a contract, and while it is not
expected to be lost, a marginal return is required because the
surplus cannot be allocated to other uses. ªZ&=Z is the expected
surplus that will be lost by taking on the risk of the proposed
contract. The minimum premium includes a charge for this ex-
pected loss of capital, not a return on it. The difference here is
that the charge reflects principal lost to default (ªZ&=Z), versus
only interest on principal outstanding (Kreps’ (y=(1+ y))z¾).

Under the alternative model, the reluctance term and the ex-
pected losses term are distinct and not in general dependent upon
each other, as Kreps has also found. We will next examine how
(re)insurers consider the risk of a proposed contract under this
more general model of incentives. Then we will see separately
how the marginal risk changes the probability of survival and the
market discount rate. Combining these results produces a usable
minimum premium under the more general model. The result
has a strong symmetry with Kreps’ simpler formula.

4. WHAT IS THE MARGINAL RISK OF A PROPOSED CONTRACT?

Think of the small as large and the few as many.
Confront the difficult while it is still easy;

accomplish the great task by a series of small acts.10

For simplicity, we have assumed that insurers are only con-
cerned with one risk factor. (For national U.S. catastrophe rein-
surance accounts that is a fair approximation.) Let’s denote this
one risk factor by R, and assume that it is a real-valued random
variable that fully describes all of the common elements of risk
in the insurer’s portfolio. For simplicity here, let’s also re-scale
R to be positively correlated with L and have a standard devia-

10The Tao, [11, Chapter 63].
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tion of one.11 Further assume that the cumulative density func-
tion (c.d.f.) of R is continuous over its range, except perhaps at
a finite number of points.

For the loss processes of the existing portfolio (L) and the
proposed contract (`), define L0 and `0, the unsystematic parts
of the loss processes, the parts that can’t be explained by R.

L0 = L!
C

Var(R)
R, and (4.1)

`0 = `!
c

Var(R)
R, (4.2)

where C =Cov(L,R) and c=Cov(`,R).

Since we have assumed a single risk factor, Cov(L0,`0) = 0.
(If not, there is another external factor that affects at least two
contracts and that must be quantified. We’ve restricted ourselves
to a one-factor model for now.) It’s also easy to show that
Cov(L0,R) = Cov(`0,R) = 0. Finally, observe that L0 is the sum
of the many unsystematic risk elements of the contracts in the
insurer’s current portfolio: L0 and L0 +Q`0 are normally dis-
tributed. While L+Q` will not necessarily be normal, its c.d.f.
will be continuous and differentiable for changes in either the
mean or standard deviation of the loss process.

Our insurer has defined R to decompose the loss processes
into a quantified external risk factor and the unsystematic part
of its risks. It understands Var(L) in terms of the variances and
covariances of L0 and R.

Var(L) = Var(L0)+ [C=Var(R)]
2Var(R): (4.3)

11For property catastrophe reinsurance coverage, this R might mean something like “ag-
gregate insured property losses in the U.S. during the next year, in excess of $2 billion
per event, divided by $5 billion.” If the standard deviation of the annual excess losses
is $5 billion, as roughly true in the last decade, this variable has a standard deviation of
one as required.
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And similarly for Var(`):

Var(`) = Var(`0)+ [c=Var(R)]
2Var(R): (4.4)

We can use these expressions to find the new portfolio vari-
ance, if our insurer assumes Q of the proposed contract.

Var(L+Q`) = Var(L)+Q2Var(`)+ 2QCov(L,`): (4.5)

Since L0 and `0 are uncorrelated with each other and R, we
find

Cov(L,`) = Cov
$
L0 +

CR

Var(R)
, l0 +

cR

Var(R)

%
(4.6)

= Cov
$
CR

Var(R)
,
cR

Var(R)

%
(4.7)

=
Cc

Var(R)2
Cov(R,R) =

Cc

Var(R)2
Var(R) (4.8)

and can substitute to show that

Var(L+Q`) = Var(L0)+ [C=Var(R)]
2Var(R)+Q2Var(`0)

+Q2[c2=Var(R)]2Var(R)

+ [2QCc=Var(R)2]Var(R): (4.9)

Recall that we re-scaled R to make Var(R) = SD(R)2 = 12 = 1,
so

Var(L+Q`) = Var(L0)+C
2 +Q2Var(`0)+Q

2c2 +2QCc:
(4.10)

We can differentiate with respect to Q and find the marginal risk,
which is the rate of increase in our insurer’s portfolio variance
with respect to changes in Q,

d=dQVar(L+Q`) = 2QVar(`0) +2Qc
2 +2Cc: (4.11)
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5. MARGINAL RISK AND THE PROBABILITY OF SURVIVAL

If you realize that all things change,
There is nothing you will try to hold onto.

If you aren’t afraid of dying,
There is nothing you can’t achieve.12

One of the terms of the minimum premium is ªZ&=Z. To
calculate this term, we need to see how Z, the probability of
survival, changes with the marginal risk from assuming more
of the proposed contract. Since G1, P, and S0 don’t vary with
Q, we can also view Z as Z', a function of only the mean (ª)
and standard deviation (¤) of the surplus amount. Within our
assumptions both parameters depend on a single variable, Q,

Z(P,L,Q,p,`,G1,S0) = Z
'(ª(Q`,Qp),¤(Q`)): (5.1)

We find
dZ'

dQ
=
$
@Z'

@ª
(p! ¹̂) + @Z

'

@¤

d¤

dQ

%
: (5.2)

Clearly, greater resources always improve the probability of
survival, so @Z'=@ª is positive; and increasing levels of vari-
ability can increase the chance of ruin, so @Z'=@¤ is negative,
at least for the range of Z values that concern us, fairly solid
companies.13

12The Tao, [11, Chapter 74].
13An unstable company may actually increase its survival probability by adding variance.
The non-linear valuation caused by a floor of zero is equivalent to the shareholders
owning an out-of-the-money put option. Any option increases in value as the variability
increases. See Brealey and Myers [3, p. 498]. A more familiar illustration may be the
“Hail Mary” passes by losing football teams during the last minutes of a game. While the
marginal expected value of these plays (in yards) is very small, the increased variability
significantly increases the teams’ small probabilities of victory. It is equally important
to note that winning teams don’t throw “Hail Marys.” They often “run out the clock,”
sacrificing all marginal gain to eliminate variance. As with our sound insurers, they
believe that their @Z=@¤ vastly outweighs @Z=@ª .
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The standard deviation component depends on Q more
strongly than the mean term does for two reasons: (1) p! ¹̂ is
small, while d¤=dQ is at least 2Cc; and (2) for these solid com-
panies, there’s just more room for Z to go down than up. So by
analyzing the ¤ term the insurer sees whether Z&=Z (and thus the
minimum premium) rises or falls as Q is increased above zero.

Evaluating the derivative of the variance (in Equation 4.11) at
Q = 0,

d=dQVar(L+Q`) = 2Cc, (5.3)

which is positive except in the not-often-found-in-nature case
where the signs of C and c differ, a contract that could serve
as a hedge against the existing book. Barring this curiosity, this
contribution of Q to the portfolio variance is always positive. The
sign of the derivative of the standard deviation is the same as the
sign of the derivative of the variance.14 So this result is also true
for the marginal standard deviation of the combined loss process
with respect to changes in Q: d¤=dQ is positive at Q = 0.

The non-systematic part of the risk of a proposed contract
does not initially contribute to the marginal variance at all.
But when Q is greater than zero, two additional positive terms
(QVar(`0)+Qc

2) add to the marginal variance. With a little more
arithmetic, it is easy to show that the second derivative of the
standard deviation with respect to Q is always positive. The
marginal standard deviation is at its minimum at Q = 0 and in-
creases monotonically and rapidly thereafter. As Q grows, the
marginal standard deviation grows, and Z&, the change in the
probability of survival with respect to Q becomes more negative
quickly. The ratio Z&=Z is monotonically decreasing,15 at least
for these solid companies.

14¤=Var1=2. Differentiating with respect to Q, ¤& = 1
2 (1=¤)Var

&. 12 (1=¤) is positive. The
signs of ¤& and Var& are the same.
15If the loss processes are normal there is a direct proof of this conclusion. We have
assumed that the probability of survival is quite high, so that the standard deviation has
much more influence on changes in the survival probability than does the mean. We are
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When we examine y&, the change in the market discount rate
caused by adding marginal risk, we will find that it cannot change
the value of Q at which the minimum premium is lowest. The
minimum premium at Q = 0 is its lowest value.

6. MARGINAL RISK AND THE MARKET DISCOUNT RATE

Money or happiness: which is more valuable?
Success or failure: which is more destructive?16

Under our frictionless, one-period, one-factor assumptions,
the Capital Asset Pricing Model dictates17 the market discount
rate applied to the future earnings of our insurer,

y = rf +¯¦, (6.1)

where rf is the risk-free interest rate in effect between t= 0 and
t= 1, ¯ is the systematic risk of our insurer, and ¦ is the market
risk premium.

interested in the derivative of the ratio Z&=Z with respect to changes in Q. Z& = d=dQZ
is a function of the mean and ¤. However, the influence of the mean is approximately
zero, so we can treat Z as a function only of ¤. Now we apply the chain rule

d=dQ(Z&(Q)=Z) = d=d¤ (Z&(¤)=Z(¤))d¤=dQ,

with Z&(¤) evaluated at ¤= ¤(Q). We have seen that ¤ is an increasing function of Q,
so d¤=dQ > 0, and the sign of the derivative of Z&=Z with respect to Q is the same as
the sign of the derivative with respect to ¤.
The derivative of a quotient has a positive denominator so d=d¤ (Z&=Z) will be negative

wherever Z&&Z! (Z&)2 is. It suffices to show that Z&& < (Z&)2 because Z is no more than
one. By differentiating the c.d.f. of the normal with respect to ¤ twice, squaring the first
derivative, and expanding both in powers of ¤ we can compare Z&& and (Z&)2. When
S!G1 +P is sufficiently large compared to E(L) (greater than the mean =median more
than suffices, i.e., a survival probability of at least 50%), we can compare and conclude
that Z&& is always less than (Z&)2. So Z&=Z is a monotonically decreasing function of ¤,
and thus also of Q.
Charles A. Thayer helped develop this proof and other derivations in this review.

16The Tao, [11, Chapter 44].
17These assumptions from Kreps, taken with familiar and reasonable assumptions about
rationality, risk-free borrowing, and available information, meet the requirements of the
CAPM. We conclude that it will apply here.
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To understand the ¯ of our insurer, we need to examine its
market-based rate of return between t= 0 and t= 1

r(i) =
V1
V0
!1 (6.2)

=

&'(
S0 +P!L

S0
!1, if S1 $G1

0=S0! 1, if S1 <G1

(6.3)

=

!
(P!L)=S0, if S1 $G1
!1 if S1 <G1:

(6.4)

The ¯ of our insurer is:

¯ =
Cov(r(i),r(m))
Var(r(m))

, where r(m) is the average return
in the capital market: (6.5)

Our insurer ignores the small distortion caused by the possibility
of its own impairment, so we can find

¯ =
Cov((P!L)=S0,r(m))

Var(r(m))
(6.6)

=!1=S0
Cov(L,r(m))
Var(r(m))

: (6.7)

Now we can add the facts that

L= L0 +CR (6.8)

and that L0 by assumption is independent of r(m) (or else r(m)
is a risk factor, which we have assumed it isn’t). So,

¯ =!C
S0
" Cov(R,r(m))

Var(r(m))
(6.9)

=!C
S0
¯R: (6.10)
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¯R is the beta, the systematic risk measure, of R, our one external
risk factor. Substituting in Equation 6.1,

y = rf !
C

S0
¯R¦, (6.11)

Cov(R,L+Q`) = Cov(R,L) +QCov(R,`) = C+Qc,
(6.12)

so, similarly, when we include Q,

y(Q) = rf !
C+Qc
S0

¯R¦, (6.13)

and observe that
dy

dQ
=! c

S0
¯R¦; (6.14)

that is, the derivative is independent of the level of Q. This dis-
count rate contribution will be insignificant if, as some invest-
ment bankers suggest, ¯R is zero or small. Unfortunately, for very
high-level catastrophe reinsurance, the available history suggests
that catastrophe risk is not zero-beta.18

The change in the discount rate caused by assuming a
marginal amount of risk does not depend on the amount already
assumed. As promised, the discount rate term cannot affect the
point at which the minimum premium is lowest.

18Kozik [8] notes practical and theoretical difficulties in computing and applying the
betas applicable to the underwriting operations of insurers. This analysis is especially
valid for diversifiable, low-level coverages. However, high-level reinsurance contracts
address a small set of rare physical events, and the potential systemic correlations are
both larger and clearer. If sizable, these systematic correlations are very relevent to the
owners of insurance companies.
Interested readers may want to consider the notable falls both in the equity and bond

markets and in affected currency values in the periods following the 1906 San Francisco
earthquake in the United States and the 1995 Kobe earthquake in Japan. These two
observations suggest that ¯R can be significantly negative. Large physical catastrophes
are correlated with losses in the capital markets.
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7. THE MINIMUM PREMIUM IN THE ALTERNATIVE MODEL

All streams flow to the sea
Because it is lower than they are.
Humility gives it its power.19

Combining the contributions from the changes in the proba-
bility of survival and in the discount rate, and adding the assump-
tion that the capital market valuation of the insurer is rational,
although perhaps inefficient, we can solve for the insurer’s min-
imum premium in an accessible way.

The minimum premium for a contract to be attractive to our
insurer (any insurer) is (from Equation 3.15)

p= ¹̂+ª(y&=(1+ y)! (Z&=Z)):
Substituting from Equation 5.2 and solving for p,

p= ¹̂+ª
y&=(1+ y)! (@Z'=@¤)(d¤=dQ)=Z

1+ (@Z'=@ª )(ª=Z)
: (7.1)

This can be expressed differently when we further assume that
the market valuation of our insurer is consistent with expecta-
tions, and that M is stable. Consistent expectations require that:

MS0(1+ y) =ME(S1) (7.2)

and further assuming that M is stable between t= 0 and 1 pro-
duces:

S0(1+ y) = E(S1 % S1 $G1)Prob(S1 $G1), (7.3)

or abbreviating and regrouping,

ª = S0(1+ y)=Z: (7.4)

This yields

p= ¹̂+
S0y

& !ª(@Z'=@¤)(d¤=dQ)
Z+ª(@Z'=@ª )

; (7.5)

19The Tao, [11, Chapter 16].



REINSURER RISK LOADS FROM MARGINAL SURPLUS REQUIREMENTS 265

and we know that (from Equation 6.14)

y& = (!c=S0)¯R¦, so

p= ¹̂+
!c¯R¦ !ª(@Z'=@¤)(d¤=dQ)

Z+ª(@Z'=@ª)
:

(7.6)

This result applies at any level of Q, but we have seen that the
lowest minimum premium occurs for a marginal participation.
For our ideal price-taking insurer, with an offered premium near
p, the marginal increase in its NPV quickly falls as the share of
a proposed contract rises above zero. Our assumed insurer, like
many real ones, maximizes its value by assuming and retaining
very small parts of every possible risk.

The problem of insurers seeking geographic diversification
can be restated from the insureds’ perspective, as its dual problem
of insurance risks seeking maximum spread among the world’s
insurers. If worldwide capacity meets the demand then our hypo-
thetical contract would be fully placed with these ideal marginal
participations. Q is approximately zero and the marginal variance
of the contract (see Equation 5.3) for our insurer becomes

d=dQVar(L+Ql) = 2Cc, (7.7)

and the marginal standard deviation is

d¤=dQ = (12)(1=SD(L))(2Cc) (7.8)

= Cc=SD(L): (7.9)

So the insurer’s minimum premium becomes

p= ¹̂+
!c¯R¦ !ª(@Z'=@¤)Cc=SD(L)

Z+ª(@Z'=@ª )
: (7.10)

We have seen that ¯R and @Z
'=@¤ are both less than zero, so

the latter term is generally a positive number. The premium is the
limited expected losses plus a risk load. The risk load depends
on the covariance of the proposed contract with the risk factor
of concern to the insurer, the capital market valuation for that
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risk, the insurer’s capital structure, and the partial derivatives of
its survival probability with respect to changes in its expected
profits and variability. Using the normal distribution as a strong
practical approximation,20 there are closed-form expressions for
these partial derivatives.

Since SD(R) = 1, we see that

c=Corr(`,R)¾ and C =Corr(L,R)¤,

20The essential nature of insurance is the transfer and pooling of risks. In practice,
catastrophe reinsurers track and control their risk accumulations in between six and
more than thirty distinct zones. See the 1996 Annual Report of CAT Limited for a clear
example of the high end. Reinsurers’ results are driven by the sum of these independent
random processes. Their results will be close to normally distributed. (These underwriters
can also rely on the exact derivation of the conclusion about decreasing values of Z&=Z
in note 15.) If we define T = S0 +P!G1, then Z' = Prob(L < T), where L is normally
distributed with mean W =E(L) and standard deviation ¤

Z' =
1(
2¼¤

) T

!)
exp

$
!1
2

*
x!W
¤

+2%
dx: (20.1)

Since ª is independent of T and ¤, we can find the @Z'=@ª by bringing the differenti-
ation within the integration

@Z'

@ª
=

1(
2¼¤

) T

!)

d

dª
exp

$
!1
2

*
x!W
¤

+2%
dx: (20.2)

Over the range of integration, the conditional expectation of surplus, ª , is exactly and
inversely related to the expectation of losses, W:

d=dª =!d=dW (20.3)

@Z'

@ª
=

1(
2¼¤

) T

!)
! d

dW
exp

$
!1
2

*
x!W
¤

+2%
dx (20.4)

=
1(
2¼¤

) T

!)
exp

$
!1
2

*
x!W
¤

+2%* x!W
¤

+
dx

=
1(
2¼
exp

$
!1
2

*
T!W
¤

+2%
: (20.5)

@Z'=@ª also gives us @Z'=@¤. Since Z' is a function of both W and ¤, we can express
the two derivatives using the chain rule and find a simple relationship between them and
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and the denominator is approximately one for our solid compa-
nies; so

p= ¹̂+!(¯R¦ +ª(@Z'=@¤)Corr(L,R))Corr(`,R)¾:(7.11)
The alternative minimum premium formula roughly matches the
dimensions in Kreps’ analysis. R, the reluctance, is directly re-
lated to the proposed contract’s correlation with the relevant part
of the existing portfolio, which is the risk factor of the insurer.21

Z'&((T!W)=¤)

@Z'=@ª =!@Z'=@W (20.6)

=!Z'&d=dW((T!W)=¤) (20.7)

=!Z'&(!1=¤) (20.8)

= Z'&=¤, and (20.9)

@Z'=@¤=Z'&d=d¤((T!W)=¤) (20.10)

= Z'&(T!W)d=d¤(1=¤) (20.11)

=!Z'&(T!W)(1=¤)2 (20.12)

=!(T!W)=¤Z'&=¤, or (20.13)

@Z'=@¤=!(T!W)=¤@Z'=@ª: (20.14)

To illustrate, if an insurer believes that (T!W)=¤= 3:0 (not unrealistically, Z = :9975,
a one-in-four-hundred years probability of ruin) and that the standard deviation of the
loss process on its existing contracts is, say, $100,000,000, then

@Z'

@ª
=

1(
2¼

1
$100,000,000e4:5

= +4:432" 10!11=($ of mean), (20.15)

and

@Z'

@¤
=

1(
2¼

1
$100,000,000e4:5

(!3) =!1:130" 10!10=($ of standard deviation):
(20.16)

Results like these could be used in Equations 7.10 or 7.11 to solve for minimum premiums
in a direct way.
21Bault [2] analyzes several common risk load approaches with different assumptions and
concludes that each can be re-expressed as a covariance measure between the proposed
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Of course, in the real world, regulation, occasional capac-
ity shortages, frictional costs, information barriers, and some
economies of scale will prevent perfect diversification. Higher
prices result. However, this analysis provides a fair estimate of
the market premium, establishes a lower bound, and shows a
scale by which the costs of market inefficiencies can be seen.

8. NEXT STEPS

As it acts in the world, the Way is like the bending of a bow.
The top is bent downward; and the bottom is bent up.

It adjusts excess and deficiency so that there is perfect balance.
It takes from what is too much and gives to what isn’t enough.22

This review has mimicked the development of Modern Port-
folio Theory (MPT) and found a result like one of MPT’s fun-
damental tenets. A diversified, rational, risk-averse insurer, like
a similar investor, will accept a potential addition to its portfo-
lio only after a comparison between the addition’s systematic,
non-diversifiable risk and its price in the market.

MPT goes on to show that since most investors price assets
that way, the market pricing of assets must be based on only
the value of their systematic risks. These investors get the best
return for the least total risk (at market pricing) by distributing
their portfolios in proportion to the asset distribution of the total
market. Insurers find a similar optimal return for their risk: ei-
ther writing a balanced worldwide spread or placing their riskier
coverages with reinsurers who do.

Based on Kreps’ and other recent results and the general-
ization added in this review, actuaries should be able to raise
our knowledge of market risk pricing up to the level that MPT

contract and the insurer’s surplus. This review attempts to show that this conclusion
holds with realistic assumptions about insurers’ incentives and the insurance and capital
markets.
22The Tao, [11, Chapter 77]. For clarity, “Way” replaces “Tao” in Mitchell’s translation.
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has reached for asset pricing.23 If reinsurers choose to diver-
sify their exposures, as these results suggest they must and re-
cent acquisitions24 suggest they do, market pricing will be based
only on each proposed contract’s systematic risks. Any insurer
whose capital structure or distribution of net risks varies sig-
nificantly from the industry average will find that its minimum
premiums will be higher than the market clearing prices in its
areas of relative over-concentration. It will reduce its exposures
(by reinsurance, securitization or direct volume reduction) until
its minimum premiums fall to the market level. Since much of
the industry follows this process, market prices will only be de-
nominated by contracts’ covariances with the one (actually more)
risk factor(s) affecting the global insurance market.

In effect, every insurer trying to maximize its risk-adjusted
NPV must act as if it desires a spread of net risks like the world-
wide industry average. Again, regulation, returns to scale, and
frictional and information costs prevent this in practice.

The minimum market premium for a proposed contract does
not depend on its covariance with a particular group of an in-
surer’s other contracts. It depends more on the covariances with
the significant risks that influence the results of all possible con-
tracts worldwide. No proposed contract is considered first. Or
last. This final result eliminates the circularity in Kreps’ analysis
and mine.

23See Feldblum [4] for a very rigorous attempt at this analysis. However, this result
only developed relative operating profit provisions and cannot develop specific targets
without assumptions about allocated capitalization and cannot be reconciled to MPT
results for equities because they consider different universes. See also Turner’s article
in Cummins and Harrington (Note 8, above), for an equilibrium analysis, but without
product distinctions. A more general model, like Kreps’ concept of marginal surplus
requirements or the approach suggested in this review, can support a risk-specific price
that is in equilibrium with the capital market valuations of the insurer.
24Numerous recent transactions, but note two common themes: property companies ac-
quiring books on other continents (Cologne Re, Sphere Drake, SAFR, M&G, American
Re, SOREMA-UK) to “balance all the buckets,” and liability companies acquiring prop-
erty operations (Tempest, GCR, IRI, Mid-Ocean, CAT Limited). Both can be explained
by the search for a broader mix of the world’s exposures.
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9. CONCLUSIONS

1. Kreps’ analysis is a significant addition to both the prac-
tice and theoretical understanding of reinsurance and in-
surance pricing in that

# the risk load required for a contract to be attractive (or
indifferent) to an insurer must be based on the risk of
the proposed contract and not on its expected losses,
and

# the risk load an insurer must require depends on the
covariance of the proposed contract with the insurer’s
existing risks (that is, with the product of the corre-
lation between the proposed contract and others, and
the standard deviation of the contract).

2. These results still hold with a more realistic model of
insurers’ incentives.

3. The required risk load also reflects the relative correla-
tions between insurance risk factors and movements in
the overall capital markets. This is true even though there
are frictional barriers to moving capital through insurers.

4. The minimum amount of this required risk load occurs
for marginal participations. Insurers thus have strong
incentives to diversify. Since most do, market prices
are based on the covariances of the proposed contract
with the general risk factors exposing all other possible
contracts, that is, the entire insured market. Risk loads
should not reflect any diversifiable risks.

Knowing others is intelligence;
knowing yourself is true wisdom.
Mastering others is strength;

mastering yourself is true power.

If you realize that you have enough,
you are truly rich.25

25The Tao, [11, Chapter 33].
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SUMMARY OF NOTATION

In Kreps’ Original

¹, expected losses for proposed contract

R, insurer’s reluctance to assume contract

¾, standard deviation of losses for proposed contract

E, insurer’s marginal expense

y, risk-adjusted discount rate

B, reinsured’s “bank,” amount reinsurer is willing to concede
(proposing to extract) in renewal price.

Z, insurer’s ratio of surplus to standard deviation of existing
loss portfolio

Added in Discussion

Vi, market value of the insurer at time t= i

Si, surplus, GAAP book value, at time t= i

G1, minimum going-concern surplus level at t= 1

M, insurer’s book-value multiple

P, premium for existing portfolio

L, random loss process for existing portfolio

p, premium for proposed contract

`, random loss process for proposed contract

Q, decision variable, portion of the proposed contract assumed

¹, expected losses for the proposed contract, E(l)

¹̂, expected losses for the proposed contract limited to the
scenarios where S1 $G1
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R, a measure of the one external risk factor of concern to
insurer, re-scaled here to be positively correlated with L and with
standard deviation = 1

rf , risk-free interest rate between t= 0 and t= 1

¯, systematic risk measure of insurer’s return

¦, market risk premium expected between t= 0 and t= 1

r(i), insurer’s market-based return between t= 0 and t= 1

r(m), return on overall capital market between t= 0 and t= 1

¯R, systematic risk measure of R, the external risk factor

Abbreviations

NPV, risk-adjusted net present value at t= 0 of insurer’s mar-
ket value at t= 1

Z, probability that S1 $G1, that the insurer survives
Z = f(P,L,Q,p,`,G1,S0) and

Z' = f(ª(Q`,Qp),¤(Q`))

ª = E(S1 % S1 $G1)
C =Cov(L,R)

c=Cov(`,R)

L0 = L! (C=Var(R))R = L!CR
`0 = `! (c=Var(R))R = `! cR
¤= SD(S1) = SD(L+Q`)
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ESTIMATING THE PREMIUM ASSET ON
RETROSPECTIVELY RATED POLICIES

MIRIAM PERKINS AND MICHAEL T. S. TENG

DISCUSSION BY SHOLOM FELDBLUM

1. INTRODUCTION

Perkins and Teng have provided us with a new and remark-
ably intuitive procedure for estimating the accrued retrospective
premium asset: the PDLD (premium development to loss devel-
opment) approach. This reserve is often significant—amounting
to half a billion dollars or more for some of the major workers
compensation carriers—and it has been difficult to accurately
estimate with traditional procedures. The paper by Perkins and
Teng should greatly enhance our actuarial repertoire.

Specifically, the PDLD method has several distinct advantages
over other procedures:

1. It is modeled directly on the retrospective rating formula,
so it is easily explained to underwriters and claims per-
sonnel who are familiar with retrospectively rated poli-
cies.

2. Its emphasis on the premium sensitivity in the retrospec-
tive rating formula parallels the risk-based capital loss-
sensitive contract offset in the underwriting risk charges
and the new loss-sensitive contract Part 7 of Schedule
P. For regulators familiar with the risk-based capital for-
mula and with the statutory accounting requirements, this
loss reserving approach is a natural complement to the
statutory procedures.

274
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3. The procedure may prove particularly useful when
changes in the retrospective rating plan parameters dis-
tort the indications of other methods.

There are few existing methods for estimating the accrued ret-
rospective premium asset, and the indications are often highly
uncertain. The PDLD approach will enable actuaries to estimate
this asset more accurately.

This discussion has two parts.

1. The complexity of the reserve estimation procedures for
the accrued retrospective premium asset often hides the
rationale of these methods from the average reader. The
first part of this discussion uses graphical representa-
tions of Fitzgibbon’s method and of the PDLD method
to show the rationale behind each method and to explain
the advantages of the latter method.1 We then show how
to combine the better parts of the two methods to im-
prove the PDLD procedure.

2. The second part of this discussion highlights the impli-
cations of the Perkins and Teng procedure for the calcu-
lation of the loss-sensitive contract offset to the under-
writing risk charges in the risk-based capital formula and
for the use of Schedule P, Part 7, to estimate premium
sensitivity.2

2. THE PDLD PROCEDURE

This section addresses two issues:

1. How does the PDLD procedure differ intuitively from
Fitzgibbon’s procedure, and in what ways is it better?

1See Fitzgibbon [6], F. J. Hope [8], Unthoff [11], Berry [2], and Morell [10]. The term
“Fitzgibbon’s method” in the text includes the enhancements provided by Berry and
Morell.
2The term “premium sensitivity” stems from the term “loss-sensitive contracts.” This
paper uses the term “premium responsiveness” to refer to the same phenomenon.
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2. What aspects of Fitzgibbon’s procedure can be added to
the PDLD procedure to enhance its accuracy?

Let us begin our inquiry with a more fundamental question.
Why not estimate the accrued retrospective premium asset the
same way that we estimate loss reserves? That is, why not use
a chain-ladder development procedure on historical triangles of
either collected premium or billed premium? This would be the
premium analogue to a chain-ladder development procedure us-
ing either paid losses or reported losses.

Indeed, Schedule P already does this. Part 6 of Schedule P
shows historical triangles of exposure year earned premiums
by line of business (for all types of contracts), and Part 7 of
Schedule P shows historical triangles of policy year earned pre-
mium on loss-sensitive contracts (all lines of business combined).
Why go through the complexities of Fitzgibbon’s method or the
PDLD method when a straightforward chain ladder development
method would suffice?

The underlying rationale of Fitzgibbon’s method and the
PDLD method is that

a. estimates of ultimate incurred losses can be obtained sooner
than estimates of retrospective premiums can be obtained,
and

b. retrospective premiums depend on incurred losses.

In workers compensation, for instance, a good estimate of ul-
timate incurred losses is generally available soon after the ex-
piration of the policy, since claims emerge rapidly and devel-
opment on known claims is relatively stable. The first retro-
spective adjustment, however, occurs about six months after the
expiration of the policy. The retrospective premium may not be
billed and collected for an additional three months after the ad-
justment is done.
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Using Fitzgibbon’s method or the PDLD method, an initial
estimate of the accrued retrospective premium asset can be pro-
duced soon after the policy expires, using the known loss infor-
mation and the relationships between incurred losses and retro-
spective premium. Similarly, the accrued retrospective premium
asset estimate can be updated each quarter, as new loss data
becomes available. If a chain-ladder premium development pro-
cedure is used, however, the initial estimate cannot be produced
until at least nine months after the policy expiration, and it can
be updated only annually thereafter.

The reserve estimation procedures in both Fitzgibbon’s
method and the PDLD method are based upon the retrospec-
tive rating formula. They differ in the details, not the concept,
although the details can be crucial for reserve estimation. Us-
ing graphs to clarify the methods, the two approaches will be
compared and contrasted using the following steps:

! how premium is determined in the retrospective rating for-
mula;

! how Fitzgibbon, followed by Berry, converts the premium de-
termination procedure to a reserve estimation procedure;

! what problems arise in the reserve estimation procedure, and
how Berry resorts to a second reserve estimation procedure to
resolve them;

! how the PDLD procedure modifies the original Fitzgibbon
procedure to solve the aforementioned problems, without
having to resort to a second reserve estimation procedure;
and

! how part of Fitzgibbon’s procedure can be used to enhance
the PDLD procedure, giving users the best of both worlds.
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Retrospective Premium Determination

Fitzgibbon’s method and the PDLDmethod both seek to repli-
cate the premium determination procedure in the retrospective
rating formula. Of course, a single reserving formula cannot per-
fectly replicate hundreds of slightly different rating plans. Never-
theless, the more successfully the reserving procedure can repli-
cate the rating procedure, the more accurate will be the reserve
estimates. So let us begin with the premium determination for-
mula.

The retrospective premium is composed of two parts:

1. Part of the premium covers the incurred losses, as well as
any expenses associated with these losses, such as loss ad-
justment expenses. However, not all losses enter the retro-
spective rating formula. There is a loss limit, which means
that individual losses exceeding a certain amount—such as
$250,000—do not affect the retrospective premium adjust-
ments. In addition, state premium taxes, as well as other
state assessments (such as involuntary market loads) are
levied on the premiums, whether they are standard premi-
ums or retrospective premium adjustments.

The retrospective rating plan expresses this part of the
premium as

(loss conversion factor)" (incurred losses)
" (tax multiplier),

where the loss conversion factor (LCF) covers primarily
loss adjustment expenses.

2. The other part of the premium covers company expenses
and the insurance charge. Company expenses are all ex-
penses that are not a direct function of losses, such as
underwriting expenses and acquisition expenses.
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The insurance charge results from the maximum and
minimum limitations on the retrospective premium. Hav-
ing a maximum premium, of course, is the whole pur-
pose of insurance. The insured needs protection against
the unanticipated large losses that it cannot prudently re-
tain. But the insurer must collect premium to cover these
large losses. So the insurance charge is the difference be-
tween

a. the expected loss (to the insurer) caused by the maxi-
mum premium and

b. the expected gain (to the insurer) caused by the mini-
mum premium.

The expected loss is the average additional amount of pre-
mium that the insurer would have collected had there been
no maximum premium limitation. The expected gain is
the average amount of premium that it would not have
collected had there been no minimum premium limita-
tion.

This charge must also cover any premiums lost because
of the loss limits, which cap the individual loss values
entering the retrospective rating plan.3

As before, a provision must be added for state premium
taxes and other state assessments. This part of the premium
may be expressed as

[(expense provision)+ (insurance charge)

+ (excess loss charge)]" (tax multiplier):

3The computation of the insurance charge is the standard Table M and Table L calculation.
For the “formula” approach in the PDLD method, which can be used with Fitzgibbon’s
method as well, the reserving actuary may have to recompute certain Table M or Table
L charges.
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For simplicity, the first three components are combined
into the basic premium, so the expression above can be
restated as

(basic premium)" (tax multiplier):
Thus, the formula for the retrospective premium is

Retrospective premium= (tax multiplier)

" [(basic premium)+ ((loss conversion factor)
" (limited incurred losses))].

The Reserving Formula

The formula above is the rationale for Fitzgibbon’s reserve
formula. Premium is assumed to be a linear function of the in-
curred losses, or

Retrospective premium= C+B"Losses:
The pricing formula becomes the reserving formula. For appli-
cation to an entire book of business, Fitzgibbon and Berry make
two modifications to this basic equation:

1. They use ratios to standard premium. That is, they write

Retrospective premium#Standard Premium
=K +B"Standard Loss Ratio,

where K = C#Standard Premium.
2. They examine the retrospective adjustment. In other
words, they subtract unity from both sides of the equa-
tion above, to get

Retro Adjustment = A+B"Standard Loss Ratio,
where A=K $ 1.
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The Historical Regression

Fitzgibbon and Berry estimate the parameters A and B from a
historical regression, using standard loss ratios and retrospective
adjustments from mature policy years. But the attentive reader
might observe that the two parameters in Fitzgibbon’s formula
depend on the parameters in the retrospective rating formula. So
why do they use a regression analysis on past experience? Why
don’t they just walk over to the pricing actuary in the next office
and ask what parameters are used in the retrospective rating plan?

Actuarial reserves are typically estimated on an aggregate ba-
sis, for all states, all insureds, all policy years. The parameters,
however, vary from year to year, from state to state, and from
plan to plan. For instance:

! A small insured may purchase a plan with a low maximum pre-
mium and therefore a large insurance charge, whereas a large
insured may prefer a plan with a high maximum premium and
a low insurance charge. Also, larger insureds may be offered
plans with lower expense provisions, since their underwriting
and acquisition expenses as a percentage of standard premium
are lower than for smaller insureds.

! Premium taxes differ from state to state. In addition, some
retrospective rating plans include involuntary market expense
loads as a part of the tax multiplier, and the involuntary market
loads vary widely among jurisdictions.

! The basic premium may vary from year to year. It may be low
when interest rates are high and the insurer expects to earn
its required profit margin from investment income. It may be
higher when interest rates are low, or if the insurer uses a cash
flow plan, such as a paid loss retro, so little investment income
is retained by the insurer.

In theory, the reserving actuary could collect the hundreds of
needed plan combinations and match these with the appropriate
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experience and calculate the reserve. Or the actuary, to save a
few months of work, might determine the average parameters by
means of a regression analysis on historical data.

This is what Fitzgibbon and Berry have done. The regression
analysis calculates the average retrospective rating plan parame-
ters from past experience. In fact, this method is probably more
accurate than might be achieved by collecting all the parameters
actually used in each state and each policy year for each insured.
Most companies allow their underwriters and agents substantial
flexibility in rating workers compensation contracts. The pricing
actuary may recommend a basic premium charge of 30% of stan-
dard premium, but the underwriter or salesperson may reduce the
basic premium charge to 25% of standard premium. The pricing
actuary’s recommended parameters may not match the plan pa-
rameters that are actually used in practice. The reserving actuary
needs to know the premiums that are actually charged, not the
pricing actuary’s indicated premiums. So the reserving actuary
turns to the regression analysis, not to the pricing actuary’s rate
book.4

4How is it then, that Perkins and Teng manage to estimate PDLD ratios from the ret-
rospective rating plan parameters in their formula approach? Moreover, they need to
estimate more numbers than Fitzgibbon and Berry need to estimate, so how are they able
to do this when Fitzgibbon and Berry found it unmanageable?
The answer is that the Perkins and Teng paper presents the method only. In prac-

tice, estimating the PDLD ratios from the retrospective rating plan parameters is exceed-
ingly difficult, particularly if the company writes business in different states and for
different types of insureds, if the company has changed its plan parameters over time,
or if the company allows its underwriters and agents discretion in modifying the plan
parameters to attract potentially good risks. Perhaps Ms. Perkins or Mr. Teng can elab-
orate on the relative ease or difficulty of estimating the PDLD ratios in various sce-
narios.
As pointed out by Robert Finger, the regression approach is not without its difficulties

as well. Rating plan factors and aggregate loss ratios change over time, so a regression
performed on historical data may not be equally applicable to current policies. Moreover,
the observed values are actually the result of many changes at the individual plan level.
The premium on individual plans is not a simple function of total incurred losses. For
instance, premium may decrease on an adjustment when incurred losses increase, since
there may be positive development on a claim that was already limited and negative
development on claims that were below the per accident limit. See also Morell [10],
which discusses this same issue.
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FIGURE 1

FITZGIBBON’S METHOD

Graphical Representations

To see the difference between Fitzgibbon’s method and the
PDLD method, let us look at these procedures graphically.
Fitzgibbon’s method represents the relationship between the net
earned premium5 on the retrospectively rated book of business
(as a percentage of standard premium) and the total incurred
losses on this book of business (again, as a percentage of stan-
dard premium) as a straight line, as shown in Figure 1.6 Alge-
braically, the straight line is Y = A+B%X, where A is the constant
factor and B is the slope factor.

One interpretation of this graph is as follows: if there are
no incurred losses on this book of business, then the ratio of
net premium to standard premium equals A. The constant factor
A represents the basic premium percentage in the retrospective

5Net earned premium is earned premium after retrospective adjustments; see Feldblum
[3].
6The figures on both axes of this graph are shown as ratios to standard earned premium.
Alternatively, one could show both sets of figures as absolute dollar amounts. Berry uses
ratios, though he shows the vertical axis as ratios of retrospective premium returns to
standard premium. The three methods are equivalent.
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rating formula.7 As losses are incurred, and the loss ratio to
standard premium increases, we move to the right and up along
the straight line, and the net premium as a percentage of the
standard premium increases. For each dollar of additional loss,
the net retrospective premium increases by B dollars.

The slope factor B is the premium responsiveness for this
book of business. The slope is not exactly unity, for several rea-
sons. First, some losses exceed the loss limit, or they cause the
retrospective premium to reach the maximum premium, even be-
fore the first adjustment, thereby reducing the slope of the line
segment. Second, in some plans the minimum premium exceeds
the basic premium. Third, a loss conversion factor and a tax
multiplier are applied to the incurred losses in the retrospective
rating formula, thereby changing the slope of the line segment.
The combined effect depends on the “swing” of the plan. For
plans with narrow swing, generally sold to small accounts, the
slope would be less than unity. For plans with wide swing, gen-
erally sold to large accounts, the slope might be greater than
unity.8

Projections versus Reality

The problem with this method, as Berry points out, is that
it does not consider the emerging experience on the book of
business itself. This emerging experience may differ from that
expected from the graph for several reasons. First, the A and
B factors are only estimated from the regression; they are not
known with certainty. Moreover, they may vary from year to
year. Second, the pattern of losses among the individual policies

7Since the A factor is fitted by a regression on the aggregate book of business, it would
not necessarily equal the basic factor on any particular plan.
8Fitzgibbon and Berry might say that this is not an exact interpretation of their regression
line. Their regression line relates the ultimate loss ratio to the retrospective premium
percentage. Their graph is not necessarily intended to represent the movement from no
losses at policy inception to ultimate losses many years later. However, the purpose here
is to highlight the contrast with the PDLD method, not to explain Fitzgibbon’s method
itself.
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FIGURE 2

ACTUAL VERSUS EXPECTED RESULTS

affects the results. One large loss may have the same effect on
the aggregate loss ratio as a dozen small losses. The effect on
the net premium may differ because of loss limits and maximum
premiums.

Suppose that after four years, the actual experience on this
book of business shows less premium responsiveness than had
been initially anticipated, as shown in Figure 2. The book of
business is relatively mature after four years. The projection pro-
duced by this method does not change from year to year (as long
as the incurred losses do not change), so it will continue to give
an estimate of retrospective premium that is too high.

Berry’s solution is to gradually discard this method, and to
substitute a method that relies on the actual experience of the
book of business (his “DR2” method). Initially, his reserve esti-
mate relies entirely on this method. As time goes on, and more
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information becomes available from the actual book of business,
he assigns progressively less weight to this method and more
weight to his “DR2” method.

The Perkins and Teng Solution

Perkins and Teng transform Fitzgibbon’s graph to solve this
problem. Think of Fitzgibbon’s graph in a slightly different fash-
ion: as the movement over time of reported losses, net earned
premium, and reported loss ratio. At policy inception, reported
losses are $0, so the reported loss ratio is 0% and the ratio of net
premium to standard premium equals A, the constant factor in
Fitzgibbon’s regression equation, or the Y-intercept in Fitzgib-
bon’s graph.

There are two ways to interpret the chart in Figure 1. Only the
first of these reflects the intentions of Fitzgibbon and Berry. The
second reflects the PDLD method. The alternative interpretations
are:

1. the graph relates the ultimate loss ratio and the ultimate ret-
rospective premium ratio among different books of busi-
ness or different years of experience, or

2. the graph relates the reported loss ratio and the net earned
premium at different points in time for a single book of
business.

Decreasing Slopes

These two types of graphs seem similar. In truth, they look
quite different. The first relationship is drawn by Fitzgibbon and
Berry as a straight line. Actually, the curve is concave, as ex-
plained below, but a straight line is a close enough approximation
for the majority of the curve.9 The second relationship, however,

9It is a poor approximation at high loss ratios and at low loss ratios, though, where the
maximum and minimum premium limitations flatten the curve. Fitzgibbon and Berry
were aware of the approximation problems at the end points, and adjustments could
always be made where necessary.
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FIGURE 3

THE PERKINS AND TENG “PDLD” GRAPH

is not a straight line at all. Rather, it is a set of line segments, of
steadily decreasing slope as we move to the right, as shown in
Figure 3.10

The differing slopes of these line segments result from the
loss limits and the maximum premiums in the retrospective rat-
ing plans. Most reported losses from policy inception until the
first retrospective adjustment are rateable losses, which means
that they are generally not truncated by the loss limit, and the
retrospective premium is generally not capped by the maximum
premium. The slope of the line segment is therefore close to
unity. That is, for each dollar of reported loss, the insurer re-
ceives about a dollar of premium.

During subsequent periods, new reported losses stem from
the emergence of IBNR claims and from development on known

10We use a series of line segments because retrospective adjustments are done annually,
and the PDLD method reflects this by using line segments with different slopes for each
adjustment period. In truth, a continuous concave curve better reflects reality, though it
would not lead to a feasible reserving method.
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claims. In workers compensation, for instance, new reported
losses after the first adjustment may arise from the re-evaluation
of a lower back sprain from a temporary total injury to a per-
manent total injury, with a corresponding re-estimation of the
incurred loss from $25,000 to $500,000. This loss may be trun-
cated by the loss limit in the retrospective rating formula, and
the resulting retrospective premium may also be capped by the
maximum premium.

This example is not contrived. On the contrary, it is quite com-
mon in workers compensation. Persons unfamiliar with industrial
accidents often think of lifetime pension cases as quadriplegics or
workers who have lost arms or legs in workplace accidents. Such
injuries would be recognized immediately as high-cost, perma-
nent total disabilities. These claims, which are recognized well
before the first retrospective adjustment, are the ones that are
most likely to be curtailed by the loss limits and maximum pre-
mium. This might lead some actuaries to think that the slope
of the line segment in our graph should be flattest in the initial
period.

In fact, accidents resulting in quadriplegia or the loss of arms
or legs are rare. Most lifetime pension cases stem from sprains
and strains and similar injuries that seem at first to be only tem-
porary. After several years, when it becomes evident that the
injured employee will not be returning to work, the claim is
recorded as a permanent total injury and the benefit amount is
re-estimated.11

We may state this as a general rule:12

1. As a book of business matures, premium responsiveness on
loss-sensitive contracts declines.

11In the company at which the PDLD method was developed, fewer than 20% of claims
that will ultimately be lifetime pension cases are recognized as such by the claims de-
partment at the first retrospective adjustment.
12As with any general rule, there are exceptions in particular instances.
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In other words, as policies mature, a greater percentage of loss
development is excluded from retrospective rating by the maxi-
mum premium and by the loss limit.

A second factor contributing to the declining slopes of the line
segments is the overall increase in the reported loss ratio. It is
not just that late-reported losses may be capped by the loss limit.
Even a small claim will not increase the retrospective premium
if the maximum premium has already been reached. Suppose
the retrospective premium equals the maximum premium two
years after policy inception. Then small claims reported during
the first two years would have a premium responsiveness ex-
ceeding unity (because of the loss conversion factor and the tax
multiplier), while small claims reported after the first two years
would show a premium responsiveness of zero. We can state this
second phenomenon as a general rule as well:

2. At higher loss ratios, premium responsiveness on loss-
sensitive contracts declines.

This last phenomenon relates to the overall loss ratio, not to
the types of claims reported in any particular period. At higher
overall loss ratios, more policyholders have reached their maxi-
mum premiums, so premium responsiveness is lower. Thus, it ap-
plies not only to the PDLD method, but to Fitzgibbon’s method
as well. That is, Fitzgibbon’s graph is not really a straight line.
In theory, it is a curve that is concave downwards, with steadily
decreasing slope as the loss ratio increases.

Let us return to the PDLD method. At policy inception, the
projected premium responsiveness graph is shown in Figure 4.
Each line segment represents one period. The first line segment
is from policy inception to the first retrospective adjustment, at
about 21 months.13 Subsequent periods are each one year long.

13The billing of retrospective premium generally lags the incurral of additional losses by
about three months (on average) for an individual policy and by about nine months (on
average) for a policy year. See below in the text for a full explanation of the lag times
and effects that these may have on the observed premium responsiveness.
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FIGURE 4

THE PDLD SEGMENTED GRAPH

The horizontal axis represents reported losses. For clarity, the
graph is not drawn to scale. That is, the change in reported losses
from policy inception to the first retrospective adjustment may be
50 percentage points or more in workers compensation, whereas
the change in reported losses between adjustments at late matu-
rities may be only a few percentage points. However, the graph
shows all the line segments of equal length, so that the difference
in their slopes can be seen clearly.

Actual versus Expected Experience

At the first adjustment, actual experience may differ in two
ways from the experience that would be expected from the the-
oretical graph.

1. Actual reported losses may differ from the projected re-
ported losses. For instance, at policy inception, the pro-
jected reported loss ratio to standard earned premium at
21 months may have been 55%. The actual reported loss
ratio to standard earned premium at 21 months may be
50%.
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2. The relationship between reported losses and retrospec-
tive premium may differ from that projected at policy in-
ception. For instance, suppose that the Y-intercept in the
graph is 20% and the slope of the first line segment is
1.100. Then for an actual reported loss ratio of 50% at the
first retrospective adjustment, the ratio of net premium to
standard premium is expected to be 20%+1:100%50%=
75%. Suppose, however, that the actual ratio of net pre-
mium to standard premium at the first retrospective ad-
justment is only 72%.

These effects are shown in Figure 5 (not drawn precisely to
scale).

! The projected experience at policy inception was for a reported
loss ratio of 55% and a retrospective premium ratio of 80.5%
[= 20%+1:100%55%].

! For a reported loss ratio of 50% at the first retrospective ad-
justment, the graph projects a retrospective premium ratio of
75%.

! Actual experience at the first retrospective adjustment shows
a reported loss ratio of 50% and a retrospective premium ratio
of 72%.

The Perkins and Teng Assumptions

Two assumptions underlie the PDLD method. These are:

A. The premium responsiveness during subsequent adjust-
ments is independent of the premium responsiveness dur-
ing preceding adjustments.

B. The slope of the line segment depends on the time period,
not on the beginning loss ratio or the beginning retrospec-
tive premium ratio.
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FIGURE 5

PDLD METHOD: ACTUAL VERSUS EXPECTED RESULTS

We illustrate this for the first two line segments in Figure 5.
Suppose the slope of the second line segment is 0.800. Think of
the second line segment as an infinite number of parallel lines, all
with slope of 0.800. At policy inception, we expected the second
line segment to start at the point (55%, 80.5%) and to continue
onwards with a slope of 0.800. As it turns out, the second line
segment begins at the point (50%, 72%), but it still continues
onwards with a slope of 0.800.

Compare the illustration with the two assumptions. We had
expected a 75% retrospective premium ratio with a 50% reported
loss ratio, but we actually get a 72% retro premium ratio. In
other words, the slope of the first line segment is lower than
we had originally expected. Nevertheless, we do not change our
expectations for the slope of the second line segment. This is
Assumption A.
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The second assumption relates to when we change from the
first line segment to the second line segment. From the appear-
ance of the graph in Figure 5, one might think that we change
when the reported loss ratio reaches 55%. That is not the meaning
of the graph. Rather, we change at the first adjustment, regardless
of the reported loss ratio at that time.

The manner in which the PDLD method solves Berry’s prob-
lem should now be clear. Fitzgibbon’s graph relates the ultimate
loss ratio to the ultimate retrospective premium ratio. If actual
experience differs from expected experience along the way, there
is no way to get back on track. The PDLD method relates the
reported loss ratio to the retrospective premium ratio. If actual
experience differs from expected experience along the way, the
next line segment begins at a starting point that corresponds to
the actual experience.

The PDLD method quantifies the accrued retrospective pre-
mium asset in two steps.

1. Project the future loss development in each adjustment
period.

2. Estimate the future premium revenue by the product of the
future loss development in each period and the slope of
the line segment in that period. The sum of these products
is the accrued retrospective premium asset.

The PDLD method can be thought of as follows. The line seg-
ments represent a mountain being climbed, from the 0% reported
loss ratio at policy inception to the ultimate loss ratio when all
losses are settled. At each retrospective adjustment, the remain-
ing part of the climb is shifted, both horizontally and vertically,
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but the shape of the climb is not changed (that is, the slopes of
each line segment remain fixed).14

An Enhancement

In Figure 5, the first line segment begins at a point on the Y-
axis representing the amount of retrospective premium when the
reported loss ratio is 0%; that is, the Y-intercept is positive. This
is the proper way to estimate the accrued retrospective premium
asset. Perkins and Teng, however, have the first line segment
passing through the origin; that is, the Y-intercept is 0. As a
result, Perkins and Teng get a slope for the first line segment of
1.750. In fact, empirical data in their Exhibit 4, Sheet 1 for the
most recent four quarters shows an average slope of 1.825.

Perkins and Teng’s numbers combine two separate items: the
basic premium ratio and the slope of the first line segment (when
drawn properly). By failing to distinguish between these two el-
ements, the method becomes less intuitive: how does one explain
a slope of 1.825 or 1.750?

Similarly, the combination of these two elements leads to con-
fusing interpretations. For instance, when discussing the cumula-
tive premium development to loss development ratios (CPDLD),
Perkins and Teng write:

The CPDLD ratio tells how much premium an insurer
can expect to collect for a dollar of loss that has yet to
emerge. For instance, the first CPDLD ratio is 1.492,
which means that each dollar of loss emerged provides
the insurer one dollar and 49 cents of premium. The
second CPDLD ratio is 0.556, which means that after
the first retro adjustment, each additional dollar of loss
provides the insurer 56 cents of premium.

14Actually, although the slopes of each line segment remain fixed, the length of the
line segments may be changed. At each retrospective adjustment, Perkins and Teng re-
estimate the losses expected to be reported in each subsequent period. These revisions,
however, are generally minor.
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The interpretation of the second CPDLD ratio is correct. The
interpretation of the first CPDLD ratio, however, is mistaken. The
first CPDLD ratio relates to all the expected losses from policy
inception, at least according to the procedure in the Perkins and
Teng paper.

How should we interpret the 1.492 CPDLD ratio from pol-
icy inception to the first retrospective adjustment? Consider a
relatively wide-swing retrospective rating plan: that is, a plan
with high loss limits and maximum premiums. The amount of
expected premium for each dollar of loss equals the loss con-
version factor times the tax multiplier, minus a small amount for
the non-rateable losses. This product may be about 1.200. The
remainder of the first CPDLD ratio which Perkins and Teng cal-
culate is the basic premium charge divided by the expected loss
ratio (as a function of standard premium). For a basic premium
charge of 25% and a standard loss ratio of 85%, this calculation
gives 0:25#0:85 = 0:294. Adding 1.200 to 0.294 gives 1.494,
which is about equal to the empirical figure which Perkins and
Teng compute. In other words, when the basic premium charge
is disentangled from the slopes of the line segments, the Perkins
and Teng procedure corresponds intuitively with the actual ret-
rospective rating formula.15

The failure to separate these two issues makes it harder for
the actuary to analyze changes in the figures over time. For in-
stance, what causes the steady rise in the slope of the first line
segment from an average of 1.254 in policy year 1963 to an av-
erage of 1.825 in policy year 1992 (see Exhibit 4, Sheet 1 in the
original paper)? Is it caused by a change in the average basic

15For a plan with significant loss limits or maximum premiums, the intuitive is analo-
gous. The lower the loss limits, or the lower the maximum premium, the weaker will
be the premium responsiveness, but the basic premium charge will be greater, because
the insurance charge will be larger. These two effects will offset each other, since the
insurance charge is calculated as the expected losses arising from the loss limits and
maximum premiums.
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FIGURE 6

LOSS REPORTING PATTERNS IN THE PDLD GRAPH

premium ratio, or is it caused by a change in premium respon-
siveness during the first period? These two factors are shown
separately in the graphs drawn in this discussion, but they are
not easily distinguished in the way that Perkins and Teng show
their procedure.

This change could also be caused by a lengthening of the loss
reporting pattern. This is an equally likely cause, and a graphical
representation of it is illuminating.

In Figure 6, the basic premium ratio and the slope of the
first line segment are not changed, but the percentage of losses
expected to be reported before the first adjustment is decreased.
That is, the expected ultimate loss ratio remains the same, but
the expected reported loss ratio at the first adjustment decreases
from T to S. The first line segment is therefore shorter, though it
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has the same slope. In the PDLD procedure, however, the slope
of the first line segment appears to increase. That is, the slope
from 0 to S is greater than the slope from 0 to T.16

Fortunately, it is simple to adjust the PDLD method to show
the basic premium ratio separately from the true slope of the first
line segment. One need only estimate the average basic premium
charge as a ratio to the standard loss ratio, and then subtract this
figure from the first CPDLD.

3. LOSS-SENSITIVE CONTRACTS AND UNDERWRITING RISK

Insurance serves several important economic functions, such
as the transfer of the risk of financial loss from the consumer
to the insurance company. Because of the unlimited nature of
workers compensation benefits, a single severe workplace injury
might financially impair a small employer. The transfer of this
risk from the employer to the insurance company is a societal
benefit of workers compensation insurance.

A societal downside to insurance is moral hazard. If there
were no workers compensation insurance, then employers would
take great pains to keep their workplaces as safe as possible, since
they would shoulder any cost of workplace accidents. Insurance
has two effects on employers’ safety efforts. On the one hand,
the loss engineering staffs of most workers compensation carriers
can identify potential workplace hazards and improve employers’
safety procedures. On the other hand, some employers become
less concerned with employee safety, since they no longer bear
all the costs.

An increase in moral hazard hurts both employees and em-
ployers. It hurts employees since workplace accidents may in-

16The effect is even more pronounced in the Perkins and Teng graph, which is drawn as
a concave curve instead of a series of line segments.
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crease. It hurts employers in numerous ways: there are training
costs for new employees, work flows are interrupted, and work-
ers compensation premiums increase to cover the higher loss
costs.

Retrospectively rated contracts are an attempt to achieve the
benefits of insurance while reducing the drawbacks. Employers
are protected from the risk of large losses that might otherwise
bankrupt the firm. But they still bear the cost of most other in-
juries, so moral hazard is kept low.

Insurance involves the transfer of risk from the consumer to
the insurer. In retrospectively rated contracts, some of this risk is
transferred back to the consumer. The NAIC has developed the
loss-sensitive contract offset to the underwriting risk charges in
the risk-based capital formula in order to reflect the fact that the
risk on retrospectively rated contracts differs from the risk on
prospectively rated contracts. Previous actuarial studies had not
addressed this question, and the American Academy of Actuaries
Task Force on Risk-Based Capital had little actuarial or statistical
data to give to the NAIC.

The PDLD procedure, however, provides a direct answer. In
fact, the Perkins and Teng paper sheds light on the potential lim-
itations of both the risk-based capital loss-sensitive contract off-
set and the loss-sensitive contract exhibits in Part 7 of Sched-
ule P.

Underwriting Risk

The insurance contract transfers the risk of random loss occur-
rences from the consumer to the insurance company. This risk is
primarily process risk. For instance, suppose the consumer is an
employer concerned with industrial accidents. The employer may
estimate that there is a one in one hundred chance of a severe
accident in his workplace this year. The primary risk that this
employer faces is not that he has misestimated the probability—
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that it is truly one in ninety, not one in one hundred. Nor is it
the risk that the cost of such accidents may change, say from an
average of $20,000 per accident to $25,000 per accident. Rather,
the primary risk is that an accident will indeed occur this year in
his workplace.

The risk to the insurance company is different. It is primarily
parameter risk, not process risk. If the book of business is large
enough, process risk effectively disappears. However, the risk
that the probability of an accident is truly one in ninety, or the
risk that the average cost of these accidents is truly $25,000, are
serious concerns for the insurer. A relatively small error in the
estimation of these parameters may wipe out the expected profits
of the insurer.

Loss-sensitive contracts mitigate this risk for the insurance
company. The insured is still protected against random large
losses by the loss limit in the retrospective rating plan and by
the maximum premium. Meanwhile, the insurance company is
protected against the accumulation of more losses than expected,
or a rise in the average cost per claim, by the responsiveness of
retrospective premiums to incurred losses.17

Underwriting risk has two facets. Premium risk (or “written
premium risk,” in the NAIC risk-based capital terminology) is
the risk that future premiums will prove inadequate to cover the
future losses and expenses. This risk takes a variety of forms. For
instance, there is a market risk that the competitive pressures of
an underwriting cycle downturn will force premium rates below
adequate levels. There is a regulatory/political risk that needed
premium increases will not be approved or that new types of
claims will be deemed compensable by the courts.

Reserving risk is the risk that the reserves held for accidents
that have already occurred may prove inadequate. Once again,

17For a full discussion of the effects of loss-sensitive contracts on workers compensation
reserving risk, see Hodes, Feldblum and Blumsohn [7].
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this risk takes a variety of forms. For instance, there is the eco-
nomic risk that a recession will cause injured employees to re-
main on disability for longer periods, since there may be no jobs
to return to (workers compensation). Or there may be judicial
risk, that courts or juries may grant higher awards to claimants
(general liability).

Loss-Sensitive Contracts and Underwriting Risk

Loss-sensitive contracts reduce the risks to the insurer, since
if losses are higher than expected, additional premiums are col-
lected from the insureds. When the NAIC instituted its risk-based
capital formula, which quantified the capital needed to guard
against written premium risk and reserving risk, several large
commercial lines insurers argued that a capital requirement that
is appropriate for prospectively rated business is too high for ret-
rospectively rated business, since the retrospective rating formula
itself protects against unexpectedly high losses.

But how effective are these contracts in mitigating risk? In
other words, how responsive are the premiums to unexpected
losses?

If there were no loss limits or maximum premiums in the ret-
rospective rating plans, the premium responsiveness would equal
the product of the loss conversion factor and the tax multiplier.
We term this 100% responsiveness, since the loss conversion fac-
tor generally covers loss-related expenses and the tax multiplier
pays for premium taxes (and other state assessments) that de-
pend upon the losses incurred or the premium collected. In other
words, with 100% responsiveness, the insurer would get $1.00
in extra premium for each $1.00 in additional losses and loss-
related expenses.

If there were no loss limits or maximum premiums in the
retrospective rating plans, then the insurer would not be exposed
to underwriting risk. If underwriting results are worse than ex-
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pected, or if reserves develop adversely, the insurer would collect
the full loss from the insured through retrospective premium ad-
justments. There remain some other risks, such as the credit risk
that the insured will not be able to pay the retrospective premi-
ums when they come due, but these risks are usually far smaller
than the underwriting risk.

In practice, of course, there are loss limits and maximum pre-
miums. Premium responsiveness is less than 100%. So the NAIC
instituted a 30% loss-sensitive contract offset on primary insur-
ance policies and a 15% loss-sensitive contract offset on rein-
surance treaties. The loss-sensitive contract offset of 30% means
that if the risk-based capital underwriting risk charge for a block
of prospectively rated business is $X, then the corresponding
charge for the same book of business written on loss-sensitive
contracts is $X % (1$30%).18

In other words, the primary insurance loss-sensitive contract
offset assumes (conservatively) that the premium responsiveness
is only 30%. That is to say, for each $1.00 in additional losses and
loss-related expenses, $0.30 of additional premium (on average)
is collected.

The 30% figure was not based on definitive data because
credible industry data on premium responsiveness was not
available. The consulting firm Tillinghast/Towers Perrin con-
ducted an industry-wide survey of 16 large writers of retro-
spectively rated contracts, and calculated an average premium
responsiveness of 65%. The survey asked insurance companies
how responsive they thought their loss-sensitive contracts were
to unexpected loss emergence or unexpected loss development.
The 65% was a rough average of the company estimates. Adjust-
ing this figure downward for conservatism and for the potential

18For a complete description of the loss-sensitive contract offset in the risk-based capital
formula, see Feldblum [5].
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credit risk led to the 30% offset factor in the risk-based capital
formula.19

In order to obtain industry data to more accurately estimate
the loss-sensitive contract offset factor, the NAIC added Part 7
to Schedule P. The exhibits in this section of Schedule P are
designed to allow the estimation of premium responsiveness on
loss-sensitive contracts. These exhibits are a considerable ad-
vance over the information available previously, but they are far
less useful than the information provided by reserving studies
using the PDLD method.

In the future, insurance companies will seek to better quan-
tify the effects of loss-sensitive contracts on underwriting risk,
and state regulators will attempt more accurate estimations of
the appropriate offset factor for these contracts. The study by
Perkins and Teng highlights several areas that must be carefully
considered.

Time Frames

The Schedule P Part 7 exhibits are the NAIC’s attempt to
quantify premium responsiveness, using the same method as
Perkins and Teng, but with annual reporting of premiums and
losses. The Perkins and Teng paper shows that the Schedule P
results will be distorted in several ways, possibly to the extent
that premium responsiveness will not be shown at all. Some of
the problems can be corrected (in theory, at least) by means of
the procedures in the Perkins and Teng paper; other distortions
may be more difficult to remove.

19The rationale given by the Tillinghast study and adopted by the NAIC for the lower
(15%) offset factor used for reinsurance treaties reflects the different types of loss-
sensitive contracts generally used by primary companies and by reinsurers. The primary
company retrospective rating plan adjusts the premiums billed for adverse loss experi-
ence. Some of these plans have extremely wide swings, in that the final premium may
be as much as 100% more than the standard premium. Reinsurers generally use sliding
scale commissions, in that the reinsurance commission remitted to the ceding company
depends upon the loss experience on the book of business. Since the commission rate
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The intended use of the Schedule P Part 7 exhibits is not
explained in the Annual Statement Instructions, and few actuar-
ies understand how these exhibits purport to quantify premium
responsiveness. Let us first clarify the intention of this part of
Schedule P with an illustration. We will then explain the prob-
lems with the statutory exhibits by a comparison with the Perkins
and Teng paper.

The risk-based capital reserving risk charge is based on the
loss reserves—both case and IBNR reserves—that are shown
by the company’s Schedule P, Part 2, minus Schedule P, Part 3.
The reserving risk charge quantifies the capital needed to protect
against the risk that these reserves may develop adversely in
a worst-case scenario. The loss-sensitive contract offset factor
reduces this capital requirement to reflect the additional premium
that the insurer expects to receive in this worst-case scenario.

The dollar amount of adverse development of the loss reserve
equals the dollar amount of adverse development of the incurred
losses in Schedule P, Part 2. Part 7 of Schedule P displays in-
curred losses on loss-sensitive contracts and the corresponding
adverse or favorable premium development relative to the ad-
verse or favorable loss development.

An Illustration

An example should clarify this. Suppose we are given the
extracts from Schedule P, Part 7A, Sections 2 through 5 shown
in Table 1 (figures are in thousands of dollars). The actual ex-
hibits contain more cells, but these extracts suffice to illustrate
the quantification techniques. We wish to determine premium
responsiveness from 24 to 36 months and from 36 to 48 months.

The sections of Schedule P, Part 7A, contain the following
historical triangles, by policy year and valuation date, of experi-

is bounded below by 0%, and in many treaties it is bounded below by an even higher
amount, the swing of the typical reinsurance treaty is much narrower than that of many
primary retrospective rating plans.
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TABLE 1

SCHEDULE P, PART 7A, SECTIONS 2, 3, 4, AND 5,
SELECTED ENTRIES ($000)

Section 2 1994 1995 1996 1997

1994 1,000 2,200 2,400 2,500
1995 1,100 2,500 2,650
1996 1,200 3,000
1997 1,500

Section 3 1994 1995 1996 1997

1994 350 550 300 200
1995 400 600 450
1996 450 650
1997 500

Section 4 1994 1995 1996 1997

1994 1,500 3,150 3,300 3.350
1995 1,650 3,600 3,700
1996 1,800 4,200
1997 2,000

Section 5 1994 1995 1996 1997

1994 0 200 150 110
1995 0 210 155
1996 0 220
1997 0

ence on loss-sensitive contracts:20

! Section 2: Incurred losses and ALAE on loss-sensitive con-
tracts

! Section 3: IBNR plus bulk loss and ALAE reserves on loss-
sensitive contracts

! Section 4: Earned premium on loss-sensitive contracts

20For a full description of Schedule P, Part 7, see Feldblum [4].
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! Section 5: Accrued retrospective premium reserves on loss-
sensitive contracts.

This illustration is contrived. It is designed to show how Part 7
of Schedule P was intended to be used. We then examine how
the Perkins and Teng paper explains the problems with this use
of the Part 7 exhibits.

These exhibits are policy year exhibits, not accident year
losses (as in Parts 2, 3, and 4 of Schedule P) or exposure year
premiums (as in Part 6 of Schedule P). In Section 2 of Part
7, the incurred losses as of 24 months are about twice the in-
curred losses as of 12 months. This makes sense: the policy year
1994 incurred losses as of 12 months are those losses on policies
written in 1994 that have occurred by December 31, 1994. These
are about half of the policy year 1994 losses. By December 31,
1995, all of the policy year 1994 losses have occurred (though
they have not necessarily all been reported by this time), so
the 24 month figure is about twice as great as the 12 month fig-
ure.

The same is true for Section 4, showing the policy year earned
premiums. By the end of the policy year, all the premiums have
been written (though not necessarily collected), but only about
half of these premiums have been earned.

This example assumes that the initial written premium for this
block of business is the estimated ultimate net premium. Initially,
there is no retrospective premium reserve. At the first retrospec-
tive adjustment, some premiums are returned to policyholders,
since not all losses have yet been recorded, even though the in-
surer knows that there will probably be development on the re-
ported losses. The accrued retrospective premium asset becomes
positive after the first adjustment. For companies that charge ini-
tial premiums below the estimated ultimate net premium (for
competitive reasons), the accrued retrospective premium asset
will be positive from policy inception.
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Quantifying Premium Responsiveness

Consider first the premium responsiveness from 24 to 36
months. Only policy years 1994 and 1995 in our illustration are
mature enough to measure this.21 For policy year 1994, losses
develop from $2.20 million to $2.40 million from 24 months
to 36 months, for a change of $0.20 million. Premiums develop
from $3.15 million to $3.30 million during the same time period,
for a change of $0.15 million. The premium responsiveness is
$0:15 million# $0:20 million, or 75%.
For policy year 1995, losses develop from $2.50 million to

$2.65 million from 24 months to 36 months, for a change of
$0.15 million. Premiums develop from $3.60 million to $3.70
million during the same time period, for a change of $0.10 mil-
lion. The premium responsiveness is $0.10 million# $0:15 mil-
lion, or 67%.

As the estimated premium responsiveness from 24 months to
36 months, we might take the average of these two numbers.
Alternatively, we might give more weight to the 1995 policy
year, particularly if the rating plan parameters had changed in
1995.

For the premium responsiveness from 36 months to 48
months, only policy year 1994 is sufficiently mature to provide
the needed figures. Losses develop from $2.40 million to $2.50
million from 36 months to 48 months, for a change of $0.10
million. Premiums develop from $3.30 million to $3.35 million
during the same time period, for a change of $0.05 million.
The premium responsiveness is $0:05 million# $0:10 million,
or 50%.

This is consistent with the Perkins and Teng paper. As reserves
mature, premium responsiveness diminishes, since more losses
are censored by the loss limit and more premiums are capped

21In an actual Schedule P, all earlier policy years would also show this relationship.
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by the maximum premium. In addition, at later maturities, some
retrospective rating plans are closed.

This example was designed to illustrate the intended use of the
Schedule P exhibits; it would rarely be encountered in practice.
The incurred losses here develop smoothly upward, and the pre-
miums follow them equally smoothly. An adequately reserved
company should show flat incurred losses along development
periods, and similarly flat earned premiums. After all, these in-
curred losses include IBNR and bulk reserves, and the earned
premiums include the accrued retrospective premium asset. The
changes in incurred losses from period to period would be some-
times small and sometimes large, sometimes positive and some-
times negative, resulting primarily from random loss fluctuations.
The changes in earned premiums from period to period would be
equally variable, resulting again from random loss fluctuations
as well as from censoring by the loss limits and capping by the
premium maximums.22

We have two series of variable figures with means of zero,
since favorable and adverse development are equally likely (in
theory, at least). The ratios of these series will be even more
variable, sometimes very high, sometimes very low, sometimes
positive, and sometimes negative. These ratios may not tell us
much about premium responsiveness.

Reported Losses and Billed Premium

As the Perkins and Teng paper shows, premium responsive-
ness does not deal with the relationship of changes in total earned
premium to changes in total incurred losses. Rather, it deals with
the relationship of changes in billed premium to changes in re-

22The date of recognition of additional losses or additional accrued retrospective premium
reserves would add to the variability in the two series of changes, one of incurred losses
and one of earned premiums. That is, the reserving actuary may recognize the potential
increase in ultimate losses in one year, but he or she may not book the corresponding
increase in the accrued retrospective premium reserves until some later time.
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ported losses. Accordingly, Schedule P, Part 7 allows that anal-
ysis to be performed as well.

Section 2 of Part 7 shows incurred losses, and Section 3 shows
IBNR and bulk reserves. The difference between Sections 2 and
3 represents reported losses.23 Similarly, Section 4 shows to-
tal earned premiums, and Section 5 shows the net reserve for
premium adjustments and accrued retrospective premiums. The
difference between Sections 4 and 5 represents billed pre-
mium.

Let us repeat the premium responsiveness calculations using
the simulated Schedule P, Part 7 exhibits provided above. For the
premium responsiveness from 24 months to 36 months, we have
data from policy years 1994 and 1995. For policy year 1994,
reported losses develop from ($2.2 million–$0.55 million) at 24
months to ($2.4 million–$0.3 million) at 36 months, for a change
of $0.45 million. Billed premium develops from ($3.15 million–
$0.2 million) at 24 months to ($3.3 million–0.15 million) at 36
months, for a change of $0.20 million. Premium responsiveness
from 24 months to 36 months is $0:20 million#$0:45 million =
44:4%.

For policy year 1995, reported losses develop from ($2.50
million–$0.60 million) at 24 months to ($2.65 million–0.45 mil-
lion) at 36 months, for a change of $0.30 million. Billed pre-
mium develops from ($3.6 million–$0.21 million) at 24 months
to ($3.70 million–$0.155 million) at 36 months, for a change of
$0.155 million. Premium responsiveness from 24 months to 36
months is $0:155 million#$0:30 million = 51:7%.

Anticipated Emergence versus Unanticipated Development

These figures do indeed reflect reality, but is this reality re-
lated to the risk-based capital loss-sensitive contract offset factor?

23This is the same as the calculation of accident year reported losses as Part 2 of Schedule
P minus Part 4 of Schedule P.
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The risk-based capital reserving risk charge seeks to quantify the
amount of capital needed to guard against unanticipated adverse
development of loss reserves. For instance, if in a worst-case (but
still reasonable) scenario, the company’s reserves would develop
adversely by $15 million, then the company should hold $15
million of capital to ensure its solvency.

The figures calculated in the preceding section measure the
responsiveness of retrospective premiums to the emergence of
anticipated losses. They do not tell us how responsive the retro-
spective premiums would be to the emergence of unanticipated
losses.

An example should clarify this. Suppose we are examining
the premium responsiveness from 24 months to 36 months on a
workers compensation retrospectively rated plan with an average
swing. Suppose that at 24 months the reported losses are $100
million, and the anticipated reported losses at 36 months are $120
million. The expected ultimate losses are $150 million.

From our hypothetical experience, we find a premium respon-
siveness for this period of 50%. That is to say, when reported
losses increase by $20 million, the billed premium increases by
$10 million. What are the implications for large and unantici-
pated adverse loss development, as envisioned in the risk-based
capital worst-case scenario? For example, if the ultimate losses
are re-estimated at $180 million at 36 months instead of $150
million, will the accrued retrospective premium asset increase by
an additional $15 million, or 50% of the additional losses of $30
million?

Consider the real-world characteristics of the numerical ex-
ample given above. The development of reported losses from
$100 million to $120 million from 24 months to 36 months may
be decomposed into several parts. One part is the lengthening
of some temporary cases for another few months, or an increase
in some medical benefits. This development is rateable, so pre-
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mium responsiveness is high. Another part is the reclassification
of some temporary total cases, such as lower back sprains, into
lifetime pension cases, when it becomes clear that the injured
employee will not be returning to work. Only some of this de-
velopment is rateable, and the rest is truncated by the loss limits
or the maximum premiums.

Large and unanticipated adverse loss development has a heavy
proportion of this nonrateable element. The re-estimation of the
ultimate losses from $150 million to $180 million may result
from the re-classification of several back sprains as severe and
permanent disabilities, or from a judicial or legislative decision
that certain disease claims, or psychiatric claims, are compens-
able. These claims are generally large and they are paid over a
long period of time. A large part of these claims may not be
rateable.

The Perkins and Teng paper discusses these issues. As noted
above in this discussion, the premium responsiveness depends
on the maturity of the losses as well as on the average loss ratio
in the block of business. The emergence of anticipated losses dif-
fers from the unanticipated adverse development of the expected
losses in that:

! the anticipated losses are generally paid sooner than the unan-
ticipated losses, and

! the anticipated losses generally represent a lower loss ratio
than do the unanticipated losses.

Since the anticipated losses are generally paid sooner, they are
accompanied by a stronger premium responsiveness. Since the
anticipated losses are generally in a lower loss ratio environment,
they are associated with a stronger premium responsiveness. In
sum, the figures derived from the historical triangles in Schedule
P, Part 7 may not be relevant to the scenarios with which risk-
based capital is concerned.
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Reserving Risk Offset versus Premium Risk Offset

The NAIC risk-based capital formula uses the same loss-
sensitive contract offsets for reserving risk as for written pre-
mium risk: 30% for primary insurance contracts and 15% for
reinsurance contracts. As the Perkins and Teng paper shows, the
offset should be much higher for written premium risk than for
reserving risk.24

For the written premium risk loss-sensitive contract offset,
one must examine the first CPDLD factor in a Perkins and Teng
study. However, one must separate the basic premium charge
from the premium responsiveness to losses, or the offset factor
will be overstated; see the discussion above for further explana-
tion of this. Moreover, one must remove the effects of the loss
conversion factor and the tax multiplier, which would also over-
state the appropriate offset factor.

For the reserving risk loss-sensitive contract offset, one must
examine the CPDLD factors at each maturity. One would then
weight these CPDLD factors by the distribution of reserves at
each maturity. As is true for the written premium risk loss-
sensitive contract offset, one must remove the effects of the loss
conversion factor and the tax multiplier.

The difference between premium responsiveness to the emer-
gence of anticipated losses and premium responsiveness to unan-
ticipated adverse loss development (or unanticipated adverse un-

24The appropriate figures depend on the types of plans sold by the insurance company.
The indicated range of figures is wide, and the type of analysis used by Perkins and
Teng must be applied to each company’s book of business. For instance, for a workers
compensation carrier selling wide-swing plans to large national accounts, the appropriate
figures may be between 80% and 85% for the written premium risk loss-sensitive contract
offset and between 60% and 65% for the reserving risk loss-sensitive contract offset.
For a company selling narrow swing plans to small risks, the offsets are much smaller,
extending down as far as the figures used in the NAIC risk-based capital formula. For a
full analysis of premium sensitivity on plans sold to small accounts, see Bender [1] and
Mahler [9].
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derwriting results) can be significant. In the Perkins and Teng
framework, the CPDLD’s should be based on a book of business
with an overall loss ratio equal to the worst-case year loss ratio
in the NAIC risk-based capital scenario. Empirical data for such
CPDLD’s are not readily accessible. Approximations by curve-
fitting techniques to the CPDLD’s that are empirically available
may have to be substituted.

Premium Billing Lags

Another section of the Perkins and Teng paper brings to light
an equally significant problem with the Schedule P exhibits.
When quantifying premium responsiveness, it is important to
use corresponding premiums and losses. Premium billing occurs
about 3 months after the retrospective adjustment. This implies
that the premium billing lags the average loss occurrence by 3
to 15 months.

An example should clarify these figures. Suppose a policy is
effective from July 1, 1998 through June 30, 1999. Retrospective
adjustments are done six months after the policy’s expiration and
every 12 months subsequently. For this policy, the retrospective
adjustments will be done on each January 1, starting with Jan-
uary 1, 2000. The resulting retrospective premium adjustment
will be billed or returned to the policyholder on each April 1.

Each retrospective premium adjustment is driven by losses
that are reported between 15 months and 3 months prior to the
premium billing date. For this policy, losses reported between
January 1 and December 31 affect the premium adjustment that
will be billed on April 1. The schematic in Figure 7 shows this
graphically.

The average lag between loss reporting and premium billing
is 9 months. This is the lag used by Perkins and Teng. If one
does not use any lag, as was the intention of the designers of
Schedule P, Part 7, the results will be distorted. To see this most
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FIGURE 7

PREMIUM AND LOSS DATES FOR
RETROSPECTIVELY RATED POLICIES

clearly, suppose that:

! the retrospective premium billing is done on July 1,

! all losses occur on July 1,
! there is 100% premium responsiveness, and

! the annual incurred losses alternate between $1,000 and $0.
The Schedule P, Part 7, premium responsiveness test would show
the following:

Year 1 2 3 4 5 6

Change in incurred losses $1000 $0 $1000 $0 $1000 $0

Change in billed premium — $1000 $0 $1000 $0 $1000

The premium billing shows up a year after the loss occurs. In this
example, there is 100% premium responsiveness, but Schedule
P, Part 7, shows a $100% premium responsiveness.25

25If X denotes the change in incurred losses, and Y is the change in billed premium, than
100% premium responsiveness is represented as Y = 100%%X. This policy’s experience
shows a line of Y = $1000$100%%X. In the actual calculations of premium respon-
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In practice, simplistic examinations of premium responsive-
ness may yield regression coefficients which are negative or
seemingly random. The reserving actuary may conclude that the
data are incorrect, when the true problem is an improper match-
ing of premiums and losses.

The Perkins and Teng paper shows a possible solution to our
problem. Ideally, one should use quarterly data, with a 9-month
lag between premium billing dates and loss reporting dates. Few
insurers have this data, and the costs of obtaining such data far
outweigh any benefits from these exhibits. As a practical alter-
native, one should use a 12-month lag in the quantification of
premium responsiveness. A 12-month lag is not ideal, but it is
better than no lag at all. Moreover, this requires no change in the
exhibit completion process: the same exhibits may be used, but
the quantification procedure would be modified.

4. CONCLUSION

Miriam Perkins and Michael Teng have put together an excel-
lent paper, based on eight years of carefully examining the ac-
crued retrospective premium reserves in workers compensation,
general liability, and commercial auto for one of the country’s
largest writers of retrospectively rated policies. They methodi-
cally analyzed how premium responsiveness changes by reserve
maturity and by aggregate loss ratio, and they systematically
tested the lags between loss reporting and premium billing in
the company’s book of business.

The Perkins and Teng procedure is important not just for re-
serve projections but also for risk analysis. Our profession has
much to gain as other actuaries learn the techniques presented by
Perkins and Teng and use them to quantify the risk and rewards
of loss-sensitive contracts.

siveness, of course, one does not use successive adjustments for a single policy or block
of policies, but successive calendar years for the same adjustment for successive blocks
of policies. The underlying concepts are the same, though the schematic becomes more
complex.
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RETROSPECTIVE RATING: 1997 EXCESS LOSS FACTORS

WILLIAM R. GILLAM AND JOSE R. COURET

DISCUSSION BY HOWARD C. MAHLER

INTRODUCTION

This discussion will present some of the mathematical aspects
of the effect of dispersion of loss development on excess ratios.
It will be shown how the formulas developed in “Retrospective
Rating: 1997 Excess Loss Factors” fit into this more general
mathematical framework.

THE PROBLEM

Even if one included average loss development beyond fifth
report in the estimation of excess ratios, there are at least two
phenomena that would affect excess ratios that are not being
considered. First, the different sizes of claims may have varying
expected amounts of development. If larger claims had higher
average development, this would raise the excess ratios for higher
limits.

Secondly, there is a “dispersion” effect. Assume we have two
claims of $1 million each that are expected on average to develop
by 10%. It makes a difference whether we assume we’ll have two
claims each at $1.1 million or one claim at $1 million and one
claim at $1.2 million. The ratio excess of $1.1 million will differ
in the two cases.1

It is assumed for simplicity that there is no development on
average; alternatively, any average development has already been

1In the former case it is zero, since there are no dollars excess of $1.1 million. In the
latter case it is 0.1/2.2, since there are $1.2–$1.1 million = $:1 million dollars excess of
$1.1 million, and total losses of $2.2 million.

316
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incorporated into the size of loss distribution. However, some
individual claims will develop more than average while others
will develop less than average. In total, the average development
factor is assumed to be unity.

SIMPLE EXAMPLE

Assume we have a piece-wise linear size of accident distribu-
tion such that:2

F(0) = 0

F(100) = :90

F(1,000) = :99

F(5,000) = 1:00:

Any size of loss distribution can be approximated sufficiently
well by such an “ogive.”3 For actual applications one would
have many more intervals, but this example will illustrate the
principles involved.

The probability density function is:

f(x) =

!""""#""""$
:009 0< x! 100
:0001 100< x! 1,000

:0000025 1,000< x! 5,000
0 x> 5,000:

One can compute the average size of claim as the sum of three
integrals of xf(x):

E[X] =
% 100

0
(:009)xdx+

% 1000

100
(:0001)xdx

+
% 5000

1000
(:0000025)xdx

= 45+49:5+30 = 124:5:

2Assume everything is in units of thousands of dollars. Thus, 5,000 actually corresponds
to $5 million.
3See Hogg and Klugman [3].
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The excess ratio at limit L can be computed as:

R(L) =
% "

L
(x#L)f(x)dx=E[X]:

In this case we can compute the numerator as a sum of three
terms:% "

L
(x#L)f(x)dx

= (If L < 100)
% 100

L
(x#L)(:009)dx

+(If L < 1000)
% 1000

max[100,L]
(x#L)(:0001)dx

+(If L < 5000)
% 5000

max[1000,L]
(x#L)(:0000025)dx:

If L < 100, let

R1(L) =
% 100

L
(x#L)dx

&% 100

0
xdx

= excess ratio at L if losses are uniformly distributed
on the interval [0,100]:

Note that R1(L) = 0 if L$ 100. Then the first term above is

R1(L)
% 100

0
:009xdx= R1(L)E1[X],

where E1[X] =
' 100
0 (:009)xdx is the contribution to the overall

mean from claims in the first interval. Then, working similarly
with the other two intervals:% "

0
(x#L)f(x)dx= R1(L)E1[X]+R2(L)E2[X]+R3(L)E3[X],

R(L) =
R1(L)E1[X]+R2(L)E2[X]+R3(L)E3[X]

E1[X]+E2[X]+E3[X]
:
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Thus, the overall excess ratio can be expressed as a weighted
average of excess ratios each computed as if the losses were
uniformly distributed on an interval. The weights are the contri-
butions to the overall mean of the claims in each interval. In this
case, the weights are 45, 49.5, and 30 or 45/124.5, 49.5/124.5,
and 30/124.5.

For example, for a limit of 70, the individual excess ratios
are:4 .09, .8727, and .9767. The weighted average is

R(70) =
(45)(:09)+ (49:5)(:8727)+ (30)(:9767)

124:5
= :6149:

Further, if the losses were uniform from 100 to 1000 then the
excess ratio would be:

1
900

% 1000

100
(x#70)dx

(
1
900

% 1000

100
xdx= (550#70)=550

= 480=550 = :8727:

Table 1 shows the excess ratios for this simple example for
several limits. As can be seen, in the absence of any loss de-
velopment, the ratio excess of 5,000 is zero; there are no losses
above 5,000.

SIMPLE DISPERSION

Assume for simplicity that each accident has an equal likeli-
hood of developing in a manner such that it is divided5 by either:
.75, .833, 1, 1.25, or 1.5. Then the average development is

1
5

)
1
:75

+
1
:833

+
1
1
+

1
1:25

+
1
1:5

*
= 1:

4For losses distributed uniformly on [a,b], for b > L > a, R(L) = (b#L)2=(b2# a2); for
L < a, R(L) = 1#2L=(b+a); for L > b, R(L) = 0. For the interval [0,100] we have the
first case. For the intervals [100,1,000] and [1,000,5,000] we have the second case.
5Loss development divisors are used in order to match the presentation in “Retrospective
Rating: 1997 Excess Loss Factors.” Loss development multipliers or factors could have
been used equally well for the presentation.
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TABLE 1

EXCESS RATIOS*

No Simple Gamma
LIMIT Development Dispersion** Dispersion***

50 .6888 .6813 .6945
100 .5582 .5597 .5684
500 .3012 .2932 .3076

1,000 .1606 .1632 .1721
2,000 .0904 .0856 .0930
3,000 .0402 .0394 .0459
4,000 .0100 .0156 .0190
5,000 .0000 .0045 .0069
6,000 .0000 .0005 .0024
7,000 .0000 .0000 .0008
8,000 .0000 .0000 .0003
9,000 .0000 .0000 .0001
10,000 .0000 .0000 .0000

*For simple piece-wise linear distribution with F(0) = 0, F(100) = :9, F(1000) = :99, F(5000) = 1.
**For five possibilities, see text. Mean development = 1; Variance of development = :060.
***For a gamma loss divisor with ®= 16:67, ¸= 15:67, see text. Mean development = 1; Variance
of development = :060.

Thus, the total expected losses are unaffected. The variance of
the development is .060.

We can compute excess ratios for each of the five possibilities
and average the results together. If all the accidents were divided
by 1.25; i.e., multiplied by .8, then a limit of 100 is equivalent
to a limit of 125 without any development. So the excess ratio
for 100 for the developed losses can be computed as R(125) for
the original distribution.6

Thus, to compute the excess ratio for the developed losses for
a limit of 100:

R̂(100) = 1
5(R(75)+R(83:3)+R(100)+R(125)+R(150))

= 1
5(:6009+ :5817+ :5582+ :5384+ :5191) = :5597:

6If each of the accidents are divided by 1.25, then the ratio excess of a limit of 100
declines from .5582 to .5384. Reducing the size of accidents reduces the excess ratio
over any fixed limit.
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Similarly, we can compute the excess ratio for the developed
losses for a limit of 5,000:

R̂(5000) = 1
5(R(3750)+R(4165)+R(5000)

+R(6250)+R(7500))

= 1
5(:0157+ :0070+0+0+0) = :0045:

So the dispersion effect has now produced some losses excess
of 5,000, without affecting the total expected losses.

As can be seen in Table 1, the dispersion effect raises the
excess ratios for higher limits and alters those for lower limits.
While this example could be changed to include more than 5
possibilities, the essence of the dispersion effect has been cap-
tured. However, if the possibilities were more dispersed around
the mean; i.e., if the variance of the development were greater,
then the impact of the dispersion would be greater.

CONTINUOUS LOSS DIVISORS APPLIED TO A UNIFORM
DISTRIBUTION ON AN INTERVAL

What if, rather than five possible loss divisors, one had a
continuous probability distribution?

Assume:

1. Losses are distributed uniformly on the interval [a,b].

2. Losses will develop with loss divisors r given by a dis-
tribution H(r), with density h(r).7

Then, as shown in Appendix A, the distribution function for
the developed losses y, is given by:

F(y) = [y=(b# a)]%E(R;b=y)#E(R;a=y)&,

7It is assumed that
' "
0
(h(r)=r)dr is finite, so that the overall loss development is finite.

In the case where H is a gamma distribution, this requirement means that the shape
parameter s must be greater than one.
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where E[R;L] is the limited expected value of the distribution of
loss divisors, at a limit L.

Appendix A also shows that the density function can be writ-
ten in a number of forms, as summarized below:

f(y) =
1

b# a
% b=y

a=y
rh(r)dr

=
1

b# a%E[R;b=y]# (b=y)(1#H(b=y))#E[R;a=y]
+ (a=y)(1#H(a=y))&

=
1

b# a%E[R;b=y]#E[R;a=y]&

+
1

y(b# a)%bH(b=y)# aH(a=y)&#
1
y
:

Further, Appendix A describes how one can use the density
function and distribution function to calculate the excess ratio of
the developed losses, as follows:

R(L) =
1

b2# a2
+
b2
% b=L

0
h(r)=rdr# a2

% a=L

0
h(r)=rdr

+2aLH(a=L)#2bLH(b=L)

+L2
% b=L

a=L
rh(r)dr

,&% "

0
h(r)=rdr:

GAMMA DISPERSION APPLIED TO THE UNIFORM DISTRIBUTION

Assume that the loss divisor r is distributed according to a
gamma distribution8 with parameter s and l:

h(r) =
lsrs#1e#lr

¡ (s)
,

where ¡ (n) = (n#1)!.
8Then the loss multipliers are distributed according to an inverse gamma. We assume
s > 1, so that the overall loss development is finite.
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Then, as shown in Appendix B, based on the general formula
in Appendix A, if the losses are uniformly distributed on the
interval [a,b], after development the excess ratio for the limit L
is given by:9

R(L) =
b2

b2# a2¡ (s#1; lb=L)#
a2

b2# a2¡ (s# 1; la=L)

+
2L(s# 1)
(b2# a2)l%a¡ (s; la=L)#b¡ (s; lb=L)&

+
L2(s#1)s
(b2# a2)l2 %¡ (s+1; lb=L)#¡ (s+1; la=L)&,

where ¡ (s;y) = 1=¡ (s)
' y
0 t
s#1e#t dt is the incomplete gamma

function.

One can apply this “gamma dispersion” effect to a piece-wise
linear size of accident distribution, such as in the prior example.

The mean development is the mean of an inverse gamma,
l=(s#1). For this discussion, the average development is unity,
so we take l = s#1. The variance of the development is the vari-
ance of an inverse gamma, l2=%(s#1)2(s#2)&. For l = s# 1, the
variance is 1=s#2. Thus, if one takes s= 18:67, (and l = 17:67)
then the variance of the development is 1=16:67 = :060, which
matches that in the simple dispersion example. However, the
gamma allows extreme possibilities (with a small probability),
so one gets a somewhat different behavior than in the simple
dispersion example.

As seen in Table 1, using the gamma dispersion for very high
limits (7,000 and above) yields excess ratios that are now posi-
tive rather than zero. Gamma dispersion can have a particularly
significant impact on very high limits, particularly if the variance
is large.

9These are the formulas developed and shown in “Retrospective Rating: 1997 Excess
Loss Factors.”
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Each excess ratio is computed as a weighted average of the
excess ratios computed for losses uniformly distributed on each
of the three assumed intervals. For example, for a limit of 2,000,
the excess ratio for losses distributed uniformly from 1,000 to
5,000, with gamma dispersion with s= 18:67 and l = 17:67 is
given by the formula from Appendix B:

R3(2000)

= (1:04167)¡ (17:67;44:175)# (:04167)¡ (17:67;8:835)
+ (:1667)¡ (18:67;8:835)# (:8333)¡ (18:67;44:175)
+ (:1761)¡ (19:67;44:175)# (:1761)¡ (19:67;8:835)

= (1:04167)(:9999980)# (:04167)(:0057148)
+ (:1667)(:0011302)# (:8333)(:999987)
+ (:1761)(:999949)# (:1761)(:0026)

= :384:

Similarly, for losses uniform from 100 to 1,000, R2(2000) =
:00008. For losses uniform from 0 to 100, R1(2000) = 10

#19.
Taking a weighted average, using weights of 45, 49.5, and 30,
one obtains R(2000) = :093, as displayed in Table 1.

Note that the gamma distribution used in this example has a
large value of s, the shape parameter. Therefore, the distribution
of loss divisors is close to normal.10 The distribution of loss
divisors has a skewness of 2=

'
s, which is only .49. The skewness

of the distribution of loss multipliers is that of an inverse gamma:
4
'
(s# 2)=(s#3) = 1:12. If one were to take a different form

of distribution with a larger skewness one would have a larger
chance of extreme results. Therefore, in the case of very high
limits, the excess ratios would be even larger.

10The distribution of loss multipliers is close to an inverse normal distribution.
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DISTRIBUTION OF DEVELOPED LOSSES

The particular situations examined so far are a special case of
a more general framework. As shown in Appendix C, if losses
at latest report are distributed via G(x) and the loss divisors r are
distributed independently of x via density function h(r),11 then
the distribution for the developed losses y is given by:

F(y) =
% "

0
G(yr)h(r)dr:

GAMMA LOSS DIVISORS APPLIED TO AN EXPONENTIAL
DISTRIBUTION

For example, if G(x) is an exponential distribution G(x) =
1# e#¸x and the loss divisors are gamma distributed h(r) =
lsrs#1e#lr=¡ (s), then

F(y) = 1# ls

¡ (s)

% "

0
rs#1e#lre#¸yr dr

= 1# ls

¡ (s)
¡ (s)

(l+¸y)s
= 1#

)
(l=¸)

(l=¸)+ y

*s
:

Thus F(y) has a Pareto distribution as per Hogg and Klugman
[3], with shape parameter s and scale parameter l=¸. Thus, the
excess ratio of the developed losses is that of a Pareto distribu-
tion:

R(L) =
)

(l=¸)
(l=¸)+L

*s#1
:

MATHEMATICAL RELATION TO MIXED DISTRIBUTIONS

The calculation of the distribution of the developed losses is
the same as that used to calculate the mixed distribution in the in-
verse gamma-exponential conjugate prior.12 (An inverse gamma

11With
' "
0
(h(r)=r)dr finite.

12See Herzog [2], or Venter [4]. The mixed distribution in the case of an inverse gamma—
Exponential conjugate prior is a Pareto distribution, as obtained above.
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distributed multiplier is the same as a gamma distributed divisor.)
In general, if the loss multipliers and the loss distribution form
any of the well known pairs13 of prior distributions of the scale
parameters of the conditional distributions and conditional dis-
tributions, then the developed losses will be given by the mixed
distribution. For example, as shown in Venter [4], a Weibull loss
distribution and a transformed gamma loss divisor14 would pro-
duce a Burr distribution of developed losses. Thus, there are a
number of mathematically convenient examples that might ap-
proximate a particular real world application.

GAMMA LOSS DIVISORS APPLIED TO PARETO LOSSES

Since the Pareto distribution is often used to model losses (or
at least the larger losses), it would be valuable to be able to apply
the concept of loss divisors to the Pareto distribution.

As shown in Appendix C, one can develop the mathematics
of applying gamma loss divisors to losses distributed by a Pareto
distribution with parameters ® and ¸: F(x) = 1# (¸=(¸+ x))®. As
derived in Appendix C, the excess ratio for the developed losses
is given by:

R(L) =
)
Xl

L

*s#1
U(s# 1,s+1#®,¸l=L),

where U is a confluent hypergeometric function.15

It is also shown in Appendix C that when the average de-
velopment is unity16 then the excess ratios of the developed
losses can be approximated by replacing ¸ in the Pareto by
¸( = ¸(s# 1)=(s# (®=2)#1).

13Such as shown in Venter [4]. Venter displays a list of conjugate priors, but for the
current application there is no requirement that it be a conjugate prior situation.
14An inverse transformed gamma loss multiplier.
15See Appendix D and Handbook of Mathematical Functions [1].
16Also, we need the shape parameter of the gamma, s, to be greater than ®+1.
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Table 2 and Figure 1 compare the excess ratios for a Pareto
with ®= 3:5 and ¸= 1,000, for the developed losses17 with a
gamma divisor with s= 6 and l = 5, and for an approximat-
ing Pareto with ®= 3:5 and ¸= 1,000(s#1)=(s# (®=2)# 1) =
1,538. The excess ratios for the developed losses are larger than
those for the undeveloped losses. The approximation using the
rescaled Pareto yields excess ratios that are too high for the lower
limits, but it does an excellent job of approximating the excess
ratios for higher limits.

As shown in Appendix C, in the tail, the loss development18

multiplies the excess ratios by a factor of approximately:

(s#1)®#1¡ (s#®)=¡ (s#1))
)
(s#1)

()
s# ®

2
# 1

**®#1
:

In this example, this factor is: 52:5¡ (2:5)=¡ (5) = 3:1. Figure 2
shows how this adjustment factor varies as the shape parameters
of the Pareto and gamma vary. As the shape parameter of the
Pareto, ®, gets smaller, the losses have a heavier tail and the
impact of the dispersion increases. As the coefficient of variation
of the gamma19 increases, the impact of the dispersion increases.

In general, as the coefficient of variation of the loss divisors
increases, the impact of the dispersion increases. As the coef-
ficient of variation approaches zero, we approach the situation
where each claim develops by the average amount and there is
no effect of dispersion. Thus, in order to apply this technique,
one of the key inputs would be the coefficient of variation of the
loss divisors.

CONCLUSIONS

The effect of the dispersion of loss development beyond the
latest available report can be incorporated into the calculation of

17Then R(L) = (¸l=L)s#1U(s# 1,s+1#®,¸l=L) = (L=5000)#5U(5,3:5,5000=L).
18For gamma dispersion with l = s# 1 so the average development is unity.
19The coefficient of variation is the standard deviation divided by the mean. For the
gamma distribution with shape parameter s, the coefficient of variation is 1=

'
s.
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TABLE 2

EXCESS RATIOS

Undeveloped Approximating
Losses Developed
Pareto Developed Pareto

LIMIT (®= 3:5,¸= 1,000) Losses* (®= 3:5,¸= 1,538)

500 .3629 .3960 .4947
1,000 .1768 .2152 .2859
2,500 .0436 .0668 .0895
5,000 .0113 .0211 .0268
10,000 .0025 .0055 .0065
25,000 .00029 .00076 .00081
50,000 .00005 .00015 .00015
100,000 .000010 .000029 .000028

*Assuming gamma loss divisor, with s= 6 and l = 5. R(L) = (5000=L)2:5U(5,1:5;5000=L).

FIGURE 1

EXCESS RATIOS
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FIGURE 2

ADJUSTMENT FACTOR TO APPLY TO EXCESS RATIOS

excess ratios. In the case of loss dispersion which is (approxi-
mately) independent of size of loss, for many special cases one
can calculate the distribution of the developed losses in closed
form. In these cases, the excess ratios follow directly.

In other situations, one can approximate the loss distribution
via a piece-wise linear distribution and then apply the effects of
dispersion to each interval. Since on each interval the piece-wise
linear approximation is a uniform distribution, one can apply
the formulas developed in Appendix A. Then one can weight
together the excess ratios for the developed losses from the indi-
vidual intervals in order to get the excess ratio for all developed
losses.
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APPENDIX A

LOSS DIVISORS APPLIED TO A UNIFORM DISTRIBUTION ON AN
INTERVAL

Assume:

Losses are distributed uniformly on the interval [a,b]. Losses
will develop with loss divisors r given by a distribution H(r) and
density h(r).

Then:

The distribution function for the developed losses y, is given
by:

F(y) = (y=b# a)%E[R;b=y]#E[R;a=y]&,
where E[R;L] is the limited expected value of the distribution of
loss divisors, at a limit L.

Proof:

The developed losses y are the ratio of the undeveloped losses
x and the loss divisor r; y = x=r or x= yr. Thus since x is uniform
on [a,b],20 the conditional distribution of y given r is:

F(y * r) =

!""#""$
0 yr ! a

ry# a
b# a a! yr ! b
1 yr $ b:

The unconditional distribution of y can be computed by in-
tegrating the conditional distribution of y given r times the as-
sumed density function of r:

20For the uniform distribution on [a,b], F(x) = 0 if x! a, F(x) = (x# a)=(b#a) if a!
x! b, and F(x) = 1 if x$ b.
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F(y) =
% "

r=0
F(y * r)h(r)dr

=
% b=y

a=y

)
ry# a
b# a

*
h(r)dr+

% "

b=y
h(r)dr

=
y

b# a
% b=y

a=y
rh(r)dr+

a

b# a
)
H

)
a

y

*
#H

)
b

y

**
+1#H(b=y)

=
y

b# a

+% b=y

0
rh(r)dr#

% a=y

0
rh(r)dr+

a

y
H

)
a

y

*
# a
y

+
b

y
# b
y
H

)
b

y

*,

=
y

b# a

+-% b=y

0
rh(r)+

)
b

y

*
(1#H(b=y))

.

#
-% a=y

0
rh(r)+

)
a

y

*
(1#H(a=y))

.,

=
y

b# a
/
E

0
R;
b

y

1
#E

0
R;
a

y

12
:

Similarly, we can get the density function f(y). For condi-
tional density at y given r is:

f(y * r) =

!"""#"""$
0 yr ! a
r

b# a a! yr ! b

0 yr $ b:
The unconditional density at y can be computed by integrating

the conditional density at y given r times the assumed density
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function of r:

f(y) =
% "

0
f(y * r)h(r)dr

=
% b=y

a=y

r

b# ah(r)dr

=
1

b# a
% b=y

a=y
rh(r)dr:

We can put this type of integral in terms of limited expected
values, since

E[R;r] =
% r

0
rh(r)dr+ r(1#H(r))

f(y) =
1

b# a%E[R;b=y]# (b=y)(1#H(b=y))

#E[R;a=y]+ (a=y)(1#H(a=y))&

=
1

b# a%E[R;b=y]#E[R;a=y]&

+
1

y(b# a)%bH(b=y)# aH(a=y)&#
1
y
:

One can use the density function and distribution function to
calculate the excess ratio of the developed losses. The numerator
of this excess ratio is the (developed) losses excess of L:% "

L
(y#L)f(y)dy =

% "

L
yf(y)dy#L(1#F(L)):

Since f(y) = 1=(b# a)' b=ya=y rh(r)dr we have% "

L
yf(y)dy =

1
b# a

% "

y=L
y

% b=y

r=a=y
rh(r)drdy:
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Switching the order of integration:

% "

L
yf(y)dy =

1
b# a

% a=L

r=0

% b=r

y=a=r
yrh(r)dydr

+
1

b# a
% b=L

r=a=L

% b=r

y=L
yrh(r)dydr

=
1

2(b# a)
% a=L

r=0

3
b2

r2
# a

2

r2

4
rh(r)dr

+
1

2(b# a)
% b=L

r=a=L

3
b2

r2
#L2

4
rh(r)dr

=
b2

2(b# a)
% b=L

r=0
h(r)=rdr# a2

2(b# a)
% a=L

r=0
h(r)=rdr

# L2

2(b# a)
% b=L

r=a=L
rh(r)dr:

In the course of deriving the form of the distribution function
we had

F(y) =
y

b# a
% b=y

a=y
rh(r)dr+1+

a

b# aH
)
a

y

*
# b

b# aH
)
b

y

*
:

Thus

1#F(L) =

b

b# aH(b=L)#
a

b# aH(a=L)#
L

b# a
% b=L

a=L
rh(r)dr:
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Thus combining the terms, the numerator of the excess ratio
is: % "

L
yf(y)dy#L(1#F(L))

=
b2

2(b# a)
% b=L

0
h(r)=rdr# a2

2(b# a)
% a=L

0
h(r)=rdr

+
aL

(b# a)H(a=L)#
bL

b# aH(b=L)

+
L2

2(b# a)
% b=L

a=L
rh(r)dr:

The denominator of the excess ratio is:21% "

0
yf(y)dy = lim

L+0

% "

L
yf(y)dy

=
b2# a2
2(b# a)

% "

0
h(r)=rdr

=
b+ a
2

% "

0
h(r)=rdr:

Combining the numerator and denominator, the excess ratio
(of the developed losses) at L is:

R(L) =
1

b2# a2
+
b2
% b=L

0
h(r)=rdr# a2

% a=L

0
h(r)=rdr

+2aLH(a=L)#2bLH(b=L)

+L2
% b=L

a=L
rh(r)dr

,&% "

0
h(r)=rdr:

21The denominator of the excess ratio is the mean of the developed losses. It is equal to
the product of the mean undeveloped losses (b+a)=2, and the average loss development' "
0
h(r)=rdr.
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APPENDIX B

GAMMA LOSS DIVISORS APPLIED TO LOSSES UNIFORM ON AN
INTERVAL

For the situation discussed in Appendix A but for the specific
case where the distribution of the loss divisors, h(r), is a gamma
distribution with parameters s and l:% x

0
h(r)rdr =

% x

0
lse#lrrs=¡ (s)dr = (ls=¡ (s))

% x

0
e#lrrs dr

= (ls=¡ (s))(¡ (s+1)=ls+1)¡ (s+1; lx)

= (s=l)¡ (s+1; lx)

H(x) =
% x

0
h(r)dr =

% x

0
lse#lrrs#1=¡ (s)dr = ¡ (s; lx)% x

0
h(r)=rdr =

% x

0
lse#lrrs#2=¡ (s)dr

= (ls=¡ (s))(¡ (s# 1)=ls#1)¡ (s# 1; lx)

=
l

s# 1¡ (s#1; lx)% "

0
h(r)=rdr = (l=s#1)¡ (s#1;") = l(s# 1):

Thus, using the formula from Appendix A, the excess ratio
of the developed losses for limit L is in this case:

R(L) =
b2

b2# a2¡ (s#1; lb=L)#
a2

b2# a2¡ (s# 1; la=L)

+
2L(s# 1)
(b2# a2)l%a¡ (s; la=L)#b¡ (s; lb=L)&

+
L2(s#1)s
(b2# a2)l2 %¡ (s+1; lb=L)#¡ (s+1; la=L)&:

For the loss divisors given by a gamma distribution with pa-
rameters s and l, we can plug in the limited expected value for
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the gamma distribution in terms of the incomplete gamma func-
tion:22

E[R;r] =
s

l
¡ (s+1; lr)+ r[1#¡ (s; lr)]:

Thus using the formula derived in Appendix A:

F(y) =
y

b# a
/
E

0
R;
b

y

1
#E

0
R;
a

y

12
=

ys

l(b# a)
/
¡

)
s+1;

lb

y

*
#¡

)
s+1;

la

y

*2
+1+

a

b# a¡
)
s;
la

y

*
# b

b# a¡
)
s;
lb

y

*
:

Also using the formula derived in Appendix A, the probability
density function is given by:

f(y) =
1

b# a
% b=y

a=y
rh(r)dr

=
s

(b# a)l%¡ (s+1; lb=y)#¡ (s+1; la=y)&:

22See Hogg and Klugman [3, page 226].
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APPENDIX C

GAMMA LOSS DIVISORS APPLIED TO A PARETO DISTRIBUTION

Assume:

Losses are distributed (at latest report) on (0,") via a dis-
tribution function G(x). Losses will develop with loss divisors
r given by a density function h(r).23 (The distribution of r is
independent of x.)

Then:

The distribution function for the developed losses y, is given
by:

F(y) =
% "

0
G(yr)h(r)dr:

Proof:

The developed losses y are the ratio of the undeveloped losses
x and the loss divisor r; y = x=r or x= yr.

Given a value for r, the developed losses are less than y if the
undeveloped losses are less than yr. Thus:

F(y * r) =G(yr):
Integrating over all possible values of r we have

F(y) =
% "

0
F(y * r)h(r)dr =

% "

0
G(yr)h(r)dr:

In the specific case where r follows a gamma distribution with
parameters s and l and the undeveloped losses follow a Pareto
distribution with parameters ® and ¸:

G(x) = 1#
)

¸

¸+ x

*®
,

h(r) = lsrs#1e#lr=¡ (s):

23It is assumed that
' "
0
(h(r)=r)dr is finite, so that the average loss development is finite.
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Then the distribution function for the developed losses is

F(y) =
% "

0
h(r)G(yr)dr

=
% "

0

)
1#

)
¸

¸+ yr

*®*
lsrs#1e#lr=(¡ (s))dr

=
% "

0
lsrs#1e#lr=¡ (s)dr# ¸

®ls

¡ (s)

% "

0
rs#1e#lr(¸+ yr)#® dr:

The first integral is unity,24 while the second integral can be
put in terms of confluent hypergeometric functions.25

Let q= (y=¸)r, then the second integral becomes

¸s#®

ys

% "

q=0
qs#1e#¸lq=y(1+ q)#® dq

=
¸s#®

ys
¡ (s)U(s,s+1#®;¸l=y)

where U is a confluent hypergeometric function such that26

U(a,b;z) = (1=¡ (a))
% "

0
e#ztta#1(1+ t)b#a#1dt:

Thus the distribution function of the developed losses is:

F(y) = 1# ¸
®ls

¡ (s)
¸s#®

ys
¡ (s)U(s,s+1#®;¸l=y)

= 1#
)
¸l

y

*s
U(s,s+1#®;¸l=y):

Similarly one can compute the density function of the devel-
oped losses. Differentiating the distribution function one gets:

f(y) =
% "

0
rg(yr)h(r)dr:

24It is the cumulative distribution function of the gamma distribution at infinity.
25See Appendix D and Handbook of Mathematical Functions [1].
26See Equation 13.2.5 in Handbook of Mathematical Functions [1].
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In the specific case where h is gamma and g is Pareto it turns
out that the density of the developed losses is:

f(y) =
s®ls¸s

ys+1
U(s+1,s+1#®; l¸=y):

This can be obtained either by substituting the specific form
of y and h into the above integral or by differentiating F(y), and
making use of the facts that27

d

dz
U(a,b;z) =#aU(a+1,b+1;z),

U(a#1,b;z)# zU(a,b+1;z) = (a#b)U(a,b;z),

f(y) =
d

dy
F(y) =

d

dy

)
1# ¸

sls

ys
U

)
s,s+1#®; ¸l

y

**
=
¸slss

ys+1
U

)
s,s+1#®; ¸l

y

*
# ¸

sls

ys

)
¸l

y2

*
U(
)
s,s+1#®; ¸l

y

*
=
s¸sls

ys+1
%U(s,s+1#®;¸l=y)

# (¸l=y)U(s+1,s+2#®;¸l=y)&

=
s¸sls

ys+1
%(s+1)# (s+1#®)&U(s+1,s+1#®;¸l=y)

=
s®¸sls

ys+1
U(s+1,s+1#®;¸l=y):

One can use the density function and distribution function to
calculate the excess ratio of the developed losses. The numerator
of this excess ratio is the total (developed) losses excess of L:% "

L
(y#L)f(y)dy =

% "

L
yf(y)dy#L(1#F(L)),

27See Equations 13.4.21 and 13.4.18 in Handbook of Mathematical Functions [1].



RETROSPECTIVE RATING: 1997 EXCESS LOSS FACTORS 341

% "

L
yf(y)dy = s®¸sls

% "

L
y#sU(s+1,s+1#®;¸l=y)dy:

Letting z = ¸l=y this integral becomes

# s®
% ¸l=L

0
zsU(s+1,s+1#®;z) ¸l#z2 dz

= ¸ls®
% ¸l=L

0
zs#2U(s+1,s+1#®;z)dz:

Using the theorem from Appendix D:% "

L

yf(y)dy =
¸ls®zs#1

s®

0
U(s,s+1#®;z)+ U(s# a,s+1#®;z)

(s#1)(®# 1)

1¸l=L
Z=0

= ¸l

)
¸l

L

*s#1)
U

)
s,s+1#®; ¸l

L

*
+
U(s# 1,s+1#®;¸l=L)

(s#1)(®# 1)

*
:

Now

L(1#F(L)) = ¸sls

Ls#1
U(s,s+1#®;¸l=L):

Thus the numerator of the excess ratio is% "

L
yf(y)dy+L(1#F(L))

=
¸sls

(s#1)(®# 1)Ls#1U(s# 1,s+1#®;¸l=L):

The denominator of the excess ratio is the total (developed)
losses or the mean of the undeveloped losses times the mean loss
development. The former is the mean of the Pareto or ¸=(®#1).
The latter is the mean of the inverse gamma or l=(s# 1).
Thus the excess ratio is:

R(L) =
)
¸l

L

*s#1
U(s#1,s+1#®,¸l=L):
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Note that this compares to the excess ratio for the undeveloped
losses (given by a Pareto) of (¸=¸+L)®#1. For z small:28

U(a,b,z)) z1#b¡ (b#1)=¡ (a) b > 2:

Thus for large limits L, and s > ®+1

R(L) =
)
¸l

L

*s#1
U(s#1,s+1#®,¸l=L)

)
)
¸l

L

*s#1 ¡ (s#®)
¡ (s#1)

)
¸l

L

*®#s
=
)
¸l

L

*®#1
¡ (s#®)=¡ (s#1):

For the Pareto for large limits

R(L) = (¸=(¸+L))®#1 ) (¸=L)®#1:
Thus the ratio of the excess ratios for the developed and the

undeveloped losses is approximately: l®#1¡ (s#®)=¡ (s#1). If
the mean development is unity, then l = s#1. Then this ratio is:

(s#1)®#1=%(s#®#1) , , ,(s#2)&

)
)
(s#1)

()
s# ®

2
# 1

**®#1
:

Since for a Pareto for large limits R(L)) ¸®#1=L®#1 if one
adjusts ¸ by multiplying by a factor of (s#1)=(s# (®=2)#1),
then one will approximately multiply the excess ratios by the
desired adjustment factor.

28See Equation 13.5.6, Handbook of Mathematical Functions [1].
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APPENDIX D

CONFLUENT HYPERGEOMETRIC FUNCTIONS29

There are a number of related functions referred to as conflu-
ent hypergeometric functions. They can be usefully thought of
as generalizations of the beta and gamma functions. They can be
thought of as two parameter distributions. Let:

M(a,b,z) =
¡ (b)

¡ (b# a)¡ (a)
% 1

0
eztta#1(1# t)b#a#1dt,

U(a,b,z) =
1
¡ (a)

% "

0
e#ztta#1(1+ t)b#a#1dt:

Then M can be computed using the following power series
in z:

M(a,b;z) = 1+
az

b
+
a(a+1)z2

b(b+1)(2!
+
a(a+1)(a+2)z3

b(b+1)(b+2)(3!)
+ , , , :

U can be computed as a combination of two values of M:

U(a,b;z)

=
¼

sin¼b

3
M(a,b,z)

¡ (1+ a#b)¡ (b) #
z1#bM(1+ a#b,2#b,z)

¡ (a)¡ (2#b)

4
:

U is related to the incomplete gamma function:

U(1# a,1# a;x) = ex¡ (a;x):
Among the facts used in Appendix C are:

d

dz
U(a,b;z) =#aU(a+1,b+1;z),

U(a#1,b;z)# zU(a,b+1;z) = (a#b)U(a,b;z):
For z small and b > 2, U(a,b;z)) z1#b¡ (b#1)=¡ (a).

29See Handbook of Mathematical Functions [1].
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THEOREM%
za#3U(a,b,z)dz

=# za#2

(a#1)(b# a)
U(a#1,b,z)#U(a#2,b,z)

%(a# 2)(b+1# a)& :

Given:

dU(a,b,z)
dz

=#aU(a+1,b+1,z), and

zU(a,b+1,z)#U(a#1,b,z) = (b# a)U(a,b,z):

Proof:

Let

º = za#2(U(a# 1,b,z)#U(a#2,b,z)=%(a#2)(b+1# a)&)
dº

dz
= (a# 2)º=z+ za#2#(a# 1)U(a,b+1,z)+U(a#1,b+1,z)

(b+1# a)
= za#3%(a#2)U(a#1,b,z)#U(a#2,b,z)=(b+1# a)

# (a#1)zU(a,b+1,z)
+ zU(®#1,b+1,z)=(b+1#®)&

= za#3%(zU(®#1,b+1,z)#U(®#2,b,z))=(b+1#®)
# (a# 1)(zU(a,b+1,z)#U(®#1,b,z))#U(®#1,b,z)&

= za#3(U(a# 1,b,z)# (a#1)(b# a)U(a,b,z)#U(a# 1,b,z))
=#za#3(a#1)(b# a)U(a,b,z): Q.E.D.



Errata for Discussion by Howard Mahler of “Retrospective Rating: 1997 Excess Loss Factors”

At the bottom of page 320, the equation for 

� 

R^ (100) is incorrect.

This example of simple dispersion is an example of a mixture with five pieces. 

The excess ratio of the mixture is a weighted average of individual excess ratios, with the weights 
the product of the means and the probabilities for each piece of the mixture.1 

If the probability of each piece of a mixture is pi, Σpi = 1, the mean of each piece of the mixture is 

mi, and Ri is the excess ratio for each piece of the mixture, then 

� 

R^ (L) = Σ pi mi Ri(L).

If each loss is divided by for example .75, then after development, the excess ratio at L is the 
same as the original excess ratio at .75 L.2  
Ri(L) is the excess ratio when the losses have all been divided by ri.
Thus Ri(L) = R(ri L). 

In the example on page 320, each mean is proportional to 1/divisor = 1/ri, and each probability is 
the same at 1/5.  Thus the weights are: (1/5)(1/ri).

The sum of the weights is: Σ (1/5)(1/ri) = (1/5)(1/.75 + 1/.833 + 1/1 + 1/1.25 + 1/1.5) = 1.3 

Thus 

� 

R^ (L) = Σ (1/5)(1/ri) R(ri L) = (1/5) Σ R(ri L) /ri.

Therefore, the corrected equation at the bottom of page 320 is:

� 

R^ (100) = (1/5){R(75)/.75 + R(83.3)/.833 + R(100)/1 + R(125)/1.25 + R(150)/1.50} 
  = (1/5){.6009/.75 + .5817/.833 + .5582/1 + .5384/1.25 + .5191/1.50} = .5669.

Similarly, the corrected equation at the top of page 321 is:

� 

R^ (5000) = (1/5){R(3750)/.75 + R(4165)/.833 + R(5000)/1 + R(6250)/1.25 + R(7500)/1.50} 
  = (1/5){.0157/.75 + .0070/.833 + 0/1 + 0/1.25 + 0/1.50} = .0059.

1 See page 154 of “Workers Compensation Excess Ratios: An Alternate Method of Estimation” by Mahler.
2 If each loss is multiplied by 1/.75 = 1.333, this is mathematically the same as uniform inflation of 33.3%.
Thus we can get the excess ratio after development, by taking the original excess ratio at the deflated value of
L/1.333 = .75 L.  Increasing the sizes of loss, increases the excess ratio over a fixed limit.
3 Mahler chose these loss divisors so that the total expected losses are unaffected.

Errata updated 29 July 2012



At page 324, some of the numerical values shown in the computation of R3(2000) are mixed up, 
although the final value is correct at 0.384 as shown. 
It should have read:
R3(2000) = (1.04167)(0.9999980) - (0.04167)(0.0057148)

+ (0.1667)(0.0026029) - (0.8333)(0.999995)
+ (0.1761)(0.999987) - (0.1761)(0.0011302) = 0.384.

Also, in Table 1 the excess ratios were computed for Gamma loss divisors with shape parameter 
16.67 and inverse scale parameter 15.67.  However, the text at page 323 refers to Gamma loss 
divisors with shape parameter s = 18.67 and inverse scale parameter l = 17.67; this distribution of 
loss divisors corresponds to a mean loss development of 1 and a variance of loss development 
of 0.060, matching the simple dispersion example.  

Using the intended Gamma parameters of s = 18.67 and l = 17.67 changes the excess ratios in 
Table 1 slightly, although the pattern remains the same.

Errata updated 29 July 2012



The values in the simple dispersion column of Table 1 at page 320 are revised in a similar manner 
to that for 5000. 
The values in Gamma dispersion column of Table 1 at page 320 are revised based on a shape 
parameter of s = 18.67 and inverse scale parameter of l = 17.67.

Corrected Table 1
  Excess Ratios

     No    Simple  Gamma
LIMIT Development Dispersion Dispersion
       50    .6888    .6949    .6939
     100    .5582    .5669    .5673
     500    .3012    .3080    .3069
  1,000    .1606    .1705    .1709
  2,000       .0904    .0931    .0927
  3,000    .0402    .0462    .0453
  4,000    .0100    .0194      .0182
  5,000    .0000    .0059      .0062
  6,000    .0000    .0007    .0020
  7,000    .0000    .0000    .0006
  8,000    .0000    .0000    .0002
  9,000    .0000    .0000    .0001
10,000    .0000    .0000    .0000 

As can be seen in corrected Table 1, the simple dispersion effect raises the excess ratios, 
especially at the higher limits.4 

At page 326, the formula near the bottom of page should have λ in place of X:

R(L) = (λ l/L)s-1 U(s-1, s+1-α, λ l/L).

 

4 It can be demonstrated that when dispersion has no overall effect, loss dispersion either increases an excess 
ratio or keeps it the same.  In most practical applications, the excess ratio will be increased by loss dispersion.

Errata updated 29 July 2012



ADDRESS TO NEW MEMBERS—MAY 18, 1998

P. ADGER WILLIAMS

Madame President, thank you for that kind introduction.

Good morning and congratulations to all the new Fellows and
new members. I’d also like to thank Mavis for inviting me to give
this address to new Fellows and Associates. When Mavis called
to ask me to speak, she said that one of the reasons for asking me
was that I was President of the CAS when she became a Fellow.
I don’t know whether that says more about how old I am or how
young she is. Probably both! But it does say one thing loud and
clear to you new Fellows. When one of you becomes President
of the CAS, Mavis will be expecting a call.

Speaking to new members makes me think back to what ap-
pealed to me about becoming an actuary.

First of all, you could make a living while studying to become
a professional. That was quite an incentive for me. And you
didn’t have to go to the “right” school or know somebody to get
ahead. All you had to do was pass the exams.

Now that you have done that, there is a wide range of op-
portunities waiting for you. Your actuarial training gives you the
most versatile basic training that can be found in insurance.

We can point with pride to CAS members who have become
insurance commissioners, bureau heads, presidents, CEOs, and
managers in a wide range of disciplines: data processing, finance,
underwriting, marketing, and many others. Their actuarial train-
ing was a stepping stone to management. But most actuaries
don’t want to be managers! They want to be practicing actuar-
ies. And you can have a fulfilling and, I might add, lucrative
career as an actuarial professional doing actuarial work.

Before going any farther, I’d like to say a few words just to
the new Associates. Get your Fellowship! Become an F.C.A.S.
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At this point in your career, it’s very easy to look around
and say to yourself, “Why do I need to pass more exams? My
present work doesn’t require more knowledge, my work is inter-
esting, and I’m really too busy to study. Besides, I have a great
boss who would just as soon see me work more and study less.
Most important of all, I’ve been getting regular promotions and
raises in a great organization where I work with a great bunch
of people.”

Those are pretty good reasons to stop studying, aren’t they?
But let me tell you, times change, companies change, bosses
change, friends change, or, more likely, leave, and, sometimes,
worst of all, your job doesn’t change. You wake up some morn-
ing and realize you’re at a dead end, and you want a ticket out.
That ticket is the professionalism that comes with being a Fel-
low : : : I see some of my friends smiling who have been in that
situation. Having their Fellowship allowed them career choices
that would have been unavailable otherwise.

So put yourself in a position to have that career choice. Get
your Fellowship. You’ll never forgive yourself if you don’t.

Becoming a Fellow of the CAS bestows a unique status upon
you as a professional in the actuarial community. It gives you the
opportunity to choose any kind of career you wish. As I said be-
fore, you can become an executive, a manager, a consultant, or a
pure research actuary—your professionalism gives you countless
opportunities.

But professionalism also brings with it responsibility. Now
I’m not talking about what you often hear some long-time ac-
tuaries saying, “The profession has been good to me so I want
to give something back to the profession.” That is a worthwhile
sentiment, and I think it would be wonderful if all of you would
put in some time working for the CAS or elsewhere in the pro-
fession. But that’s not what I mean.
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I’m talking about the responsibility that comes with the mantle
of professionalism that has now been draped over your shoul-
ders. You studied actuarial science to pass the exams. Much
of that science is contained in the CAS Proceedings and other
actuarial literature. It would seem that all you have to do is
apply what you’ve learned. After all, the CAS has been around
for nearly 85 years; how much could be left to discover or de-
velop?

Early in my career, back in 1960, I got sidetracked into a
data processing project to develop the first computer-communi-
cations system in the insurance industry. As we approached the
time to go on the air in 1964 with our gigantic computers (“gi-
gantic” in those days meant a 64K memory), a young man who
had just joined the project said to me, “Gee, I wish I could have
gotten into data processing early while there was still something
new to be contributed.”

Don’t make the same mistake that young man made. We owe
much to the work that has been done in the past, but we have
just scratched the surface of actuarial science—especially casu-
alty actuarial science. You should view yourselves as pioneers,
entering the profession, not at the end or the middle, but at the
beginning.

So the work that has gone before, the body of actuarial
knowledge that has been developed, is both a gift and a legacy.
Now it becomes your responsibility. Where that body of know-
ledge is worthy and deserving of your support, apply it and de-
fend it. Where it’s lacking, it’s up to you to improve or replace
it.

Somehow it just doesn’t seem fair, does it? You’ve had your
new actuarial designation for only 10 or 15 minutes, and you’ve
already been given the responsibility for all the work that has
gone before.

That’s not all! There are several other responsibilities that
come with your actuarial designation:
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—The responsibility for the advancement of actuarial science.
It’s up to you to see to it that our science has substance. There
are those who contend that what we do is an art, not a science.
And we do have to be careful not to tie ourselves in knots with
rigid rules that stifle actuarial innovation. At the same time, we
can’t let the desire for actuarial art lead us to actuarial anar-
chy.

—Next, there’s the responsibility for actuarial standards that
must march hand-in-hand with the advancement of the science.
Here we have no choice. If we don’t set our own standards,
someone will set them for us. But we must set them in a way
that gives us actuarial freedom within a framework of sensible
boundaries.

—We also have the responsibility for communicating our
knowledge in a way that it can be understood. Some of you may
have read Stephen Hawking’s book, A Brief History of Time, in
which he attempts to explain, in simple terms, some of the most
complex theories relating to the universe and the quest for a
unified theory. But he concludes that even if the theory is dis-
covered, it will do no good if it is understood by only a few
scientists; it must be communicated so that it is, in his words,
“understandable in broad principle by everyone.” That is our
task and our responsibility, to communicate in such a way that
the least knowledgeable of our audience understands what we
mean.

—Finally, there is the responsibility for actuarial integrity,
which to me is the heart of professionalism. There are many
directions your careers will take, positions in regulation, indus-
try, consumerism, and many others. Throughout your career, you
must remain keenly aware of when you’re speaking as an actu-
ary and when you’re not. And you can never completely shed
the responsibilities of professionalism when you’re speaking in
those areas where your training gives you that unique capability
that identifies you as an actuary.
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With all of these responsibilities, you’re probably beginning
to wonder what you get out of being an actuary. In the years
ahead, as you look back on your career, you’ll find that being
an actuary really did put you in a unique position; a position
to have a positive influence on your place of employment, a
position to have a positive influence on your industry, a position
to make a difference in your profession, and if you were willing
to participate, a chance to be part of the rule-setting process
rather than the rule-following process.

Look around you at those who are in your group of new
Fellows and Associates. As the years go by they will form what
I like to call an accumulation of actuarial fellowship which will
become the continuity in your life. Ultimately I think you will
find, as I did, that being an actuary is not only a profession, it is
a process of life enrichment.

Thank you, and, once again, my congratulations to all of you!
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May 17–20, 1998

MARRIOTT’S MARCO ISLAND RESORT AND GOLF CLUB 

MARCO ISLAND, FLORIDA

Sunday, May 17, 1998

The Board of Directors held their regular quarterly meeting
from noon to 5:00 p.m. 

Registration was held from 4:00 p.m. to 6:00 p.m.

New Associates and their guests were honored with a special
presentation from 5:30 p.m. to 6:30 p.m. Members of the 1998
Executive Council discussed their roles in the Society with the
new members. 

During the special reception, CAS President Mavis A. Walters
introduced the CAS Board of Directors and the CAS Executive
Council attending the Spring Meeting. Walters also introduced
American Academy of Actuaries President Allan M. Kaufman,
and Chairman of the Casualty Practice Council Michael L. Tooth-
man. 

A reception for all meeting attendees followed the new Associ-
ates reception and was held from 6:30 p.m. to 7:30 p.m. 

Monday, May 18, 1998

Registration continued from 7:00 a.m. to 8:00 a.m.

The 1998 Business Session, which was held from 8:00 a.m. to
9:00 a.m., ushered in the first full day of activities for the 1998
Spring Meeting. Ms. Walters introduced the CAS Executive
Council, the Board of Directors, and CAS past presidents who
were in attendance, including Robert A. Anker (1996), Phillip N.
Ben-Zvi (1985), Ronald L. Bornhuetter (1975), David P. Flynn
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(1992), Michael Fusco (1989), Charles C. Hewitt Jr. (1972), Allan
M. Kaufman (1994), W. James MacGinnitie (1979), LeRoy J. Si-
mon (1971), Michael L. Toothman (1991), Michael A. Walters
(1986), and P. Adger Williams (1977). 

Ms. Walters also recognized special guests in the audience:
Stephen P. D’Arcy, President-Elect of the American Risk and In-
surance Association; and Allan M. Kaufman, President of the
American Academy of Actuaries. 

Curtis Gary Dean, Kevin B. Thompson, and Robert S. Miccolis
announced the 118 new Associates and Steven G. Lehmann an-
nounced 18 new Fellows. The names of these individuals follow. 

NEW FELLOWS

Michael K. Curry
Elizabeth B. DePaolo
Steven T. Harr
Daniel F. Henke
Thomas G. Hess
Marie-Josée Huard

Man-Gyu Hur
Steven W. Larson
Andre L’Esperance
Christina Link
Michael K. McCutchan
Thomas S. McIntyre

David Molyneux
Vinay Nadkarni
William Peter
John S. Peters
Michael D. Price
Michael J. Steward II

NEW ASSOCIATES

Mustafa Bin Ahmad
Nancy S. Allen
Wendy L. Artecona
Carl X. Ashenbrenner
David S. Atkinson
Craig V. Avitabile
Phillip W. Banet
Emmanuil Bardis
Michael W. Barlow
Gina S. Binder
Kevin M. Bingham
James D. Buntine
Alan Burns

Hayden Burrus
Thomas J. Chisholm
Wanchin W. Chou
Christopher W. Cooney
Jonathan S. Curlee
Loren R. Danielson
Timothy A. Davis
Nancy K. DeGelleke
Brian H. Deephouse
Michael B. Delvaux
Karen D. Derstine
Sara P. Drexler
Tammi B. Dulberger

François R. Dumontet
Mark Kelly Edmunds
Brian A. Evans
Stephen C. Fiete
Sarah J. Fore
Mauricio Freyre
Timothy J. Friers
Bernard H. Gilden
Sanjay Godhwani
Daniel C. Greer
Daniel E. Greer
David J. Gronski
Eric C. Hassel
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Christopher R. Heim
Chad A. Henemyer
Melissa K. Higgins
Tina T. Huynh
Susan E. Innes
Claudine H. Kazanecki
Kelly Martin Kingston
James D. Kunce
Carl Lambert
Hugues Laquerre
Dennis H. Lawton
Manuel Alberto T. Leal
David Leblanc-Simard
Bradley R. LeBlond
Glen A. Leibowitz
Craig A. Levitz
John N. Levy
Shiu-Shiung Lin
Victoria S. Lusk
Allen S. Lynch Jr.
Stephen J. McAnena
Jennifer A. McCurry
Mark Z. McGill III
David P. Moore
Jennifer A. Moseley
Ethan Mowry
Jarow G. Myers
Seth W. Myers

Kari A. Nicholson
John E. Noble
Jason M. Nonis
Corine Nutting
Jean-François Ouellet
Kathryn A. Owsiany
Pierre Parenteau
M. Charles Parsons
Jeremy P. Pecora
Richard M. Pilotte
Glen-Roberts

Pitruzzello
Christopher D. Randall
Hany Rifai
Brad E. Rigotty
Karen L. Rivara
Rebecca L. Roever
Nathan W. Root
Kimberly R. Rosen
Richard A.

Rosengarten
Seth A. Ruff
Brian C. Ryder
James C. Sandor
Gary F. Scherer
Nathan A. Schwartz
Steven G. Searle
Meyer Shields

Aviva Shneider
Alastair Shore
Matthew R. Sondag
Benoit St-Aubin
Joy M. Suh
Karrie L. Swanson
Rachel R. Tallarini
Varsha A. Tantri
Glenda O. Tennis
Laura L. Thorne
Beth S. Tropp
Kris D. Troyer
Turgay F. Turnacioglu
Leslie A. Vernon
Kyle J. Vrieze
Matthew J. Wasta
Lynne K. Wehmueller
Christopher B. Wei
Scott Werfel
Dean A. Westpfahl
Thomas J. White
Vanessa C. Whitlam-

Jones
Kendall P. Williams
Yoke Wai Wong
Linda Yang

Ms. Walters then introduced P. Adger Williams, a past president
of the Society, who presented the Address to New Members. 

Patrick J. Grannan, CAS Vice President--Programs and Com-
munications, spoke to the meeting participants about the high-
lights of this meeting and what was planned in the program. 
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Susan T. Szkoda, CAS Vice President--Continuing Education
announced that ten Proceedings papers and two discussions of
Proceedings papers would be presented at this meeting. In all, ten
papers were accepted for publication in the 1998 Proceedings of
the Casualty Actuarial Society. One paper by Cross and Doucette
was presented at this meeting but was published in the 1997 Pro-
ceedings. Another discussion of a Proceedings paper by Feldblum
was accepted in spring 1998 but not presented. 

John J. Kollar, chairperson of the Michelbacher Award Com-
mittee, gave a brief description of this year’s Call Paper Program
on Dynamic Analysis of Pricing Decisions. He announced that all
of the call papers would be presented at this meeting. In addition,
the papers were published in the 1998 CAS Discussion Paper Pro-
gram and could be found on the CAS Web Site. Mr. Kollar pre-
sented the Michelbacher Prize to Richard L. Stein for his paper,
“The Actuary As Product Manager in A Dynamic Product Analy-
sis Environment.” This award commemorates the work of Gustav
F. Michelbacher and honors the authors of the best paper submit-
ted in response to a call for discussion papers. The papers are
judged by a specifically appointed committee on the basis of orig-
inality, research, readability, and completeness. 

Ms. Walters then began the presentation of other awards. She
explained that the CAS Harold W. Schloss Memorial Scholarship
Fund benefits deserving and academically outstanding students in
the actuarial program of the Department of Statistics and Actuarial
Science at the University of Iowa. The student recipient is selected
by the Trustees of the CAS Trust, based on the recommendation of
the department chair at the University of Iowa. Ms. Walters an-
nounced that Changki Kim is the recipient of the 1997 CAS
Harold W. Schloss Memorial Scholarship Fund. She will be pre-
sented with a $500 scholarship. 

Ms. Walters then concluded the business session of the Spring
Meeting by calling for a review of Proceedings papers. 
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Ms. Walters next introduced the featured speaker, Dr. Barry As-
mus, who is senior economist with the National Center for Policy
Analysis. 

The first General Session was held from 10:30 a.m. to noon.
“The Future of the Actuary”

Moderator: W. James MacGinnitie
CFO & Senior Vice President
CNA

Panelists: Joan Lamm-Tennant, Ph.D.
Vice President
General Re-New England Asset 
Management, Inc.
Paul W. McCrossan
Partner
Eckler Partners, Ltd.
Peter R. Porrino
President and CEO
Consolidated International Group, Inc.

After a luncheon, the afternoon was devoted to presentations of
concurrent sessions and discussion papers. The call papers pre-
sented from 1:15 p.m. to 2:45 p.m. were:

1. “Direct Marketing of Insurance Integration of Marketing,
Pricing, and Underwriting”
Author: Bruce D. Moore

Partner
Ernst and Young LLP

2. “The Actuary as Product Manager in A Dynamic Product
Analysis Environment”
Author: Richard L. Stein

Senior Consultant
CNA
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The concurrent sessions presented from 1:15 p.m.--2:45 p.m.
were:

1. Florida Commission on Hurricane Modeling
Moderator: Alice H. Gannon

Vice President
United Services Automobile Association

Panelists: Jack Nicholson, Ph.D.
Chief Operating Officer
Florida Hurricane Catastrophe Fund
Mark E. Johnson
Professor of Statistics and Director
Institute of Statistics
University of Central Florida

2. Managed Care and Its Impact on Workers Compensation
Moderator: Richard I. Fein

Principal
Coopers & Lybrand, L.L.P.

Panelists: David Appel, Ph.D.
Chief Economic Consultant
Milliman & Robertson, Inc.
Gloria Gebhard
Medical Policy Analyst
Minnesota Department of Labor & 
Industry
Layne M. Onufer
Principal
Ernst & Young LLP

3. International Relations and the CAS
Moderator: David G. Hartman

Senior Vice President and Managing 
Director
Chubb Group of Insurance Companies
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Panelists: Members of the International Relations
Committee of the CAS

4.  An Extremely Important Application of Extreme Value
Theory to Reinsurance Pricing 
Panelists: Gary S. Patrik

Chief Actuary
Swiss Reinsurance America Corporation
Farrokh Guiahi
Assistant Actuary
Swiss Reinsurance America Corporation

Proceedings papers presented during this time were:
1. “Investment-Equivalent Reinsurance Pricing”

Author: Rodney E. Kreps
Executive Vice President and Chief 
Actuary
Sedgwick Re Insurance Strategy, Inc.

2. Discussion of “Reinsurer Risk Loads for Marginal Surplus
Requirements”
(by Rodney E. Kreps, PCAS LXXVII, 1990, p. 196)
Discussion by: Paul J. Kneuer

Vice President and Actuary
Holborn Corporation

3. “A Buyer’s Guide for Options on a Catastrophe Index”
Author: Glenn G. Meyers

Assistant Vice President
Insurance Services Office, Inc.

4. “A Comparison of Property/Casualty Insurance Financial
Pricing Models”
Authors: Stephen P. D’Arcy

Professor
Department of Finance--University of 
Illinois
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Richard W. Gorvett
Assistant Professor
College of Insurance

After a refreshment break, presentations of call papers, concur-
rent sessions, and Proceedings papers continued from 3:15 p.m. to
4:45 p.m. Certain call papers and concurrent sessions presented
earlier were repeated. Additional call papers presented during this
time were:

1. “The Impact of Price Changes on Costs”
Author: Russell L. Sutter

Consulting Actuary
Tillinghast-Towers Perrin

2. “Estimating the Actuarial Value of the Connecticut Second
Injury Fund Loss Portfolio”
Author: Abbe Sohne Bensimon

Vice President
General Reinsurance Corporation

3. “Actuarial Considerations in the Development of Agent
Contingent Compensation Programs”
Author: William J. VonSeggern

Assistant Vice President and Actuary
Milliman & Robertson, Inc.
Lori E. Stoeberl
Associate Actuary
Milliman & Robertson, Inc.

An additional concurrent session presented from 2:45 p.m. to
3:15 p.m. was:

1. Strategic Issues and the AAA
Moderator: Allan M. Kaufman

Principal
Milliman & Robertson, Inc.
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Panelists: Stephen P. Lowe
Consulting Actuary
Tillinghast-Towers Perrin
John M. Purple
Consulting Actuary
Arthur Andersen LLP
Richard S. Robertson
Executive Vice President
Lincoln National Corporation

Proceedings papers presented during this time were:
1. “Measurement of Asbestos Bodily Injury Liabilities”

Authors: Susan L. Cross
Executive Vice President and Chief 
Actuary
Tillinghast-Towers Perrin
John P. Doucette
Vice President
European International Reinsurance 
Company Ltd.

2. “Workers Compensation Excess Ratios”
Author: Howard C. Mahler

Vice President and Actuary
Workers Compensation Rating & 
Inspection Bureau of Massachusetts

3. Discussion of “Retrospective Rating: 1997 Excess Loss 
Factors”
(by William R. Gillam and Jose Couret, PCAS LXXXIV,
1997, p. 450)
Discussion by: Howard C. Mahler

Vice President and Actuary
Workers Compensation Rating & 
Inspection Bureau of Massachusetts
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A reception for new Fellows and their guests was held from
5:30 p.m. to 6:30 p.m., and the general reception for all members
and their guests was held from 6:30 p.m. to 7:30 p.m. 

Tuesday, May 19, 1998

Registration continued from 7:00 a.m. to 8:00 a.m.

Two General Sessions were held from 8:00 a.m. to 9:30 a.m.
The General Sessions presented were:

“Junk Science and Insurance”
Moderator: Amy S. Bouska

Consulting Actuary
Tillinghast-Towers Perrin

Panelists: John J. Delany III, Esquire
Delany & O’Brien
Michael Green
Professor of Law
University of Iowa College of Law
Sorell L. Schwartz, Ph.D.
Professor Emeritus
Georgetown University

“Merging Business and Technological Strategies”
Moderator: Michael L. Toothman

Managing Partner
Arthur Andersen LLP

Panelists: Edward E. Bambauer
Director, Financial Market-New England
Arthur Andersen LLP
Joel S. Weiner
Senior Manager
Coopers & Lybrand, L.L.P.
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Clark M. Sykes
Vice President
Information Technology
Merchants Group, Inc.

Certain discussion papers and concurrent sessions that had
been presented earlier during the meeting were repeated this
morning from 10:00 a.m. to 11:30 a.m. Concurrent sessions pre-
sented during this time were:

1. Securitization 101
Panelists: Richard W. Gorvett

Assistant Professor
College of Insurance
Bryon G. Ehrhart
President
Aon Re Services

2. Latin-American Market Issues
Moderator: Jay B. Morrow

Vice President and Actuary
American International Underwriters

Panelists: Richard G. Cadugan
Senior Manager
Deloitte & Touche Consulting Group
Susan J. Patschak
Consulting Actuary
Tillinghast-Towers Perrin

3. Codification of Statutory Accounting Principles
Moderator: Andrew E. Kudera

Senior Vice President & CFO
CNA Risk Management

Panelists: Richard J. Roth Jr.
Chief Property/Casualty Actuary
California Department of Insurance
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Mark A. Parkin
Partner
Deloitte & Touche LLP
Jan A. Lommele
Principal
Deloitte & Touche LLP

4. Sport Utility Vehicles and Auto Insurance Costs
Moderator: Jerry W. Rapp

Consulting Actuary
Miller, Rapp, Herbers, & Terry, Inc.

Panelists: Kim Hazelbaker
Senior Vice President
Highway Loss Data Institute
Michael C. Dubin
Consulting Actuary
Milliman & Robertson, Inc.

Proceedings papers presented during this time were:
1. “The Impact of Investment Strategy on the Market Value

and Pricing Decisions of a Property/Casualty Insurer”
Author: Trent R. Vaughn

Vice President, Actuarial Pricing
Empire Fire & Marine Insurance 
Company

2. “A Markov Chain Model of Shifting Risk Parameters”
Author: Howard C. Mahler

Vice President and Actuary
Workers Compensation Rating & 
Inspection Bureau of Massachusetts

3. “Smoothing Weather Losses: A Two-Sided Percentile
Model”
Author: Curtis Gary Dean

Assistant Vice President and Actuary
American States Insurance Companies



362 MINUTES OF THE 1998 SPRING MEETING

David N. Hafling
Senior Vice President and Actuary
American States Insurance Companies
William F. Wilson
Associate Actuary
American States Insurance Companies

4. “An Application of Game Theory: Property Catastrophe
Risk Load”
Author: Donald F. Mango

Assistant Vice President
Zurich Centre ReSource, Ltd.

Various CAS committees met from 1:00 p.m. to 5:00 p.m. In
addition, a limited attendance workshop was held from 1:00 p.m.
to 4:00 p.m.:

“Getting Your Ideas Across”
Leader: Ira M. Blatt

President
Society of Insurance Trainers and 
Educators
Director of Training and Development
Insurance Services Office, Inc.

All members and guests enjoyed a buffet dinner at the resort
from 5:30 p.m. to 9:00 p.m. 

Wednesday, May 20, 1998

Certain concurrent sessions that had been presented earlier dur-
ing the meeting were repeated this morning from 8:00 a.m. to 9:30
a.m. An additional concurrent session presented was:

1. Questions and Answers With the CAS Board of Directors
Moderator: Steven G. Lehmann

Principal and Consulting Actuary
Miller, Rapp, Herbers & Terry, Inc.
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Panelists: Jerome A. Degerness
Actuarial Officer
St. Paul Fire & Marine Insurance 
Company
Alice H. Gannon
Vice President
United Services Automobile Association
Richard J. Roth Jr.
Chief Property/Casualty Actuary
California Department of Insurance

After a refreshment break, the final General Session was held
from 10:00 a.m. to 9:30 a.m.:

“The Effect of Science and Technology on Risk Classification
and Underwriting”

Moderator: Michael A. Walters
Principal
Tillinghast-Towers Perrin

Panelists: David J. Christianson
Vice President
Insurance Services Lutheran Brotherhood
Chris Garson
I/S Executive of Agent Marketing
Progressive
Ward Jungers
Group Vice President & Chief 
Underwriting Officer
CNA
Philip O. Presley
Chief Actuary
Texas Department of Insurance
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Mavis A. Walters officially adjourned the 1998 CAS Spring
Meeting at 11:45 a.m. after closing remarks and an announcement
of future CAS meetings. 

Attendees of the 1998 CAS Spring Meeting

The 1998 CAS Spring Meeting was attended by 308 Fellows,
216 Associates, and 151 Guests. The names of the Fellows and
Associates in attendance follow:

FELLOWS

Shawna Ackerman
Mark A. Addiego
Martin. Adler
Terry J. Alfuth
Timothy P. Aman
Robert A. Anker
Steven D. Armstrong
Lawrence J. Artes
Nolan E. Asch
Richard V. Atkinson
Anthony J. Balchunas
Timothy J. Banick
W. Brian Barnes
Allan R. Becker
Linda L. Bell
Douglas S. Benedict
Robert S. Bennett
Abbe S. Bensimon
Phillip N. Ben-Zvi
Michele P. Bernal
Lisa M. Besman
Wayne E. Blackburn
Gavin C. Blair
Jean-François Blais
Robert G. Blanco

Cara M. Blank
Daniel D. Blau
LeRoy A. Boison
Steven W. Book
Joseph A. Boor
Ronald L. Bornhuetter
François Boulanger
Pierre Bourassa
Amy S. Bouska
Christopher K.

Bozman
John G. Bradshaw
Paul Braithwaite
Dale L. Brooks
Ward M. Brooks
Brian Z. Brown
Lisa J. Brubaker
Kirsten R. Brumley
James E. Buck
Mark E. Burgess
John E. Captain
Michael J. Caulfield
Francis D. Cerasoli
Scott K. Charbonneau
David R. Chernick

Stephan L.
Christiansen

Francis X. Corr
Susan L. Cross
Diana M. Currie
Ross A. Currie
Michael K. Curry
Stephen P. D’Arcy
Ronald A. Dahlquist
Lawrence S. Davis
Curtis Gary Dean
Jerome A. Degerness
Jeffrey F. Deigl
Elizabeth B. DePaolo
Janet B. Dezube
Anthony M. DiDonato
Michael C. Dolan
Michael C. Dubin
Richard D. Easton
Grover M. Edie
Dale R. Edlefson
David Engles
Paul E. Ericksen
Philip A. Evensen
John S. Ewert
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Doreen S. Faga
Michael A. Falcone
Dennis D. Fasking
Richard I. Fein
John R. Ferrara
Carole M. Ferrero
Mark E. Fiebrink
Daniel J. Flick
David P. Flynn
Richard L. Fox
Michael Fusco
Alice H. Gannon
Robert W. Gardner
David B. Gelinne
John F. Gibson
Bruce R. Gifford
Julie T. Gilbert
Judy A. Gillam
William R. Gillam
Bryan C. Gillespie
Gregory S. Girard
Mary K. Gise
Nicholas P. Giuntini
Olivia W. Giuntini
Donna L. Glenn
Daniel C. Goddard
Charles T. Goldie
Richard W. Gorvett
Odile Goyer
Gregory S. Grace
Patrick J. Grannan
Gregory T. Graves
Mari L. Gray
Eric L. Greenhill
Anne G. Greenwalt
Russell H. Greig

Linda M. Groh
Farrokh Guiahi
Terry D. Gusler
David N. Hafling
James A. Hall
Robert C. Hallstrom
Jeffrey L. Hanson
Steven T. Harr
Christopher L. Harris
David G. Hartman
Matthew T. Hayden
E. LeRoy Heer
Daniel F. Henke
Dennis R. Henry
Teresa J. Herderick
Richard J. Hertling
Thomas G. Hess
Charles C. Hewitt Jr.
James S. Higgins
Kathleen A. Hinds
Wayne Hommes
Beth M. Hostager
George A. Hroziencik
Marie-Josée Huard
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PERSONAL AUTOMOBILE:
COST DRIVERS, PRICING, AND PUBLIC POLICY
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Abstract

Traditional actuarial pricing procedures have focused
on pre-accident driver attributes, vehicle characteristics,
and garaging location in an effort to explain personal
automobile loss cost “drivers.” Although these tradi-
tional factors are important for statewide ratemaking in
a static environment, they account for only part of the
influences on auto insurance loss costs.
This paper draws on the industry research of the

past fifteen years to present a more comprehensive four-
dimensional framework for understanding auto insur-
ance loss costs, comprising factors grouped into the fol-
lowing categories:

! pre-accident driver attributes and vehicle character-
istics;

370
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! the external environment, such as road conditions and
traffic density;

! compensation systems, such as tort liability versus no-
fault; and

! post-accident factors, such as claimant characteris-
tics, medical providers, and attorney representation.

The paper shows the explanatory value of this framework
as compared with the traditional decomposition of loss
costs into frequency and severity components.
As an illustration, the paper shows how territory,

which is sometimes considered a reflection of exter-
nal conditions (such as road safety and traffic den-
sity), is more properly analyzed as a proxy for post-
accident factors—specifically, the “treatment triangle”
among claimants, medical providers, and attorneys in
certain locations. The paper concludes with two pro-
posed public policy reforms, demonstrating how the ex-
panded four-dimensional framework for personal auto
loss cost drivers facilitates the development of more ef-
ficacious methods for holding down auto insurance loss
costs.

1. INTRODUCTION

Actuarial ratemaking sets policy premiums to cover antici-
pated losses and expenses. To estimate the needed premiums,
the pricing actuary examines the “cost drivers”—that is, the fac-
tors that influence the expected future losses and expenses.

In the past, actuaries have concentrated on variables related
to driver, vehicle, and geographic characteristics. Indeed, these
are the factors most susceptible to policy rating, the traditional
role of the casualty actuary.

Although this traditional approach produces accurate rates, it
does not provide a full understanding of the underlying factors
that influence automobile insurance loss costs. The recent stud-
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ies of the Insurance Research Council (IRC, formerly AIRAC),
the RAND Institute, and the Automobile Insurance Bureau of
Massachusetts (AIB) illuminate a host of other factors that play
significant roles in determining these costs.

This paper integrates the results of these studies into a com-
prehensive framework for analyzing personal automobile insur-
ance loss costs. The framework looks at four dimensions that
affect loss costs: (a) pre-accident driver attributes and vehicle
characteristics, (b) the external environment, (c) compensation
systems, and (d) post-accident factors. Section 6 shows how these
four dimensions combine to influence territorial rates.

The implications for policy pricing are highlighted by com-
parison with the traditional “claim severity/claim frequency”
paradigm, using national statistics compiled by the IRC and Mas-
sachusetts experience analyzed by the AIB. The importance of
the expanded framework is further revealed by three other uses
besides policy pricing:

! Several traditional classification dimensions are reinterpreted,
underscoring their true effects on insurance loss costs. The
IRC studies, for instance, show how territory is shifted from
a factor related to the physical environment to a factor related
to claimant characteristics.

! Changes in compensation systems can be more accurately
priced. The AIB studies show how a simplistic prognosis of
the 1989 Massachusetts no-fault reform vastly mis-estimated
the true effects on loss frequency and loss severity.

! Public policy recommendations for lowering the cost and im-
proving the efficiency of personal auto insurance are made
more realistic and more effective.

These uses of the expanded framework for personal automobile
insurance cost drivers reflect the widening role of the casualty
actuary in today’s insurance environment.
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2. FRAMEWORK

Let us begin with the fundamental question faced by the pric-
ing actuary:

An insurer issues a personal automobile insurance pol-
icy. What factors influence the loss cost expected from
this policy?

The traditional actuarial focus on ratemaking and classification
systems, as well as a predilection for quantifiable data, has led
to an emphasis on pre-accident factors—particularly driver, ve-
hicle, and geographic characteristics—to the virtual exclusion
of other factors that affect the insurer’s payments. The likeli-
hood and severity of an accident are considered to depend on
driver attributes, vehicle characteristics, and garaging location.
The amount of the claim and its monetary resolution stem di-
rectly from the physical aspects of the auto accident.

This perspective suffices for an insurance environment with an
existing classification plan. It is insufficient for an actuary work-
ing with changing external conditions and compensation sys-
tems, or for an actuary refining classification plans, revising pric-
ing procedures, or formulating public policy recommendations.

The expanded perspective in this paper groups loss cost
drivers into four dimensions, as shown in Figure 1.

1. Pre-Accident Driver Attributes and Vehicle Characteristics

Pre-accident characteristics include the traditional rating
variables that are shown on the policy application:

! Driver attributes, such as age, sex, marital status, driving
record, driving experience, and driver education.

! Vehicle and vehicle use characteristics, such as make and
model of the car, horsepower, mileage driven, multi-
car discounts, and vehicle use (e.g., drive to work vs.
pleasure).
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FIGURE 1

DIMENSIONS OF LOSS COST DRIVERS

! Policy age, such as new versus renewal policy.
These factors are used for setting rate relativities in ex-

isting classification schemes, since they are known to the
insurer at policy inception and they can therefore be used
to rate the policy. These factors are most important for
predicting the occurrence of a physical event (e.g., an ac-
cident). Once that event occurs, the insurance payments
(if any) depend on a number of post-accident factors and
on the compensation system.

2. The External Environment

The external environment relates to non-insurance charac-
teristics that affect claim frequency or claim severity. We
group these factors into three categories:

! Physical qualities, such as traffic density, road hazards
and maintenance, and safety regulations (such as speed
limits and seat-belt statutes). The garaging location, or
the rating territory, is often thought of as reflecting
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physical road qualities. In truth, territory affects auto
claim costs primarily by its relationship to several post-
accident factors, such as attorney representation, the na-
ture of the medical providers, and claimant characteris-
tics. As the discussion below indicates, territory is not
simply a reflection of road characteristics and traffic
density.1

! Economic trends, such as the argument that in prosper-
ous years people drive more, purchase new vehicles, and
take more vacations, leading to higher bodily injury ac-
cident frequencies.

! Individual circumstances, e.g., a higher proportion of
poor residents in certain geographic areas may lead to
more uninsured motorists and higher UM costs.

3. Compensation Systems

Auto injury compensation systems may be grouped into
tort liability, no-fault, and add-on systems. Tort liability
systems may be subdivided by the financial responsibil-
ity limits and by the type of comparative negligence rule.
No-fault compensation systems may be subdivided by the
type of tort threshold: pure, verbal, and monetary. Ver-
bal thresholds may be further classified by their defini-
tions. Monetary thresholds may be further classified by
their magnitude. No-fault systems may also be classified
by the personal injury protection (PIP) limits, by the type
of benefits provided, and by the compensation rate (e.g.,
“75% of wage loss”).2

1Physical factors may be important in particular instances, such as to explain a high
accident frequency at a four way intersection with stop signs but no traffic light. They
are less important in the aggregate. Two cities may have similar physical characteristics
and similar accident rates but different claim frequencies.
2The types of auto compensation systems, and their resultant incentive effects, may also
be categorized in relationship to other health care plans. For instance, traditional “fee for
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The compensation system has a direct effect on claim
frequency and claim severity, since a claim may be com-
pensable under one system but not under another system.
The compensation system has an incentive effect both on
claim filing and on claim severity. For instance, claims
may be built-up either to pass a monetary tort-threshold
in a no-fault compensation system or to legitimize claims
for pain and suffering awards in a tort liability system.

These incentive effects are sometimes subsumed un-
der a broader “insurance lottery” perspective, which says
that claim-filing behavior depends in part on the ease of
pressing an insurance claim. States with strong anti-fraud
statutes may greatly reduce claim frequency. The build-up
of claims is useful only if it provides a greater net gain to
the claimant and his or her associates. Incurring additional
medical expenses in a no-fault state with a strong verbal
tort threshold is sometimes pointless, if the type of injury
does not allow a tort claim to be pursued.

Auto injury compensation systems are most important
in explaining state-by-state differences in insurance costs.
Not only the insurance compensation but also the occur-
rence of claims and the amount of economic damages de-
pend on the state compensation system.

4. Post-Accident Factors

Studies of “classification efficiency” often fault traditional
risk classification plans for failing to adequately explain
the variance in insurance loss costs (see Spetzler, Casey,
and Pezier [13], Giffin, Travis, and Owen [4], and Woll
[16]). Indeed, the factors discussed above relate primarily
to the occurrence of the physical event—i.e., cars colliding
with one another. Other factors, such as the type of injury,

service” medical plans require the claimant to pay both a deductible and a coinsurance
payment, and they restrict over-payment by the collateral source rule. Most auto insurance
compensation systems, in contrast, have no such offsets.
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the honesty of the claimant, attorney representation, and
the type of medical treatment sought, are strong predictors
of insurance claim costs.3

Post-accident factors relate to (i) whether an injury
claim will be brought for the physical accident and (ii)
the amount of the claim. These factors may be grouped
into the following categories:

! Type of injury, such as soft-tissue injuries (back and neck
sprains and strains) vs. fractures vs. more serious in-
juries. The hierarchy of injury types should distinguish
between injuries that are more or less susceptible to
“build-up” and potential fraud. For instance, a fracture
is readily discernable, and the length of needed treat-
ment is objectively determinable. Soft-tissue injuries are
harder to validate, and there is less consensus on their
appropriate treatment. If claim frequency depends (in
part) on claim-filing behavior, and if claim severity de-
pends (in part) on “build-up,” then a hierarchy of injury
types that differentiates claims by the criteria mentioned
above is most useful for forecasting loss costs.

! Type of medical practitioner, such as physician vs. chi-
ropractor vs. physical therapist, as well as type of treat-
ment, such as hospital admission vs. outpatient treat-

3See, for instance, Weisberg and Derrig [15], particularly Tables 2 and 3 on page 133,
Table 4 on page 135, and Table 6 on page 138. Weisberg and Derrig note (page 132) that

For claims that involved strains or sprains, variables that reflected the seri-
ousness of the injury explained little of the variation in medical expenses. For
pure strains/sprains our model R2 was only .04 and for mixed claims with
strains/sprains and “hard” injuries, the R2 was .21. : : : However, when vari-
ables related to treatment utilization and claimant behavior were added in, the
value of R2 for strain/sprain claims jumped to .78 and that for mixed claims to .79.

In general, claimants are more likely to engage attorneys in more serious cases. However,
even when the degree of injury is comparable, attorney-represented cases are more likely
to settle for higher amounts, though the net proceeds to the accident victim may not be
higher (AIRAC [2], IRC [7, pp. 56–62]).
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ment.4 The type of injury and type of medical prac-
titioner variables have two or more values for most
claims. In other words, many auto liability claims allege
both a sprain/strain and another type of injury. Similarly,
many claimants see two or more types of medical practi-
tioner, such as a physician in an emergency room setting
and then a chiropractor for extended visits.5

! Whether the claimant is being represented by an attorney.
In tort liability claims, plaintiffs’ attorneys are generally
compensated on a contingent fee basis. That is, the at-
torney receives a percentage of the court award or of
the insurance compensation, such as 33%.

For bodily injury (BI) claims, the insurance com-
pany’s settlement offer is often a multiple of the eco-
nomic damages (generally medical bills and wage loss)
suffered by the accident victim. The plaintiff’s attorney

4The distributions of auto insurance claims by type of injury and type of medical practi-
tioner differ from the distributions for standard health insurance. The distributions noted
by Marter, Weisberg, and Derrig for claims reported in Lawrence, Massachusetts (an area
suspected of widespread insurance fraud) are particularly revealing. Among the 1985–
1986 Lawrence claims studied by Marter and Weisberg [12], 44 out of 48 were for
sprains or strains (page 404). For these claims, moreover, 89% of the medical charges
went to chiropractors, and only 10% went to physicians (page 407); see also Weisberg
and Derrig [14].
The predisposition of some actuaries is to view the neck and back sprains treated by

a chiropractor as a minor influence on auto insurance loss costs. The contrary is true.
In certain areas, such claims are the principal loss cost drivers. Even in the rest of the
country, strains and sprains are the predominant type of auto injury in bodily injury
claims, and treatment by chiropractors and physical therapists is becoming increasingly
common.
5The Insurance Research Council [7] has documented both the multiplicity of injuries
and of medical practitioners as well as the trends in these statistics in recent years. In
1992, the average BI claimant reported about two different types of injury and was treated
by about two different types of medical practitioners.

The growing share of claimants reporting multiple types of injuries also is reflected
in the growth of the average number of different types of injuries reported by BI
claimants. BI claimants reported an average of 1.92 types of injuries per person
in 1992, up from 1.79 types of injuries per person in 1987 [7, p. 2].

On average, BI claimants were treated by 1.95 different types of medical practi-
tioners per person in 1992, up from 1.59 in 1987 [7, p. 3].
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has a financial incentive to encourage the “build-up” of
the claim.6 The IRC studies have consistently shown
higher average costs for attorney-represented claims,
even when the type of injury is held constant (see IRC
[7, page 61]).

Perspectives regarding post-accident factors vary widely, and
can be illustrated by looking at two extremes. The difference
in viewpoint is essential for understanding the costs of the auto
insurance system and for developing reforms to reduce this cost.

Suppose an accident victim in a no-fault state with a monetary
tort threshold suffers a lower back sprain, sees a chiropractor 30
times, recovers the out-of-pocket expenses from PIP coverage,
and files a BI claim which is handled by an attorney.

! From an innocent (perhaps “idealistic”) perspective, the physi-
cal injury itself is the loss cost driver. The back sprain incurred
in the auto accident motivates the victim to seek out a medical

6An illustration should clarify this. Suppose that an insurance company settles most BI
cases for three times the economic damages: that is, the compensation for “pain and
suffering” is about twice the sum of wage loss and health care bills. Suppose also that
attorneys require 33% of the award for most BI claims.
If an accident victim without an attorney incurs $1,000 in medical bills, the total BI

compensation would be $3,000, for a “net monetary gain” to the claimant of $2,000. If
the claimant is represented by an attorney, who takes 33% of the award, or $1,000, the
claimant receives only $1,000. However, if the attorney “encourages” the claimant to stay
home from work or to incur greater medical bills (perhaps by recommending a medical
practitioner who sets a longer course of treatment), so that the economic damages rise
to $2,000 and the insurance compensation rises to $6,000, the attorney’s fee becomes
$2,000 and the claimant’s “share” is back to $2,000, which is the amount of general
damages when no attorney is involved. Many insurance company personnel and industry
researchers believe that this accurately depicts the role played by many (though not all)
attorneys. In other words, attorneys often drive up the cost of the system, with little
benefit to claimants (assuming there are no other collateral sources of compensation,
such as sick pay plans and private medical insurance). See also the discussion later in
this paper regarding the overtreatment of many automobile accident claims.
In no-fault states, there is a second incentive to build up claims. Many states have

monetary tort thresholds, which allow accident victims to press bodily injury claims
only if medical bills exceed a stated amount. (Most of these states also have verbal
thresholds, which allow BI claims for “serious” injuries even if medical bills are low.)
Attorneys can provide little aid in PIP recoveries. However, by encouraging their clients
to “build up” the medical bills to exceed the tort threshold, they can file BI claims for
“pain and suffering.”
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practitioner competent to handle such injuries. The length of
the needed treatment and the lack of reimbursement for non-
economic damages under PIP coverage (such as “pain and
suffering”) motivate the victim to file a BI claim. The com-
plexity of the insurance claim process and the uncertainties of
BI compensation motivate the victim to seek an attorney’s aid.
The “innocent perspective” sees the claim as the direct result
of the physical accident and the insurance compensation as in-
dependent of the honesty of the claimant, attorney, or medical
practitioner.

! The cynical perspective sees the “entitlement philosophy,” or
“claims-consciousness,” or the “insurance lottery” as the loss
cost driver.7 Whether the accident victim files an insurance
claim, seeks treatment from a particular medical practitioner,
or even “suffers” a back sprain is not dependent solely upon
the physical events in the auto accident. Rather, the accident
victim, seeking to benefit financially from the accident, sees an
attorney, who encourages him or her to be examined by a med-
ical practitioner who has a history of recommending extended
treatment. The medical practitioner diagnoses the back sprain
and recommends an extended course of treatment. Either the
medical practitioner or the attorney notes that the medical ex-
penses will be covered by PIP (as well as by other health
insurance) and that the BI claim will pay for additional “pain
and suffering” costs. The accident victim, the attorney, and
the medical practitioner all benefit from the extended course
of treatment.

In this “cynical perspective,” the treatment provided was not
solely the result of the physical accident. Rather, it is also af-
fected by the desire of all three parties involved (the claimant,

7Casualty actuaries speak of “claims consciousness,” which the IRC studies refer to as
“claim-filing behavior.” “Claim consciousness” has been measured by ratios of bodily
injury to property damage claims. See the discussion of territory in the text. The “enti-
tlement philosophy” is broader. Many accident victims, having paid thousands of dollars
over the years for their auto insurance, now feel that they are entitled to recover their
money from the “insurance industry.”
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the attorney, and the medical practitioner) to maximize the
insurance compensation.

The difference in perspectives leads to differing public policy
recommendations. The “innocent perspective” sees injury pre-
vention as the key to reducing insurance costs. Injury prevention
efforts include safety standards for new cars, safety inspections
for older cars, mandatory seat belt laws, air bags, lower speed
limits, and better policing of driving-while-intoxicated statutes.
The “cynical perspective” sees the removal of the “lottery” in-
centives as the key to reducing insurance costs. Policy actions
include anti-fraud units, peer review of medical practitioners,
and verbal tort thresholds in no-fault states.

3. THE FREQUENCY-SEVERITY PARADIGM

The explanatory power of the expanded framework can be
seen most clearly in contrast with the old frequency/severity
paradigm. Previously, personal automobile loss cost drivers were
viewed as inflation-induced changes in loss severity and as slow,
long-term trends in loss frequency. The frequency trends have
sometimes been modeled by econometric equations based on
changes in gasoline prices, car density, and similar factors.8

Although this paradigm is an important component of actu-
arial ratemaking, it does not fully explain why claim frequency
or claim severity may be changing, nor does it necessarily tell
us what may be expected in the future. The expanded frame-
work presented in this paper provides a broader perspective for
viewing personal auto loss frequency and loss severity. It is par-
ticularly useful for understanding the causes of frequency and
severity trends and for formulating public policy proposals to
improve the auto insurance compensation system.

8The Insurance Services Office, for example, has studied the effects of various eco-
nomic factors on automobile insurance claim frequency and it has suggested potential
econometric models incorporating these factors.
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Frequency

The Insurance Research Council studies of the mid-1990s,
using data compiled by the Insurance Services Office (ISO) and
the National Association of Independent Insurers (NAII), note
that the countrywide property damage (PD) claim frequency de-
creased by 12% from 1987 to 1992. This is a measure of acci-
dent frequency; and it is consistent with fewer youthful drivers,
greater public awareness of drunk drivers, and better quality cars.

Over the same time period, the frequency of bodily injury
claims increased by 16%. Given the 12% decline in accident
frequency, this is a 32% increase in bodily injury claims per
physical accident.9

For bodily injury, the changes in claim-filing behavior among
the public overwhelm the changes in physical accident frequency.
The frequency drivers are not economic and environmental at-
tributes like gasoline prices and car density. Rather, the primary
causes lie in the claim and claimant characteristics dimension of
the expanded framework:

! Type of injury: The greatest increase over this period was in
“soft-tissue” injuries (sprains and strains). Moreover, sprains
and strains are particularly dominant in urban areas, which also
have the highest ratio of BI to PD claims. In fact, the May 1994
IRC study, Paying for Auto Injuries [9], concludes that “almost
all of these additional injury claims are for difficult-to-verify
injuries such as sprains and strains.”

! Type of medical practitioner: The greatest increase over this
period was in chiropractic treatment, especially for sprains and

9Formally, 32%= [(1+16%)" (1# 12%)]# 1. For the full IRC studies, see Insurance
Research Council [7; 10]. See also Insurance Research Council [9]: “More people in-
volved in auto accidents are making claims for injuries, even though accident rates have
been declining. : : : Many states enacted seat belt laws during these years, resulting in
substantial increases in seat belt use. Seat belts reduce the number and severity of in-
juries in auto crashes. Around the same time, states passed tougher drunk driving laws
in response to growing public awareness of this problem. In addition, the federal gov-
ernment now requires additional safety standards for vehicles that make cars safer for
passengers.”
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strains. Conversely, injuries requiring hospital stays have de-
clined.

! Attorney involvement: Between 1977 and 1992, the percent-
age of claimants represented by lawyers rose from 31% to
46% for all injury coverages combined and from 47% to 57%
for bodily injury claims (IRC [7, pp. 43–44]).10

! Law changes: In 1989, the threshold in Massachusetts for
pursuing a BI liability claim was increased from $500 to
$2,000. The traditional actuarial analysis would predict that
the frequency of BI claims would decrease substantially, be-
cause injury claims with medical expenses between $500 and
$2,000 would no longer be eligible for BI liability payments.
In fact, the frequency reductions were minimal, because of in-
centive effects. The higher tort threshold encouraged accident
victims (and their attorneys) to “build up” the medical ex-
penses so that a bodily injury claim could be filed (see Marter
and Weisberg [12]; Weisberg and Derrig [14]).

In sum, changes in claim and claimant characteristics are
the key drivers for bodily injury claim frequency trends. More-
over, the claim frequency trends for BI coverage have been dif-
ferent from the corresponding claim frequency trends for prop-
erty damage liability and for collision coverage, even though
these trends ostensibly relate to the occurrence of the same auto
accidents.

10Of additional concern to pricing actuaries are the relative differences by state, which
are relevant for severity and frequency trends. Credibility weighting statewide severity
and frequency trends with the corresponding countrywide trends is inappropriate if the
statewide trends are affected by changes in claim and claimant characteristics and in the
compensation system in ways that the countrywide figures are not affected.
The same phenomenon may be seen in workers compensation insurance. In the past,

statewide medical benefit trends were credibility weighted with countrywide trends. How-
ever, trends were lower in states with medical fee schedules than in states without such
schedules. (The existence of a state medical fee schedule might be considered a workers
compensation counterpart to the medical practitioner dimension of the personal automo-
bile framework here.) Now, the figures assigned the complement of credibility in workers
compensation medical benefit trends depends on whether the state has a medical fee
schedule.
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Loss Severity

Actuaries have traditionally used two methods to project
trends in loss severity.

A. Trend projections based on internal data fit observed av-
erage costs per claim to an exponential curve and assume
that the same trend will continue in the future.

B. Trend projections based on external data correlate the his-
torical average costs per claim with an economic index,
such as the medical cost component of the CPI, and then
estimate future claim severity based on the expected future
values of the economic index.

Both methods work well in certain environments. The first
method works well when the underlying trends are stable, so
that past changes in loss severity are deemed to be unbiased pre-
dictors of future changes. The second method works well when
loss cost trends are considered to be closely linked to recognized
inflation indices.

In personal automobile bodily injury insurance, loss severity
trends are composed of several influences, such as:

! Trends in cost of treatment. This includes both (a) medical
cost inflation and (b) trends in utilization rates that are inde-
pendent of the personal auto compensation system.11

! Trends in loss frequency. Severe automobile accidents lead to
insurance claims regardless of the claim-filing proclivity of the
accident victim. The growing influence of attorneys and the
changing claim-filing behavior of the public lead to greater
claim frequency for minor injuries, such as sprains and strains
with no visible signs of impairment. These are often low cost

11For instance, even when the personal auto compensation system remains unchanged,
the development of new medical procedures may engender greater utilization of services,
medical malpractice suits may stimulate more “defensive medicine,” and the increased
use of chiropractic treatment and physical therapy may change the mix of claims.
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claims. In other words, the factors that increase loss frequency
often lead to decreases in average loss severity.12 A change
in expected frequency stemming from changes in claim or
claimant characteristics should be partially offset by changes
in expected severity.

! Changes in compensation systems and in claim handling pro-
cedures. Compare the discussion above on the tort thresh-
old change in Massachusetts in 1989. The new low severity
projections changed dramatically because a whole cohort of
cases, which formerly had medical costs between $500 and
$2,000, moved up to over $2,000, with higher pain and suf-
fering awards (see Marter and Weisberg [12]; Weisberg and
Derrig [15]).

4. PROXIES

Many of the traditional classification variables used today are
proxies for the true (“causative”) factors affecting insurance loss
costs. To clarify the difference between a causative factor and a
proxy, let us contrast life insurance with automobile insurance.

! Age is generally considered a physiological attribute that di-
rectly affects expected mortality rates, so it is used as a rating
variable for life insurance underwriting and life annuity un-
derwriting.

! Sex and age also have strong correlations with auto accident
frequencies, so they are used to set auto insurance rate rela-
tivities. Indeed, a 17 year old unmarried male may have about
the same mortality rate as a 30 year old married female, but he
may have several times the auto bodily injury claim frequency
rate that she has. Yet sex and age (except at advanced ages
when bodily capabilities deteriorate) have little intrinsic rela-
tionship with accident propensity. Rather, they serve as prox-

12The IRC studies demonstrate this phenomenon. Among the BI, PD, and PIP cover-
ages over the 1980 to 1993 period, BI had the greatest increase in claim frequency and
the smallest increase in claim severity; see especially Insurance Research Council [10,
chapters 1 and 2].
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ies for other driver characteristics that are not easily defined or
measured, such as “risk-taking” predilections or psychological
maturity.

The use of territory as a proxy for external conditions, driver
attributes, and claimant characteristics is discussed below.

5. INTERACTIONS

The factors in one dimension of the expanded framework
presented here may interact with the factors in another dimen-
sion to determine expected loss costs. We illustrate with two ex-
amples.

! Pre-accident underwriting attributes and compensation systems:
Age, sex, and marital status may be more important as rating
variables in tort liability systems, which focus on the tortfea-
sor’s “fault,” than in no-fault compensation systems, in which
all accident victims are compensated. Conversely, the appli-
cant’s income and employment status may be important in no-
fault compensation systems with high PIP wage-loss limits.13

! Claim characteristics and compensation system: The “pad-
ding” of claims, or “build-up,” can be stimulated by a no-
fault compensation system with a low or moderate mone-
tary tort threshold. The AIB studies by Marter, Weisberg, and
Derrig referenced above show how the 1989 increase in the
Massachusetts tort threshold increased the average number of
outpatient visits to chiropractors, thereby resulting in more
claimants exceeding the tort threshold.

The interactions of the four components of the expanded
framework are essential for proper pricing and public policy rec-
ommendations, as discussed in the final section of this paper.

13The comments in the text relate to relative importance only. Thus, age, sex, and marital
status are important for no-fault compensation systems as well, since young, unmarried,
male drivers are not only more likely to cause accidents, they are also more likely to
be injured in accidents. Similarly, income and employment status are important for tort
liability systems as well, since unemployed persons with few assets are often “judgment
proof” and therefore carry low liability limits of coverage.
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6. TERRITORY AS A RATING VARIABLE

Territory is one of the chief variables used by U.S. insur-
ers for automobile rate setting. Territory provides an excel-
lent example of how pre-accident driver characteristics, the pre-
accident physical environment, post-accident characteristics, and
the compensation system all affect automobile insurance loss
costs.

Pre-Accident Driver Characteristics

Pre-accident driver characteristics, such as age, sex, and mar-
ital status, do not generally have a direct effect on territorial
relativities. Since the distributions by age and sex are relatively
constant by territory, these variables do not affect territorial rel-
ativities.14

External Environment

The physical environment in an area can raise or lower the
expected number of accidents. For instance, population density
and vehicle density are often cited as explanatory variables for
accident frequency on the assumption that, with more cars per
square mile, there will be more accidents per car.

In a 1988 study, ISO and the NAII compared the variation
in traffic density with the variation in PD claim frequencies.15

Although the major cities in each state had traffic densities over
ten times the statewide average, these cities had PD claim fre-
quencies that were often only 10% higher than the statewide
average.16

14An exception would be communities, such as retirement communities, where a dispro-
portionate number of senior citizens reside. This lowers the average pure premium of the
territory, but the class rating system should produce the correct overall territorial rate.
15Traffic density, or “vehicle density,” is defined in the study as car registrations per
square mile.
16For example, the 1988 study shows a traffic density for Chicago of 5,423 cars per
square mile, versus the statewide average of 152 car registrations per square mile. Nev-
ertheless, the PD claim frequency in Chicago was only 11.7% higher than the statewide
average claim frequency. More recent data (Insurance Research Council [10]) shows a
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In sum, traffic density does not explain much of the eleva-
tion of automobile claim frequencies in urban areas. In theory,
accident frequencies might be expected to increase proportion-
ately with traffic densities. In practice, traffic safety devices in
urban areas, such as traffic lights, stop signs, and well-designed
roads, by causing traffic to move at a somewhat lower speed,
keep the increase in the accident frequency over the statewide
average frequency to a relatively small percentage.

Table 1 shows 1993 property damage claim frequencies by
state.17 With only two exceptions, the states lie in a narrow range
from 20% above to 25% below the countrywide average of four
claims per 100 insured vehicles.

Several other attributes of the physical environment also affect
automobile insurance rates. Automobile theft rates vary by geo-
graphic location. Higher theft rates in urban areas cause higher
comprehensive losses and therefore higher premiums for com-
prehensive coverage. Similarly, the 1988 ISO/NAII study shows
substantially higher uninsured motorist costs in many urban ar-
eas, presumably resulting, at least in part, from higher numbers
of uninsured motorists. Finally, the cost of services provided
by insurers, such as auto body shop repair costs and medical
costs, varies by region; and they therefore affect territorial rela-
tivities.

Post-Accident Characteristics

The occurrence of an automobile accident is a physical event.
The decision to press a BI claim once an accident has occurred,
however, varies dramatically by state and even within a state.

The two dimensions of the expanded framework discussed
directly above—pre-accident driver characteristics and pre-
accident physical characteristics—relate to the occurrence of the

similar relativity, with the Chicago PD claim frequency being about 13% higher than the
statewide average claim frequency.
17The data are from IRC [10, Figures 2–6].
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accident itself. Post-accident characteristics relate to the proba-
bility of a claim being filed given that an accident has occurred.

We want to measure this probability for BI claims. Note care-
fully: we are not concerned with BI claim frequency or with
automobile accident frequency. Rather, we are concerned with
the probability of a BI claim being filed given that an accident
has occurred where another driver could potentially be liable for
damages.

We presume that the filing of a PD liability claim is influenced
primarily by the nature of the physical accident, so relative PD
claim frequency is a proxy for relative accident frequency where
another driver could potentially be liable for damages. The ra-
tio of BI claims per 100 PD claims serves as a measure of the
propensity to press personal injury claims.18 Table 2 shows the
countrywide trend in this ratio over the past 15 years, from 18
BI claims per 100 PD claims in 1980 to over 29 BI claims in
1993.19

Our concern here is the relationship of this ratio to geographic
location; that is, the variation in this ratio by state and by terri-
tory within state. Indeed, the BI/PD ratios vary greatly by state,
as Table 3 shows. California, for instance, produces 61 BI claims
for every 100 PD claims, whereas Wyoming, which is also a tort
state, produces only 18 BI claims. (The effects of the compensa-
tion system are also evident from Table 3: the eight states with
the lowest BI/PD ratios are all no-fault states.)

18The Institute for Civil Justice (RAND) uses a similar measure, the ratio of soft injury
claims to hard injury claims; see Carroll, Abrahamse, and Vaiana [3, page 13]. The
reasoning is similar to that underlying the BI/PD ratios. Hard injury claims, such as
broken bones, will be pressed in almost all circumstances, whereas the number of soft
injury claims, such as sprains and strains, depends in part on the propensity to file
insurance claims. The Institute for Civil Justice estimates the cost to consumers from
over-treatment and similar types of claim buildup and fraud to be between $13 billion
and $18 billion a year [3, p. 3]. IRC estimates this cost to be between $5.2 billion and
$6.3 billion a year [8, p. 23].
19The data for the exhibits in this section are derived from IRC studies. They are from
both full tort states and no-fault states. These are BI liability claims; they do not include
no-fault claims.
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TABLE 2

CLAIMS PER 100 PD CLAIM

The trends in BI/PD ratios over time and the variations by ter-
ritory highlight the strong effects of post-accident characteristics
on auto insurance loss costs. In California, for instance, the 61%
BI/PD ratio for 1993 marks a steady climb from a 31% BI/PD
ratio in 1980.

A common perception is that the accident frequencies them-
selves vary greatly by territory, being far higher in urban areas
than in rural areas. Although these differences in accident fre-
quencies do exist, the preceding statement confuses two issues,
and it misinterprets the reasons for the territorial differences.
Often, the frequency of physical accidents and of PD liability
claims is only marginally greater in metropolitan areas than in
the surrounding region. Once the accident occurs, however, the
BI claiming pattern is substantially different in metropolitan ar-
eas than in other parts of the state.

IRC data from 1989 through 1991 (IRC [10, App. B]) il-
lustrate this phenomenon. For instance, the PD claim frequency
during these years was about 10% higher in Los Angeles than
in the rest of the state, but the BI/PD ratio was 98.8% in Los
Angeles, versus 45.2% in the rest of the state. In other words, it
was not accident frequency differences that were driving up BI
liability costs in Los Angeles, but BI claim filing patterns that
were causing the difference.
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Although BI/PD ratios are generally higher in large metropoli-
tan areas, a simple urban/rural dichotomy is not always a good
proxy for the actual claim-filing patterns. For instance, during
the 1989 through 1991 period, the state of Pennsylvania as a
whole had a BI/PD ratio of 23%, the city of Pittsburgh had a
ratio of 18%, and the city of Philadelphia had a ratio of 78%.

The attributes of territorial differences implicit in the discus-
sion above have major implications for understanding auto bod-
ily injury liability loss cost drivers:

! Loss cost differences by region are great, with some areas,
whether urban centers or entire states, having high insurance
costs and affordability concerns.

! Traffic congestion is not the primary determinant of these dif-
ferences. In fact, the variations in PD claim frequencies are
often minor between urban areas and the statewide average.

! Differences in the BI/PD ratios account for much of the vari-
ation in BI loss costs by region, with higher cost areas having
higher BI/PD ratios.

Thus, once an accident occurs, the decision of whether to over-
treat the injury, or even to seek medical treatment when no injury
exists, is one of the major factors driving the cost differences
between states for bodily injury coverage.

The Treatment Triangle

The over-treatment of automobile injuries in certain locations,
as well as the treatment of non-existent injuries, results from
the interaction between claimants, medical providers, and attor-
neys; and it depends upon the type of injury and the structure
of the compensation system. Our emphasis in this paper is on
the loss cost drivers affecting territorial relativities. In particu-
lar, the major factors affecting territorial relativities are not pre-
accident driver characteristics or pre-accident physical charac-
teristics. Rather, the post-accident characteristics and the com-



394 PERSONAL AUTOMOBILE

pensation system attributes determine how automobile accidents
affect insurance payments.

Television reports on the human toll of highway accidents
leave us with grisly pictures of torn metal and mangled bodies,
as if most automobile accidents resulted in severe injuries. In
fact, the opposite is true. About 60% of BI claimants report their
only injury to be a strain or a sprain, and another 23% claim
to have suffered a strain or a sprain plus another injury (IRC
[7, p. 19]). Most strain and sprain injuries are difficult to verify,
their severity is hard to measure, and radically different treatment
patterns may be recommended by medical providers.

For over-treatment of injuries to occur, it is necessary that all
parties deciding on the course of treatment gain from the over-
treatment. For injuries and illnesses not covered by automobile
liability insurance or workers compensation insurance, the pa-
tient generally derives no financial gain from the medical treat-
ment. Even if the patient has health insurance coverage (whether
individual health insurance or employer provided group health
insurance), the coverage simply reimburses the hospital costs or
physicians’ charges, and it often requires a co-payment from the
patient.

Automobile bodily injury claims are different. BI liability
awards consist of two parts: economic damages, such as medi-
cal costs or wage loss, and general damages, or “pain and suf-
fering.” Medical expenses comprise about three-fourths of eco-
nomic damages. “Pain and suffering” damages are not objec-
tively determinable on their own. Rather, the general damages
are usually pegged as a multiple of the economic damages.

In sum, the medical expenses incurred by the claimant drive
not only the insurance reimbursement for economic damages but
also the insurance award for general damages. Each dollar of
medical expenses incurred may translate into three dollars of
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insurance compensation.20 In fact, many potential BI claims in
the United States are not even pursued unless there is a sufficient
amount of medical expense to support a “pain and suffering”
claim.

Three parties are needed for excessive treatment to exist on
a large scale, and the interactions of these parties are a major
influence on territorial relativities. The three parties are:

! Medical providers who aggressively treat even routine strain
and sprain injuries in order to increase the medical expenses
paid. The vast majority of medical providers, of course, do
not engage in such over-treatment of minor injuries. Rather, a
small coterie of medical providers who specialize in injuries
covered by automobile liability and workers compensation in-
surance serve this function well.

! Accident victims willing to complain of soft-tissue injuries,
even when objective medical impairment is non-existent or
slight.

! A third party who can direct a willing accident victim to the
proper medical provider. Most auto accident victims are not
sufficiently aware of the auto liability compensation system
to take full financial advantage of the system. In the United
States, a relatively small number of attorneys who specialize
in strain and sprain injuries in automobile liability and work-
ers compensation insurance claims fulfill this function by di-
recting potential BI claimants to medical providers willing to
over-treat soft-tissue claims.

In automobile accident cases, excessive treatment of soft-
tissue injuries inures to the financial benefit of the claimant, the
medical provider, and the attorney, and to the detriment of the
driving public who pay the premiums that fund these loss pay-

20The actual ratio, of course, varies by state and by year, since it is greatly influenced
by the type of compensation system.
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FIGURE 2

THE TREATMENT TRIANGLE

ments. This phenomenon raises the BI/PD ratios and is a major
driver of auto insurance loss costs.

This treatment triangle is shown schematically in Figure 2.

This phenomenon is exceedingly difficult to police, even
when insurers are aware of its existence in a given location.
As long as the accident victim claims to be injured, the med-
ical provider can continue the aggressive treatment pattern. To
justify the recommendation of a particular medical provider, the
attorney need only state that the medical provider is licensed by
the state and has produced “good results.” Sting operations are
difficult to run, since a claimant who claims not to be injured
will simply not be treated.

Evidence for over-treatment of automobile injuries is neces-
sarily indirect, though in some locations it is compelling. The
data from Massachusetts, where a detailed claim database has
been in existence for four years, illustrate this point.
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Were there no incentive to over-treat injuries, one would ex-
pect a wide dispersion of treatment costs for each provider, with
some patients requiring substantial treatment while others require
minimal treatment, depending on the severity of the injury. More-
over, one would expect that the number of BI claimants treated
by a medical provider would be about half the number of PIP
claimants, since all injuries need treatment, whereas a BI claim
may be filed only if another driver was at fault.21

The automobile compensation system in Massachusetts has a
$2,000 tort threshold. That is, a BI claim may be filed only22

if the PIP medical expenses exceed $2,000. A small number of
medical providers in Massachusetts have a large percentage of
their patients suffering from automobile accident injuries who
routinely require greater than $2,000 in treatment. The implica-
tion is that the course of treatment is being determined not by
the type of injury but by the desire to reach the tort threshold in
order to file a BI claim.

Similarly, among automobile accident victims being treated
by these same medical providers, the number of BI plus unin-
sured motorist claimants is almost equal to the total number of
PIP claimants. The implication is that patients are being referred
to these medical providers for the primary purpose of building
up the PIP expenses so that a liability suit can be pursued.

Compensation Systems and Benefit Levels

The type of compensation system and the level of benefits
are reflected in the statewide rates and the territorial relativities.
Changes in state laws require an analysis of the effectiveness
of the current law and of the proposed law. For example, in an

21In fact, we would expect the number of BI claimants treated by a medical provider to
be less than half the number of PIP claimants, since only those cases exceeding the tort
threshold can lead to a BI claim (see below in the text).
22For certain types of injuries, such as significant scarring, fractures, and serious injuries,
a BI claim may be filed even if medical expenses do not exceed $2,000. However, these
types of severe injuries are relatively rare in auto accidents. When they do occur, the
$2,000 tort threshold is quickly reached.
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urban area, the current tort system or monetary tort threshold
in a given state may lead to substantial medical overtreatment,
with resultant high rates, in comparison to a suburban or rural
area with little overtreatment. A law change that curtails this
overtreatment would cause a larger percentage decrease in costs
in the urban territory than in the suburban or rural territories.

Summary: Territory and the Four-Dimension Framework

Geographic location, or rating territory, has often been a diffi-
cult classification variable for the actuary to explain. Why should
auto insurance policies cost more in California than in other
states? Why does auto coverage cost so much more in certain
urban areas?

Driver characteristics do not differ significantly from place to
place. Physical conditions, such as road hazards and traffic den-
sity, have a minor effect on accident frequencies. They contribute
only marginally to the observed loss cost differences by territory.
Rather, geographic location and rating territory serve as proxies
for powerful but often overlooked factors that drive auto insur-
ance loss costs, particularly the treatment triangle phenomenon
discussed here.

7. PRICING AND PUBLIC POLICY

The framework for analyzing personal automobile loss cost
drivers presented in this paper has numerous ratemaking and
public policy implications, ranging from territorial relativity
analysis to pricing statutory amendments. In workers compen-
sation, for instance, the pricing of statutory amendments is a
finely honed actuarial tradition, well described in Fratello [4].
It is also half wrong, as shown by the consistent actuarial mis-
estimates throughout the 1980s, since it covers only the direct
effects of law changes, not the incentive effects.23

23See Gardner [5], as well as the numerous state specific studies from the Workers’
Compensation Research Institute.
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Compensation system reforms in personal auto insurance are
often accompanied by mandatory rate rollbacks. If no changes
are assumed in claim-filing behavior, then the cost effects of the
reform may be grossly over- or under-estimated, as shown by
the 1989 Massachusetts changes. It is vital for casualty actuaries
to understand the complete system of personal auto loss cost
drivers in order to accurately price system changes.

The availability and affordability of auto insurance are of pub-
lic concern in many jurisdictions, and casualty actuaries are often
called to testify on these issues. The actuary who knows what
the existing rating plan indicates, but who does not understand
why rates are higher in some territories than in others, or how
the compensation system affects loss costs, makes a poor prog-
nosticator. Rather, the actuary must measure and explain how
claimant behavior and the compensation system interact with
the traditional driver attributes, vehicle characteristics, and the
external environment to determine the expected loss costs.

We provide two possibilities for public policy reforms to re-
duce automobile insurance loss costs that stem from the ex-
panded framework in this paper. These are not the only possible
reforms, but they are efficacious and practical proposals.24

Peer Review of Medical Treatment

The previous discussion of claim characteristics and of medi-
cal treatment indicates that one of the major factors contributing
to the increases in bodily injury loss costs over the past decade
has been the “build-up” of hard-to-verify soft-tissue injuries,
generally with extended courses of treatment by a small num-
ber of chiropractors, physical therapists, and physicians, often

24Other reforms would be equally effective. For instance, most actuaries agree that move-
ment from a tort liability compensation system to a no-fault system with a strong verbal
tort threshold, as in Michigan, would reduce overall costs. However, there are strong
interest groups opposing such a move, and who support instead such changes as epit-
omized by California’s Proposition 103: rate rollbacks, classification restrictions, and
prior approval, but no attack on the real problem of overtreatment.
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orchestrated by attorneys experienced in such claims. Insurance
claims adjusters are aware of the “padding” in these claims. Yet
it is nearly impossible for claims adjusters to find objective ev-
idence of unnecessary or inappropriate treatment, especially on
any specific case.

Peer review of medical treatment in auto insurance claims,
by state panels of physicians and other medical practitioners,
could succeed in eliminating the worst abuse and stemming or
reversing the upward trend in bodily injury loss costs. The state
insurance department or the Board of Registration would appoint
a panel of medical experts to review treatment patterns by indi-
vidual medical providers. A substantial database of auto injury
losses would be needed to properly identify such patterns. It is
generally impossible to determine over-treatment by reviewing
any one specific case since the severity of any soft-tissue strain or
sprain is a subjective estimate. However, by reviewing all treat-
ment by particular medical providers, patterns of overtreatment
can be recognized. Medical practitioners would be more hesitant
to provide excessive treatment on a consistent basis if they knew
that their actions would be subject to professional review.

Consumer Representation

A second factor contributing to the increase in bodily injury
loss costs over the past decade has been the rapid increase in
attorney representation of insurance claims. If the attorney helps
build up the economic damages, there is generally no net loss to
the claimant despite the hefty contingency fee, and sometimes
there is even a net gain. In addition, the attorney handles all
the claim filing paperwork and negotiates with insurance loss
adjusters. Both of these activities can be confusing to the average
citizen, particularly in third party cases.

State insurance departments could provide claims represen-
tatives to handle claim filing and negotiation on behalf of auto
accident victims who need aid in insurance matters. The claims
representatives would be compensated by salary, so they would



PERSONAL AUTOMOBILE 401

have no interest in building up claims. The insurance industry
would defray the costs of these claims representatives.

All parties could gain. Claimants would have representation
by state insurance officials, who could guide them through the
claims process—at minimal cost to the claimant. Insurance com-
panies would gain because the cost of such claims representa-
tives is far less than the costs of claim “build-up.” The general
public would gain by lower insurance premiums and increased
satisfaction with the insurance claim process. State insurance de-
partments would gain because they would be offering additional
and highly valued services.

8. CONCLUSION

Although claim severity and claim frequency trends are im-
portant tools for automobile insurance ratemaking, their explana-
tory power is limited. The ultimate cost of automobile insurance
is a complex and changing mosaic of many diverse factors. Ac-
tuaries who understand these factors will be of great value to
their companies, and they may eventually help design systems
to control the cost of automobile insurance.
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THE MECHANICS OF A STOCHASTIC CORPORATE
FINANCIAL MODEL

GERALD S. KIRSCHNER AND WILLIAM C. SCHEEL

Abstract

Much has been written in recent years about the types
of factors that should be considered in a dynamic finan-
cial analysis model. Much less has been written that ac-
tually provides a reader with an understanding of how
the various pieces of a dynamic financial analysis model
need to fit together. This paper is intended to provide a
reader with a look “under the covers” at the structure
of a model being used for dynamic financial analysis.
A second and equally important aspect of dynamic

financial analysis is the determination of appropriate,
or at least reasonable, parameters for different ele-
ments within the model’s mechanical framework. Un-
fortunately, those organizations that have been the most
active in the development of model parameters are in
the uncomfortable position of having to choose between
divulging the specifics of their parameterization studies,
at the risk of losing a competitive advantage, or keep-
ing the knowledge to themselves, to the long-term detri-
ment of the actuarial profession’s ability to effectively
use models of this nature. The authors of this paper are
no less constrained by our respective organizations. As
such, we have largely excluded model parameterization
from the subject matter of this paper.

1. INTRODUCTION

There are many facets to the problem of corporate financial
model development. It is useful to begin with an analogy to the
common actuarial problem of distinguishing between specifica-
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tion, parameter, and process risks. Specification risk relates to
the question “Are the model structure and the selected probabil-
ity distributions correct?” Parameter risk narrows the question to
“Assuming the specification is correct, are the distributional pa-
rameters correct?” Lastly, process risk is concerned with random-
ness; i.e., answering the question “Assuming everything else is
correct, what can happen in my universe of possible outcomes?”

One might quibble between modeling loss severity with a
Weibull distribution instead of a lognormal distribution. Select-
ing from the universe of possible probability distributions in
model design is coping with specification risk. In some situa-
tions, the specification risk may degenerate into subjective prob-
ability assessment—the knowledge set about a dynamic process
may be so sparse that a rigorous description of the underlying
probability distribution is not possible.1 Even after this exercise
is completed successfully, the analyst still must deal with de-
scribing the parameters of the chosen process model. This sec-
ond stage investigation is the source of parameter risk. This risk
involves the selection of incorrect parameters, even if the prob-
ability distribution is correctly chosen. This leaves only process
risk to address. Ideally, process risk becomes insignificant under
the weight of many, many recalculations of the model.

In financial modeling, there are many of these “risks,” and
the model designer should not be oblivious to them. The model
designer must leap many hurdles while formulating a corporate
financial model, particularly one for dynamic financial analysis
(DFA). Examples of hurdles to be overcome or pitfalls to be
avoided include:

1. The model can use the wrong equations when attempt-
ing to define causality or linkages among model con-
stants and variables.

1The mathematics describing the fitting of distributions with only sparse knowledge of
the underlying risk characteristics is described by Filshtein [4].
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2. Important components of the operational or economic
environment might be omitted.

3. Elements that should be rendered in a dynamic manner
are kept static.

4. Model designers can be consumed by uncertainty re-
garding the dynamic behavior of those components
deemed to be dynamic.

5. The model’s accounting framework may be inaccurate.

6. The model could contain programming problems or
other embedded divergent behavior.

7. It might not be possible to achieve a consensus among
decision makers about the metrics (i.e., output results)
of comparison.

8. Model results may not exhibit one clearly preferable al-
ternative among different strategies under investigation.

9. Model results cannot be implemented or only can be
implemented with constraints (e.g., the decision path
that leads to the “best” long-term outcome is not feasi-
ble, either because it violates internal management op-
erating constraints or regulatory boundaries).

10. The model can expand to consider such a wide array
of possible situations, interrelationships, and outcomes
that it becomes too time-consuming to use in a realistic
and useful manner.

In summary, the risks include functional mis-specification of the
model, errors in risk and process identification, and failure of the
accounting framework to adequately divulge the metrics needed
for decision making.

Let us begin with a disclaimer to all readers who hope to find
an easy recipe for modeling. There is no panacea for model, func-
tional, or dynamic variable mis-specification. Very often, there
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is not even a good place to start looking for a definition. With
that in mind, we believe that (a) a definition that describes the
event in question is better than no definition at all and (b) it is
not worth quibbling over the finer points of parameterization—in
the overall perspective of what we are trying to model, the error
introduced by using a Weibull instead of a lognormal distribution
to fit empirical claims severity data is not going to make or break
our results.

We now turn to the three key concepts that form the basis for
this paper:

! The model to be discussed is a corporate financial model; one
that already has been deployed in the marketplace.

! The model is stochastic, with the capability of being made
dynamic.

! There is often no clearly preferable solution among alternative
decision paths.

2. KEY CONCEPTS

Corporate Financial Model

Day-to-day operations of a property/casualty insurance com-
pany include buying and selling assets, underwriting insurance
policies, collecting premiums, administering claims, and running
the insurance enterprise. A financial model of a property/casualty
insurance enterprise needs to be able to model each of these op-
erations separately and in conjunction with each other in order
to produce realistic financial projections for the entity.

In order to perform a comprehensive dynamic financial anal-
ysis, a corporate financial model should have linkages and inter-
relationships between activity on the asset and liability sides of
the business. For example, the model should:

! apply the same macroeconomic environmental conditions
(e.g., interest rates, inflation rates, catastrophic events) across
all operations of the company;



408 THE MECHANICS OF A STOCHASTIC CORPORATE FINANCIAL MODEL

! allow investment decisions to be made after consideration of
both operating needs and investment opportunities in the fi-
nancial markets;

! look at the risk/return tradeoffs generated by both investment
and operating decisions in the context of the entire company’s
risk/return spectrum rather than in isolation; and

! provide a universal set of metrics or decision criteria by which
diverse company operations can be measured and managed.

These critical model components are couched in terms of
one or more accounting frameworks (i.e., statutory, GAAP, or
economic). The accounting mechanisms serve to organize the
model’s projected results into a readily understood and consis-
tent set of outputs.

Stochastic vs. Static Corporate Financial Modeling

One of the purposes of a corporate financial model is to help
company management understand how decisions made today can
be expected to affect the company’s financial well-being tomor-
row. Traditionally, corporate financial modeling has relied on
static evaluations of current and future events and predetermined
cause and effect relationships. Static methods of analysis limit
the ability to analyze the sensitivity of outputs to changes in in-
put variables, especially if the number of input variables is large
and the interrelationships among them are complex. Yet it is crit-
ical that strategic decisions be made with the understanding of
how each decision impacts the following ones or how changes
in the internal or external environment can alter the anticipated
outcomes arising from each decision.

The essence of stochastic modeling is the ability to describe
critical assumptions in terms of ranges of possible outcomes,
rather than in terms of fixed values. Once each critical assump-
tion is defined by a range of possible outcomes and the interre-
lationships among critical assumptions are mapped out, a series
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of model recalculations can be performed to obtain ranges of
results that we can reasonably expect to see. The parameters
used to model stochastic variables and the accounting interre-
lationships ultimately define the key criteria or metric variables
that are of interest to management, regulators, and stockholders.
Differences in financial results arising from alternative strate-
gic decisions can be evaluated by replacing one set of strategic
decisions with another, re-running the modeling exercise, and
comparing the ranges of possible outcomes under each decision
rule set.

A stochastic model should also be able to address dynamic
modeling considerations. A dynamic modeling consideration is
one that responds in a time-dependent manner to other events
that are unfolding or have unfolded at an earlier point in the
modeling environment. Dynamic modeling considerations might
be as simple as adjusting the price adequacy of the premium in
a line of business if previous years’ loss ratios are higher than
expected, or as complex as adjusting the mix of taxable and tax-
exempt bonds in an investment portfolio in order to minimize tax
payments. While dynamic modeling considerations of this nature
are not discussed at great length in the remainder of the paper
due to the individuality of their construction and application, the
ability to implement such decision logic later is an important
consideration in the construction of a dynamic financial analysis
model.

Choosing Between Competing Strategic Decision Paths

Very often, a company is faced with deciding between two or
more strategic options. Under some situations, one option may be
clearly superior, while under other situations a different option is
preferable. An evaluation of multiple alternative strategies under-
stand their relative risk/reward tradeoffs provides the information
needed to answer questions such as “What additional risks must
I assume to achieve a higher long-run return on my investment?”
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FIGURE 1

COMPARISON OF AFTER-TAX PORTFOLIO YIELD WITH CAPITAL
GAINS

TABLE 1

ASSET COMPOSITION OF STRATEGIES IN FIGURE 1

Strategy 1 Strategy 5 Strategy 10

54% taxable bonds 80% taxable bonds 65% taxable bonds
31% tax-exempt bonds 0% tax-exempt bonds 0% tax-exempt bonds
0% stocks 15% stocks 30% stocks
4% cash 2% cash 3% cash
11% other 3% other 2% other

or “What is the probability of an important financial goal exceed-
ing its expected value?” The answer to these questions should
be the core DFA support for management decisions.

As an example, Figure 1 compares the three asset allocation
strategies whose asset compositions are displayed in Table 1. The
measurement criterion is the internal rate of return on the change
in book value of all invested assets over the five-year projection
horizon plus investment income, plus realized and unrealized
capital gains, less the difference between the market value of
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assets maturing and sold and those purchased during the five
years. Table 2 provides a numerical example of the metric dis-
played in Figure 1.

While there is no one alternative that is clearly superior, the
picture illustrates that, in this case study, higher return is only
achieved at the price of higher risk. The ultimate choice is a
business decision; there is no alternative in this decision set that
is superior to the others in all cases. This finding may seem to
be a bane of dynamic financial analysis—there is no mechani-
cally driven choice within a loosely defined utility framework.
However, it points out the reality underlying strategic business
decisions—it is not very often that one strategic direction is
clearly superior to all others.

3. MODEL STRUCTURE OVERVIEW

The corporate financial model has been developed to include a
minimum of one year of actual results and to produce pro-forma
financial projections for the subsequent five years. For the pur-
poses of simplification throughout the remainder of the article,
it is assumed that the actual results are valued as of December
31, 1996 and that the projection period encompasses the years
1997 to 2001.

The model includes five separate and distinct components that
must interact with each other in a structured and sequential man-
ner. The components include

! an economic scenario generator,
! a projector of underwriting cash flows and accounting accru-
als,

! a projector of investment returns and asset valuations,
! a tax calculator, and
! a financial statement structure.
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FIGURE 2

CORPORATE MODEL STRUCTURE

Figure 2 displays a flowchart of the period-by-period interactions
of the five model sections.

The modeling starts with initial conditions—the beginning
balance sheet, including accident year modeling of liabilities,
knowledge of accruals, tax carry-backs and carry-forwards, costs
and valuations of assets, and so forth. The following sequence
of steps is replicated for each time period over which the model
projects financial results:

1. Stochastically generate an economic scenario (interest
rates, inflation, competitive conditions, etc.) for the next
period.

2. Develop underwriting projections without consideration
of the economic scenario (e.g., correlated, random ef-
fects on loss volume or severity that are independent of
economic effects).
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3. Overlay the economic scenario on top of the underwrit-
ing projections; quantify the effects of the economic sce-
nario on the underwriting projections.

4. Apply the economic scenario to value existing assets.

5. Apply an asset rebalancing strategy based on current lia-
bility and asset conditions or on functions of previously
observed or future expected ones.

6. Rebalance the portfolio of assets (and/or liabilities); i.e.
buy and sell assets as needed.

7. Develop taxation effects and other fiscal period closing
entries.

8. Tally assets and liabilities under the appropriate account-
ing scheme(s).

9. Create end-of-period financials, operating statistics, and
metrics.

4. ECONOMIC SCENARIO

There is much literature describing models for the projec-
tion of economic scenarios. In fact, this may be the most well-
documented of all DFA model parameters. The economic sce-
nario model used in conjunction with the corporate financial
model being discussed in this paper is of the family of “one-
factor” interest rate projection models. It is closely based on the
first of two interest rate generation algorithms described in a pa-
per by James Tilley [8]. It is a one-factor lognormal model that
reverts interest rates to short-term expectations. In other words,
projected interest rates have a tendency to move from an initial
seeding (e.g., the actual December 31, 1996 interest rate level) to
an equilibrium that represents historic interest rate expectations
in the short-term spectrum of the yield curve. Long-term interest
rates, inflation rates, and projected movements in equity markets
are produced by algorithms that relate each of these economic
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variables to short-term interest rates. One example of such a set
of algorithms can be found in a paper written by Gary Venter in
1996 [9].

The economic scenario generation model is independent of
the corporate financial model. Actions taken in the corporate fi-
nancial model do not affect the future interest rate environments
projected by the economic scenario generation model, but the fu-
ture interest rate environments do impact the corporate financial
model.

5. UNDERWRITING SECTION

The underwriting section performs seven basic tasks:

1. It converts held loss and allocated loss adjustment ex-
pense (ALAE) reserves into calendar year payouts.

2. It converts indicated redundancies or deficiencies in held
loss reserves into calendar year payouts and captures
the accounting impacts of reserve redundancy or de-
ficiency emergence. Reserve redundancies or deficien-
cies can arise either from variability in the held reserves
(i.e., the held reserves represent the best estimate of ul-
timate losses, but actual loss emergence might vary in
some range around the best estimate) or from deliber-
ately holding reserves at a level other than the best esti-
mate.

3. It calculates the inflationary impact on loss payments
arising from differences between a simulated future level
of inflation and a level of inflation that was implicitly
(or explicitly) assumed when the held reserve level was
established.

4. It allows the emergence of reserve redundancies or defi-
ciencies into the model’s accounting results to be sched-
uled at the same rate or faster than the redundancies or
deficiencies emerge into the model’s cash flows.
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5. It calculates any additional premium inflows that might
be derived from policies already written (i.e., audit pre-
mium, premium from retrospectively rated policies) and
earns premiums on in-force and new business according
to a user-defined premium earning pattern.

6. It calculates discounted loss reserve levels for federal
income tax calculations.

7. It provides the vehicle for entering a five year under-
writing plan, including future premium inflows and as-
sociated loss and variable expense outflows at a line of
business level of detail. (Only variable expenses are in-
cluded in the line of business section. Fixed expenses are
addressed in a different section of the model.)

Interrelationship of Held Reserves, Indicated Reserves,
Payout Patterns, and Inflation on Income Statement and
Cash Flow Projections

When the model was developed, it was decided that four
factors needed to be considered in the loss reserve runoff struc-
ture

! the adequacy of held reserves,
! the speed with which reserves are paid out,
! the effects of unanticipated inflation on loss payments, and
! the way company management chooses to recognize adverse
or favorable loss emergence through reserve additions or re-
serve takedowns.

The modeling structure allows each of the four pieces to be ex-
amined and modified separately for each line of business. This
enables the model user to address each element with separate
assumptions.
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Conversion of Held Loss and ALAE Reserves Into Calendar Year
Payouts

Predetermined loss and ALAE payout patterns are applied
to held loss reserves and held ALAE reserves, respectively, to
yield the calendar year payments that would be made, assuming
the held reserves are correct. Each accident year’s reserves are
paid out over successive calendar years in accordance with the
incremental calendar year payout percentages. The model should
be flexible enough to allow for the application of different payout
rates to different accident years, but in most situations only one
underlying payout pattern will be needed.

An example of the conversion of held loss reserves at time T0
(December 31, 1996) into payouts over the successive four years
might look like the pattern shown in Table 3.

The calculation of the incremental calendar year payment is equal
to:

Held Reserve at Time T0

" Incremental Payout Percentage at Time Ti
n!
i=1

Incremental Payout Percentage at Time Ti

:

In this example, the remaining incremental payout percentages
for accident year 1995 are 20% at time T1, 15% at time T2, and
10% at time T3. The calendar year 1997 payment amount equals
the product of the $8,000 T0 held reserve and the 20% T1 incre-
mental payment percentage divided by the sum of the T1 to T3
payment percentages, or $8,000"20%# (20%+15%+10%) =
$3,556.

Treatment of Reserve Adequacy in the Model

The model addresses the relative level of reserve adequacy
at the accident year level of detail within a line of business. It
captures held reserves and their payout in one payout triangle,
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TABLE 3

PAYOUT TRIANGLE

Payout Pattern

0 to 12
months

12 to 24
months

24 to 36
months

36 to 48
months

48 to 60
months

Incremental % 30% 25% 20% 15% 10%
Cumulative % 30% 55% 75% 90% 100%

Calendar Year Reserve Payouts

Accident Held Calendar Calendar Calendar Calendar Calendar
Year Reserve Year 1997 Year 1998 Year 1999 Year 2000 Year 2001

1993 2,000 2,000 0 0 0 0
1994 5,000 3,000 2,000 0 0 0
1995 8,000 3,556 2,667 1,778 0 0
1996 10,000 3,571 2,857 2,143 1,429 0

Calendar
Year Total 25,000 12,127 7,524 3,921 1,429 0

as described in Table 3, and it captures any reserve redundan-
cies or deficiencies and their payout in a second payout triangle,
identical in format to the held reserve payout triangle.

The model assumes that the payout pattern being applied to
held reserves is a correct representation of the rate at which ex-
actly adequate reserves will become paid. However, held reserves
are often not exactly adequate. If no adjustments for reserve in-
adequacies/redundancies are made, the resulting paid loss pro-
jections will understate/overstate actual future paid loss amounts.

The model addresses this by assuming that the sum of the held
reserves and the indicated redundancy or deficiency amounts are
equal to exactly adequate reserves. The model applies the same
payout pattern to the indicated reserve deficiencies or redundan-
cies (by accident year) as is used on the held reserves.2 This ap-

2The assumption here is that the inadequacy or redundancy of held reserves is evenly
spread across all outstanding claims. In reality, there are more likely to be differences
in the relative adequacy levels of claims according to the length of time remaining until
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proach projects incremental future paid loss amounts attributable
to the difference between the level at which reserves should be
held and what is being held. If held reserves are understated,
the projections are positive (i.e., calendar year payments will
be greater than held reserves would otherwise indicate), and,
conversely, if held reserves are overstated, the projections are
negative. The sum of the paid loss projections derived from the
held reserve triangle and paid loss projections derived from the
reserve redundancy/deficiency triangle equal the correct future
payout amounts. Intuitively, this makes sense if one considers
that, all other things being equal, there should be no impact on
actual losses paid whether or not the held reserves at time zero
are exactly equal to the future payment amounts.

Table 4 uses the payout pattern from Table 3 with modifica-
tions to the held reserves at time T0. We can see how the assump-
tion of equivalent payout patterns for held reserves and reserve
redundancies/deficiencies results in the same calendar year pay-
outs as if held reserves were equal to needed reserves.

Impact of Changes in Reserve Payout Speed

The model is structured so that changes in the speed with
which reserves are paid out do not change the total amount to
be paid out, only the timing with which the reserves are paid
out. If a situation arises in which both the amount and timing of
reserve payouts are impacted, the amount component would be
captured through the reserve redundancy/deficiency triangle and
the timing component would be captured through a shift in the
reserve payout pattern.

The impact of a change in the payout pattern is therefore
described as an “accordion effect” on calendar year underwriting
cash flows. Any payout pattern change has the effect of stretching
or compressing the cash flow pattern without changing the total

settlement, with those that are furthest from settlement being less adequately reserved
than those that are closer to settlement.
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amount to be paid out.3 Table 5 uses an example to illustrate this
phenomenon.

TABLE 4

CALENDAR YEAR RESERVE PAYOUTS

Accident Held Calendar Calendar Calendar Calendar Calendar
Year Reserve Year 1997 Year 1998 Year 1999 Year 2000 Year 2001

1993 2,000 2,000 0 0 0 0
1994 4,000 2,400 1,600 0 0 0
1995 6,000 2,667 2,000 1,333 0 0
1996 8,000 2,857 2,286 1,714 1,143 0

Calendar
Year Total 20,000 9,924 5,886 3,047 1,143 0

Accident Reserve Calendar Calendar Calendar Calendar Calendar
Year Deficiency Year 1997 Year 1998 Year 1999 Year 2000 Year 2001

1993 0 0 0 0 0 0
1994 1,000 600 400 0 0 0
1995 2,000 889 667 444 0 0
1996 2,000 714 571 429 286 0

Calendar
Year Total 5,000 2,203 1,638 873 286 0

Accident Overall Calendar Calendar Calendar Calendar Calendar
Year Total Year 1997 Year 1998 Year 1999 Year 2000 Year 2001

1993 2,000 2,000 0 0 0 0
1994 5,000 3,000 2,000 0 0 0
1995 8,000 3,556 2,667 1,778 0 0
1996 10,000 3,571 2,857 2,143 1,429 0

Calendar
Year Total 25,000 12,127 7,524 3,921 1,429 0

3Because the model assumes payout pattern variability might be induced through the
generation of incremental payout period adjustment amounts, the payout pattern after
adjustment might not sum to 100%. This is accounted for in the model through formulas
that rescale the adjusted payout pattern to total 100%.
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TABLE 5

IMPACT OF CHANGES IN PAYOUT SPEED

Original Payout Pattern

0 to 12
months

12 to 24
months

24 to 36
months

36 to 48
months

48 to 60
months

Incremental % 30% 25% 20% 15% 10%
Cumulative % 30% 55% 75% 90% 100%

Payout Pattern Adjustment Amounts

0 to 12
months

12 to 24
months

24 to 36
months

36 to 48
months

48 to 60
months

Incremental % +10% +10% no change $5% $5%

Revised Payout Pattern, Prior To Rescaling

0 to 12
months

12 to 24
months

24 to 36
months

36 to 48
months

48 to 60
months

Incremental % 40% 35% 20% 10% 5%
Cumulative % 40% 75% 95% 105% 110%

Revised Payout Pattern, After Rescaling

0 to 12
months

12 to 24
months

24 to 36
months

36 to 48
months

48 to 60
months

Incremental % 36.4% 31.8% 18.2% 9.1% 4.5%
Cumulative % 36.4% 68.2% 86.4% 95.5% 100%

Revised Calendar Year Reserve Payouts

Accident Held Calendar Calendar Calendar Calendar Calendar
Year Reserve Year 1997 Year 1998 Year 1999 Year 2000 Year 2001

1993 2,000 2,000 0 0 0 0
1994 5,000 3,333 1,667 0 0 0
1995 8,000 4,571 2,286 1,143 0 0
1996 10,000 5,000 2,857 1,429 714 0

Calendar
Year Total 25,000 14,904 6,810 2,572 714 0
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Table 5, based on the payout pattern used in Table 3, demon-
strates the effects of changing the speed of the payout pattern.

Effects of Unanticipated Inflation on Loss Payments

By including the inflationary impacts on loss payouts, we in-
corporate a linkage between the macroeconomic environment
affecting assets and the macroeconomic environment affecting
losses. We are also in a position to examine the financial state-
ment implications of unanticipated inflationary pressures on
losses.

In addition to the speed of payment and inaccuracy in original
reserve estimates, a third variable affecting losses in the model
is inflation that affects claim costs through the claim payment
date. It is assumed that the reserves quantified in the first two
reserve triangles (the held reserve payout triangle and the reserve
redundancy/deficiency payout triangle) implicitly or explicitly
contemplate an anticipated level of inflation. Not contemplated
in these two payment triangles are the differences between actual
and anticipated payments arising from changes in inflation.4

As an example, suppose that if a claim were paid today, it
would cost $1,000. But, with an annual inflation rate for claims
of this nature at five percent per annum, if the claims are paid
five years later, then it will cost $1,276 [= 1,000" (1:05)5]. The
$1,276 reserve is included in the reserves quantified in the held
reserve and the reserve redundancy/deficiency payout triangle.
Suppose now that the actual inflation rate increases to ten percent
per annum in the third, fourth and fifth years. Now, the amount
paid will be $1,467, not $1,276. The additional $191 paid in year
five is captured in the paid loss amounts for that year and also

4Robert Butsic, in his 1981 paper [2, pp. 58–102], describes two ways in which inflation
can impact losses. One is through a claim’s accident date and the second is through
a claim’s payment date. For the model described in this paper, the authors elected to
contemplate and quantify the second way only; i.e., inflation impacting claims through
the claim payment date.
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shows up as adverse loss experience in the company’s income
statement in the fifth year.

Accounting for Reserve Additions or Takedowns

The first three components of the model’s loss reserve runoff
structure have been concerned with converting reserves into cash
flows. The fourth component is concerned with the quantification
of the accounting implications of reserve adjustments. It is not
enough to know when a reserve redundancy or deficiency is
converted into a cash event; the model must also know when a
reserve redundancy or deficiency is recognized in the financial
statements, either as an increase to held reserves or a decrease
of held reserves. It should be noted that the model makes no
provision for the recognition of unanticipated changes in loss
payments arising from a change in the inflationary environment.

Returning to the numbers from Table 4, we examine a few
different ways in which a reserve deficiency might manifest it-
self in a company’s income statement. The reserve deficiency
amounts and their calendar year payouts as shown in Table 4
were as follows:

Accident Reserve Calendar Calendar Calendar Calendar Calendar
Year Deficiency Year 1997 Year 1998 Year 1999 Year 2000 Year 2001

1993 0 0 0 0 0 0
1994 1,000 600 400 0 0 0
1995 2,000 889 667 444 0 0
1996 2,000 714 571 429 286 0

Calendar
Year Total 5,000 2,203 1,638 873 286 0

One approach to the income statement recognition of the
reserve deficiency might be to recognize it as the deficiency
emerges in loss payments. This approach would have no effect on
the level of held reserves that appear on the company’s balance
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sheet, but there would be an impact on the company’s income
statement in calendar years 1997 through 2000. The impact on
the company’s income statement in calendar year 1997 would
be $2,203, the impact in calendar year 1998 would be $1,638,
and so on.

A second approach might be to recognize the entire reserve
deficiency in calendar year 1997. The 1997 financial statements
would show a reserve increase of $2,797 over what would oth-
erwise have been held at year end 1997, and the 1997 income
statement would show incurred losses to be $5,000 higher than
they would otherwise have been.

Suppose a company had one year of loss reserves on its books
with the following additional information:

! Held reserves: $100,000, based on a reserve range of $80,000
to $105,000.

! Actual reserve need: $90,000.
! Reserve payout pattern: 25% over each of the next four years.

! Inflation level implicit in held reserves: 5%.
! Actual annual inflation rates: 5% in years 1 and 2, 8% in years
3 and 4.

! Company takes reserve redundancy into financial statements
equally in years one and two by lowering reserves $5,000 in
each year.

An example of the inter-relationship between the four ele-
ments (payout of held reserves, indicated reserve redundancy/
deficiency emergence through payments, inflationary impacts on
payments, and indicated reserve redundancy/deficiency emer-
gence through the financial statements) is shown in Table 6 using
the assumptions above.
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TABLE 6

IMPACT OF RECOGNITION OF RESERVE
REDUNDANCY/DEFICIENCY

Year 0 Year 1 Year 2 Year 3 Year 4

1. Payout percentage 25% 25% 25% 25%
2. Expected inflation rate 5% 5% 5% 5%
3. Actual inflation rate 5% 5% 8% 8%
4. Held reserve cash flow n/a 25,000 25,000 25,000 25,000
5. Redundancy cashflow n/a $2,500 $2,500 $2,500 $2,500
6. Inflationary impact n/a 0 0 643 1,304
7. Reserve lowering n/a $5,000 $5,000 0 0
8. Held reserves 100,000 72,500 45,000 22,500 0
9. Net cash flow 22,500 22,500 23,143 23,804
10. Income statement impact

($gain=+ loss) $5,000 $5,000 +643 +1,304

Line 6 formula: "####$
%&&&&'

N(
i=1

(1+Line 3Year i)

N(
i=1

(1+Line 2Year i)

)****+$ 1

,----. " (Line 4Year i +Line 5Year i)
Example:

Year 3 inflationary impact

=

/
(1:05)(1:05)(1:08)
(1:05)(1:05)(1:05)

$ 1
0
" (25,000$ 2,500)

Line 8 formula: Line 8Year i$1 $Line 4Year i +Line 7Year i $Line 5Year i
Line 9 formula: Line 4Year i +Line 5Year i +Line 6Year i
Line 10 formula: Line 6Year i +Line 7Year i

C. K. Khury develops this concept in a similar manner [6,
p. 14]. Khury notes that, given a balance sheet loss reserve li-
ability at time T, “the actual experience corresponding to this
estimate can generate two effects on the financial results of an
insurer: (a) the effect of the difference between expected and
actual claim payments, i.e. actual development and (b) the ef-
fect of any restatement of the remaining unpaid claim liability
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arising from changes in the underlying assumptions, i.e. change
in expected development.” Khury’s first effect is comparable to
the combined impacts of the redundancy cashflow and inflation-
ary impacts on Lines 5 and 6 in Table 6. His second effect is
comparable to the reserve lowering on Line 7 in Table 6.

Premiums: the Premium Writing, Earning and Collection
Processes

Premiums can be earned on two types of business: those al-
ready written and those that will be written during the model’s
time horizon. For both, the premium earning process is identical.
Premiums are earned according to a predefined earnings pattern
that can be as short as one year or as long as twenty years. This
earnings pattern is applied to initial policy year written premium
levels, not ultimate policy year written premium5 levels. Simi-
larly, premiums can be collected for business already written and
business that will be written during the model’s time horizon. A
second premium pattern, this one for premium collections, is ap-
plied to initial policy year written premium levels to determine
when premiums are collected.

The model makes three simplifying assumptions:

1. All policies are annual policies.

2. The amount of premium collected in the calendar year
in which the premium is written equals the initial written
premium.6

5Differences between calendar year written premium and ultimate policy year written pre-
mium might arise because of premium audits and/or retrospective premium adjustments.
6The simplifying assumption that the amount of premium collected equals written pre-
mium in the calendar year in which the premiums were written ignores the existence of
“cash-flow” premium collection arrangements. In reality, a premium collection arrange-
ment could exist in which premiums are booked in one calendar year but are not fully
collected until one or more years in the future. This would be most likely to occur on
long-tail policies of large commercial accounts, such as workers compensation. The rules
described in this paper do not work for these situations and would need to be modified to
fit the actual premium collection/premium booking structure of the entity being modeled.
One option is to leave the modeling of premiums unchanged at the line of business level,



THE MECHANICS OF A STOCHASTIC CORPORATE FINANCIAL MODEL 427

3. If a line of business does not calculate a reserve for antic-
ipated rate credits and retrospective adjustments in ad-
vance of actually collecting such adjustments, there is
no change in the collected premium in the calendar year
after the premium is written—any adjustments to col-
lected premium occur in the third and subsequent calen-
dar years.

The interrelationships between the writing, earning, and collec-
tion of premiums are explained by the following set of rules.
Each of these rules are applied on a policy year by policy year
basis:

! Written premium: In the first calendar year, written premium
is set equal to the user-input initial written premium amount.
If the line of business being modeled includes a provision for
anticipated rate credits and retrospective reserve adjustments,
then written premium is assumed to change by the calendar
year change in collected premiums in the second and subse-
quent calendar years. If the line of business being modeled
does not include a provision for anticipated rate credits and
retrospective reserve adjustments, then written premium is as-
sumed to change by the calendar year change in collected pre-
miums in the third and subsequent calendar years.

! Earned premium: Premiums are earned by applying the user-
input premium earning pattern to the initial written premium
amount.

! Unearned premium: Unearned premium is calculated as:

Written Premium$Earned Premium
+Prior Calendar Period Unearned Premium Reserve.

but adjust the accounting portion of the model to reflect the impact of the delayed pre-
mium collection on the company as a whole. The accounting entries that would require
“overrides” to accomplish this include the balance sheet entry or entries for uncollected
premiums and the cash flow statement entry for total collected premium.
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This develops an unearned premium reserve that is consistent
with the one on the Underwriting and Expense Exhibit, Part 2A
of the statutory Annual Statement (page 8 in the 1997 statu-
tory Annual Statement), not one that is consistent with the
unearned premium reserve displayed on the Liabilities, Sur-
plus and Other Funds page (page 3) of the statutory Annual
Statement. In the statutory Annual Statement, the difference
between these two numbers is the reserve for rate credits and
retrospective adjustments.

! Reserve for rate credits and retrospective adjustments, if ap-
plicable: In the first calendar year, this reserve is equal to:

(Ultimate earned premium$ initial written premium)

"
1
% of initial written premium that is earned in CY 1
ultimate earned premium/initial written premium

2
:

In the second and subsequent calendar years, this reserve is
equal to the difference between the ultimate earned premium
and the premium collected to date.

! Collected premium: The timing and amount of premium col-
lections are calculated by applying a user-input premium col-
lection pattern to the initial written premium amount.

! Uncollected premium: If the line of business being modeled
does not include a provision for anticipated rate credits and
retrospective reserve adjustments, then this is calculated as the
difference between initial written premium and the premium
collected to date. If the line of business being modeled in-
cludes a provision for anticipated rate credits and retrospec-
tive reserve adjustments, then the uncollected premium is set
equal to the calculated rate credit or retrospective reserve ad-
justment.

Assume:

! Ultimate earned premium= initial written premium.



THE MECHANICS OF A STOCHASTIC CORPORATE FINANCIAL MODEL 429

! Premium is collected as it is written.

! The line of business being modeled does not include a provi-
sion for anticipated rate credits and retrospective reserve ad-
justments.

The results of these assumptions are shown in Table 7.

Assume:

! Ultimate earned premium= 110% of initial written premium.

! No reserve for rate credits is used; i.e., the additional premium
is written and earned when it is collected.

In the extended premium earning pattern, the ultimate policy year
premium is greater than the initial written policy year premium,
possibly due to the receipt of audit premium in the third calendar
year after the start of the policy period. The extended premium
earning and collection patterns account for this by totaling to
110% instead of 100%. The results are shown in Table 8.

Assume:

! Ultimate earned premium= 110% of initial written premium.

! A reserve for rate credits is used; i.e., the additional premium
is earned at the same time the initial written premium is earned.

The results are shown in Table 9.

New Business Production

The model’s new business production logic requires assump-
tions about future premium writing levels and associated loss and
variable expense ratios. There is no one structure for this section
that is suitable for every need, but certain capabilities and func-
tional considerations can be generalized. These are discussed in
the subsequent paragraphs.
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TABLE 7

SIMPLE EARNING PATTERN

Premium Earning Pattern, Applied to Initial Policy Year Written Premium

0 to 12
months

12 to 24
months

24 to 36
months

36 to 48
months

48 to 60
months

Incremental % 50% 50% 0% 0% 0%
Cumulative % 50% 100% 100% 100% 100%

Calendar Year Earning of Policy Year Premium Writings

Policy
Year

Initial
Written
Premium

CY 1996
Earned
Premium

CY 1997
Earned
Premium

CY 1998
Earned
Premium

CY 1999
Earned
Premium

CY 2000
Earned
Premium

1996 20,000 10,000 10,000 0 0 0
1997 25,000 n/a 12,500 12,500 0 0
1998 30,000 n/a n/a 15,000 15,000 0

Calendar
Year Total 75,000 10,000 22,500 27,500 15,000 0

Calendar Year Premium Collection

Policy
Year

Initial
Written
Premium

CY 1996
Collected
Premium

CY 1997
Collected
Premium

CY 1998
Collected
Premium

CY 1999
Collected
Premium

CY 2000
Collected
Premium

1996 20,000 20,000 0 0 0 0
1997 25,000 n/a 25,000 0 0 0
1998 30,000 n/a n/a 30,000 0 0

Calendar
Year Total 75,000 20,000 25,000 30,000 0 0

Calendar Year Accounting Results

Unearned Reserve Unearned
Cal. Written Earned Premium for Rate Premium Collected Uncollected
Year Premium Premium (AS p. 8) Credits (AS p. 3) Premium Premium

1996 20,000 10,000 10,000 0 10,000 20,000 0
1997 25,000 22,500 12,500 0 12,500 25,000 0
1998 30,000 27,500 15,000 0 15,000 30,000 0
1999 0 15,000 0 0 0 0 0
2000 0 0 0 0 0 0 0
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TABLE 8

EXTENDED EARNING PATTERN

Premium Earning Pattern, Applied to Initial Policy Year Written Premium

0 to 12
months

12 to 24
months

24 to 36
months

36 to 48
months

48 to 60
months

Incremental % 50% 50% 10% 0% 0%
Cumulative % 50% 100% 110% 110% 110%

Premium Collection Pattern, Applied to Initial Policy Year Written Premium

0 to 12
months

12 to 24
months

24 to 36
months

36 to 48
months

48 to 60
months

Incremental % 100% 0% 10% 0% 0%
Cumulative % 100% 100% 110% 110% 110%

Calendar Year Earning of Policy Year Premium Writings

Policy
Year

Initial
Written
Premium

CY 1996
Earned
Premium

CY 1997
Earned
Premium

CY 1998
Earned
Premium

CY 1999
Earned
Premium

CY 2000
Earned
Premium

1996 20,000 10,000 10,000 2,000 0 0
1997 25,000 n/a 12,500 12,500 2,500 0
1998 30,000 n/a n/a 15,000 15,000 3,000

Calendar
Year Total 75,000 10,000 22,500 29,500 17,500 3,000

Calendar Year Premium Collection

Policy
Year

Initial
Written
Premium

CY 1996
Collected
Premium

CY 1997
Collected
Premium

CY 1998
Collected
Premium

CY 1999
Collected
Premium

CY 2000
Collected
Premium

1996 20,000 20,000 0 2,000 0 0
1997 25,000 n/a 25,000 0 2,500 0
1998 30,000 n/a n/a 30,000 0 3,000

Calendar
Year Total 75,000 20,000 25,000 32,000 2,500 3,000

Calendar Year Accounting Results

Unearned Reserve Unearned
Cal. Written Earned Premium for Rate Premium Collected Uncollected
Year Premium Premium (AS p. 8) Credits (AS p. 3) Premium Premium

1996 20,000 10,000 10,000 0 10,000 20,000 0
1997 25,000 22,500 12,500 0 12,500 25,000 0
1998* 32,000 29,500 15,000 0 15,000 32,000 0
1999* 2,500 17,500 0 0 0 2,500 0
2000* 3,000 3,000 0 0 0 3,000 0

*Note the change in written and earned premiums in calendar years 1998 through 2000. Both the
written and earned amounts are increased by the premium earned three years after the start of the
1996, 1997 and 1998 policy periods.
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TABLE 9

EXTENDED EARNING PATTERN WITH RESERVES

Premium Earning Pattern, Applied to Initial Policy Year Written Premium

0 to 12
months

12 to 24
months

24 to 36
months

36 to 48
months

48 to 60
months

Incremental % 55% 55% 0% 0% 0%
Cumulative % 55% 110% 110% 110% 110%

Premium Collection Pattern, Applied to Initial Policy Year Written Premium

0 to 12
months

12 to 24
months

24 to 36
months

36 to 48
months

48 to 60
months

Incremental % 100% 0% 10% 0% 0%
Cumulative % 100% 100% 110% 110% 110%

Calendar Year Earning of Policy Year Premium Writings

Policy
Year

Initial
Written
Premium

CY 1996
Earned
Premium

CY 1997
Earned
Premium

CY 1998
Earned
Premium

CY 1999
Earned
Premium

CY 2000
Earned
Premium

1996 20,000 11,000 11,000 0 0 0
1997 25,000 n/a 13,750 13,750 0 0
1998 30,000 n/a n/a 16,500 16,500 0

Calendar
Year Total 75,000 11,000 24,750 30,250 16,500 0

Calendar Year Premium Collection

Policy
Year

Initial
Written
Premium

CY 1996
Collected
Premium

CY 1997
Collected
Premium

CY 1998
Collected
Premium

CY 1999
Collected
Premium

CY 2000
Collected
Premium

1996 20,000 20,000 0 2,000 0 0
1997 25,000 n/a 25,000 0 2,500 0
1998 30,000 n/a n/a 30,000 0 3,000

Calendar
Year Total 75,000 20,000 25,000 32,000 2,500 3,000

Calendar Year Accounting Results

Unearned Reserve Unearned
Cal. Written Earned Premium for Rate Premium Collected Uncollected
Year Premium Premium (AS p. 8) Credits (AS p. 3) Premium Premium

1996* 20,000 11,000 9,000 1,000 10,000 20,000 1,000
1997* 25,000 24,750 9,250 3,250 12,500 25,000 3,250
1998* 32,000 30,250 11,000 4,000 15,000 32,000 4,000
1999* 2,500 16,500 $3,000 3,000 0 2,500 3,000
2000* 3,000 0 0 0 0 3,000 0

*In this situation, the accounting results have been altered in all years as a result of earning the
additional premium over the same calendar periods as the initial premium is earned. The reserve for
rate credits captures the amount of additional premium that is anticipated as “earned but not received.”
The only accounting entry that is not impacted is the unearned premium reserve that would appear
on page three of the statutory Annual Statement.
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New Business—Premium Volumes

The projection of future premium volumes can be as simple
as a fixed set of assumptions or can be as complex as a system
of assumptions that interrelate the relative amount of business
that is expected to be retained each year, a company’s internal
growth objectives, the overall insurance market conditions, and
company reactions to prior-year underwriting results. In general,
it would seem that the more linkages that are established between
new business production and other events being played out in the
model, the better the model will be. The model then should be
more reactive; it should do what the company itself might do
when faced with similar circumstances. However, in some cases,
the inclusion of additional dynamic elements in these linkages
could lead to greater confusion in what the model is doing than
is warranted by the additional realism that is gained.

Future Loss Ratios

When the model was being developed, two alternative ap-
proaches to developing future loss ratios were contemplated. One
was to assume that, all other things being held constant, the loss
ratios at time T and T+1 could be described as independent
values selected at random from one statistical distribution. We
call this a “force of loss” approach to loss ratio generation. The
second approach assumes that the loss ratio at time T+1 should
be equal to the loss ratio at time T plus or minus a volatility
parameter. The second approach assumes the loss ratio at time
T+1 is more or less dependent upon the loss ratio at time T, de-
pending upon the size and shape of the volatility parameter. We
call this approach to loss generation the “incremental volatility”
approach.

From a theoretical standpoint, it seems that the force of loss
assumption would be more valid for lines whose loss experi-
ence can be characterized as more directly attributable to ex-
ternal factors than to internal management decisions, or whose
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exposure base is highly volatile, or whose loss profile is one of
low-frequency, high-severity claims. The incremental volatility
approach would seem to be most appropriate for those lines of
business that display a stable exposure base with a high retention
of insureds from year to year, a tendency towards high-frequency,
low-severity losses, and a small exposure to catastrophic loss.
Examples of “force of loss” lines might include homeowners (if
catastrophes are not explicitly separated from non-catastrophic
claims), commercial liability or umbrella. Examples of “incre-
mental volatility” lines might include personal automobile, com-
mercial automobile, or any non-catastrophic portion of property
lines.

From a practical standpoint, however, the force of loss ap-
proach is much simpler to program. All that is required to suc-
cessfully implement a force of loss approach is to have a random
number generator return values from a distribution that reason-
ably replicates the desired shape, spread, and mean of the loss
ratios being modeled. To successfully implement an incremental
volatility approach, formulas must be established that (a) cap the
overall upwards or downwards movement to reasonable floor and
ceiling values and (b) have “mean-reverting” tendencies (i.e., the
incremental volatility in time T+1 will be more likely to move
the overall loss ratio towards the long-term mean than away from
it), while still returning mean values that are consistent with the
expected value.

It should be noted that both the force of loss and the incremen-
tal volatility approaches to loss ratio selection describe the loss
ratio that would arise if there were no other changes occurring
that have an impact on the final loss ratio. Other changes might
include premium rate changes, inflationary increases in the pre-
mium exposure base, or inflationary impacts on loss costs. When
the model is run stochastically, the final projected loss ratio is
developed by first randomly sampling from the probability dis-
tribution that describes this force of loss, then modifying the
random sample to reflect the other changes.
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Exhibit 1 provides an example of the interrelationships be-
tween premium development and loss ratio development, includ-
ing inflationary and rate impact influences. A more realistic rate
change formula would consider many more parameters than the
relationship between one year’s actual and expected loss ratios.7

6. ASSET MODELING

There are two basic components to modeling assets: valuing
assets and rebalancing an asset portfolio through the sale of ex-
isting assets and the purchase of new assets. The first component
is concerned with determining the book and market value at time
T+1 of assets the company owned at time T. The second com-
ponent is concerned with how the asset portfolio owned at time T
should be adjusted at time T+1, including the manner in which
net cash inflows between times T and T+1 should be invested.

In order to perform these tasks, a model must be able to:

! quantify at any valuation date the book and market values of
assets held at that point in time and

! quantify the amount of cash generated by the insurance oper-
ation between the previous asset revaluation and rebalancing
and the current asset revaluation and rebalancing.

A model must also contain one or more decision algorithms that
tell it what assets to sell at time T+1, if asset sales are needed
or desired and what assets to purchase at time T+1.

Asset Categorization

In developing the model, we elected to evaluate assets at an
aggregate level of detail. We feel that this approach is in keeping
with the strategic nature of the questions the model is expected

7The formula for determining whether or not a rate change occurs, and by how much,
is there for example only and is not a realistic rate change formula.
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to address. We recognize that there are many situations when
the level of aggregation described herein is neither sufficient nor
appropriate for the desired analysis. At these times, a more re-
fined, maybe even seriatim, approach to asset analysis may be
needed. We leave the task of describing a seriatim approach to
asset modeling to other papers and instead turn to a discussion of
the manner in which assets have been aggregated in this model.

Bonds

The model assumes that bonds mature in no more than thirty
years and that bonds are either taxable or tax-exempt, resulting
in sixty possible bond categories.

The starting bond portfolio is sorted by tax status and maturity
date into the sixty available bond categorizations. Sixty “proxy”
bonds are then created from the underlying bond portfolio. Each
proxy bond’s market value, statement value, and par value are
calculated as the sum of the values of the underlying bonds. The
maturity date of each proxy bond is assumed to be equal to the
midpoint of the calendar year in which the underlying bonds
were to mature. Each proxy bond’s coupon rate is a weighted
average of the underlying bonds’ coupon rates, using the par
values for weights. The model assumes that each proxy bond
will pay coupons semi-annually.

Suppose at December 31, 1996, the XYZ Company has an
asset portfolio with the five bonds shown in Table 10.

Three proxy bonds would be created to summarize this port-
folio, as follows:

Maturity
Date

Years to
Maturity

Statement
Value

Market
Value

Par
Value

Coupon
Rate

Proxy 1 7/15/2000 3–4 years 3,000,000 3,009,000 2,950,000 6.6%
Proxy 2 7/15/2003 6–7 years 5,000,000 5,331,000 5,000,000 7.5%
Proxy 3 7/15/2010 13–14 years 7,000,000 7,608,000 7,000,000 7.5%
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TABLE 10

ASSET PORTFOLIO

Maturity
Date

Years to
Maturity

Statement
Value

Market
Value*

Par
Value

Coupon
Rate

Bond 1 6/15/2000 3–4 years 1,000,000 965,000 950,000 6.5%
Bond 2 9/30/2000 3–4 years 1,500,000 1,540,000 1,500,000 6.8%
Bond 3 12/30/2000 3–4 years 500,000 504,000 500,000 6.2%
Bond 4 7/15/2003 6–7 years 5,000,000 5,331,000 5,000,000 7.5%
Bond 5 1/1/2010 13–14 years 7,000,000 7,608,000 7,000,000 7.5%

*The market values are approximations that assume the bonds have no embedded options, no default
risk, and that the “current,” or December 31, 1996 risk-free interest rate for new bonds maturing
in the year 2000 is 6.0%, for new bonds maturing in the year 2003 is 6.25%, and for new bonds
maturing in the year 2010 is 6.5%.

Suppose one year has elapsed. The XYZ company has decided
not to purchase any new bonds. The proxy bond portfolio now
might look as follows:

Maturity
Date

Years to
Maturity

Statement
Value*

Market
Value†

Par
Value

Coupon
Rate

Proxy 1 7/15/2000 2–3 years 2,987,500 3,015,000 2,950,000 6.6%
Proxy 2 7/15/2003 5–6 years 5,000,000 5,410,000 5,000,000 7.5%
Proxy 3 7/15/2010 12–13 years 7,000,000 8,019,000 7,000,000 7.5%

*The change in proxy one’s statement value reflects the amortization of one year’s bond premium. As
a simplification, this example assumes that the bond premium will be amortized evenly over remaining
time to maturity; i.e., one-fourth of the difference between the December 31, 1996 statement and par
values. A more accurate approach would be to calculate the change in the present value of the bond
based on the initial interest rate.
†The market values are approximations that assume the bonds have no embedded options, no default
risk, and that the now “current,” or December 31, 1997 risk-free interest rate for new bonds maturing
in the year 2000 is 5.65%, for new bonds maturing in the year 2003 is 5.75%, and for new bonds
maturing in the year 2010 is 5.80%.

Now suppose that the same one year has elapsed, but the com-
pany decides to purchase a new risk-free bond with a $1,000,000
par value that will mature in 2003. The model assumes that this
bond is purchased at cost, so the statement value and the market
value are equal to the $1,000,000 par value. The coupon rate for
this bond is 5.75%.
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The model recalculates Proxy Bond 2 as a weighted average
of the old and new bond characteristics, resulting in a revised
bond with the following information:

Maturity
Date

Years to
Maturity

Statement
Value

Market
Value

Par
Value

Coupon
Rate

Proxy 2 7/15/2000 2–3 years 3,987,500 4,015,000 3,950,000 6.38%

Preferred and Common Stocks

Preferred and common stocks are aggregated into two groups,
with one proxy equity for each group. The proxy equity reflects
the total market value, book value and actual cost of the under-
lying equities within that group.

Assumptions with regard to the projection of future market
values can be varied, but not the basic framework. We believe
such a simplification is acceptable in most situations and that
only when a company has a large preferred stock portfolio would
it be inappropriate.

Within each of the preferred and common stock groups, the
model assumes there exists an average dividend rate that can be
applied to the proxy equity for that group. While it is theoreti-
cally possible that the rates might be the same, it would be more
likely that the rate applied to the preferred stock group would be
higher than that applied to the common stock group. The model
further assumes that any unrealized capital gains or losses within
a stock grouping are spread evenly across all of the underlying
securities within the grouping. These assumptions are maintained
as equities are bought and sold during each asset rebalancing.

Suppose the XYZ company had common stock holdings at
December 31, 1996 of:

Statement Value
of Proxy Equity

Market Value of
Proxy Equity

Dividend Rate for
Proxy Equity

1,800,000 2,500,000 2.0%
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During 1997, the stock portfolio’s market value increased by
fifteen percent, to $2,875,000. During the year-end 1997 asset
rebalancing, the XYZ Company decides to sell ten percent of its
equity portfolio. The result is:

Statement Value of
Retained Stocks in
Proxy Equity

Market Value of
Retained Stocks in
Proxy Equity

Dividend Rate on
Retained Stocks in
Proxy Equity

Realized Capital
Gains on Sold

Portion
of Proxy Equity

1,620,000 2,578,500 2.0% $107,500

Alternatively, the XYZ Company might have decided to pur-
chase additional equities at year-end 1997. Suppose that instead
of selling ten percent of the 12/31/96 proxy equity, the XYZ
Company decides to purchase an additional $1,000,000 of stocks.
The model assumes the stocks purchased will have the same av-
erage dividend rate of the previously existing stock portfolio. The
proxy equity is restated to reflect the newly purchased stocks as
follows:

Statement Value
of Proxy Equity

Market Value of
Proxy Equity

Dividend Rate for
Proxy Equity

Prior to new stock
purchases 1,800,000 2,875,000 2.0%

New purchases 1,000,000 1,000,000 2.0%
After inclusion of
new purchases 2,800,000 3,875,000 2.0%

Real Estate

The model tracks real estate in two categories that are con-
sistent with the NAIC Annual Statement: “properties occupied
by the company” and “other properties.” Besides the desire to
match the model’s asset categories as closely as possible to the
Annual Statement, real estate is maintained as its own asset cate-
gory in order to better address the accounting impacts of depre-
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ciation and capital improvements. The model’s accounting and
asset valuation structures are designed to allow annual deprecia-
tion of real estate assets to flow through the modeled company’s
balance sheet and income statement without affecting either cal-
endar year cash flows or projected market values for the real es-
tate. Capital improvements flow through the financial statements
as a direct outflow from “cash” into the real estate’s statement
and market values.

Suppose the XYZ company owned real estate with a statement
and market value of $10,000,000 at December 31, 1996. The
property has annual depreciation of $500,000. Assume that:

(a) no real estate is bought or sold during 1997,

(b) no capital improvements are made to the property, and

(c) the market value remains unchanged from year-end 1996
to year-end 1997.

The December 31, 1997 balance sheet would show a statement
value of $9,500,000 and a market value of $10,000,000. The
income statement would reflect $500,000 of real estate expenses
incurred during the year, and the cash flow statement would not
be impacted at all.

If, instead, $1,000,000 of capital improvements were per-
formed during 1997, the balance sheet would show a statement
value of $10,500,000 and a market value of $11,000,000. The
income statement would again reflect $500,000 of real estate ex-
penses incurred during the year. The cash flow statement would
reflect the conversion of $1,000,000 from “cash” to “real estate”
through the accounting entry “cost of real estate acquired.”

Short-Term Investments

Short-term investments are aggregated into one group and
treated in a manner similar to cash. They are assumed to generate
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an investment income yield that is commensurate with the three-
month risk-free interest rate projected by the economic scenario.
The model assumes that the statement and market values of this
asset group are identical.

All Other Asset Groups (Mortgage Loans, Collateral Loans,
Other Invested Assets)

The model makes no special provisions for any other invested
asset group. All assets invested in mortgage loans, collateral
loans, and other invested assets are consolidated into one proxy
asset for each group. A statement and a market value are entered
and the model user can specify the annual investment income
return anticipated from each of these proxy groups.

Asset Rebalancing

The model rebalances assets at the end of each calendar year.
The amount of money that can be rebalanced at year-end equals
the sum of:

! cash flow from operations during the year (premium collected
less losses and underwriting expenses paid);

! investment income collected during the year, net of investment
expenses paid during the year, including investment income
derived from the insurance operation’s average cash balances,
which are deemed to be invested at the yield for “Cash” until
the end of the year;

! the cash value of any bonds maturing during the calendar year;
and

! the market value of all other invested assets at the end of the
calendar year.

The asset rebalancing strategy is ad hoc; it is a user-defined
strategy that defines how much money should be invested in any
asset class at year-end. Examples of different asset rebalancing
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strategies might be: “invest 50% in taxable bonds, 30% in equi-
ties, and 20% in cash,” or “invest 40% in taxable bonds, 40% in
tax-exempt bonds, 15% in equities and 5% in cash.” These ad
hoc strategies are consistent with active investment management
portfolio rebalancing where allocations among asset categories
are important.

Depending on the rebalancing strategy, some existing assets
may be sold and the proceeds reinvested to produce approxi-
mately the asset distribution dictated by the chosen asset strat-
egy. The determination of whether to sell or buy assets in an
asset class is based on a comparison of the market value of as-
sets held in that class prior to rebalancing and the desired market
value of that class. If the amount being held prior to rebalancing
is greater than the desired amount, then some portion of assets
in that class are sold. If the amount being held prior to rebalanc-
ing is less than the desired amount, then additional assets in that
class are purchased.

An example might be as follows:

! Suppose we have $1,000 available for reinvestment.
! We want to invest the $1,000 in 3 asset classes; $500 in Asset
Class 1, $300 in Asset Class 2 and $200 in Asset Class 3.

! Prior to rebalancing, we have $500 in Asset Class 1, $500 in
Asset Class 2 and $0 in Asset Class 3.

The rebalancing algorithm compares the amount held in each
asset class prior to rebalancing to the desired amount and causes
the following asset redistributions to occur:

! Asset Class 1: no change. Held prior to rebalancing equals
desired amount.

! Asset Class 2: Sell $200. New held amount equals $300.
! Asset Class 3: Buy $200. New held amount equals $200.
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The final allocations are subject to modifications attributable
to year-end closing transactions, primarily tax payments and the
payment of investment expenses. The rebalancing can result in
capital gains or losses, which are combined with operating results
to determine the federal income tax liability for the year.

Calculation of Future Asset Market Values

One of the most important aspects of the model’s asset cal-
culations is determining new market values at time T+1 for the
assets held at time T. The new market values must be developed
in concert with the projected interest rate environment. This cal-
culation is essential because, as noted in the previous section,
the model uses market values in the asset rebalancing algorithm
as the basis for determining whether to sell some or all of the
existing assets in any asset group or to buy additional assets for
any asset group.

Different techniques are employed for valuing different cate-
gories of assets.

Calculating the Market Value at Time T+1 of Bonds Owned at
Time T

Traditional bond valuation methods are used to calculate the
market value at time T+1 of bonds owned at time T. As de-
scribed earlier, the model retains information about the pertinent
characteristics of each proxy bond, namely amount and timing
of coupon payments and principal repayment.8 From this infor-

8The future cash flows of bonds held at December 31, 1996 are known because the
bonds themselves are known quantities. We know their coupon rate and timing, their
maturity date, and their par, book, and market values. This is sufficient information to
project future cash flows arising from the December 31, 1996 bond portfolio.
The future cash flows of bonds purchased during 1997–2001 are known because we

know (a) the risk-free interest rate environment at the time the bonds are purchased,
(b) the risk factor that is added to the risk-free interest rate for each bond category, (c)
the time to maturity of the bonds that are purchased, and (d) the total dollar amount
of new investments in each bond category. With this information, we can calculate an
appropriate coupon rate for each dollar of investment in each bond category. We make a
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mation, the future cash flows from each bond category can be
developed. This future cash flow stream, in conjunction with the
model-generated interest rate environment at time T+1, is suffi-
cient information to allow the creation of a market value for the
bond category at time T+1. It should be noted that this proce-
dure does not contemplate the calculation of option-dependent
market values, which are influenced not only by the interest rate
at time T+1, but the likelihood of exercising the bond option(s)
at time T+2, T+3, etc.

Calculating Future Market Values for Equities

Future market values for equities are derived by projecting
values for calendar year equity rates of return, and multiplying
the market value of equities at time T by the projected rate of re-
turn during the T+1 calendar period. For example, let us assume
the XYZ company has a stock portfolio with a market value of
$1,000,000 at time T. By some manner, we project this portfolio
will generate a fifteen percent return during the upcoming calen-
dar year. The model will calculate the market value of the stock
portfolio at time T+1 to be $1,150,000.

The more interesting aspect of this calculation is the way in
which the portfolio’s rate of return is developed. In some eco-
nomic scenario generators, this process is embedded within the
generator itself, so that the projected economic scenario “auto-
matically” contains projected equity index returns that are cor-
related with interest and inflation rates. In our experience, the
mathematics underlying this type of equity projection method-
ology tends to be proprietary to the entities that have developed
the economic models.

In the absence of such an economic scenario generator, a few
alternatives exist for projecting future equity returns. One is to
base the rate of return on equities on a normally distributed ran-

simplifying assumption that new bonds are purchased at par, so the new bonds’ market
values at the time of purchase equal their book, par and statement values. We now have
sufficient information to project future cash flows arising from new bond purchases.
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dom variable with a mean market return and standard deviation
based on investor expectations. This alternative uncouples eq-
uity pricing from changes in interest rates and inflation and is
a conventional random walk model. A second alternative is to
postulate a relationship between equity returns and interest and
inflation rates so that future equity returns can be related to fu-
ture projections of interest rates and inflation rates. As noted
earlier, an example of a postulated relationship between interest
rates and equity projections that also attempts to incorporate a
time-dependant element is described in Gary Venter’s paper [9].

Another method of relating equity returns to the projected
interest rate environment is through the use of the Capital Asset
Pricing Model (CAPM). Recall that the CAPM formula is R =
Rf +¯(Rm$Rf), where
R = the expected return on a given stock,

Rf = the risk-free interest rate, such as the rate on Treasury bills,

Rm = the overall expected market return, and

¯ quantifies the undiversifiable or systematic risk associated
with the stock (or stock portfolio) in question:

(Rm$Rf) can also be thought of as the market risk premium, or
the amount by which the return on stocks is expected to exceed
the risk-free rate.

Under this approach, changes in the risk-free rate of return
lead directly to changes in the projected equity return. The mag-
nitude of the change felt by the company is driven by the volatil-
ity of the company’s stock portfolio (¯) in relation to the move-
ment in the index portfolio, Rm. Unlike the Venter algorithm, no
attempt is being made here to include a time-dependency.

An example of the relative differences in projected returns is
shown in Table 11. The example assumes the risk-free rate of
return at time T is 6% and that the expected return of the stock
market as a whole, Rm, is 15%.
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TABLE 11

PROJECTED EQUITY RETURN

Risk Free Rates

Betas 6% 8% 4%

1.00 15.00% 15.00% 15.00%
1.50 19.50% 18.50% 20.50%
0.50 10.50% 11.50% 9.50%

When ¯ = 1, the projected equity return is identical to the pro-
jected return that would be achieved by basing the rate of return
on a normally distributed random variable with a mean market
return and standard deviation based on investor expectations.

It is worth noting that when using the CAPM equation, and
assuming a value greater than zero for ¯, an inverse relationship
is developed between changes in interest rates and equity re-
turns. Other authors have postulated the appropriateness of such
a relationship.9

Revaluing All Other Assets

As was noted earlier, the model makes no special provisions
for any other invested asset group other than bonds and stocks.
Short-term investments owned at time T are assumed to mature
before time T+1, and as such are valued as cash at time T+1.
The market value of real estate at time T+1 is changed only if it
is specified that capital improvements were made to the property
during the T+1st time period. For all other invested assets, it is
up to the model user to specify when and how the market value
of each asset class will change from time T to time T+1.

Amortization of Bond Original Issue Discount

Because new bond purchases are made at par, it is assumed
that only the starting bond portfolio can have a difference be-

9See Becker [1], Feldblum [3], or Hodes et al. [5].
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tween par value and amortized cost. The reader might recall that
the starting bond portfolio is summarized into a set of proxy
bonds, one for each maturity grouping. The difference between
par value and amortized cost is calculated separately for each
proxy bond. This difference is assumed to be “original issue
discount,” deriving from bond purchases at either a premium
or a discount. The original issue discount is amortized over the
proxy bond’s remaining time to maturity.

7. TAX ALGORITHMS

Some financial models, rather than addressing the complex-
ities of tax algorithms, will stop short of developing after-tax
financial statements. We believe this presents a misleading view
of the world. Consequently, we believe it is an important and
worthwhile endeavor to have a model include tax calculations
that are in keeping with the financial statements being devel-
oped. If the model develops only statutory financial statements,
then it is sufficient that the model address only current federal
income tax considerations. If the model develops GAAP finan-
cial statements as well as statutory ones, the model should also
address deferred federal income tax considerations.

Current Income Taxes

Current income taxes are calculated in accordance with in-
surance company tax procedures [7, Chapter 13]. Current taxes
are calculated by adjusting current year statutory net income as
follows:

1. Increase or (decrease) current year net income by 20%
of the change in the unearned premium reserve.

2. Increase or (decrease) current year net income by the dif-
ference in the amount of tax discount in held reserves.10

10The model is seeded with historical tax discount factors, either industry, company-
specific or a combination of the two, depending upon what tax discount factor elections
were made in 1987 and 1992. Projected future discount rates are developed using either
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3. Decrease current year net income by 85% of the amount
of tax-exempt investment income earned during the year.

4. Reduce current year net income by 59.5% of the amount
of dividends received from common and preferred stock
(the dividends received deduction is 70%, but 15% of
the deduction must be added back into net income for
tax purposes).

5. Apply a 35% tax rate to the resulting taxable net income
amount.

Alternative minimum taxes also are calculated for the current
year by increasing taxable net income by 75% of the amount of
tax-exempt investment income and dividends received deduction
excluded from regular taxable net income and multiplying the
resulting alternative minimum taxable net income by the 20%
AMT tax rate.

These calculations develop the preliminary current year tax
position. If a projection year develops an operating loss, that
loss is compared against the three prior calendar years to see if
it can be used to offset prior years’ operating gains. If not, it is
retained for possible use as an operating loss carryforward, to be
applied against operating gains in a later projection year.

Deferred Income Taxes for GAAP Accounting

The major components of the deferred income tax calcula-
tion are the tax discount in held loss reserves, deferred taxes
on deferred acquisition expenses, and deferred taxes on unreal-
ized gains or losses on equities and bonds available for sale or
trade. The GAAP income statement includes the calendar year
change in the portion of the deferred tax asset arising from the
tax discount in held loss reserves, the deferred taxes on deferred

pre-seeded industry payout patterns or company-specific payout patterns derived from
the line of business underwriting structure and a rolling sixty-month average interest rate
that is linked to the model’s projected risk-free interest rate projections.
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acquisition expenses, and the deferred tax asset or liability arising
from unrealized capital gains or losses on that portion of the bond
portfolio available for trade.

8. THE FINAL STEP: FINANCIAL STATEMENT PRESENTATION

It is our belief that a model must begin by quantifying cash
flows—if cash flows cannot be projected in a reasonably ac-
curate manner, it does not matter how accurately the accounting
accruals are developed. In keeping with this belief, we have tried
to present mechanics that allow a model to establish with some
amount of realism the details of insurance company asset and
liability cash flows. It now remains to build up the balance sheet
and income statement structure around the cash flows. We pro-
ceed by creating a series of general-ledger type accrual account-
ing entries that extend the underlying cash-basis modeling. We
populate these accounting entries by relating them to elements of
the insurance company operations that have already been mod-
eled by the underwriting or asset valuation components. Some
examples of the types of ratios and the underwriting or asset
valuation components to which they might reasonably be related
are as follows:

Item Relationship to:

Agents’ balances in course of collection Written premium, possibly by line of
business

Reinsurance recoverable on paid loss Calendar year paid loss
Interest income due and accrued* Interest income earned during the year
Expenses due and unpaid Calendar year expenses incurred
Taxes due (federal or state) Ratio to calendar year taxes incurred
Provision for reinsurance (Schedule F
penalty)-unpaid loss and LAE portion

Year-ending ceded reinsurance balances
due or net loss reserves

Provision for reinsurance (Schedule F
penalty)-paid loss and LAE portion

Calendar year paid loss

*Depending on the level of detail and sophistication with which assets are modeled, this accrual item
may be calculated as part of the asset valuation process. However, if assets are analyzed at even
a moderate level of aggregation, this accrual item will need to be estimated instead of calculated
directly.
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After establishing the asset and liability accrual accounts, we
begin the process of creating a full-fledged income statement and
cash flow statement. Each of these must contain formulas that
respond correctly to changes in the asset and liability accrual
values. Much of the information needed to perform this task is
described in various chapters of the Property-Casualty Insurance
Accounting textbook [7]. This is not a step in the model devel-
opment process to be taken lightly or to be treated superficially.
Ultimately, a financial model’s results will be shared with many
non-actuaries. For them, the test of whether or not the model is
(a) believable and (b) worthy of relying on for decision-making
will rest in the model’s ability to communicate valuable infor-
mation through the medium of standardized financial statements.
A model with sound underlying fundamentals can be undone by
such seemingly trivial issues as balance sheets and income state-
ments with minor discrepancies in surplus reconciliation amounts
or an incorrect treatment of accounting entries. Accounting rigor
also provides model developers with a way of verifying and vali-
dating the correctness of the underlying logic so that model users
can be comfortable that the model has sound fundamentals.

For those readers already engaged in model development, we
hope that this paper provides some ideas on alternative ways
of addressing specific modeling issues. For those readers not
yet engaged in the model development process, we hope that
this paper provides some useful concepts to keep in mind when
thinking about the ways in which a financial model might be
structured for different organizations. Just as catastrophe models
have come to be viewed as a necessity for companies writing
property insurance, we believe that DFA-type models will soon
be viewed as a necessary tool for examining the overall strategic
direction of insurance enterprises. As computer capabilities ex-
pand the toolkit available to the actuarial profession, it becomes
reasonable to contemplate and actually develop ever more so-
phisticated and realistic models that will be useful in guiding
insurance company decisions.
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CREDIBILITY WITH SHIFTING RISK PARAMETERS,
RISK HETEROGENEITY, AND PARAMETER

UNCERTAINTY

HOWARD C. MAHLER

Abstract

This paper explores the important effects on credibil-
ity of three phenomena: shifting risk parameters, risk
heterogeneity, and parameter uncertainty. When any of
these phenomena are significant, the Bühlmann credibil-
ity formula no longer applies.
Covariance structures corresponding to these phe-

nomena both separately and in combination are shown.
Linear equations for the corresponding credibilities are
derived.
Possible applications to classification ratemaking,

overall rate indication calculation, and experience rat-
ing are illustrated in detail. The procedure for estimating
the parameters of the covariance structure is discussed
for each situation. Illustrative credibilities are then cal-
culated for each situation.
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1. INTRODUCTION

In Mahler [1] Markov chains were used to model shifting risk
parameters. This model was applied to calculate credibilities in
four situations. This paper will expand on that work in a number
of important areas.
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The phenomena of parameter uncertainty and risk hetero-
geneity will be incorporated. The behavior of credibility as the
size of risk changes will be explored. Possible implications for
ratemaking, classification pricing, and experience rating will be
discussed.

The three phenomena examined in this paper can be defined
as follows:

Shifting Risk Parameters: The parameters defining the risk pro-
cess for an individual insured are not constant over time. There
are (a series of perhaps small) permanent changes to the indi-
vidual insured’s risk process as one looks over several years.

Risk Heterogeneity: An insured is a sum of subunits, and not
all of the subunits have the same risk process.

Parameter Uncertainty: There are random fluctuations from
year to year in the risk processes of insureds. Parameter un-
certainty involves fluctuations that affect most or all insureds
somewhat similarly, regardless of size.

Each phenomena can be understood and distinguished in the
context of the dice examples to be presented.1 Insurance exam-
ples of each phenomena include:

Shifting Risk Parameters: An automobile insured’s risk parame-
ters might shift if a major new road were opened in his locality
or if he changed the location to which he commutes to work.
Similarly, the automobile experience of a town relative to the
rest of the state could shift as that town becomes more densely
populated.

Risk Heterogeneity: A workers compensation insured may own
several factories that have somewhat different risk character-
istics.

1See Table 3 for a summary of the dice examples.
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Parameter Uncertainty: Automobile insureds’ risk processes
might vary depending on the severity of the winter weather
in each year.

The so-called Bühlmann credibility formula is:

Z = E=(E+K), (1.1)

where E is a measure of size of risk and K is the Bühlmann
credibility parameter.

As will be shown, these three phenomena have different ef-
fects on the covariance structure between years of data and the
resulting credibilities. In the presence of any or all of these three
phenomena, the credibility formula in Equation 1.1 does not
hold.

Section 2 reviews the results of Mahler [1] relating to shifting
risk parameters over time. Section 3 extends the simple dice ex-
ample from Mahler [1] in order to incorporate parameter uncer-
tainty. Then parameter uncertainty and shifting risk parameters
are combined in one model. Section 4 extends the dice example
to include risk heterogeneity. Then the model is expanded to in-
clude both risk heterogeneity and parameter uncertainty or risk
heterogeneity and shifting risk parameters.

In Section 5 the model is expanded to include all three phe-
nomena. The general form of the covariances is given. Section 6
illustrates the calculations of credibilities for various situations.
The credibilities for very small risks are discussed. The effect of
varying volumes of data by year is discussed. Finally, the case
in which no weight is given to the grand mean is discussed.

Section 7 shows how the techniques developed in the prior
sections might be applied to the calculation of classification rate
relativities. Section 8 extends the results in Section 7 to the use
of data from outside the state. Section 9 shows how these tech-
niques might be applied to the calculation of an overall rate indi-
cation. Section 10 shows how these techniques might be applied
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to experience rating. Section 11 covers miscellaneous subjects.
Section 12 contains conclusions and a summary.

In order to calculate credibilities there are three steps nec-
essary. First, we must specify the covariance structure between
years of data. This structure will vary depending on the phenom-
ena that are important as well as the particular situation.2 The
different covariance structures are listed in Table 1. The general
form of the covariance structure is given by Equations 5.10 and
5.11. Second, we must estimate and/or select the parameters ap-
pearing in the covariance structure. Finally, we must solve the
appropriate set of linear equations for the credibilities. Table 2
lists the different sets of linear equations for the credibilities.

1.1. Bühlmann Credibility3

The Bühlmann credibility formula, Equation 1.1, is the least
squares credibility corresponding to the following covariance
structure between years of data:

Cov[Xi,Xj] = ¿
2 + (´2=E)±ij , (1.2)

where ´2 is the Expected Value of the Process Variance (for a
risk of size 1),

¿2 is the Variance of the Hypothetical Means,

±ij =

!
0 i != j
1 i= j,

and E is some measure of size of risk. If the Bühlmann credibility
parameter is defined as K = ´2=¿2, then Equation 1.2 can be
rewritten as:

Cov[Xi,Xj] = ¿
2"1+ (K=E)±ij#: (1.3)

2For example, are we dealing with a single split experience rating plan?
3Bühlmann credibility is discussed, for example, in Mayerson [2], Hewitt [3], Hewitt [4],
Philbrick [5], Herzog [6], Venter [7], Klugman, Panjer and Willmot [8], and Mahler [9].
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TABLE 2

LINEAR EQUATIONS TO SOLVE FOR CREDIBILITIES

Situation

Y years of data Xi being used to
predict Year Y+¢. Weight to the
overall mean.

Y"
i=1

Cov[Xi,Xk]Zi =Cov[Xk ,XY+¢],

k = 1,2, : : :Y (2.4)

Y years of data Xi being used to
predict Year Y+¢. No weight to the
overall mean.

Y"
i=1

Cov[Xi,Xk]Zi =Cov[Xk ,XY+¢]+¸=2,

k = 1,2, : : :Y
Y"
i=1

Zi = 1 (6.7)

Y years of classification data, both
from within and outside the state,
being used to predict classification
relativities for Year Y+¢. No weight
to the overall mean. Sij = covariances
within the state. Tij = covariances
outside the state. Uij = covariances
between state and outside the state.

"
j

ZjSij +
"
j

WjUij =
¸

2
+ Si,Y+¢,

i = 1,2, : : :Y"
i

ZiUij +
"
i

WiTij =
¸

2
+UY+¢,j ,

j = 1,2, : : :Y"
i

Zi+
"
j

Wj = 1 (8.1)

Y years of experience rating data,
primary and excess, being used to
predict Year Y+¢. Sij = covariances
of primary losses. Tij = covariances
of excess losses. Uij = covariances
between primary and excess losses.

Y"
i=1

(ZPiSik +ZXiUki) = Sk,Y+¢+Uk,Y+¢,

k = 1,2, : : :Y (10.12)
Y"
i=1

(ZPiUik +ZXiTki) =UY+¢,k +Tk,Y+¢,

k = 1,2, : : :Y (10.13)

In those situations where size of risk is not important, Equa-
tion 1.3 could be rewritten by setting E = 1:

Cov[Xi,Xj] = ¿
2"1+K ±ij#: (1.4)

For Y years of data each of size E, the covariance structure
given by Equation 1.3 corresponds to a Bühlmann/least squares
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credibility assigned to these Y years of data of:4

Z =
EY

EY+K
: (1.5)

As displayed in Table 1, in the presence of any or all of the
three phenomena discussed above, the simple covariance struc-
ture of Equation 1.3 and the simple credibility formula of Equa-
tion 1.5 no longer apply.

2. SHIFTING RISK PARAMETERS

The parameters defining the risk process for an individual in-
sured are not constant over time. For example, for automobile
insurance the expected claims frequency of an insured compared
to the average changes over time. Mahler [1] presents a Markov
chain model of shifting risk parameters which quantifies the ef-
fects of shifts over time in the risk process of an insured via the
covariances between years of data.

2.1. Covariances, Shifting Risk Parameters

For this Markov chain model, in most cases the covariances
can be approximated by:5

Cov[Xi,Xj] = ¿
2¸$i%j$+ ±ij´

2, (2.1)

where

±ij =

!
0 i != j
1 i= j,

´2 is the Expected Value of the Process Variance,

¿2 is the Variance of the Hypothetical Means,

4See Section 3.1 for an example of the calculation of Bühlmann credibility. The
Bühlmann credibility is calculated as Cov[Xi,Xj]=Cov[Xi,Xj ]. This is the ratio of the
variance of the hypothetical means to the expected value of the process variance (each
for Y years of data each of size E).
5This is Equation 7.1 in Mahler [1].
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and ¸ is the dominant eigenvalue (other than unity) of the trans-
pose of the transition matrix of the Markov chain.

X has different meanings depending on the application. Xi
could be the claim frequency for an insured in year i, the loss
ratio for a state in year i, the relativity for a class in year i, the
die roll in trial i, etc.

From Equation 2.1,

Var[X] = Cov[X,X] = ¿2 + ´2, and

Total Variance = VHM+EPV,

the usual relationship that the total variance can be split into the
Variance of the Hypothetical Means and the Expected Value of
the Process Variance.

As the separation between years of data increases, the (ex-
pected) covariance and correlation between years declines.

For example, if ¿2 = VHM= 1,000, ´2 = EPV= 5,000, and
¸= :9, then the variance-covariance matrix given by Equation
2.1 for four consecutive years of data would be:

6,000 900 810 729
900 6,000 900 810
810 900 6,000 900
729 810 900 6,000

This contrasts with the situation in the absence of shifting
risk parameters; if ¸= 1, then the variance-covariance matrix has
entries of 6,000 along the diagonal and 1,000 off the diagonal.
With no shifting risk parameters, Equation 2.1 reduces to the
usual Bühlmann covariance structure Cov[Xi,Xj] = ¿

2 + ±ij´
2.

2.2. Rate of Shifting Risk Parameters

It is not vital to understand the precise derivation of ¸; rather
it is important to understand that ¸ quantifies the rate at which
the parameters shift. The smaller ¸ is, the faster the parameters
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shift. The closer ¸ is to unity, the slower the parameters shift. In
the limit for ¸= 1, there is no shifting of parameters.

The “half-life” is a useful way to quantify the rate of shifting
parameters. The half-life is defined as the length of time nec-
essary for the correlations between years to have declined by a
factor of one-half:

¸half-life = :5,

half-life =
ln :5
ln¸

=
%:693
ln¸

:
(2.2)

The longer the half-life, the slower the rate of shifting parameters
over time.

2.3. Correlations Between Years of Data, Shifting Risk
Parameters

If the Markov chain model holds, the correlations between
different years of data should decline approximately exponen-
tially. For i != j, Equation 2.1 gives Cov[Xi,Xj] = ¿2¸$i%j$.
Thus, as the distance between years grows, the expected co-

variance between the data from those years declines. Another
feature of the Markov chain model is that even though the risk
parameters of individuals vary over time, the overall portfolio
of insureds looks (relatively) stable from year to year. Specifi-
cally, Equation 2.1 gives the same variance for each year of data,
Var[Xi] = Var[Xj] = ¿

2 + ´2.

Therefore, the correlations between different years of data are:

Corr[Xi,Xj] =

#
¿2

¿2 + ´2

$
¸$i%j$, and

(2.3)

lnCorr[Xi,Xj] = ln

#
¿2

¿2 + ´2

$
+ $i% j$ ln¸, i != j:
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Therefore, if the Markov chain model holds, the log-correla-
tions for years separated by a given amount should decline ap-
proximately linearly. The slope of this line is (approximately)
ln¸. The intercept is approximately

ln

#
¿2

¿2 + ´2

$
:

Note that ¿2=(¿2 + ´2) = VHM/Total Variance = credibility in the
absence of shifting risk parameters.

Thus given a data set, we can determine whether this (sim-
ple) Markov chain model might be appropriate. We determine
whether the log-correlations as a function of the separation be-
tween years (not including zero separation) can be approximated
by a straight line.6 Then we can estimate the parameter ¸ and
the ratio ¿2=(¿2 + ´2) from the slope and intercept of the fitted
straight line.

2.4. Credibilities, Shifting Risk Parameters

These estimates can be used in turn to estimate credibilities.
If we have data Xi from years 1,2, : : :Y and are estimating year
Y+¢, then the least squares credibilities Zi to be assigned to in-
dividual years of data are found by solving the Y linear equations
in Y unknowns:7

Y"
i=1

Cov[Xi,Xk]Zi =Cov[Xk,XY+¢], k = 1,2, : : :Y:

(2.4)

3. PARAMETER UNCERTAINTY

Parameter uncertainty and its effect on credibilities is dis-
cussed in Meyers [10], Mahler [11] and Mahler [12]. Random

6In many cases there is a large amount of random fluctuation so even if the expected
log-correlations are precisely along a straight line, the log-correlations estimated from
the data will vary widely around a straight line. See Figure 10 in Mahler [1].
7See Equations 2.8 in Mahler [1].



CREDIBILITY WITH SHIFTING RISK PARAMETERS 465

fluctuations occur from year to year in the risk processes of
insureds. Parameter uncertainty involves fluctuations that affect
most or all insureds somewhat similarly, regardless of size.

While the distinction between parameter uncertainty and shift-
ing risk parameters is not always clear-cut, parameter uncer-
tainty tends to involve fluctuations not related to the insured
while shifting risk parameters tend to involve (a series of per-
haps small) permanent changes to the individual insured’s risk
process. For example, shifting risk parameters would occur if a
workers compensation insured implemented a new safety pro-
gram.

An example of parameter uncertainty occurs in workers com-
pensation insurance, where the level of losses is affected by eco-
nomic events that affect even very large employers. This creates
a potential random fluctuation in the loss potential above and
beyond what we normally think of as the process variance. The
important feature is that while the large size of an employer re-
duces the impact of the random fluctuations inherent in observed
accidents per year, it either does not reduce or only partially re-
duces the impact of (seemingly) random changes in the overall
economy.

There is a kernel of uncertainty in the frequency of work-
ers compensation claims that will not be reduced by observing
more workers during a single year. In these circumstances, the
credibilities as a function of the size of risk E will not be of the
Bühlmann form E=(E+K).

The covariance structure in the presence of parameter uncer-
tainty is somewhat more complicated, as shown in Equations 3.4
and 3.5. When both parameter uncertainty and shifting risk pa-
rameters are present, the covariance structure, as shown in Equa-
tions 3.19 and 3.20, contains a combination of the features of
each phenomenon separately. These covariance structures will
be developed in the context of the simple dice example from
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TABLE 3

VARIOUS DICE EXAMPLES

Shifting Different
Risk Risk Parameter Colors of

Parameters Heterogeneity Uncertainty Section(s) People Dice

No No No 3.1 Joe No
No No Yes 3.2, 3.4 Joe, Mary No
Yes No No 3.5 Joe, Beth No
Yes No Yes 3.6 Joe, Mary,

Beth
No

No Yes No 4.1 Joe Yes
No Yes Yes 4.4 Joe, Mary Yes
Yes Yes No 4.9 Joe, Rose,

Gwen
Yes

Yes Yes Yes 5.1 Joe, Mary,
Rose, Gwen

Yes

Joe initially selects either N identical dice in the cases without different colors of dice, or N identical
red dice and N possibly different green dice.
Mary flips a coin prior to each trial (year).
Beth, prior to each trial, may alter all the dice from one type to another. (For example, 6-sided dice
could be switched to 4-sided dice.)
Rose, prior to each trial, may alter the type of all the red dice.
Gwen, prior to each trial, may alter the type of one or more of the green dice; Gwen acts independently
on each green die.

Mahler [1]. Table 3 summarizes the various examples that will
be presented.

Section 3.1 will present this simple dice example. Section
3.2 will expand on the dice example in order to incorporate pa-
rameter uncertainty. Section 3.3 will discuss how this example
relates to parameter uncertainty in general. Section 3.4 will ex-
pand the example to observing several years of data. Section 3.5
will introduce shifting risk parameters into the example, in the
absence of parameter uncertainty. Section 3.6 extends the ex-
ample to include both parameter uncertainty and shifting risk
parameters. Section 3.7 compares the credibilities correspond-
ing to the various covariance structures discussed. Many readers
may find it helpful to go directly to this graphical comparison of
results.
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3.1. Simple Dice Example, No Shifting Risk Parameters, No
Parameter Uncertainty

Assume Joe selects N dice of the same type and rolls them.
Assume Joe selected either four-sided,8 six-sided9 or eight-sided
dice10 with a priori probabilities of 25%, 50%, and 25%, respec-
tively. Joe tells you how many dice he rolled and the resulting
sum, but you do not know which type of dice Joe selected. Joe
will roll the same dice again.

The process variances for 4, 6, and 8-sided dice are respec-
tively 1.25, 2.92, and 5.25. Therefore, the expected value of the
process variance (for one die) is (25%)(1:25)+ (50%)(2:92)+
(25%)(5:25) = 3:08. The means for 4, 6, and 8-sided dice are re-
spectively 2.5, 3.5, and 4.5. Therefore, the a priori overall mean
is (25%)(2:5)+ (50%)(3:5)+ (25%)(4:5) = 3:5. The variance of
the hypothetical means is .500.

In this case, the Bühlmann credibility for estimating the sum
of the next roll of the dice can be written as:

Z =
N

N +K
(3.1)

where

K =
Expected Value of the Process Variance (for N = 1)
Variance of the Hypothetical Means (for N = 1)

=
´2

¿2
=
3:08
:5

= 6:16:

The credibility Z is to be applied to the data (the sum of Joe’s
dice), while the complement of credibility 1%Z is to be applied
to the a priori grand mean of 3.5.

8With numbers 1, 2, 3, and 4 on the faces.
9With numbers 1 through 6 on the faces.
10With numbers 1 through 8 on the faces.
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3.2. Parameter Uncertainty, Dice Example

Assume that in a modification of the previous example, Mary
flips a single coin11 and adds the result to each of Joe’s N die
rolls.12 Each head adds 1

2 to the result of a die, while each tail
subtracts 12 from the result of a die. You are again told the result
of the combination of Joe’s and Mary’s actions but see neither
the coin nor the dice.

While the addition of a coin flip does not change any of the
means, the overall risk process has changed. The amount of cred-
ibility we would assign to a single observation has also changed.
As will be shown, there is a fundamental change in the behavior
of the credibility as a function of N, the number of dice per roll.

The expected value of the process variance is the sum of the
expected value of the process variances from Joe’s and Mary’s
actions, since these processes are independent. The expected
value of the process variance of Mary’s actions is :25N2 since
we multiply the result of a single coin flip by N and since
Var[NX] =N2Var[X]. Thus, since the EPV for Joe’s action is
3:08N, the overall expected value of the process variance is
3:08N + :25N2.

The hypothetical means have not been changed by the intro-
duction of the coin flips. Therefore, the variance of the hypo-
thetical means remains :5N2.

This covariance structure can be written as:

Cov[Xi,Xj] = :5N
2 + (3:08N + :25N2)±ij : (3.2)

Equation 3.2 can be rewritten for more general situations than
this specific dice example. It will be useful to substitute E, rep-
resenting some measure of size of risk such as expected losses,
for N, the number of dice that Joe rolls in this specific example.

11For simplicity, we assume the coins are fair, with equal probability of heads or tails.
12Equivalently, one could add N times the result of the single coin flip to the sum of the
die rolls.
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If ´2 = expected value of the process variance = 3:08, u2 =
variance due to parameter uncertainty = 0:25, ¿2 = variance of
the hypothetical means = 0:5, and E is a measure of size of risk,
then Equation 3.2 can be rewritten as

Cov[Xi,Xj] = ¿
2E2 + (´2E+u2E2)±ij : (3.3)

Suppose that, instead of the sum of the dice, one were es-
timating the average per die rolled, in a manner analogous to
claim frequency, claim severity or pure premium. Then, since
the quantity of interest is divided by E, all the variances and
covariances in Equation 3.3 are divided by E2:

Cov[Xi,Xj] = ¿
2 + (´2=E+ u2)±ij : (3.4)

Letting J = u2=¿2 and K = ´2=¿2, Equation 3.4 can be rewrit-
ten as:

Cov[Xi,Xj] = ¿
2"1+ ((K=E)+ J)±ij#: (3.5)

Equations 3.4 and 3.5 are the covariances in the presence of
parameter uncertainty. A new parameter J has been introduced
in addition to Bühlmann’s K.

The credibility is the variance of the hypothetical means for
N dice divided by the sum of the variance of the hypothetical
means for N dice and the expected value of the process variance
for N dice:

Z =
:5N2

3:08N + :25N2 + :5N2
=

N

1:5N +6:16
: (3.6)

With J = u2=¿2 = :25=:5= :5 and K = ´2=¿2 =3:08=:5=6:16,
this is of the form:13

Z =
N

(1+ J)N +K
, J > 0 and K > 0: (3.7)

The form of the credibility as a function of size is funda-
mentally different. As N&', Z& 1=(1+ J)< 1. Therefore, no

13The notation in Meyers [10], Mahler [11] and Mahler [12] has been changed so that
J there is called 1+J here. As will be seen, this cosmetic difference makes it easier to
write the formulas involving more than one year of data.
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matter how many dice Joe rolls, the credibility assigned to the
observation stays less than 1=(1+ J) or 1=1:5 = 67% in this case.
The fact that Joe is rolling more and more dice cannot eliminate
the noise added by Mary’s single coin flip, which is added to
each and every die, and thus cannot increase the credibility be-
yond 67%.14

This is an example of the phenomenon of parameter uncer-
tainty. We can think of this risk process as Joe selects (at random)
which type of dice to roll and then Mary’s coin flip alters the
parameters of the risk process. If for example, Joe selects 6-sided
dice, then prior to Mary’s coin flip we are uncertain whether this
time the expected value of Joe’s roll is 3N or 4N. Once Mary
flips her coin, if it is tails, the expected value of Joe’s roll is 3N
(after subtracting :5N) and if it is heads, the expected value of
Joe’s roll is 4N (after adding :5N). The variance of this parameter
uncertainty is :25N2.

The value of J which quantifies the impact of parameter un-
certainty in the credibility formula was:

J = :25=:5 = :5 =
variance due to parameter uncertainty
variance of the hypothetical means

=
u2

¿2
:

(3.8)

The larger the J , the greater the impact of parameter uncertainty.

3.3. Parameter Uncertainty in General15

When parameter uncertainty is important, the within class
variance will have two pieces. The “good” piece increases as
N and is the expected value of the process variance in the ab-
sence of parameter uncertainty. The “bad” piece increases as N2

and is the variance introduced by parameter uncertainty. Unlike

14If instead Mary had flipped N coins, one for each die rolled by Joe, then the credibilities
would not have behaved in this manner. Instead they would have followed the usual
Bühlmann formula, in this case, Z =N=(N +6:66). The Bühlmann credibility parameter
would have been 6:16+ :5 = 6:66.
15See Meyers [10] and Mahler [11].
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the good piece, the bad piece increases as quickly as the variance
between classes, which also increases as N2. Thus taking many
observations (in a single year) will not get rid of the effect of
parameter uncertainty.

This effect is assumed to be due to the different possible states
of the universe. Taking more observations will not get rid of the
variation inherent in the universe.

In the simple example, Mary’s single coin flip represented this
random variation in the universe from year to year. In the case of
workers compensation insurance, changes in the economy affect
the relative costs of claims. These changes can affect firms with
1,000 workers as much as those with 100 workers. Such changes
are therefore expected to affect the risk process in a manner
similar to Mary’s single coin flip (although there is a continuous
spectrum of possible states of the economy).

If parameter uncertainty has an important impact on workers
compensation insurance, one would expect the credibility to be
of the form of Equation 3.7:

E

(1+ J)E+K
, J > 0, K > 0,

where E represents the size of risk. This is one of the refinements
introduced in the NCCI’s Revised Experience Rating Plan.16

3.4. Dice Example, Several Years of Data

The dice example with parameter uncertainty will be extended
to the situation in which more than one year of data is observed.

Assume Joe selects N dice of a given type and rolls them
in each of Y years, while Mary flips a separate coin each year.
Then the expected value of the process variance is Y times what
it was for a single year: 3:08NY+ :25N2Y. The variance of the

16See Gillam [13], and Mahler [12].
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hypothetical means is Y2 times what it was for a single year:
:5N2Y2. Therefore, the credibility is:

Z =
:5N2Y2

:5N2Y2 +3:08NY+ :25N2Y

Z =
NY

NY+ :5N +6:16

Z =
NY

N(Y+ :5)+6:16
:

(3.9)

In general, for size of risk E and number of years Y Equation
3.9 can be written as:

Z =
EY

E(Y+ J)+K
, J > 0, K > 0: (3.10)

The credibility has a different form. In the presence of param-
eter uncertainty, the accumulation of Y separate years does not
enter into the formula in the same way as size of risk E. There is
the “extra” term involving E, where E is multiplied by J , which
is the ratio of the variance due to parameter uncertainty divided
by the variance of the hypothetical mean. For one year of data
Equation 3.10 reduces to Equation 3.7, the previous result for
parameter uncertainty in a single year, which for this example is
Z = E=(1:5E+6:16).

For any fixed number of years, Z has the form E=(Linear
in E), although the values of the coefficients depend on Y. For
fixed size of the insured E, the formula reduces to the usual
Bühlmann formula in terms of Y, the number of years. For fixed
E as Y&', Z& 1. Increasing the number of years of obser-
vations overcomes the impact of parameter uncertainty. We can
in fact average over the different assumed random states of the
universe in each year by averaging over time.

Observing a fleet of 100 cars for 10 years is not the same as
observing a similar fleet of 1,000 cars for a single year. In the
latter case, we cannot average out those aspects peculiar to that
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one individual year. For example, a gasoline shortage due to an
oil embargo or a severe winter might produce unusual results in
an individual year regardless of the size of the fleet.

In summary, in the presence of parameter uncertainty, one
must carefully distinguish between size of risk and number of
years of data.

3.5. Shifting Parameters Over Time, Dice Example

Shifting risk parameters over time were discussed in Section
2. In Mahler [1], shifting risk parameters were introduced into the
simple dice example in Section 3.1 by altering the risk process
as follows:

Joe selects a die and rolls it. Then prior to the next trial, Beth
may at random replace that die with another die. Assume Beth’s
replacement process works such that:

1. A four-sided die will be replaced 20% of the time by a
six-sided die.17

2. A six-sided die will be replaced 10% of the time by a
four-sided die and 15% of the time by an eight-sided die.

3. An eight-sided die will be replaced 30% of the time by
a six-sided die.

Then the process repeats: Joe rolls a die and Beth (possibly)
replaces the die.

Beth’s risk process is just a simple example of a Markov
chain. See Appendix A for a discussion of Markov chains. There
are three “states”: 4-sided die, 6-sided die, and 8-sided die. For
each trial there is a new, possibly different, state. The probability
of being in a state depends only on the state for the previous trial.

17The remaining 80% of the time the die is left alone.
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Beth’s Markov chain is completely described by the “transition
probabilities” between the states.

Generally, the transition probabilities for a Markov chain are
arranged in a matrix P. For Beth’s “risk process,” the matrix of
transition probabilities is:

Four Six Eight

Four .80 .20 0
Six .10 .75 .15
Eight 0 .30 .70

As shown in Mahler [1], in this case, the covariances between
years of data are given by:

Cov[Xi,Xj] = (:468)(:769)
$i%j$+(:032)(:481)$i%j$+ ±ij(3:08):

(3.11)

In general, for years of data Xi and Xj :

Cov[Xi,Xj] =
"
k>1

³k¸
$i%j$
k + ±ij´

2, (3.12)

where ´2 is the Expected Value of the Process Variance, ±ij = 0
for i != j and 1 for i= j, ¸k are the eigenvalues of the transpose
of the transition matrix and the ³k are a function of the transition
matrix P and the means of the states.18 In general,"

k>1

³k = ¿
2 = variance of the hypothetical means:

Equation 3.11 can be approximated by:

Cov[Xi,Xj]( (:5)(:769)$i%j$+ ±ij(3:08): (3.13)

Equation 3.13 can be written in general as:

Cov[Xi,Xj]( ¿2¸$i%j$+ ±ij´2: (3.14)

18See Mahler [1].
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where ¸ is the dominant eigenvalue of the transpose of the transi-
tion matrix (other than unity), ¿2 is the variance of the hypothet-
ical means, and ´2 is the expected value of the process variance.
Taking as before K = ´2=¿2, Equation 3.14 could be rewritten
as:

Cov[Xi,Xj] = ¿
2"¸$i%j$+K±ij#: (3.15)

For a size of risk E, Equation 3.15 becomes:

Cov[Xi,Xj] = ¿
2"¸$i%j$+(K=E)±ij#: (3.16)

One could then use Equation 2.4 to solve linear equations for
the credibilities.

In the absence of shifting risk parameters ¸= 1 and Equation
3.16 becomes the usual Bühlmann covariance structure, Equation
1.3:

Cov[Xi,Xj] = ¿
2"1+ (K=E)±ij#:

3.6. Combining Parameter Uncertainty and Shifting Risk
Parameters

Let us now combine the models of parameter uncertainty and
shifting risk parameters. Assume that Joe selects N dice (of the
same kind) and rolls them. Mary then flips a coin and adds the
result (+1=2 if heads and %1=2 if tails) to the result of each
die. The sum is the result of one trial or year. After each trial,
Beth (possibly) changes the type of all N dice, with transition
matrix P.

Beth does not affect the variance of a single year. As discussed
previously in the example involving just Joe and Mary, the total
variance of a year of data for this example is (3:08N + :25N2)+
:5N2 = 3:08N + :75N2.

The covariances between different years are what they were
in the absence of Mary, because Mary’s action in one year is
independent of her action in another year.
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Therefore, the covariances of the years of data are for this
example:19

Cov[Xi,Xj] = "(:468)(:769$i%j$) + (:032)(:481$i%j$)#N2

+ ":25N2 +3:08N#±ij : (3.17)

In general, where E is a measure of the size of the insured:

Cov[Xi,Xj] =

%&'"
k>1

³k¸
$i%j$
k

()*E2 + ±ij"´2E+u2E2#:
(3.18)

where ´2 = Expected Value of the Process Variance and u2 =
variance due to parameter uncertainty. Given Y years of data, we
can solve Y linear equations in Y unknowns, Equations 2.4, for
the credibilities to be assigned to each year of data. Note that
the solution is the same if we divide all of the variances and
covariances by E2:

Cov[Xi,Xj]=E
2 =

"
k>1

³k¸
$i%j$
k

+ ±ij"(Variance Due to Parameter Uncertainty)
+ ((Expected Value of the Process Variance)=E)#:

This isolates the effect of the size of risk E. As will be discussed
subsequently, this is the form that will apply in insurance appli-
cations where one is estimating claim frequency rather than total
number of claims, pure premiums rather than total losses, etc.

As was done previously, the covariances can be approximated
in terms of ¸, the dominant eigenvalue of the transpose of the
transition matrix (other than unity). For claim frequency, pure
premiums, etc., the covariances in the presence of parameter un-

19Note that for i= j, Cov[Xi,Xj] = Var[Xi] = (:468+ :032)N
2 + :25N2 +3:08N = 3:08N

+:75N2, as stated above.
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certainty and shifting risk parameters are then approximately

Cov[Xi,Xj]( ¿2¸$i%j$+(´2=E+u2)±ij : (3.19)

Taking as before J = u2=¿2 and K = ´2=¿2, Equation 3.19 can
be rewritten as:

Cov[Xi,Xj] = ¿
2"¸$i%j$+(K=E+ J)±ij#: (3.20)

In the absence of shifting risk parameters over time, ¸= 1
and Equation 3.20 would reduce to Equation 3.5. In the absence
of parameter uncertainty, J = 0 and Equation 3.20 would reduce
to Equation 3.16. In the absence of both phenomena Equation
3.20 would reduce to the usual Bühlmann covariance structure.
These covariance structures are compared in Table 1.

3.7. Graphical Comparison of Results

Assuming the covariances given by Equation 3.20, we can
solve Equation 2.4 for the corresponding credibilities. This has
been done for the dice example, which had parameters J = :5,
K = 6:16, and ¸= :769.

Figure 1 compares the behavior of the credibilities with and
without parameter uncertainty as well as with and without shift-
ing risk parameters over time, for five dice per year.20 In general,
both phenomena reduce the credibility assigned to the data by
introducing additional noise to the results.

In this particular case with five dice, it so happens that each
phenomenon individually results in roughly the same credibility
being assigned to a single year of data.21 Yet we see a radically
different behavior as the number of years increases. With just
parameter uncertainty, in the limit the effect of parameter un-
certainty vanishes; the sum of the credibilities approaches unity.

20In Equation 3.20, E = 5.
21The relative importance of parameter uncertainty increases as the number of dice in-
creases. In this case Z = Y=(Y+ :5+6:16=N) for Y years and N dice with parameter
uncertainty but no shifting risk parameters.
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FIGURE 1

With just shifting risk parameters over time, the sum of the cred-
ibilities approaches a limit strictly less than unity.22

The credibilities in the presence of both phenomena are lower
than those with only one of the phenomena. These credibili-
ties approach an even lower limit as the number of years ap-
proaches infinity than when we had solely shifting risk parame-
ters.23 While similar behavior would be expected in general, the
details will depend on the amount of parameter uncertainty and
the speed at which the parameters shift.

Figure 2 compares for 5 years of data the dependence of the
sum of the credibilities on the number of dice per year with the
presence or absence of the two phenomena. As expected, with
no shifting or parameter uncertainty, we get the usual Bühlmann

22In this example, the sum of the credibilities approaches .528.
23In this case, with both phenomena present, this limit is .480.
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FIGURE 2

credibility, which goes to unity as the number of dice approaches
infinity.24 With parameter uncertainty, the credibilities are some-
what less. Also, as the number of dice approaches infinity, the
credibility approaches a limit less than unity.25

With shifting risk parameters over time, the credibilities are
less than in the absence of shifting risk parameters. As seen in
Figure 2, as the number of dice approaches infinity, the credibil-
ities approach a value less than unity.26 With both phenomena
present, the credibilities are lower.27

24In this case, Z = 5=(5+6:16=N) for the sum of the credibilities for 5 years.
25In this case, Z = 5=(5:5+6:16=N) which approaches 1=1:1 = 90:9% as N approaches
infinity. Using 5 years of data, one cannot get rid of the effects of parameter uncertainty
(although it has less effect than if one relied on fewer than 5 years).
26In this case, the limit is .755.
27As the number of dice N&', the sum of the credibilities in this case approaches the
limit .625.
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4. RISK HETEROGENEITY

The phenomenon of risk heterogeneity and its effect on cred-
ibilities was discussed in Mahler [11] and Mahler [12]. As
stated in Hewitt [14], “For loss ratio distribution purposes—two
$50,000 risks don’t make a $100,000 risk. Nor is a $100,000
risk for one year the same as a $50,000 risk for two years.” Risk
heterogeneity involves an insured which is a sum of individual
subunits, where not all the subunits have the same risk process.

Assume we have a large workers’ compensation insured. It
might consist of several locations or several factories. It is rea-
sonable to assume that the factories making up this insured will
be affected by some of the same efforts of management. There-
fore, if one factory has better than average expected losses for
its mix of classifications, it is likely that another factory that is
part of the same insured will have better than average expected
losses.

Thus, the combined experience of the different factories has
higher credibility for experience rating than the experience of a
single factory. However, since the factories also differ in some
ways, the larger risk is to some extent heterogeneous. The cred-
ibility will not increase as quickly as if the factories were iden-
tical; the credibilities are not of the form: Z = E=(E+K).

In general, subunits are combined into one overall insured.28

If the subunits of the overall insured have the same risk pro-
cess,29 then we have the familiar Bühlmann assumptions as in
the simple dice example. If on the other hand the subunits of the
overall insured are selected at random from the total available
population, then there is no increase in the experience rating

28The term “subunit” is intended to be vague. It is intended to convey the general concept
rather than a particular situation.
29“Risk process” refers to the random process that generates the observed quantity of
interest. So in the dice example, it would be determined by the number of sides of the
dice being rolled. In a Poisson frequency example it would be determined by the average
frequency.
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credibility of the overall risk compared to its subunits. If the
subunits are more similar to each other on average than the total
available population, then there is some increase in the experi-
ence rating credibility as risk size increases, but not as quickly
as in the Bühlmann case where Z = E=(E+K).

As with the prior phenomena, the behavior in the presence
of risk heterogeneity will be demonstrated via the simple dice
example from Mahler [1]; the example in Section 3.1 will be
expanded upon in Section 4.1 in order to incorporate risk het-
erogeneity.

Section 4.2 discusses risk heterogeneity in general. Equation
4.3 is the corresponding covariance structure. Section 4.3 dis-
cusses a refinement to this covariance structure for very small
risks.

In Section 4.4, the phenomena of parameter uncertainty and
risk heterogeneity are combined in the dice example. Equation
4.13 is the corresponding covariance structure for insurance ap-
plications. Section 4.5 gives formulas for credibility in the ab-
sence of shifting risk parameters. Section 4.6 discusses a refine-
ment for very small risks to the covariance structure with risk
heterogeneity and parameter uncertainty. Sections 4.7 and 4.8
illustrate how this refinement might be applied to workers com-
pensation experience rating.

In Section 4.9, the phenomena of risk heterogeneity and shift-
ing risk parameters are combined in the dice example. Equation
4.34 is the corresponding covariance structure for insurance ap-
plications. Section 4.10 discusses the behavior with size of risk
for this covariance structure for risk heterogeneity and shifting
risk parameters.

4.1. Risk Heterogeneity, Dice Example

As before Joe selects dice, either four-sided, six-sided or
eight-sided dice. However, he selects N red dice all of one type
and N green dice of possibly different types. Then Joe rolls the
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dice and tells you the result:

(1%h) (the sum of N red dice)+ (h) (the sum of N green dice),
where h is a known parameter 0) h) 1:

Assume Joe selected the type of red dice as either four-sided, six-
sided, or eight-sided, with a priori probabilities of 25%, 50%, and
25%, respectively. All N of the red dice are of the same type.

Joe independently selected the type of each green die as either
four-sided, six-sided, or eight-sided, with a priori probabilities30

of 25%, 50%, and 25%. The N green dice will usually be a
mixture of the three types.

The important feature that distinguishes this example from
the prior examples is the different manner in which the green
dice are selected compared to the red dice. The N red dice are
identical, while the N green dice are a random mixture.

Thus, the green and red dice contribute differently to the vari-
ance of the hypothetical means. For a single die with means of
2.5, 3.5 or 4.5 selected with probabilities 25%, 50% and 25%,
the variance of the hypothetical means is 0.5. For N identical
dice each hypothetical mean is multiplied by N, so the variance
of the hypothetical means for the sum of the N red dice is :5N2.
For N randomly selected dice the variances add. For the sum of
the N green dice the variance of the hypothetical means is :5N.

Since the green and red dice are chosen independently of each
other, the variance of the hypothetical means for (1%h) (N red
dice)+ h (N green dice) is:

(1%h)2(:5N2)+ h2(:5N) = :5N2(1%h)2 + :5Nh2:
This is the key effect of risk heterogeneity: the variance of

the hypothetical means increases more slowly than the square of
the risk size.

30The a priori probabilities for the green dice and red dice were selected to be equal
solely for simplicity of illustration. This is not an essential feature.
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Therefore, one feature of risk heterogeneity is that there is
less variation between larger risks than between smaller risks.
Specifically, for the dice example, the coefficient of variation31

of the hypothetical means is (
*
:5=3:5)

+
(1%h)2 +h2=N, which

decreases to a positive constant as N increases.

Here, as in Mahler [11] and Mahler [12], the variance of the
hypothetical means increases in a combination of a linear and a
quadratic term. The question of how quickly the variance of the
hypothetical means increases goes back to the origins of work-
ers compensation experience rating.32 While a rate of increase
between linear and quadratic was indicated, the assumption of a
quadratic increase was used for practical reasons. This led to the
now famous formula for credibility, Z = E=(E+K), which was
used for experience rating workers compensation, as discussed
in Whitney [15] and Michelbacher [16].

The expected value of the process variance for a single die is
3.08. For the sum of N green dice or N red dice, the expected
value of the process variance is N(3:08), since the die rolls are in-
dependent. The expected value of the process variance for (1%h)
(N red dice)+h (N green dice) is: (1% h)2N(3:08)+ h2N(3:08).
This model might have some applicability to large commercial

insureds. For example, assume a commercial automobile fleet
involves N drivers. There are many features such as driver se-
lection, driver training, vehicle maintenance, use of vehicle, etc.,
that are likely to cause the N drivers’ risk processes to be more
similar than those of the general population of drivers for sim-
ilarly classified fleets. On the other hand, the N drivers are un-
likely to each have the exact same risk process.

In the dice example, each driver’s result could be taken as
(1%h) (roll of a red die)+ h (roll of a green die). Then the red
31The coefficient of variation is the standard deviation divided by the mean. The overall
mean in the dice example is 3.5.
32Whitney [15, p. 287] states that the variance of the hypothetical means seemed to
increase as P5=4, where P was the loss pure premium.
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die captures that part of the risk process that is similar across
the particular fleet33 while the green die captures those aspects
that mirror the variation across the total classification to which
this fleet belongs. The smaller h, the more similar the drivers’
risk processes across the fleet, and the smaller the impact of risk
heterogeneity.

The credibility is:

Z =VHM/(VHM+EPV)

=
:5N2(1%h)2 + :5Nh2

:5N2(1% h)2 + :5Nh2 +3:08N(1%h)2 + 3:08Nh2

=
N +

,
h

1%h
-2

N +
,

h

1% h
-2
+6:16+6:16

,
h

1%h
-2 : (4.1)

If h= 0, then Z =N=(N +6:16), the familiar Bühlmann result
in the absence of risk heterogeneity, as in Equation 3.1.

If h= 1, then Z = 1=(1+6:16) = 14%, the Bühlmann credi-
bility for a single die. If the subunits are chosen totally at random,
(h= 1), then there is no increase in credibility with size of risk.

Let I = h2=(1% h)2 while K = 6:16, the usual Bühlmann cred-
ibility parameter in this case. Then we can rewrite Equation 4.1
as:

Z =
N + I

N + I+K + IK
: (4.2)

Equation 4.2 is of the same general form as given in Mahler
[11] and Mahler [12].34 The additional parameter I is zero in
the absence of risk heterogeneity. In the presence of risk het-
erogeneity I > 0, and the credibility is of the form: (size+
constant)=(size+different constant).

33While the red dice are identical, the outcomes of the rolls are independent. They rep-
resent the same risk process, not the same outcome of that risk process.
34However, the definition of the parameters is not precisely the same.



CREDIBILITY WITH SHIFTING RISK PARAMETERS 485

While there are some specific assumptions that could be al-
tered,35 this is one reasonable model which captures the key
effect of risk heterogeneity; the Variance of Hypothetical Means
has a piece which increases more slowly than N2 does.

4.2. Risk Heterogeneity in General

The key impact of risk heterogeneity in general is that the
covariance between years of claim counts, losses, etc. increases
more slowly than the square of the size of risk. Put another way,
the covariance between years of claim frequency, pure premi-
ums, etc. decreases with the size of risk. Here, as in Mahler [11]
and Mahler [12], the assumption will be made of a covariance
structure in the presence of risk heterogeneity of:

Cov[Xi,Xj] = r
2"1+ I=E+(K=E)±ij#, I,K + 0: (4.3)

Between different years, Equation 4.3 gives a covariance of
r2"1+ I=E#, which has one term independent of size of risk and
one term that declines as one over the size of risk. If I = 0, there
is no risk heterogeneity, and Equation 4.3 reduces to the usual
Bühlmann covariance structure.

In Equation 4.3, the Variance of the Hypothetical Mean fre-
quencies, pure premiums, etc. is r2"1+ I=E#. Assuming the
mean claim frequency, pure premium, etc. is (largely) indepen-
dent of the risk size E, then the coefficient of variation of the
hypothetical means declines as E increases. As measured by the
coefficient of variation of the hypothetical means, larger insureds
are more similar to each other than smaller insureds are to each
other. Larger insureds are likely to be a sum of somewhat dissim-
ilar subunits; if we added up enough randomly selected subunits,
then we would approach the overall average. Thus with risk het-
erogeneity, in some sense insureds get closer to average as they
get very large.

35For example, h, the parameter that quantifies the heterogeneity, was assumed to not
depend on N.
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For one year of data, substituting the covariance structure
given by Equation 4.3 into Equation 2.4 gives the following
equation for the credibility:36

(1+ I=E+K=E)Z = 1+ I=E:

Thus, the credibility is of the form:

(size+constant)=(size+different constant),

Z =
E+ I

E+ I+K
: (4.4)

With three years of data, all of size E, Equations 2.4 become
the following 3 linear equations in three unknowns:

(1+ I=E+K=E)Z1 + (1+ I=E)Z2 + (1+ I=E)Z3 = 1+ I=E,

(1+ I=E)Z1 + (1+ I=E+K=E)Z2 + (1+ I=E)Z3 = 1+ I=E, and

(1+ I=E)Z1 + (1+ I=E)Z2 + (1+ I=E+K=E)Z3 = 1+ I=E:

This has solution:

Z1 = Z2 = Z3 =
E+ I

3E+3I+K
:

If we let Z be the sum of these three credibilities,

Z = Z1 +Z2 +Z3 =
(E+ I)3

E3+3I+K
:

If instead of 3 years of data we have Y years of data, all
of size E, then the sum of the credibilities obtained by solving
Equations 2.4 is:

Z =
(E+ I)Y

EY+YI+K
: (4.5)

Equation 4.3 for the covariance structure and Equation 4.5
for the credibility have the same general behavior as in the dice

36The factors of r2 on each side of the equation cancel out, and have no effect on the
credibility.
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example with risk heterogeneity, although the parameters are
somewhat different. Equations 4.3 and 4.5 are in the form that
will later be applied to insurance examples. Also, the covariance
structure in Equation 4.3 will form the basis for the covariance
structure when other phenomena besides risk heterogeneity are
present.

4.3. Very Small Risks and Risk Heterogeneity

For the phenomena of risk heterogeneity we will now intro-
duce a refinement for very small sizes of risk. In the dice example
in Section 4.1, risk heterogeneity only applies for risks above a
certain size, those with more than one die.

Similarly, in insurance examples we might expect that the ef-
fects of risk heterogeneity will apply only above a certain size.
For commercial automobile insurance, this might be when there
is more than one vehicle or more than five vehicles. For work-
ers compensation insurance, this minimum size might be more
than one worker, more than a dozen workers, or more than one
location. In general, below a certain size, we might expect that
there are no subunits which are being grouped and, therefore,
no risk heterogeneity. In any case, we will assume there is some
minimum size, , which depends on the particular application,
below which the phenomena of risk heterogeneity does not ap-
ply.

Then for sizes of risk less than , Equation 4.5 will not
give the appropriate credibility. It will give too much credi-
bility to the very smallest risks; as E& 0 in Equation 4.5,
Z& (I=(I+K=Y))> 0.

In practical applications we can apply special caps to the effect
of credibility for small risks.37 In the NCCI Revised Experience
Rating Plan for workers compensation insurance, there are caps

37In general one should cap the effects of credibility. See for example Mahler [17] and
Mahler [18].
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on the maximum debit for small risks.38 In addition, below a
certain size risks are not eligible for experience rating.39

It is worthwhile to explore the expected behavior of the cred-
ibilities for very small risks. For experience rating one may de-
vise a simplified merit rating plan to apply to smaller risks. For
classification rating one must assign the data of every class a
credibility, no matter how small the volume of data.

We will assume a covariance structure and derive a formula
for the credibilities that apply for risks of the smallest sizes.
Equation 4.3 is assumed to be valid for risks of size+ 

Cov[Xi,Xj] = r
2"1+ I=E+(K=E)±ij#, E + : (4.6)

For E = :

Cov[Xi,Xj] = r
2"1+ I=+(K=)±ij#:

We assume that for E < , the term related to risk hetero-
geneity, I=, does not decline as the risk size declines below ,
and thus acts as if the risk was homogeneous.40 In other words:

Cov[Xi,Xj] = r
2"1+ I=+(K=E)±ij#, E ): (4.7)

Thus, for risks of size less than , the Variance of the Hy-
pothetical Means is r2 + r2I=, independent of size. This is the
type of behavior we expect in the absence of risk heterogeneity.41

While the dice example was useful for developing the ideas in

38See Mahler [12]. Recently the maximum debit has been revised. It is now given via
a continuous formula for all sizes: 1+ (:00005)[E+2E=g], where g is NCCI’s state
specific parameter.
39The minimum is based on premiums and varies by state. For example, for Mas-
sachusetts it is currently $5,500 in annual premium.
40The term related to risk homogeneity, r2, is independent of the size of risk, and thus
below  remains the same.
41Although r2 can be thought of as the piece of the VHM which is related to risk
homogeneity, the VHM for small risks is assumed to be r2 + r2I=. If one desired, one
could reparametrize the covariances setting ¿2 = r2 + r2I= and then use ¿2 rather than
r2. However, such a reparametrization would not in and of itself alter the credibilities.
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this paper, it has its limitations. In the dice example N can never
be less than one.

Using the covariance structure given by Equation 4.6, for E +
 the credibilities are given by Equation 4.5

Z =
Y(E+ I)

YE+YI+K
, E +: (4.8)

However, for E ), the covariances are given by Equation
4.7, and the solution to Equations 2.4 is, in the absence of shifting
risk parameters and parameter uncertainty:

Z =
Y(1+ I=)

Y"1+ (I=)#+(K=E)

Z =
YE

YE+K ,
, E )

(4.9)

where K , = K(=I+).
Equation 4.9 is of the same form as the Bühlmann credibil-

ity formula, but with the parameter K adjusted by a factor of =
(I+).

The credibilities given by Equation 4.9 approach zero as the
risk size approaches zero. As expected, for E =, Equations 4.8
and 4.9 give the same credibility:

Z =
Y(+ I)

(Y)+YI+K
=

Y(+ I)
Y(+ I) +K

=
Y

Y+K
,



+ I

-,
1


-

=
Y

Y+K ,=
=

Y

Y+K ,
:

Equations 4.8 and 4.9 together combine the usual Bühlmann
credibility formula for small risks with that applicable in the
presence of risk heterogeneity for large risks.
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4.4. Risk Heterogeneity and Parameter Uncertainty, Dice
Example

The dice models of risk heterogeneity and parameter uncer-
tainty can be easily combined. Joe picks N identical red dice and
N randomly selected green dice as in Section 4.1, and Mary flips
a coin as in Section 3.2. Then the result is:

(1%h)(Sum of N Red Dice)+h(Sum of N Green Dice)

+N(Coin Flip),

where the coin flip is counted as %1
2 if tails and +

1
2 if heads.

Then, per Sections 3.2 and 4.1, the Expected Value of the
Process Variance is the sum of Joe and Mary’s individual process
variances:

(3:08)(1% h)2N +(3:08)h2N + :25N2:
The presence of the coin flips has not altered the hypothetical

means. Therefore, according to Section 4.1, the variance of the
hypothetical means is:

:5N2(1% h)2 + :5Nh2:
The EPV and VHM can be combined into the covariance

structure:

Cov[Xi,Xj] = :5N
2(1%h)2 + :5Nh2

+ "(3:08)(1%h)2N +(3:08)h2N + :25N2#±ij :
(4.10)

The credibility is:

Z =VHM/(VHM+EPV)

=
:5N2(1%h)2 + :5Nh2

:5N2(1% h)2 + :5Nh2 +3:08N(1% h)2 +3:08Nh2 + :25N2

=
N +

,
h

1% h
-2

N +
,

h

1%h
-2
+6:16+6:16

,
h

1%h
-2
+

:5N
(1%h)2

: (4.11)
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As before let I = h2=(1% h)2 while K = 6:16, the usual
Bühlmann credibility parameter. Let J = :5=(1%h)2, which for
h= 0 reduces to the situation in Section 3.2 where J was .5.
Then Equation 4.11 can be rewritten as:

Z =
N + I

N(1+ J)+ I+K + IK
: (4.12)

4.5. Credibilities, No Shifting Risk Parameters

For insurance applications to frequency, pure premiums, etc.,
it will be useful to rewrite the covariance structure in Equation
4.10 with a somewhat different parametrization than in the dice
example. Combining the features of Equations 3.5 and 4.3, the
covariance structure with risk heterogeneity and parameter un-
certainty is:42

Cov[Xi,Xj] = r
2"1+ (I=E)+ ((K=E)+ J)±ij#, I,J ,K + 0:

(4.13)

When one uses Y years of data to predict a future year, Equa-
tions 2.4 become with the covariances from Equation 4.13:

(K=E+ J)Zi+
Y"
j=1

(1+ I=E)Zj = 1+ I=E, i= 1,2, : : : ,Y:

By symmetry the credibilities for the individual years, Zi, are
all equal.

Let Zi = Z=Y, where Z =
.
Zi, the total credibility applied to

the data.43 Then the sum of the credibilities for Y years of data

42Where as before E is the size of risk, I quantifies risk heterogeneity, J quantifies
parameter uncertainty, and K is the Bühlmann credibility parameter. The size of risk
enters as 1=E since we are estimating quantities such as frequency or pure premiums
rather than the sum of die rolls, the total number of claims, the total losses.
43The credibility applied to each year is in this case the total credibility divided by the
number of years.
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each of size E is:

Z =
(E+ I)Y

E(Y+ J)+YI+K
; I,J ,K + 0: (4.14)

For one year of data, Y = 1, Equation 4.14 becomes:44

Z =
E+ I

E(1+ J)+ I+K
: (4.15)

While Equation 4.14 with Y = 1 differs slightly from Equation
4.12, they have the same essential form as a function of size of
risk.

Equation 4.14 is of the same general form as given in Mahler
[11] and Mahler [12].45 In the absence of parameter uncertainty,
J=0 and the credibility is given by Equation 4.5. In the presence
of parameter uncertainty, J > 0. In the absence of risk hetero-
geneity I = 0 and the credibility is given by Equation 3.10. In
the presence of risk heterogeneity, I > 0.

The parameter I largely affects the credibilities for smaller
risks. The parameter J largely affects the credibilities for larger
risks. The maximum credibility as the size of risk approaches
infinity is Y=(Y+ J)< 1. The credibility is of the form: (linear
function of size)/(linear function of size).

Equation 4.14 for the credibility in the presence of risk hetero-
geneity and parameter uncertainty is the form used in the NCCI
Revised Experience Rating Plan for workers compensation. The
primary and excess credibilities depend on a state specific pa-
rameter g as follows:46

Zp = (E
,+700g)=(1:1E,+3270g), and

Zx = (E
,+5,100g)=(1:75E,+208,925g),

(4.16)

44This is the same general form of the credibilities in the presence of risk heterogeneity
and parameter uncertainty, shown in Mahler [12]. This is the same basic form as Equation
4.4 of Mahler [12], with a slightly different treatment of the parameters I and K.
45However, the definition of the parameters is not precisely the same.
46See Mahler [12]. The parameter g is the average cost per case divided by 1,000; g
is rounded to the nearest 0.05. Recently the NCCI has revised the excess parameters
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where E, is the expected losses for the sum of 3 years of data.
E, is the equivalent of 3E = YE in Equation 5.9. Equations
4.16 are the same as Equation 4.14 with Y = 3 and the param-
eters:47

Primary Excess

I 700g=3 1,700g (4.17)
J .3 2.25
K 2,570g 203,825g

Note that as E& 0 in Equation 4.14, Z& YI=(YI+K). Thus
the minimum credibility is 1=(1+ (K=IY)). This is greater than
zero for I > 0. For the NCCI Revised Experience Rating Plan the
minimum primary credibility is 1=(1+ (2,570=700)) = 21:4%.
The minimum excess credibility is 1=(1+ (203,825=5,100)) =
2:4%.

As E&' in Equation 4.14, Z& (YE)=(Y+J)E =Y=(Y+J)
= 1=(1+ J=Y). This is less than 1 for J > 0. For the NCCI
Revised Experience Plan, the maximum primary credibility is
1=(1+ :3=3) = 1=1:1 = 90:9%. The maximum excess credibility
is 1=1:75 = 57:1%.

Without parameter uncertainty, J = 0 and Equation 4.14 be-
comes:

Z =
(E+ I)Y

EY+YI+K
=

E+ I
E+ I+K=Y

: (4.18)

somewhat to take effect during 1998 and later. Jx = 1:125 rather than 2.25. Kx = 150,000g
rather than 203,825g. In addition, only 30% of Medical Only losses will be included in
experience rating.
47This differs from the values shown in Mahler [12] due to the somewhat different treat-
ment of the parameters here. The important point is that the credibilities are of the form
Linear/Linear. The Revised Experience Rating Plan was developed under the direction
of Gary Venter while he was at the National Council on Compensation Insurance. As
described in Gillam [13], this was the form of credibilities that worked well in the tests
performed by the NCCI. Note that while in Section 10 of the current paper explicit
recognition of the impact of the covariance of primary and excess losses is taken, this
was not the case in the derivation of the credibilities in the NCCI Revised Experience
Rating Plan.
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For one year of data (and only risk heterogeneity) Equation
4.18 becomes:

Z =
E+ I

E+ I+K
: (4.19)

Without risk heterogeneity I = 0, and Equation 4.14 becomes:

Z =
YE

E(Y+ J)+K
: (4.20)

For one year of data (and only parameter uncertainty) Equa-
tion 4.19 becomes:

Z =
E

E(1+ J) +K
: (4.21)

4.6. Very Small Risks, Risk Heterogeneity and Parameter
Uncertainty

As in Section 4.3, we will introduce a refinement for very
small sizes of risk. In the dice example, risk heterogeneity applies
only for risks above a certain size, those with more than one die.
Similarly, in insurance examples we might expect that the effects
of risk heterogeneity will apply only above a certain size.

We will assume a covariance structure and derive a formula
for the credibilities that apply for risks of the smallest sizes.
Equation 4.13 is assumed to be valid for risks of size+:
Cov[Xi,Xj] = r

2"1+ (I=E)+ ((K=E)+ J)±ij#, E + :
(4.22)

For E = :

Cov[Xi,Xj] = r
2"1+ (I=)+ ((K=)+ J)±ij#:

We assume that for E < , the term related to risk hetero-
geneity, I=, does not decline as the risk size declines below
, and thus acts as if the risk were homogeneous.48 In other

48The term related to risk homogeneity, r2, is independent of the size of risk, and thus
below  remains the same.
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words:

Cov[Xi,Xj] = r
2"1+ (I=)+ ((K=E)+ J)±ij#, E ) :

(4.23)

Using the covariance structure given by Equation 4.22, for
E + the credibilities are given by Equation 4.14:

Z =
Y(E+ I)

(Y+ J)E+YI+K
, E +: (4.24)

However, for E ), the covariances are given by Equation
4.23, and the solution to Equations 2.4 is, in the absence of
shifting risk parameters:

Z =
Y(1+ (I=))

Y(1+ (I=))+ (K=E)+ J

=
YE((I+)=)

YE((I+)=)+ JE+K

=
YE

(Y+ J ,)E+K ,
, E )  (4.25)

where

J , = J
,



I+

-
and K , = K

,


I+

-
:

Equation 4.25 is of the same form as Equation 4.20, but with
the parameters J and K each adjusted by a factor of =(I+).
This is the Bühlmann credibility formula with an additional pa-
rameter J , to account for parameter uncertainty. For very small
risks, the parameter J , has very little effect; thus Equation 4.25
gives approximately the same result as the usual Bühlmann cred-
ibility formula.

The credibilities given by Equation 4.25 approach zero as the
risk size approaches zero. As expected, for E =, Equations
4.24 and 4.25 give the same credibility:
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Z =
Y(+ I)

(Y+ J)+YI+K
=

Y(+ I)
Y(+ I)+ J+K

=
Y

Y+ J
,



+ I

-
+K

,


+ I

-,
1


-
=

Y

Y+ J ,+K ,=
=

Y

(Y+ J ,)+K ,
:

4.7. Very Small Risks, Workers Compensation Experience Rating

For example, consider the NCCI Revised Experience Rat-
ing Plan with parameters given in Equations 4.17 and Y = 3.
Take solely for illustrative purposes  = $1,000g. If g = 2, cor-
responding to an average claim size of $2,000, then  = $2,000.
This would correspond to $6,000 in expected losses49 over 3
years. Assuming the expected loss rate is about 40% of the man-
ual rate, then $6,000 in expected losses corresponds to about
$15,000 in premium over 3 years.

This would be among the smallest risks eligible for experience
rating. Nevertheless, let us ignore the eligibility criterion, and
compare the primary credibilities given by Equations 4.14 and
4.25 for risks with expected annual losses less than  = 1,000g.
For g = 2, we get parameters in Equation 4.17 of:

Primary Excess

I 466.67 3,400
J 0.3 2.25
K 5,140 407,650

Using Equation 4.14 with Y = 3, we get primary credibilities
of:

Zp =
3E+1,400
3:3E+6,540

:

49At first, second, and third reports as limited for experience rating.
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FIGURE 3

For example, for E = 100g = 200, the primary credibility
would be 2,000=7,200 = 27:8%. In contrast, using Equation
4.25 with Y = 3,  = 2,000, J , = J (=(I+)) = :243, and K , =
K(=(I+)) = 4167:6, we get primary credibilities of:

Zp =
3E

3:243E+4167:6
, E ) 2,000:

For example, for E = 100g = 200, the primary credibility
would be 600=4816:2 = 12:5%.

As shown in Figure 3, the credibilities given by Equation 4.25
decline quickly to zero, while those from Equation 4.14 have a
minimum value of YI=(YI+K) = 1,400=(1,400+5,140) = :214.

For example, for expected annual losses of 100g, the pri-
mary credibilities are 27.8% from Equation 4.14 and 12.5% from
Equation 4.25. For 1,000g the credibilities from the two equa-



498 CREDIBILITY WITH SHIFTING RISK PARAMETERS

tions are equal. Similarly for E = 100g = 200, the excess cred-
ibilities are 2.6% from Equation 4.14 and .4% from Equation
4.25.

For E = 200, weighting together the primary and excess cred-
ibilities, assuming a D-ratio50 of roughly 30%, produces credi-
bilities of 10% from Equation 4.14 and 4% from Equation 4.25.
The contrast is even greater for much smaller risks.

Expected NCCI Alternate
Annual Formulas51 Formula 4.25 with  = 1,000g

Losses Zp Zx Zp Zx
10g 22.1% 2.5% 1.4% 0.04%
100g 27.8% 2.6% 12.5% 0.4%
1,000g 56.6% 3.8% 56.6% 3.8%

The lower credibilities from Equation 4.25 make much more
sense for very small risks. For g = 2, 10g = $20 in expected an-
nual losses.52 The alternative formula corresponding to Equation
4.25 gives a credibility of .4% (assuming a D-ratio of roughly
30%),53 which at least has a possibility of being reasonable. The
NCCI formulas corresponding to Equation 4.14 are not applied
to such small risks, nor could they be. The resulting credibility
of 8.4% (assuming a D-ratio of roughly 30%)54 is way too high.
Thus, the refinement to the covariance structure for very small
risks, as in Equation 4.23, is at least a step in the right direction
towards obtaining reasonable experience rating credibilities for
very small risks.

50The D-ratio is the ratio of primary losses to primary plus excess losses.
51Equation 4.16 with g = 2 and E, equal to three times expected annual losses.
52A single full-time clerical employee might have $20 or more in expected annual losses
for workers compensation. This is very far below the size of risk that is experience rated.
53(1:4%)(30%)+(:04%)(1% 30%) = :448%, where from the table Zp = 1:4% and Zx =
:04%.
54(22:1%)(30%)+(2:5%)(1% 30%) = 8:38%, where from the table Zp = 22:1% and Zx =
2:5%.
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Figure 3 also displays the result of choosing  = 10,000g
rather than  = 1,000g. The credibilities are relatively insensitive
to the choice between these two values of . Either value of 
used with Equation 4.25 allows a smooth transition down to zero
from the NCCI credibilities for very small risks. The transition at
E = between Formulas 4.24 and 4.25 will be smoothest when
the slopes at E =  are similar.

If the credibility Z is given by Formula 4.24, then

dZ

dE
=

Y(K % IJ)
((Y+ J)E+YI+K)2

=
Y(K % IJ)

(YE(1+ I=E)+ JE+K)2
:

If instead the credibility is given by Formula 4.25, then

dZ

dE
=

YK ,

((Y+ J ,)E+K ,)2
=

YK(1+ I=)
(YE(1+ I=)+ JE+K)2

:

At E =, the denominators of the derivatives of the two for-
mulas for Z are equal.

Thus, it follows that at E =, the ratio of the derivative with
respect to E of Z given by Formula 4.25 to the derivative with re-
spect to E of Z given by Formula 4.24 is: (1+ I=)=(1% IJ=K).
The transition will be smoothest when the slopes of the curves
are close, which occurs when this ratio of derivatives is close
to unity.55 In most applications IJ=K will be small, and thus
1=(1% IJ=K) will be close to unity.56 Thus, if  is at least 5I,
the ratio of derivatives at  will be close to unity, producing a
smooth transition between the two credibility formulas.

Figure 3 also displays the result of choosing  = 100g. This
value would not allow a smooth transition between the two cred-
ibility formulas. The credibilities using  = 100g differ signifi-
cantly from those obtained from using  = 1,000g. Which value
of  is most appropriate is an empirical question whose answer

55The ratio is greater than unity since 1+ I= > 1 and 1% IJ=K < 1.
56For the NCCI Revised Experience Rating Plan, IJ=K is .027 for primary losses and
.019 for excess losses.
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depends on obtaining as much information as possible about the
covariance structure in the particular situation.

4.8. W and B Values, Workers Compensation Experience Rating

In workers compensation experience rating it is common to
display tables of W (weighting) and B (ballast) values rather
than primary and excess credibilities.57 The primary and excess
credibilities are then given in terms of W,B and expected losses
as:58

Zp =Expected Losses/(Expected Losses+B), and

Zx =WZp:

Thus, B acts like a Bühlmann credibility parameter, except
that B varies by size of risk. W quantifies for a given size of
risk how much smaller the excess credibility is than the primary
credibility. For three years of data, each with expected annual
losses of E, Zp = 3E=(3E+B).

We can calculate the ballast value B that corresponds to the
primary credibilities calculated in the prior section. Prior to the
imposition of a minimum value, B = 3E(1=Zp% 1), where E is
the expected annual losses and Zp is the primary credibility.

59

Using Equation 4.25, which assumes risk homogeneity below
risk size , with parameters Ip = 466:67, Jp = 0:3, Kp = 5,140
and p = 2,000 from the prior section, we can calculate the
primary credibility and corresponding value of B. For exam-
ple, for expected annual losses of E = 200, Zp = 12:5% and
thus B = 600((1=:125)%1) = 4,200. Keeping the other param-
eters fixed, we can alter p, resulting in different graphs of B
versus E, as shown in Figure 4.60

57See Gillam and Snader [19], Gillam [13] or Mahler [12].
58Mahler [12] relates these equations to Equations 4.16.
59Thus, for 3 years of data, with expected losses 3E,

3E=(3E+B) = 3E=(3E+3E - (1=Zp% 1)) = Zp:
60For example, for p = 1,000g = 2,000 and E = 100g = 200, B = 2,100g = 4,200.
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FIGURE 4

As seen in Figure 4, the assumption of no risk heterogeneity
below , with respect to primary credibilities, corresponds ap-
proximately to the imposition of a minimum ballast value. As the
value of  varies from 100g to 10,000g, the minimum B varies
from around 800g to 2,500g.

For E ) p from Equation 4.25 we have

Zp =
YE

(Y+ J ,p)E+K ,p
( YE

YE+K ,p
where K ,p = Kp

#
p

Ip+p

$
and J ,p is small.

For E ), the credibilities approximately follow the usual
Bühlmann formula, thus the minimum ballast value should be
approximately

Kp

#
p

Ip+p

$
:
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For Ip = 700g=3, Kp = 2,570g, and illustrative values of  we
get:

p p=(Ip +p) Kp K,p

100g 30.0% 2,570g 771g
300g 56.3% 2,570g 1,447g

1,000g 81.1% 2,570g 2,084g
3,000g 92.8% 2,570g 2,385g
10,000g 97.7% 2,570g 2,511g

Thus, for this range of values for , the range of minimum
ballast values K ,p is from about 800g to 2,500g.61 In any case,
some minimum ballast value is appropriate regardless of the
value of . The minimum B should be a function of the state
specific parameter g, and must be less than Kp.

Similarly the weighting value W is equal to W = Zx=Zp. For
E )p and E )x, using Equation 4.25, W ( (YE=(YE+K ,x))=
(YE=(YE+K ,p)) = (YE+K ,p)=(YE+K ,x). As the size of risk goes
to zero, E& 0,

W&K ,p=K
,
x = (Kp=Kx)(p=x)

(Ix+x)
(Ip+p)

:

If, for example, we were to take x =p = 10,000g, then
using the current NCCI values Ip = 700g=3, Kp = 2,570g, Ix =
1,700g, and Kx = 203,825g, the minimum W value would be
.014; this compares to a current minimum W of .07.

4.9. Risk Heterogeneity and Shifting Risk Parameters, Dice
Example

In this section, the phenomenon of shifting risk parameters
will be added to the model in Section 4.1.

61The NCCI has introduced a minimum B of 2,500g, which as seen here corresponds to
 ( 10,000g.
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Joe initially selects N identical red dice and N possibly dif-
ferent green dice.

Prior to each trial, Rose may alter the type of all the red dice.
Prior to each trial, Gwen may alter the type of one or more of
the green dice; Gwen acts independently on each green die. Then
Joe rolls all the dice and the result is taken as: (1% h) (the sum
of the N red dice)+h (the sum of the N green dice.)

Assume that Rose’s replacement of red dice follows the tran-
sition matrix R:

R=
:96 :04 0
:02 :95 :03
0 :06 :94

Thus, if the red dice are 6-sided, there is a 2% chance Rose
will change them to 4-sided, a 3% chance Rose will change them
to 8-sided, and a 95% chance Rose will leave them alone.

Similarly, assume that Gwen’s replacement of individual
green dice follows the transition matrix G:

G=
:60 :40 0
:20 :50 :30
0 :60 :40

Gwen is ten times as likely to switch dice as is Rose.62 Thus,
the parameters of the green dice shift more swiftly than those of
the red dice.63 The dominant eigenvalue64 (other than unity) of
the transpose of R is ½= :954, with a half-life of 15 trials. The
dominant eigenvalue65 (other than unity) of the transpose of G
is ° = :537 with a half-life of 1.1 trials. The transition matrices
G and R have been chosen such that they each have the same
stationary distribution:66 .25, .50, and .25.

62We have chosen this simple relation for illustrative purposes. Gwen could switch dice
at any rate relative to Rose.
63One could just as easily model the reverse situation.
64The three eigenvalues of R are 1, .954 and .896.
65The three eigenvalues of G are 1, .537 and %:037.
66One could model a somewhat more complicated situation where the green and red dice
had different stationary distributions.
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For now take the simplest case in which Joe rolls a single die
of each color, N = 1. (The next section will deal with the more
general case of N + 1.)
As shown in Mahler [1], the covariance of trials Xi and Xj for

either a single red or green die is given by Equation 3.12:

Cov[Xi,Xj] =
"
k>1

³k¸
$i%j$
k + ±ij´

2

where ´2 is the Expected Value of the Process Variance, ±ij =
0 for i != j and ±ij = 1 for i= j, ¸k are the eigenvalues of the
transition matrix and the ³k are a function of the transition matrix
and the means of the different dice.67

For transition matrix R:

k ¸k ³k

1 1 12.25
2 .954 .4676
3 .896 .0324

For transition matrix G:

k ¸k ³k

1 1 12.25
2 :537 .4676
3 %:037 .0324

Note that since we have chosen the same basic structure
for the shifting of the green and red dice the ³ values are the
same. Also note that

.
k>1 ³k = :5 = Variance of the Hypothetical

Means in the absence of shifting risk parameters. The eigenvalues
are different, reflecting the different rates of shifting parameters.

In this case the expected value of the process variance = ´2 =
3:08. Thus, for the red dice the covariance between trials of data

67The dice in this case are the different states of the Markov chain. See Mahler [1].
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is:

Cov[Yi,Yj] = (:4676)(:954
$i%j$)+ (:0324)(:896$i%j$) +3:08±ij :

(4.26)

For the green dice the covariance between trials of data is:

Cov[Wi,Wj] = (:4676)(:537
$i%j$)+ (:0324)((%:037)$i%j$)+ 3:08±ij :

(4.27)
Equation 4.27 can be approximated as:

Cov[Wi,Wj]( (:5)(:537)$i%j$+3:08±ij : (4.28)

Similarly, Equation 4.26 can be approximated as:68

Cov[Yi,Yj]( (:5)(:954)$i%j$+3:08±ij : (4.29)

Equations 4.28 and 4.29 are each of the form given by Equa-
tion 3.14:

Cov[Xi,Xj]( ¿2¸$i%j$+ ´2 ±ij: (4.30)

In both cases the Variance of the Hypothetical Means69 = ¿2 =
:5 while the Expected Value of the Process Variance = ´2 = 3:08.

Let Yi = result of a red die, Wi = result of a green die, and
Xi = (1%h)Yi+ hWi = result of a trial (for one die of each kind).
Then

Cov[Xi,Xj] = Cov[(1%h)Yi+hWi, (1%h)Yj +hWj]
= (1%h)2Cov[Yi,Yj]+ (1%h)hCov[Yi,Wj]
+ (1%h)hCov[Wi,Yj] +h2Cov[Wi,Wj]:

68Depending on the particular example, putting the covariance in terms of the principal
eigenvalue other than unity will represent more or less of an approximation. For example,
for the green dice, the approximate covariances from Equation 4.28 for separations of
1, 2, and 3 trials are .2685, .1442, and .0774. These compare to the exact covariances
from Equation 4.27 of .2499, .1349 and .0724. On the other hand, the approximation of
Equation 4.26 by Equation 4.29 is an example where the approximate covariances are
close to the exact covariances.
69In the absence of shifting risk parameters.
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However, the green and red die are independent of each other,
so that

Cov[Yi,Wj] = Cov[Wi,Yj] = 0:

Thus, Cov[Xi,Xj] = (1%h)2 Cov[Yi,Yj]+h2Cov[Wi,Wj].
Cov[Xi,Xj]( (1%h)2(:5)(:954$i%j$)+h2(:5)(:537$i%j$)

+3:08(1%h)2 ±ij +3:08h2 ±ij: (4.31)

In general Equation 4.31 can be written as:

Cov[Xi,Xj]( (1%h)2¿21 ½$i%j$+ h2¿22 °$i%j$

+(1%h)2´21 ±ij+h2´22 ±ij (4.32)

where we have allowed for possibly different values of the vari-
ance of the hypothetical means70 ¿21 and ¿

2
2 , as well as possibly

different values of the expected value of the process variance ´21
and ´22, for the “red” and “green” risk processes.

4.10. Behavior by Size of Risk with Risk Heterogeneity and
Shifting Risk Parameters

According to Section 4.1, the green and red dice contribute
differently to the Variance of the Hypothetical Means and to the
covariances as the number of dice N increases. For the sum of
N identical red dice, the VHM is :5N2 =N2¿21 . For the sum of
N possibly different green dice, the VHM is :5N =N¿22 . In both
case the EPV=N´2 = 3:08N.

Thus, for N dice, Equation 4.32 becomes:

Cov[Xi,Xj] = (1%h)2N2¿21½$i%j$+h2N¿22 °$i%j$

+(1%h)2N´21 ±ij +h2N´22 ±ij : (4.33)

70In the absence of shifting risk parameters.
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For insurance applications to frequency, pure premiums, etc.,
it will be useful to rewrite Equation 4.33 as:71

Cov[Xi,Xj] = r
2"½$i%j$+(I=E)°$i%j$+(K=E)±ij#,

1+ ½,° + 0 I,K + 0: (4.34)

Equation 4.34 for the covariances in the presence of shifting
risk parameters and risk heterogeneity combines the features of
Equation 3.16 with shifting risk parameters and Equation 4.3
with risk heterogeneity.

Equation 4.33 displays the typical behavior in the presence
of risk heterogeneity (h > 0); there is a piece of the variance of
hypothetical means that increases as N2 and a piece that increases
only as N, the size of risk. Therefore, the relative importance of
the two dominant eigenvalues ½ and ° varies by size of risk N.
For N large, ½ is relatively more important than for N small.
Thus for large size risks the log-correlations decline at a rate of
approximately ½. For medium size risks, the decline rate will be
between ½ and °. For very small risks, the decline rate should
be approximately °. This same behavior also holds for Equation
4.34.

For the dice example, ½= :954 and ° = :537, thus larger risks
should have their log-correlations decline approximately with
a slope of ln :954,72 while smaller risks would see their log-
correlations decline more quickly. For h= :8, Figure 5 shows
the behavior for various sizes of risk. The correlations are both
smaller for fewer numbers of dice and decline more quickly as
the separation of years increases.

For this example, plugging into Equation 4.33, the values h=
:8, ¿21 = ¿

2
2 = :5, ´

2
1 = ´

2
2 = 3:08, we obtain:

Cov[Xi,Xj] = :02N
2:954$i%j$+ :32N:537$i%j$+2:0944N±ij:

71Where as before E is the size of risk, I quantifies risk heterogeneity and K is the
Bühlmann credibility parameter. ½ and ° quantify the rate(s) of shifting of risk parameters.
72The correlation declines approximately as :954$i%j$, thus, its log declines approximately
as $i% j$(ln :954).
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FIGURE 5

Thus, Var[X] = Cov[X,X] = :02N2 +2:4144N.

Thus, for this example the correlations between years are
given by:

Corr[Xi,Xj] =
:02N2:954$i%j$+ :32N:537$i%j$

:02N2 +2:414N
, i != j:

(4.35)

Figure 6 shows the ratio of Corr[Xi,Xi+2] to Corr[Xi,Xi
+1].73 As the number of dice increases this ratio gets closer to
½= :954. In this example, larger risks have less quickly shifting
risk parameters over time.74

73Figure 6 shows the approximation given by Equation 4.35. The more exact results
that would be obtained starting with Equations 4.26 and 4.27 including terms for all the
eigenvalues, would display the same behavior.
74If the transition matrices for Gwen and Rose had been reversed, then the larger risks
would have had more quickly shifting risk parameters than smaller risks.
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FIGURE 6

For general insurance applications, Equation 4.35 would be-
come for the covariances written as in Equation 4.34:

Corr[Xi,Xj] =
E½$i%j$+ I°$i%j$

E+ I+K
, i != j: (4.36)

In Equation 4.36, as E&', Corr[Xi,Xj]& ½$i%j$, while as
E& 0, Corr[Xi,Xj]& °$i%j$I=(I+K). As will be discussed sub-
sequently, examining the behavior of the correlations between
years of data as the separation between years and the size of risk
vary will allow one to estimate the parameters of the covariance
structure which are needed to calculate credibilities.

5. SHIFTING RISK PARAMETERS, RISK HETEROGENEITY, AND
PARAMETER UNCERTAINTY

In this section, the effects of shifting risk parameters, risk
heterogeneity and parameter uncertainty will be combined. In
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Section 5.1, the three phenomena will be combined for the dice
example. The model will be put into a form useful for insurance
applications in Section 5.2. Section 5.3 will incorporate the pre-
viously discussed refinement to the covariance structure for very
small risks. Section 5.4 will discuss all three phenomena in the
context of Philbrick’s target shooting example.

5.1. All Three Phenomena, Dice Example

Combining the examples in Sections 3.6, 4.4, and 4.9 we can
incorporate shifting risk parameters, risk heterogeneity, and pa-
rameter uncertainty.

Joe initially selects N identical red dice and N possibly dif-
ferent green dice. Prior to each trial, Rose may alter the type of
all the red dice. Prior to each trial, Gwen may alter the type of
one or more of the green dice; Gwen acts independently on each
green die.

For each trial Joe rolls all the dice and Mary flips a coin. The
result of a trial is:

(1%h)(Sum of N Red Dice)+h(Sum of N Green Dice)

+N(Result of Coin Flip)

where the coin flip is counted as %1
2 for tails and

1
2 for heads.

The presence of the coin flip does not alter the hypothetical
means. However, as in Section 4.4, the Expected Value of the
Process Variance is (3:08)(1%h)2N +(3:08)h2N + :25N2. Com-
bining this with the Variance of the Hypothetical Means from
Section 4.10, the covariance between the results of trials i and
j is:

Cov[Xi,Xj] = (1%h)2N2(:5):954$i%j$+h2N(:5):537$i%j$

+(1%h)2N(3:08)±ij +h2N(3:08)±ij +(:25)N2 ±ij :
(5.1)
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Equation 5.1 can be written more generally as:

Cov[Xi,Xj] = (1%h)2N2¿21½$i%j$+h2N¿22 °$i%j$

+(1% h)2N´21 ±ij + h2N´22 ±ij + u2N2 ±ij :
(5.2)

In insurance we normally are interested in quantities such as
claim frequency75 or pure premium,76 which have the volume of
data in the denominator. This introduces a factor of 1=volume2

into the variances and covariances.

In the dice example, this would be the equivalent of the result
of a trial being the previously defined “result of a trial” divided
by N:

1
N

!
(1%h)(Sum of N Red Dice)+h(Sum of N Green Dice)

+N(Result of Coin Flip)

/
:

In that case, Equation (5.2) is modified to:

Cov[Xi,Xj] = (1%h)2¿21½$i%j$+h2¿22°$i%j$=N
+(1%h)2´21±ij + h2´22±ij + u2±ij : (5.3)

There are those portions of the covariance that are indepen-
dent of size of risk and those portions such as the process vari-
ance which decline with size of risk, when dealing with claim
frequencies, pure premiums, etc.

5.2. General Form of Covariances, All Three Phenomena

Equation 5.3 contains four different types of terms. There
are those that decrease as the inverse of the size of risk N and
those that do not depend on N. There are those involving ±ij
that are related to the process variance and are not present in
the covariance between different years. On the other hand, there

75Frequency = claims/exposures.
76Pure Premiums = losses/exposures.
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are those involving ¸$i%j$ that are related to the variance of the
hypothetical means.

In specific examples, the key elements will be the speed with
which parameters shift and thus the half-lives of ½ and °, and
the relative weights of each of the four types of terms. With this
in mind it will be worthwhile to rewrite Equation 5.3. Let r2 =
(1%h)2¿21 , g2 = h2¿22 , e2 = (1% h)2´21 +h2´22, and rather than N
use E as some appropriate measure of size of risk.77

Then Equation 5.3 becomes:

Cov[Xi,Xj] = r
2½$i%j$+ g2°$i%j$=E+ ±ij(e

2=E+u2)

Var[X] = Cov[X,X] = r2 + g2=E+ e2=E+ u2:
(5.4)

As before letting I = g2=r2, J = u2=r2 and K = e2=r2, then

Cov[Xi,Xj] = r
2"½$i%j$+ °$i%j$(I=E)+ (J +K=E)±ij#: (5.5)

Thus, the correlations are:

Corr[Xi,Xj] =
E½$i%j$+ I°$i%j$

E(1+ J) +K + I
: (5.6)

For large risks the term with ½$i%j$ will dominate, while for
small risks the term with °$i%j$ will dominate. For large risks
the log-correlations will decline as ½, while for small risks the
log-correlations will decline as °. For risks of medium size the
decline will be between ½ and °.

Thus, this model will be particularly useful when and if there
are different decline rates in correlations by size of risk.78 ½
can be estimated from the slopes for large risks of the log-
correlations versus separations. ° can be estimated from the
slopes for small risks of the log-correlations. The size of I can be

77For example, E could be expected losses in workers compensation experience rating.
78Where the rate of decline in the correlations is not dependent on size of risk, one can
set ½= °.
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estimated by what constitutes a “medium-size risk,” where the
decline rate of the log covariances are about halfway between ½
and °. At that size E ( I.
As we take larger and larger risks, Equation 5.6 for the cor-

relations approaches

lim
E&'

Corr[Xi,Xj] =
½$i%j$

1+ J
:

Thus, we can estimate J , quantifying the impact of parameter
uncertainty, by examining for large risks the correlations between
years. For example, if we fit an exponential regression to such
correlations versus the separations, then the intercept can be used
to estimate J . For large risks:

lnCorr[Xi,Xj](% ln(1+ J)+ $i% j$ ln½:
For any size:

lnCorr[Xi,Xj] = ln(E½
$i%j$+ I°$i%j$)% ln(E(1+ J)+K + I):

Assuming a fixed set of parameters I, J , K, ½ and °, then for
a fixed size of risk E, the second term is constant, while the first
term depends on the separation between years $i% j$. We expect
the decline rate to be some rate between ½ and °, depending on
the relative sizes of E and I. Very approximately:79

ln(E½$i%j$+ I°$i%j$)( $i% j$ ln
,
E½+ I°
E+ I

-
+ln(E+ I)

Thus,

lnCorr[Xi,Xj]( $i% j$ ln
,
E½+ I°
E+ I

-
+ ln

,
E+ I

E(1+ J)+K + I

-
:

Thus, if we fit an exponential least squares regression to the
correlations by separations + 1, we would expect to have a slope
between ½ and ° and an “intercept” of (E+ I)=(E(1+ J)+K + I).

79For E = 0, ln(I°$i%j$) = $i% j$ ln°+ ln I. For I = 0, ln(E½$i%j$) = $i% j$ ln½+lnE. For
$i% j$= 1, the approximation is exact. The approximation is poor when $i% j$ is large, ½
and ° differ substantially, and E is approximately the same as I.
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This intercept80 is equal to the credibility for a single year of
data in the absence of shifting risk parameters, as in Equation
4.15.

We can therefore approximate some of the necessary param-
eters from the behavior of the observed correlations as the size
of risk and number of years of separation vary.

For each of various sizes of risk we can fit exponential least
squares regressions to the correlations for years separated by
one year or more. The intercept for each size category is an
estimate of the credibility of one year of data in the absence of
shifting risk parameters over time. These credibilities by size of
risk can be used to estimate the parameters I, J and K. The slope
(exponential rate of decline) of the correlations varies between
° and ½ as the size of risk increases. At an intermediate size of
about I, the slope will be about halfway between ° and ½.

In the situation where the years Xi and Xj have different ex-
pected volumes of data Ei and Ej , Equation 5.5 can be general-
ized to:

Cov[Xi,Xj] = r
2
0
½$i%j$+ °$i%j$I=

+
EiEj +

1
J +K=

+
EiEj

2
±ij

3
(5.7)

In the covariance, those terms that were divided by E in Equa-
tion 5.5 are now in Equation 5.7 divided by the geometric aver-
age of the sizes of risk,

+
EiEj . If Ei = Ej = E, then

+
EiEj = E,

so that Equation 5.7 would reduce to Equation 5.5. The use of
the square root function in the generalization was motivated by
the

4
VAR[X1]VAR[X2] that appears in the denominator of the

correlation of X1 and X2.

Equations 5.5 or 5.7 can be used to calculate all of the co-
variances necessary to solve Equations 2.4 for the credibilities.

An example of how to calculate the credibilities in general will
be given in Section 6. However, prior to that it is worthwhile to

80For convenience in this paper, (E+ I)=(E(I+J)+K +J), rather than the natural log
of that quantity, will be referred to as the intercept.
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generalize Equation 5.7 for the covariance in order to take into
account the different behavior of very small risks.

5.3. Very Small Risks, General Covariance Structure

In Sections 4.3 and 4.6 a refinement for very small sizes of
risk was introduced. In this section, this refinement will be in-
troduced into the general covariance structure.

The same logic concerning risk heterogeneity and very small
risks applies as well when both parameter uncertainty and shift-
ing risk parameters are considered. If we assume risk hetero-
geneity does not apply for E ), then Equation 5.4 for the co-
variances is split into two separate equations, per Equations 4.22
and 4.23.

For E + , Equation 5.5 holds:
Cov[Xi,Xj] = r

2"½$i%j$+ °$i%j$(I=E) + ±ij((K=E) + J)#,
E +: (5.8)

For E ) , the term involving I takes on its value at E = :

Cov[Xi,Xj] = r
2"½$i%j$+ °$i%j$(I=)+ ±ij((K=E)+ J)#,

E ): (5.9)

In the situation where the years Xi and Xj have different ex-
pected volumes Ei and Ej , Equations 5.8 and 5.9 can be gener-
alized to:81

Cov[Xi,Xj] = r
2
0
½$i%j$+ °$i%j$I=

+
EiEj + ±ij

1
K=
+
EiEj + J

23
,+

EiEj +  (5.10)

81It should be noted that in Equations 5.10 to 5.11 the expression
4
EiEj only enters

due to the presence of risk heterogeneity. This results in terms such as I=
4
EiEj . In con-

trast, where
4
EiEj divides K it is multiplied by ±ij . These terms are zero unless i = j,

so
4
EiEj could be replaced in these terms by either Ei or Ej . This simplification in no-

tation is conventional in the absence of risk heterogeneity.
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Cov[Xi,Xj] = r
2
0
½$i%j$+ °$i%j$I=+ ±ij

1
K=
+
EiEj + J

23
,+

EiEj ) : (5.11)

5.4. Philbrick’s Target Shooting Example

Philbrick [5] explains credibility concepts by using a target
shooting example. There are four marksmen each shooting at his
own target. Each marksman’s shots are assumed to be distributed
around his target, with expected mean equal to his target. Once
we observe a shot or shots from a single unknown marksman,
we could use Bühlmann credibility to estimate the location of
the next shot from the same marksman.

The key features of Bühlmann credibility are explained by
Philbrick as follows by altering the initial conditions of the target
shooting example:

Feature of Target
Shooting Example

Mathematical
Quantification

Bühlmann
Credibility

Better Marksmen Smaller EPV Larger
Targets Further Apart Larger VHM Larger
More Shots Larger N Larger

These mathematical relationships also follow from Bühl-
mann’s credibility formula, Equation 1.1.

We can modify the example in Philbrick to include each of
the three phenomena discussed in this paper.

In Philbrick, it is assumed that each marksman continues to
shoot at his target.82 Within a single example in Philbrick, the
risk parameters do not shift over time. If instead there were a
small random chance that between each shot a marksman would

82It is also assumed within an example that the targets are stationary, the marksmen
remain the same and do not get better or worse, nor do the marksmen move closer to or
further from the targets.
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switch targets, then one would have shifting risk parameters over
time.83 In this case, the credibility assigned to a given shot would
be less than if each marksman always shot at the same target.
The informational content of a shot for purposes of predicting
the next shot from the same marksman has been reduced by the
presence of shifting parameters over time.

The Philbrick example can also be altered in order to incor-
porate risk heterogeneity. Assume we have teams of marksmen.
Assume each marksman on a team shoots at his own target. As-
sume that while members of a team each shoot at a possibly
different target, the members of a team are more likely to shoot
at the same target than are marksmen who are not members of
the same team. For example, the six members of Team 1 might
shoot at targets A, A, A, B, C, and D respectively. For the pur-
pose of predicting the next shot, the informational content of a
given number of shots from Team 1 is less than if all the mem-
bers of the team always had the same target. Risk heterogeneity
has reduced the credibility assigned to a given number of shots.

Assume, for example, as the teams got bigger each additional
marksman in Team 1 was assigned target A half the time and
targets B, C, and D one-sixth of the time. Then as the teams
got bigger, the credibility assigned to a set of shots, one per
team member, would not be the same as the Bühlmann case
in which each team member shot at the same target. With risk
heterogeneity the credibility would increase more slowly as the
teams increase in size; the incremental informational content of
another team member is less when they do not all shoot at the
same target.

As discussed previously, in the presence of risk heterogeneity,
the credibilities are given by Equation 4.4:

Z =
E+ I

E+ I+K
:

83This is analogous in the dice example to Beth possibly replacing dice between the rolls.
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The derivative of Z with respect to the size of risk E is
K=(E+ I+K)2. This derivative decreases as I increases; the
greater the impact of risk heterogeneity, the more slowly the
credibility increases with size of risk.

Finally, the Philbrick example can be altered to incorporate
parameter uncertainty. Again assume that there are teams of
marksmen, but each marksman shoots at the same target. As-
sume that for each round of shots, one per team member, every
team member uses the same rifle. However, between rounds the
rifle is replaced by another. Further assume the rifles look alike
but some shoot high, some shoot low and to the left, etc. Also
assume the marksmen on a team do not communicate with each
other, nor adjust their aim based on their teammate’s shots, so
that all team members are equally affected by the peculiarities
of the given rifle. The errors introduced by the switching rifles
reduce the informational content of the shots; in the presence
of parameter uncertainty less credibility is assigned to the data,
holding all else equal.

In addition, adding more team members can never eliminate
the effect of an individual, randomly chosen rifle. In the pres-
ence of parameter uncertainty the credibility of a single year of
data does not approach unity as the risk size increases; rather
in Equation 3.7 the credibility goes to 1=(1+ J) as the risk size
approaches infinity.

However, by observing many rounds of shots, assuming the
errors of the rifles average to zero, one can eliminate their im-
pact. In the presence of parameter uncertainty (and no shifting
risk parameters over time), the credibility of a given size of risk
goes to unity as the number of years goes to infinity; the cred-
ibilities in Equation 3.10 go to unity as the number of years
increases.

Clearly, we could modify the Philbrick target shooting exam-
ple to incorporate two or all three of the phenomena discussed
in this paper.
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6. ILLUSTRATIVE EXAMPLES OF CALCULATING CREDIBILITIES

This section will present illustrative examples of calculating
credibilities based on the general covariance structure presented
in Section 5. Section 6.1 deals with large risks, while Section
6.2 includes the refinement to the covariance structure for very
small risks. Section 6.3 shows how differing volumes of data by
year would affect the credibilities. Section 6.4 shows an example
in which no weight is given to the overall mean.

6.1. An Example of Calculating Credibilities, Large Risks

As an example, take the following illustrative values in Equa-
tions 5.5 or 5.7 for the covariances in the presence of all three
phenomena:84

½= :9 (rate of shifting parameters related to
risk homogeneity),

° = :7 (rate of shifting parameters related to
risk heterogeneity),

e2 = 9,000 (expected value of process variance without
parameter uncertainty),

u2 = 2 (variance related to parameter uncertainty),

r2 = 3 (portion of variance of hypothetical means related
to risk homogeneity),

g2 = 4,000 (portion of variance of hypothetical means
related to risk heterogeneity),

I = g2=r2 = 1,333,

J = u2=r2 = :6667, and

K = e2=r2 = 3,000:

84These values were chosen solely to present an example. Note that if one multiplies e2,
u2, r2 and g2 all by the same constant, then all the covariances are multiplied by that
same constant, but the credibilities are unchanged.
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Assuming each year of data has equal volume E, Equation 5.5
becomes:

Cov[Xi,Xj] = (3):9
$i%j$+(4,000=E):7$i%j$+ ±ij(9,000=E+2):

(6.1)
Thus, the variance is:

Var[Xi] = Cov[Xi,Xi] = (13,000=E) +5:

The covariance between years of data separated by two years is:

Cov[X1,X3] = (1,960=E)+2:43:

For 4 years of data each of volume E, the variance-covariance
matrix is:
(13,000=E) +5 (2,800=E)+ 2:7 (1,960=E)+ 2:43 (1,372=E)+ 2:187
(2,800=E)+ 2:7 (13,000=E)+ 5 (2,800=E)+ 2:7 (1,960=E)+ 2:43
(1,960=E)+ 2:43 (2,800=E)+ 2:7 (13,000=E) +5 (2,800=E)+ 2:7
(1,372=E)+ 2:187 (1,960=E)+ 2:43 (2,800=E)+ 2:7 (13,000=E) +5:

For example, if E = 1000 then the variance-covariance matrix is:

18 5:5 4:39 3:559
5:5 18 5:5 4:39
4:39 5:5 18 5:5
3:559 4:39 5:5 18:

Assume we are using three years of data to estimate the fourth
year directly following them. Then Equations 2.4 for the credi-
bilities to assign to each of the three years of data are:

18Z1 +5:5Z2 +4:39Z3 = 3:559,

5:5Z1 +18Z2 +5:5Z3 = 4:39, and

4:39Z1 +5:5Z2 +18Z3 = 5:5:

(6.2)

Equations 6.2 are three linear equations in three unknowns,
with solution:

Z1 = 9:62%,

Z2 = 14:15%, and

Z3 = 23:88%,
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where Z1 is the credibility assigned to the oldest year of data
and Z3 is the credibility assigned to the most recent year of data.
Note that Z1 +Z2 +Z3 = 47:65%< 100%. The remaining weight
of 52.35% is given to the grand mean.85

It should be noted that Equations 2.4 for the credibilities86

were derived so as to minimize the expected squared error of
the estimate. As derived in Mahler [1]87 the expected squared
difference between the estimate and observation as a function of
the variance-covariance matrix and the credibilities is:

V(Z) =
Y"
i=1

Y"
j=1

ZiZjCij % 2
Y"
i=1

Ci,Y+¢Zi+CY+¢,Y+¢: (6.3)

In this particular case for E = 1,000, we get for various se-
lected values of the credibilities the following expected squared
errors:

Z1 Z2 Z3 V(Z)

0 0 0 18
1/3 1/3 1/3 18.454
1/2 0 0 18.941
0 1/2 0 18.110
0 0 1/2 17.000

9.62% 14.15% 23.88% 15.722

Thus, the use of (the optimal least squares) credibilities of
9.62%, 14.15%, 23.88% does indeed seem to have reduced the
expected squared errors.88

Figure 7 shows how the sum of the credibilities for three years
of data varies with size of risk. In addition to the case where all

85The situation in which no weight is given to the grand mean is discussed below.
86Which are Equations 6.2 for this specific example with E = 1,000.
87See Appendix C in Mahler [1]. The derivation parallels that in Appendix B of the
current paper.
88In this case, the expected squared error is about 15:722. 18 = 87% of what one would
obtain by ignoring the observations (assigning the observations zero credibility).
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FIGURE 7

three phenomena are present, cases are shown in which only two
of the phenomena are present.

For no parameter uncertainty, J is set equal to zero rather
than .6667. For large risks the credibility is higher than in the
presence of parameter uncertainty. Nevertheless, the maximum
credibility is less than 100%, due to the impact of shifting risk
parameters over time.

For no shifting risk parameters, ½= ° = 1 rather than ½= :9
and ° = :7. Credibilities are higher. The credibilities are given by
Equation 4.14.

For no risk heterogeneity, I is set equal to zero rather than
1333. With risk homogeneity the credibilities go to zero as the
risk size declines.89

89As discussed in Section 5.3, Equation 5.5 and the resulting credibilities are not appro-
priate for very small risks.
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FIGURE 8

The decline rate of the correlations is close to ½= :9 for large
risks and close to ° = :7 for small risks. Specifically, the ratio
of the correlation between years separated by two years to the
correlation between years separated by one year is:

Corr[X1,X3]=Corr[X1,X2] = (2:43E+1,960)=(2:7E+2,800):
(6.4)

Figure 8 shows how this decline rate given by Equation 6.4
varies by size of risk.

In general if the covariances are given by Equation 5.5, we
expect this decline rate to be given by:

Corr[X1,X3]=Corr[X1,X2] = (½
2E+ I°2)=(½E+ I°): (6.5)

If ½ > °, then we expect to see something like Figure 8. If
instead ½ < °, we expect the curve to decrease from ° to ½ as the
size increases.
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The intermediate size at which the decline rate is about equally
distant between ½ and ° is approximately I. This could be used to
estimate I from data. In the example, I = 1,333. In Figure 8 for
this size the decline rate is .81, roughly halfway between ½= :9
and ° = :7.

6.2. Credibilities, Small Risks

In the example in Section 6.1, let us assume there is no risk
heterogeneity for E ) = 100. Then the covariances and credi-
bilities are different for E < 100 than they were in Section 6.1.

For E ) 100, the covariances are given by Equation 5.9:
Cov[Xi,Xj] = (3)(:9

$i%j$) + (40)(:7$i%j$)+ ±ij(9,000=E+2):

For E + 100, the covariances are given by Equation 5.8:
Cov[Xi,Xj] = (3)(:9

$i%j$)+ (4,000=E)(:7$i%j$) + ±ij(9,000=E+2):

For example, for E = 10, the variance-covariance matrix is:

945 30:7 22:03 15:907
30:7 945 30:7 22:03
22:03 30:7 945 30:7
15:907 22:03 30:7 945:

Assume we are using three years of data (each with E = 10),
in order to estimate the fourth year directly following them. Then
Equations 2.4 for the credibilities to assign to each of the three
years of data are:

945Z1 +30:7Z2 +22:03Z3 = 15:907,

30:7Z1 +945Z2 +30:7Z3 = 22:03, and

22:03Z1 +30:7Z2 +945Z3 = 30:7:

(6.6)

Equations 6.6 are three linear equations in three unknowns,
with solutions:

Z1 = 1:5%,

Z2 = 2:2%, and

Z3 = 3:1%
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where Z1 is the credibility assigned to the oldest year of data.
The remaining weight not given to any of the years of data is
given to the grand mean.

These credibilities assuming no risk heterogeneity below E =
100 are significantly smaller than those derived from Equation
5.5, which assumes risk heterogeneity for all sizes of risk. For
E = 10, using Equation 5.5 to calculate the covariances rather
than Equation 5.9 would result in credibilities of:

Z1 = 5:7%,

Z2 = 9:9%, and

Z3 = 18:6%:

Equation 5.9 produces credibilities that decline to zero as the
risk size decreases in a manner similar to the usual Bühlmann
formula, in contrast to Equation 4.14. Figure 9 contrasts this
behavior for very small sizes, assuming  = 100. Shown are
the sum of the credibilities for three years of data as calculated
above. For example, for E = 10, the credibilities for three years
of data with risk heterogeneity sum to 34.2%, while those with-
out risk heterogeneity (below E =  = 100) sum to 6.8%. As E
gets even smaller, in the presence of risk heterogeneity, the sum
of the credibilities remains about 34%, while in the absence of
risk heterogeneity it goes to zero.

Intuitively the credibility should approach zero as the size of
risk approaches zero. Without the refinement discussed in Sec-
tions 4.3, 4.6 and 5.3, the covariance structure incorporating risk
heterogeneity would produce credibilities that make no sense to
actuaries. Credibility formulas such as Equation 4.14 or covari-
ance structures such as Equation 5.5 should not be applied to
very small risks.

Also shown in Figure 9 are the results of using Equation
5.9 with the alternate values  = 1,000 or  = 10,000 rather
than  = 100. In this case, the credibilities using the latter value
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FIGURE 9

are significantly different than using either of the two former
values.

In this example I = 1,333. This is the parameter related to risk
heterogeneity, and it controls the behavior of the credibilities
that result from Equation 5.5 for small risks. For E < I these
credibilities start leveling off significantly. Taking  significantly
less than I, as for example 100 compared to 1,333, starts the steep
descent to zero of the credibilities resulting from Equation 5.9
from an otherwise very small slope. In contrast, taking  either
roughly equal to or greater than I, starts the descent in a much
smoother manner, as is the case for  = 1,000 or 10,000.

6.3. Credibilities for Years with Differing Volumes of Data

Returning to the example in Section 6.1, assume that the three
years have differing volumes of data. Assume E1 = 600, E2 =
1,600, and E3 = 800, where E1 is the most distant of the three
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years. Using the inputs from before, Equation 5.7 becomes:

Cov[Xi,Xj] = (3)(:9
$i%j$)+ (4,000)(:7$i%j$)=

+
EiEj

+ ±ij
11
9,000=

+
EiEj

2
+2

2
:

Assume that the year to be estimated will have a volume of
data E4 = 1,000, the average of the observed years.

90 Then the
variance-covariance matrix is:

26:667 5:558 5:259 3:958
5:558 13:125 5:175 3:98
5:259 5:175 21:25 5:83
3:958 3:98 5:83 18

The credibilities are given by the solution to Equations 2.4:

Z1 = 6:68%,

Z2 = 19:16%, and

Z3 = 21:12%:

Thus, as expected, years 1 and 3 with their smaller volumes
are given less credibility than in Section 6.1, while year 2 with
its larger volume of data is given more credibility than before.

It is interesting to note that in the presence of risk heterogene-
ity91 the credibilities depend on the assumed volume of data for
the year being estimated, year 4.

E4 = 100 E4 = 1,000 E4 = 10,000

Z1 13.15% 6.68% 4.64%
Z2 31.18% 19.16% 15.36%
Z3 48.44% 21.12% 12.47%

90While Var[X4] will not enter into the equations for the credibility, Cov[X1,X4] and
similar terms will. Cov[X1,X4] depends on E4, due to the presence of risk heterogeneity.
In the absence of risk heterogeneity, one need not assume a value for E4.
91Whether or not there are shifting risk parameters over time.
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When E4 is large, the covariances of the data years with the
year to be estimated are smaller, and therefore we assign less
credibility.92

As E4 gets larger, we are assuming the insured will be larger
in year 4, the year to be predicted. As discussed previously, one
implication of risk heterogeneity is that larger insureds are in
some sense more similar to average than are smaller insureds.
The less distinct insureds are from average, the less credibility
we give to the data from individual insureds and the more weight
we give to the overall average.93 Thus, if E4 is larger, we give less
credibility to this insured’s data and more weight to the overall
average.

For mechanical applications of the methodology,94 we would
probably just assume that the volume of data in the future would
be some average of that observed in the recent past for that in-
sured. In this example, we might assume as above that:

E4 = (E1 +E2 +E3)=3 = 1,000:

6.4. Credibilities, No Weight Given to the Grand Mean

So far we have assumed that the complement of credibility is
given to the grand mean. In some cases the grand mean either
does not exist or is not used. In those situations, we can have the
credibilities be constrained to add to 100%.

Assume that we are using three years of data to estimate the
fourth year directly after them, but that no weight is given to the
grand mean. Then Equations 2.4 no longer apply.

92This differs from the Bühlmann case in which the covariances between the claim
frequencies of different years are assumed to be independent of the size of risk.
93In the target shooting example in Philbrick [5], as the targets get closer together less
credibility is given to each observed shot.
94For example, if one were performing many thousands of experience ratings by com-
puter.
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As shown in Appendix B, the general equations for credibility
when no weight is applied to the grand mean are:95

Y"
i=1

Cov[Xi,Xk]Zi =Cov[Xk,XY+¢]+
¸

2
, k = 1, : : : ,Y

Y"
i=1

Zi = 1,

(6.7)

where ¸ is a Lagrange Multiplier.96

For the covariances used in the previous Section 6.1, with
E = 1,000, Equations 6.7 become:

18Z1 +5:5Z2 +4:39Z3 = 3:559+¸=2,

5:5Z1 +18Z2 +5:5Z3 = 4:39+¸=2,

4:39Z1 +5:5Z2 +18Z3 = 5:5+¸=2, and

Z1 +Z2 +Z3 = 1:

These are four linear equations in four unknowns.97 The so-
lution is:98

Z1 = 27:60%,

Z2 = 30:53%, and

Z3 = 41:86%:

We note that Z1 +Z2 +Z3 = 1 as desired. The most recent
year is given weight 41:86%> 27:60%, the weight given to the
most distant year.

95See Equation 11.7 in Mahler [20].
96The Lagrange Multiplier is introduced due to the constraint equation §Zi = 1. Note that
¸ is used to denote the Lagrange Multiplier here and was used to denote the dominant
eigenvalue in prior sections. ¸ is commonly used in both these roles, but the reader
should not be confused. There is no connection between these two separate uses of the
same Greek letter.
97Although we are really not particularly interested in the value of the Lagrange Mul-
tiplier.
98The Lagrange Multiplier ¸= 9:853.
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Usually, as the size of risk increases, the need for stability in
the estimation procedure declines, so that we give more weight to
recent years of data. However, in this case that is counteracted to
some extent by the assumption that large risks have more stable
risk parameters over time.99 Thus the estimation procedure can
afford to be less responsive.

In this example, this leads to the credibilities being relatively
insensitive to the size of risk:

Size of Risk
1 1,000 1 Million

Z1 28.23% 27.60% 24.93%
Z2 30.60% 30.53% 30.21%
Z3 41.17% 41.86% 44.86%

If we switch the rates of shifting parameters and instead takes
½= :7 and ° = :9, we get a significantly different behavior by
size of risk:

Size of Risk
1 1,000 1 Million

Z1 30.32% 27.96% 21.96%
Z2 32.34% 30.87% 25.81%
Z3 37.34% 41.17% 52.23%

As risk size increases, the weight given to the recent year
increases more substantially than before. In general, the depen-
dence of credibility on size of risk will depend significantly on
the relative magnitudes of ½ and °.

99Larger risks correspond to a decline rate in the log-correlations of ½= :90 rather than
° = :70.
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7. CLASSIFICATION RATE RELATIVITIES

In this section, the ideas developed so far will be applied to a
simplified version of the estimation of classification rate relativ-
ities.100 While the example draws from workers compensation,
it is intended to illustrate the general applicable concepts rather
than the details of workers compensation insurance.

Section 7.1 defines rate relativities. Section 7.2 describes the
classification data examined. Section 7.3 describes the covariance
structure and explains how correlations were estimated. Section
7.4 describes how regressions were fit to the correlations in order
to estimate the parameters °, ½, I and J . Section 7.5 describes
how the parameter K was estimated. Section 7.6 describes how
the parameter  was selected.

Section 7.7 calculates credibilities with no weight given to
the overall mean. Section 7.8 calculates credibilities with weight
given to the overall mean. Section 7.9 discusses using prior es-
timates of the class relativities.

Section 7.10 discusses the impact of maturity of data in gen-
eral. Section 7.11 gives an example of the impact of maturity on
correlations while Section 7.12 gives the corresponding credibil-
ities.

7.1. Rate Relativities

Assume that we are trying to estimate for a number of indi-
vidual classes the expected pure premiums relative to the aver-
age for that group of classes. Further, assume we will do so by
weighting together the observed relativities for that class over
several recent years.101 If Ric is the relativity for year i, for class

100For an introduction to classification ratemaking see, for example, the Risk Classifica-
tion chapter of Foundations of Casualty Actuarial Science [21].
101This is a simplification of how we might get indicated pure premiums by classification
for workers compensation insurance. In that case, the relative pure premiums by class
would be compared to those for an industry group. Also, the “serious,” “non-serious”
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c, then the estimate of the relativity for that class for year N +¢
is:
.N
i=1ZicRic, where

.N
i=1Zic = 1. This is the situation covered

by Equations 6.7.

If instead we gave the complement of credibility to the grand
mean, which in this example is a relativity of unity, then Equa-
tions 2.4 would apply instead of Equations 6.7. In either case, in
order to estimate credibilities the key step will be the estimation
of the (expected) covariances between years of data.

7.2. Classification Data

The data to be examined is 13 (consecutive) years of clas-
sification experience in one state for workers compensation in-
surance.102 For each class we will use its payroll and losses to
compute its pure premium relative to its industry group for that
year. If Lic is the loss

103 and Pic the payroll,
104 then the relative

pure premium in year i for class c is:105

Ric = (Lic=Pic)

5#"
c

Lic

5"
c

Pic

$
: (7.1)

In order to estimate the behavior of the covariances by size of
class, the data for the Manufacturing and Goods and Services in-
dustry groups will be examined.106 The Manufacturing industry

and “medical” pure premiums might be treated separately. See Kallop [22] and Feldblum
[23]. In addition, we might rely on “National” as well as state pure premiums by class.
See Harwayne [24].
102See Appendix C for details on the data set examined.
103In this illustration, the losses are paid losses plus case reserves, at latest report, for
medical plus indemnity, without any limitation by claim size.
104Payroll is in units of $100.
105Note that the relativity of an individual class within an industry group depends both on
the experience of that class, the experience of the other classes, as well as the exposures
by class within the industry group. Thus, a given class relativity may change over time
for a number of different reasons, some of which may have little to do with the individual
class.
106Currently five industry groups are most commonly used for workers compensation
ratemaking: Manufacturing, Construction, Office and Clerical, Goods and Services, and
Miscellaneous.
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group will be particularly useful since it has about 270 separate
classes of various sizes. The Goods and Services industry group,
with only about 100 separate classes, will not allow as detailed
a breakdown by size of class.107

7.3. Covariance Structure

The covariance structure will be assumed to be that given by
Equations 5.10 and 5.11. However, for estimation purposes we
will use the simpler Equations 5.8 and 5.9, which ignore the
varying volume of data by year for a class.108

For an industry group we compute the relative pure premiums
for each class for each year. Then we can compute the covari-
ances and correlations between the different years. By examining
the behavior of these covariances and correlations as the size of
class and the number of years of separation vary, we can roughly
estimate the parameters that appear in the covariance Formulas
5.8 and 5.9.

For this purpose, we will restrict our attention to one size
category of class at a time.109 There are a number of ways to
categorize the volume of data. This example uses an estimate
of the average annual expected losses for a class based on its
reported payroll.110 Other reasonable measures of volume should
produce roughly similar results.

For each such size category, we estimate the covariance
between any two years of observed relative pure premiums
Ric and Rjc for c= 1, : : : ,k where there are k classes in the size

107The Office and Clerical industry group has only around 14 classes. The Construction
industry group has about 71 classes. The Miscellaneous industry group has about 49
classes.
108As will be seen, the estimation process is sufficiently imprecise that this simplification
is appropriate.
109Nevertheless, the pure premiums are relative to the entire industry group, regardless
of size of class.
110The details of how the expected losses were estimated for each class for each year are
described in Appendix C.
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FIGURE 10

category:111

Cov[Ric,Rjc](
.k
c=1

+
PicPjcRicRjc.k

c=1

+
PicPjc

%
.k
c=1PicRic.k
c=1Pic

.k
c=1PjcRjc.k
c=1Pjc

:

(7.2)

The payrolls Pic have been used as weights, in order to take
into account the fact that for some classes the volume of data
may be radically different by year. The variances are estimated
in the same manner. Then as usual the estimated correlations are:

Corr[Ric,Rjc] = Cov[Ric,Rjc]=
+
Var[Ric]Var[Rjc]: (7.3)

For example, Figure 10 shows the observed correlations for
the Manufacturing classes with expected annual losses between

111Recall that Cov[X,Y] = E[XY]%E[X]E[Y].



CREDIBILITY WITH SHIFTING RISK PARAMETERS 535

$300,000 and $1 million. There are a total of 61 such classes.
With 13 separate years of data, we can estimate (13)(12)=2 =
78 correlations. These correlations correspond to a separation
of between one year and twelve years. We note considerable
random fluctuation. Nevertheless, as the separation grows the
correlations tend to decline.

7.4. Fitting Regressions to Correlations, Estimating °, ½, I, and J

Figure 10 shows the results of fitting a linear regression to the
logs of these correlations. The fitted curve is (approximately)
y = (:46)(:94x). The y-intercept is .46, and the decline rate or
slope is .94.

Thus, we might estimate for this size of class the decline rate is
about .94.112 In the assumed covariance model this corresponds
to some sort of weighted average of ° and ½, with the weights
depending on the size of risk E and the variances g2 and r2.

On the other hand the intercept of .46 represents an estimate
of the credibility (of a single year of data) in the absence of
shifting risk parameters. That is, using Equation 4.15,

E+ I
E(1+ J)+ I+K

( :46 for E ( $650,000:

Similar regressions were fit to the correlations for various
size categories. However, in order to improve stability, the cor-
relations for the same separations were first averaged.113 So for
example, the 12 correlations for one year of separation in Fig-
ure 10 average to .498. Then a weighted regression was fit to

112The slope of the log-correlations is about ln :94.
113The averaging of the correlations prior to the regression versus time lag is not nec-
essarily the best procedure to employ in this particular application, let alone in general.
Ideally one would identify the variables causing the wide dispersion in observed corre-
lations between individual years of data, as seen, for example, in Figure 10. However,
I was unable to do so, beyond convincing myself that some substantial portion of this
dispersion was a result of the process variance inherent to a data set of this size. While for
the illustrative example here the technique used seems sufficient, it would be preferable
to find a technique that directly makes use of all the available data. This is a potential
area for future research, which could lead to a sharper estimate of the time dependence.
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the logs of these average correlations,114 with weights equal to
the number of observed correlations of that separation. For data
shown in Figure 10, this would result in a very similar fitted
curve:115 y = (:46)(:94x).

The results for the Manufacturing industry group, for six size
categories with substantial number of classes are:

Expected Annual Losses
($000) Number of Classes “Slope” Intercept

10 to 30 22 1.109 .075
30 to 100 40 .758 .329
100 to 300 37 .979 .375
300 to 1,000 61 .944 .469
1,000 to 3,000 50 .977 .744
3,000 to 10,000 13 .887 .911

The intercepts reflect a general pattern of increasing credi-
bility with size of class, as expected. The smallest and largest
size categories have too few classes to reliably estimate correla-
tions.116 Thus one should not rely on the estimated slopes; the
estimated intercepts for these categories are less reliable than
those for the other size categories.

For the four size categories with a large number of classes,
there is some indication that the “slope” is closer to unity for
large classes than for small classes. This data provides a weak
indication that the risk parameters of larger classes shift more
slowly than those of smaller classes.

The results of fitting regressions to the correlations of two
size categories for Goods and Services classes are:

114If the average correlation was negative as occasionally happened, that separation was
not included in the regression.
115The curve is the same in this case to the number of decimal places displayed.
116Also for the smallest size category, there is a lot of random fluctuation in the pure
premiums of the classes.
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Expected Annual Losses
($000) Number of Classes “Slope” Intercept

100 to 1,000 38 .938 .605
1,000 to 10,000 38 .994 .837

The same general pattern applies, but with only two size cat-
egories we cannot infer much.

As discussed in Section 5.2, we expect the decline rate of the
correlations to be approximately (E½+ I°)=(E+ I). Note that this
actually applies only when E +. For E ) the decline rate of
the correlations should be approximately (½+ I°)=(+ I).117

In any case, the largest classes should have a decline rate near ½,
while the smaller classes have a decline rate closer to °.

From the data for these two industry groups,118 we might esti-
mate that the largest classes have a decline rate for correlations of
about .98; thus we might estimate ½( :98. The smaller classes
might have a decline rate below .90; thus we might estimate
° ( :85. Note that ½ corresponds to a half-life of 34 years, while
° corresponds to a half-life of about 4 years. There is clearly a
great deal of uncertainty in these estimates.119

The midway point at which the decline in the correlations is
between ½ and ° is even harder to estimate. As discussed in Sec-
tion 5.2, we expect this midway point to be at about I. For illus-
trative purposes estimate this as $100,000, so that I ( $100,000.
As discussed previously in Section 4.5, the maximum cred-

ibility in the absence of shifting risks parameters for one year
of data is 1=(1+ J). Thus, if J were .1, the intercepts would ap-

117For the parameters selected in this section (½+ I°)=(+ I) = ((50,000)(:98)+
(100,000)(:85))=(50,000+100,000) = :89.
118We ignore here the real possibility that the covariance structure might differ signif-
icantly among different industry groups, since this data is well short of being able to
distinguish if that is the case.
119Better estimates would require looking at similar data from a large number of indi-
vidual states, each of reasonable size.
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proach 1=1:1 = :909 for large risk sizes. While it is unclear from
this limited data precisely what that maximum intercept is, it is
almost certainly greater than .85. Thus, J is probably .15 or less.
In any case, for illustrative purposes J = :10 will be used.

7.5. Estimating K

The estimates of J and I, together with the intercepts by size
of risk, can be used to estimate the value of K. In the absence of
shifting risk parameters, the credibility for a single year of data
is given by Equation 4.15:

Z =
E+ I

E(1+ J)+ I+K
, E +:

Thus,

K =
,
1
Z
%1

-
(E+ I)% (JE): (7.4)

Given an estimate of Z from the intercept, for a size E, and
the previously estimated I = $100,000 and J = :10, we can esti-
mate K.

We get the following estimates:

Estimated
Industry Group Size120 (000) Intercept K ($000)

Manufacturing 20 .075 1,478
Manufacturing 65 .329 330
Manufacturing 200 .375 480
Manufacturing 650 .469 784
Manufacturing 2,000 .744 523
Manufacturing 6,500 .911 %5

Goods & Services 550 .605 369
Goods & Services 5,500 .837 541

Recall that for Manufacturing the smallest and largest size
categories really do not contain enough classes to adequately

120Based on the midpoint of the size category.
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quantify the intercept. In any case, for the largest size category,
the estimate of K is extremely sensitive to the selection of J . For
the smallest two size categories, Equation 5.9 rather than Equa-
tion 5.8 is likely to hold, since E ); thus the above estimate
of K using the two smallest categories is likely to be invalid.
Averaging the middle three size categories for Manufacturing
plus the two size categories from Goods and Services, we get
K ( $500,000. This value of K will be used for illustrative pur-
poses.

7.6. Selecting 

Finally, we must select , the value below which the classes
are homogeneous; i.e., there is no significant impact from risk
heterogeneity below size . Conceptually, this is the size at
which a class is likely to be made up of one significant sized
employer.121 On the other hand, it was seen before that choosing
 somewhere close to I produces a smooth decline in credibil-
ities.

For illustrative purposes choose  = $50,000. This corre-
sponds for this data set to somewhere between 50 and 75 full-
time employees.122

In the absence of shifting risk parameters over time, Equation
4.25 gives the credibility for one year of data as:

Z =
E

(1+ J ,)E+K ,
, E ) = $50,000

where

J , = J
,



I+

-
= (:10)

,
50
150

-
= :033 and

121While situations where the data for a class comes from one significant employer are
not common, they do occur.
122Assuming reported losses (at unit statistical plan level) of about 2.5% of payrolls and
a State Average Weekly Wage of about $600, 65 full-time employees have $50,700 in
expected annual losses.
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K , = K
,



I+

-
= 500,000

,
50
150

-
= $166,667:

For E = $20,000,

Z =
20

((1:033)(20)+166:667)
=

20
187:3

= 10:7%:

This compares to the estimated intercept of .075. Given the un-
certainty of the estimated parameters, the uncertainty of the es-
timated intercept, and the approximate nature of the regression
relation itself, these values of .107 and .075 are not inconsistent.
Getting a somewhat more precise estimate of  would require
analyzing data from many states over many years.

With all these caveats, we have estimated the essential features
of the covariances. Equation 5.10 states for

+
EiEj +:

Cov[Xi,Xj] = r
2
0
½$i%j$+ I°$i%j$=

+
EiEj + ±ij

1
K=
+
EiEj + J

23
,+

EiEj + :

Similarly Equation 5.11 states that for
+
EiEj ) :

Cov[Xi,Xj] = r
2
0
½$i%j$+ I°$i%j$=+ ±ij

1
K=
+
EiEj + J

23
,+

EiEj ) :

In both cases there is a factor of r2 that multiplies the covari-
ances that does not affect the credibilities.

7.7. Illustrative Credibilities, No Weight to Overall Mean

We can use Equations 5.10 and 5.11 together with the values
of the parameters estimated in the previous section to estimate the
covariances. These in turn can be used to estimate the credibilities
using Equations 6.7 (for the case where no weight is being given
to the mean).
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The following illustrative values will be used to calculate cred-
ibilities:
½= :98 (rate of shifting parameters related to

class homogeneity),

° = :85 (rate of shifting parameters related to
class heterogeneity),

I = $100,000 (related to class heterogeneity),

J = :10 (related to parameter uncertainty),

K = $500,000 (Bühlmann credibility parameter, related to
process variance), and

 = $50,000 (size limit for class homogeneity):

For example, for years 1, 2, 3 and 4 being used to predict year
8, with each year of data having $1 million in expected losses,
Equations 6.7 become:

1:7Z1 +1:065Z2 +1:0327Z3 +1:0026Z4 = :9002+¸=2,

1:065Z1 +1:7Z2 +1:065Z3 +1:0327Z4 = :9236+¸=2,

1:0327Z1 +1:065Z2 +1:7Z3 +1:065Z4 = :9483+¸=2,

1:0026Z1 +1:0327Z2 +1:065Z3 +1:7Z4 = :9746+¸=2,

and Z1 +Z2 +Z3 +Z4 = 1,

with solution:123

Z1 = 21:08%,

Z2 = 21:98%,

Z3 = 25:34%, and

Z4 = 31:60%:

Note that since no weight is given to the overall mean, the
credibilities have been constrained to add up to 100%.

123The Lagrange Multiplier is .5416.
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FIGURE 11

The credibilities assigned to ten individual years are shown
in Figure 11 for various size classes, for years 1,2, : : : ,10 being
used to predict year 14. Note here it has been assumed that the
credibilities are constrained to add to unity. Thus, the default
weight is 10% to each of the ten years. However, as the classes
get bigger and bigger we can make the estimation process more
responsive and give more weight to the more recent data.124 For
$10 million dollars in expected annual losses the most recent year
gets about 38% of the weight. For small classes, we must use a

124The most distant year gets a slight amount of extra weight, due to the “edge effect.”
Year 1 contains valuable information about Year 0 due to the fact that they are correlated.
Therefore, by giving a little more weight to Year 1, one gets some of the same benefit as
if Year 0 were in the database. While, for example, Year 3 contains valuable information
about Year 2 and Year 4, Years 2 and 4 are already in the database. In general, with
shifting risk parameters over time, the most distant year(s) should receive somewhat
more weight, due to this edge effect, than they would otherwise receive. In Figure 11 for
$10 million in Expected Annual Losses, as one goes to more distant years, at the edge
the graph of credibilities bends slightly upwards rather than continuing to decline.
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more stable method and give every available year of data sig-
nificant weight. However, for small classes the parameters shift
more quickly and thus there is a counter-balancing tendency to
weight these older years less than more recent years. Neverthe-
less, for $10,000 in annual expected losses the weights are all
about 10%.

7.8. Illustrative Credibilities, Weight to Overall Mean

We can use Equations 5.10 and 5.11 together with the values
of the parameters listed in Section 7.7 to estimate the covari-
ances. These in turn can be used to estimate the credibilities
using Equations 2.4, for the case where the complement of cred-
ibility is being given to the overall mean.

Assuming years 1,2, : : : ,10 are being used to predict year 14,
the credibilities assigned to the given years are shown in Figure
12. Larger sizes give more weight to recent years as well as more
total credibility. Figure 13 shows the sums of the credibilities
assigned to different classes. For ten years of data, the larger
size classes are assigned up to 90% credibility.125 The credibility
goes to zero as the size of class goes to zero.126 Also shown are
the results for three years and one year of data.

The class (expected) pure premiums within an industry group
can easily vary by a factor of ten from lowest to highest. Thus, the
average industry group pure premium, or equivalently a relativity
of unity, is not a very good predictor for most classes. Therefore,
the credibilities assigned to the classification data are relatively
large. Assigning the complement of credibility to the average
pure premium for the industry group, as illustrated here, is not
generally done in practice.

125Without shifting risk parameters, the maximum credibility would be Y=(Y+ J) =
10=10:1 = 99%. With 10 years of data and J = :1, the effects of parameter uncertainty
are not very significant.
126Since we’ve assumed no risk heterogeneity below size .
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FIGURE 12

An alternative would be to work with loss ratios to premiums
at current rates, as is done in Meyers [25]. Then the complement
of credibility is given to the loss ratio for the industry group;127

i.e., each class rate is changed by the industry group average
rate change. This follows the general practice and is equivalent
to giving the complement of credibility to the prior estimated
relativity for each class.

7.9. Using Prior Estimates of Relativities

Assume that we have been estimating classification relativities
for a long time. Then we might weight together the estimated
relativity for each class based on the most recent data and the

127Meyers does not appear to divide the classes into industry groups. However, the tech-
nique presented could be applied equally well to industry groups. We would have to take
a little more care in estimating the Bühlmann credibility parameters.
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FIGURE 13

prior estimate of the relativity for that class. The issue is how
much weight to apply to each of these estimates.

While there are other ways to think of this problem, we could
fit it into the current framework by assuming some very long
series of data, for example 50 years.128 Then as in Section 7.7,
we can compute the credibility to be assigned to each of these
50 years of data (with no weight to the overall mean). If three
years of recent data are being used, then we can assign as the
weight to the prior estimate the sum of the credibilities for the
47 less recent years.

For example, using the values from Section 7.7, for $1 million
in expected annual losses, for years 1,2, : : : ,50 being used to

128In the case of a workers compensation rating bureau, classification relativities have
been estimated for about 80 years.
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FIGURE 14

predict year 54, years 48, 49, and 50 have credibilities of: 11.8%,
16.3% and 22.8%. The prior estimate would be assigned a weight
of 100%% (11:8%+16:3%+22:8%) = 49:1%.

Figure 14 shows the weight assigned to the most recent three
years of data as the expected annual losses vary. The recent data
for large classes gets less than 100% credibility; both the prior
estimate and that from the recent data are assumed to be good
estimators for large classes. The recent data for small classes
gets considerable credibility; the prior estimate as well as that
from the recent data are assumed to be poor estimators for small
classes.

Note that the credibility curve in Figure 14 has a discontin-
uous derivative at the point  = 50,000. This will be typical as
we switch from Equations 5.10 for the covariances to Equations
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5.11, as we go from a size where risks are generally heteroge-
neous to one where risks are generally homogeneous.129

7.10. General Effect of Differences in the Maturity of the Data

Conceptually the goal has been to estimate the expected future
class relativity at ultimate report. Assume, as in Figure 11, we
were predicting year 14 using data from years 1 to 10. Then we
expect that year 1 at 10th report would be a better predictor of
year 14 at ultimate than would year 1 at 5th report. Year 1 at
5th report is in turn a better predictor than year 1 at 1st report.
Generally, the more mature the data from a single given year
the better predictor of the future ultimate losses we expect it to
be.130

Thus, actuaries will usually rely upon the latest available re-
port for each year of data. In the case of the workers compensa-
tion classification example, we would have years 1 to 6 at fifth
report,131 year 7 at fourth report, year 8 at third report, year 9 at
second report, and year 10 at first report.

In the example in Section 7.7, there is no weight to the overall
mean; the credibilities assigned to the data sum to 100%. Thus
in that situation, the credibilities reflect how good an estimator
each year is relative to the others. If each of the ten years of data
were at the same report, their relative value as estimators would
be unaffected by maturity.

However, year 10 is only at first report while years 1 through
6 are at fifth report. Therefore, the tenth year of data is a poorer
estimator relative to the other years than if it were available at
fifth report. Thus, we should give year 10 somewhat less cred-

129In the model this switch is abrupt, leading to the discontinuous derivative of the
credibility. While we could refine the model to make this derivative continuous, this
would seem to be unlikely to have any practical significance.
130Thus, there is a dilemma. We prefer more recent years of data in order to minimize
the impact of shifting risk parameters, but we also prefer more mature data. Section 9
discusses this from the point of view of an overall rate indication.
131Usually workers compensation classification data is only collected up to fifth report.
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TABLE 4

CORRELATIONS BETWEEN REPORTS OF CLASSIFICATION
RELATIVITIES

Various Size Classes, Based on Annual Expected Losses ($000)

10 to 30 (19 classes) 30 to 100 (28 classes)

2nd 3rd 4th 5th 2nd 3rd 4th 5th

1st .783 .757 .914 .834 .850 .754 .656 .624
2nd .978 .849 .805 .860 .745 .730
3rd .835 .783 .839 .809
4th .949 .898

100 to 300 (39 classes) 300 to 1,000 (52 classes)

2nd 3rd 4th 5th 2nd 3rd 4th 5th

1st .863 .814 .822 .800 .879 .830 .809 .799
2nd .935 .945 .917 .968 .945 .927
3rd .957 .929 .980 .964
4th .975 .975

1,000 to 3,000 (49 classes) 3,000 to 10,000 (22 classes)

2nd 3rd 4th 5th 2nd 3rd 4th 5th

1st .955 .924 .902 .884 .970 .964 .947 .939
2nd .962 .946 .932 .980 .971 .965
3rd .977 .965 .988 .977
4th .986 .992

For each of five composite policy years, 84/85, 85/86, 86/87, 87/88 and 88/89, class relativities were
calculated for the Manufacturing industry group. Then for each year, for classes in a given size
category, correlations were calculated between the relativities at two different reports. The correlation
matrices displayed here are an average of the five separate correlation matrices, one from each year.

ibility than was calculated in Section 7.7, while other years are
assigned somewhat more credibility.

7.11. Correlations Between Differing Maturities

This effect of the differing maturities of data will be estimated
by examining the correlations between class relative pure premi-
ums from the same year of data but at different maturities. These
correlations are calculated using Equation 7.2, where a difference
in maturity is substituted for a difference in year. Table 4 dis-
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plays correlation matrices for various size categories of classes
from the Manufacturing industry group.132 So, for example, for
classes with expected annual losses between $300,000 and $1
million, the correlation between class relativities calculated from
the same year of data at second report and fourth report is .945.
In contrast, that between first and fifth report is .799. As ex-
pected, since more development occurs between first and fifth
reports than between second and fourth report, the classification
relativities are less highly correlated.133

In general, it is expected that the more loss development be-
tween two reports, the smaller the correlation of the relativities.
The observed loss development factors (LDFs) were:134

1st to 2nd 1:249
2nd to 3rd 1:123
3rd to 4th 1:059
4th to 5th 1:040

Also, we expect that the relativities for smaller classes will be
more affected by the random fluctuations caused by loss devel-
opment. Therefore, the smaller the size category, the smaller the
correlation of the relativities for different reports.

The simplest type of model would be one in which the cor-
relation was some linear function of the class size and the loss
development factor between reports. Since I was unable to find
a useful model of that type, instead I first took the log of both
the loss development factor and the correlation. Then I examined
linear models involving the ln (correlation), ln (LDF), and size
of class.

132Each correlation matrix is the average of five correlation matrices calculated for com-
posite policy years 84/85, 85/86, 86/87, 87/88 and 88/89. A composite policy year in-
cludes July 1 to June 30.
133First and fifth report are further apart so that their correlation has more opportunity
to decline from unity.
134For the Manufacturing industry group, for composite policy years 84/85, 85/86, 86/87,
87/88 and 88/89. All data was included independent of the size of class. Recall that the
losses are paid plus case reserves.
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One model of the relation of the correlations to the develop-
ment that will have the desired properties is:135

ln(Correlation) =% ln(LDF)=(Linear Function of Size)
% ln(LDF)= ln(Correlation)

= Linear Function of Size: (7.5)

This model has the desired property that the correlation is 1
when the LDF is 1.136 If the right hand side of Equation 7.5
is positive, then the correlation decreases as the amount of de-
velopment increases. If the right hand side of the Equation 7.5
increases with size of class, then as desired the correlations will
be closer to unity for larger classes.

For the data in Table 4, we can compute the ratio of the
% ln(LDF)= ln(correlation). For example, for the second to fourth
report the LDF is (1:123)(1:059) = 1:189. For the size category
$300,000 to $1 million in expected annual losses, the corre-
lation between 2nd and 4th report is .945. Thus, % ln(LDF)=
ln(correlation) = (% ln(1:189)= ln(:945)) = 3:06.
Averaging over each correlation matrix we obtain by size of

risk:137

Size
($ million) % ln(LDF)= ln(correlation)

.02 1.76

.065 .76

.2 1.88

.65 2.38
2.0 3.35
6.5 6.20

135For a given size of risk this model assumes the correlations decline as per a constant to
the power of the “effective time” between reports. The “effective time” between reports
is taken as the logarithm of the loss development factors.
136In lines of insurance where salvage and subrogation are significant, the loss develop-
ment factor can be less than unity. Equation 7.5 would not apply.
137Expected Annual Losses for the midpoint of the size category.
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A least squares linear regression would give

1:57+ :73 (Size=1 million):

Let,
c=% ln(LDF)= ln(correlation):

Then,

correlation =
,

1
LDF

-1=c
:

If we take for illustrative purposes:

c = 1:5+ :75 (Size=1 million),

then substituting into Equation 7.5 gives

correlation = 1=LDF1=(1:5+:75 (Size/1 million)): (7.6)

For example, for the size category $300,000 to $1 million
if we take a size of $650,000 equivalent to the midpoint, then
Equation 7.6 gives an estimated correlation of 1=LDF:5. For ex-
ample, for the 2nd to 4th report the LDF is 1.189. Thus, for this
size category the model correlation is about .91. (The observed
correlation is .945.)

Table 5 displays the model correlations between reports for
classes of various sizes. While the particular model represented
by Equation 7.6 should be taken as solely for illustrative pur-
poses, the general pattern of correlations in Table 5 is what we
would expect. For a given report interval, the larger the class
the higher the correlation. For a given size of class, the more
development in a report interval, the lower the correlation. This
pattern of correlations can be incorporated into the calculation
of credibilities.

7.12. Credibilities Taking Into Account Differing Maturities

Returning to the example in Section 7.7, we can incorporate
the impact of the differences in maturity. Given years 1 through 6
at fifth report, year 7 at fourth report, year 8 at third report, year
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TABLE 5

CLASSIFICATION RATE RELATIVITIES
MODEL CORRELATIONS BETWEEN REPORTS

Expected Annual Losses ($000)

Reports 20 65 200 650 2,000 6,500

1 vs. 2 .864 .866 .874 .894 .929 .966
1 vs. 3 .800 .804 .815 .843 .893 .948
1 vs. 4 .770 .775 .787 .819 .876 .940
1 vs. 5 .750 .755 .768 .803 .865 .934
2 vs. 3 .926 .928 .932 .943 .962 .982
2 vs. 4 .892 .894 .900 .916 .944 .973
2 vs. 5 .869 .872 .879 .899 .932 .967
3 vs. 4 .963 .964 .966 .972 .981 .991
3 vs. 5 .938 .940 .943 .953 .968 .985
4 vs. 5 .974 .975 .977 .980 .987 .994

9 at second report and year 10 at first report, we try to predict
year 14 at fifth report.

For a class with expected annual losses of $1 million, Equa-
tion 7.6 estimates the correlation between classification relativi-
ties at different reports as 1=LDF:444. For 2nd to 4th report, the
estimated correlation is (1:189)%:444 = :926. Prior to taking into
account the differences in maturity, the model covariance be-
tween year 7 and year 9 was 1.033.138 It will be estimated that
the covariance between year 7 at 4th report and year 9 at sec-
ond report will be lower by a factor of the correlation139 .926;
(:926)(1:033) = :957.

The other model covariances involving at least one year of
data at prior to 5th report are similarly adjusted.140 (The vari-

138For r2 = 1, $1 million in expected annual losses, and the parameters in Section 7.7.
139This is an approximation based on an assumption that the impact of maturity is largely
independent of the other factors previously considered.
140For purposes of adjustment it was assumed Year 14, the year to be predicted, was at
5th report. If one assumed instead for example 20th report, all the covariances involving
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ances along the diagonal of the variance-covariance matrix are
unaffected.) The least squares credibilities differ from those ob-
tained in Section 7.7:141

CREDIBILITY FOR CLASS WITH $1 MILLION IN EXPECTED
ANNUAL LOSSES

Taking into Account
Year, Report Section 7.7 Differences in Maturity

1@5th 5.8% 6.7%
2@5th 5.2 6.2
3@5th 5.1 6.4
4@5th 5.4 7.1
5@5th 6.2 8.6
6@5th 7.7 10.8
7@4th 9.8 11.5
8@3rd 13.0 12.7
9@2nd 17.6 13.9
10@1st 24.2 16.0

As expected, more mature years of data are given more cred-
ibility than previously while less mature years receive less. For
example, the data from year 10 at first report gets 16.0% cred-
ibility compared to the 24.2% credibility calculated in Section
7.7.

Figure 15 displays the credibilities for other size classes. The
credibilities shown in Figure 15 that take into account differ-
ences in maturity can be compared to those in Figure 11, which
ignore these differences. While the precise impact depends on the
particular amount of loss development and the particular model
used to estimate the correlations, the general pattern displayed
here should occur in most situations.

The weights which would otherwise be given to immature
years of data should decrease significantly for larger size classes.

Year 14 would be lower by the same factor but the resulting credibilities would all be
the same, since they’ve been constrained to sum to 100%.
141As shown in Figure 11.
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FIGURE 15

For smaller classes the weights assigned to recent years are al-
ready close to the default weight, in this case 10%, so taking
into account their immaturity only produces a small decrease in
the weight they would otherwise receive. In all cases, the more
mature years of data receive more weight than when we ignored
maturity. In this example, the largest increase in weight occurs
for year 6, which is the most recent year which is available at
“ultimate.”142

So while taking into account shifting risk parameters over
time tends to give more weight to recent years, taking into
account the difference in maturity tends to counterbalance that
tendency somewhat.143 This will be true for overall ratemak-

142In this example, fifth report is the ultimate report actually received of Unit Statistical
Plan data, even though there is loss development beyond fifth report.
143An example is given in Section 9 in which the most recent year of data is so immature
it is given very little weight.
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ing and experience rating as well as for classification ratemak-
ing.

8. USE OF DATA FROM OTHER STATES

In estimating the classification relativities in a given state one
may supplement the data from that state with data from other
states, as in Harwayne [24].

8.1. Use of Data from One Other State

As a simple example, assume we are estimating Massachusetts
relativities and will use New York experience in addition to that
from Massachusetts. The key assumption is that the underlying
expected class relativities in New York are similar to those in
Massachusetts. Thus, observed relativities in New York are use-
ful for predicting future relativities in Massachusetts. However,
all other things being equal, a given volume of New York data is
assumed to be less useful in predicting Massachusetts relativities
than would be similar data from Massachusetts.144 Thus, we ex-
pect that in this case the credibilities assigned to a given volume
of data will be less for New York data than for Massachusetts
data.

There are three steps to calculating the credibilities to as-
sign to the years of data from Massachusetts and New York.
First, we must model the covariance structures. Second, we
must estimate the parameters in the covariance structures. Third,
we must use these covariances together with the appropriate
set of linear equations, in this case Equations 8.1, in order to
solve for the credibilities. In this case, the first two steps will
build on the results on classification relativities obtained in Sec-
tion 7.

144Similarly, New York data would be more useful for predicting New York relativities
than would data from Massachusetts.
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8.2. Covariance Structure, Use of Data From One Other State

There are three types of variance-covariance matrices. The
first type involves covariances between data from Massachusetts:
Sij = covariances within Massachusetts. The illustrative values
from Section 7.7 will be used for these covariances. The sec-
ond type involves covariances between data from New York:
Tij = covariances within New York. For a given volume of data,
assume a similar covariance structure within New York to that
estimated for Massachusetts; the illustrative values from Section
7.7 will therefore be used for the covariances within New York,
Tij.

The third type of covariance is that involving data from Mas-
sachusetts versus data from New York: Uij = covariances be-
tween Massachusetts and New York. It is expected that for a
given volume of data, the correlation of relativities between states
is less than the correlation of relativities within states. This is
what is observed.

8.3. Estimating Parameters, Between State Covariances

Classification data for Massachusetts, New York and several
other large states was examined as discussed in Appendix F. Cor-
relations of classification relativities between states were calcu-
lated for classes in various size categories for both the Manufac-
turing and the Goods and Services industry groups.

Based on the analysis discussed in Appendix F, with three ex-
ceptions the same parameters will be used for the interstate and
intrastate covariances. The K parameter, related to the expected
value of the process variance, will be zero for the interstate co-
variances. The J parameter, related to parameter uncertainty, will
be selected for the interstate covariances as half of the intrastate
J parameter.145

145The credibilities are relatively insensitive to this choice.
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The r2 parameter, setting the scale for the covariances, will
be taken for the interstate covariances as 70% of its value for
the intrastate covariances.146 This will result in correlations of
relativities between states that are lower than those within a state,
all else being equal.

For the covariances the following inputs are used:147

Intrastate Interstate

r2 1 .7
½ .98 .98
° .85 .85
I 100,000 100,000
J .10 .05
K 500,000 0
 50,000 50,000

8.4. Equations for Credibilities, One Other State

Assume we are trying to estimate class relativities in Mas-
sachusetts, without any weight to the overall mean. Let Zi be the
weight applied to the Massachusetts data and letWi be the weight
applied to the New York data. Then §Zi+§Wi = 1, since there
is no weight given to the overall mean. As shown in Appendix
E, if we use Y years of data from each state, in order to predict
year Y+¢, we obtain 2Y+1 equations in 2Y+1 unknowns:148

146The relative size of the interstate and intrastate covariances affects the calculation of
credibilities. However, there is still an arbitrary choice of overall scale which does not
affect the credibilities.
147The r2 values contain an arbitrary scale factor. Since it is only their relationship that
affects the credibilities, the actual r2 values have not been estimated. Unlike Section 7.12,
no adjustment is made for differing maturities here. Such an adjustment in the case of
more than one state would parallel that for a single state as shown in Sections 7.11 and
7.12.
148There are YZ’s, YW’s, plus the Lagrange Multiplier ¸. The equations would be some-
what different if the years for which we have Massachusetts data and New York data are
not the same. Appendix E gives an example.
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(8.1)

where the covariance matrices are:

Sij = covariances within Massachusetts,
149

Tij = covariances within New York,
150

Uij = covariances between Massachusetts and New York:
151

8.5. Illustrative Credibilities, One Other State

For example, assume we are estimating year 54 class relativi-
ties in Massachusetts using data from years 1 to 50, with $1 mil-
lion of expected annual losses in Massachusetts and $5 million
of expected annual losses in New York. Then using Equations
8.1 the most recent three years of Massachusetts data would be
given credibilities of 9.7%, 13.3% and 18.6%, while the three
most recent years of New York data would be given credibilities
of 2.5%, 7.0% and 15.3%. We could give the prior estimate the
remaining weight of 33.6%.

8.6. Using Data From Several Other States

This example where the data from one outside state is used
can be extended to one where data is used from several other
states. Assume for simplicity that “countrywide data” is from

149More generally within the state for which we are trying to estimate class relativities.
150More generally within the supplementary data from outside the state of interest.
151More generally between the data from the state of interest and the data from outside
the state of interest.
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ten states, other than the state for which we are estimating class
relativities.

Let C be the covariance matrix within states, whileD is the co-
variance matrix between states.152 Assume for simplicity that for
a given volume of data, C is the same in each state and D is the
same for each pair of states. Assume that the “countrywide data”
is the average of data from ten states, each with a volume of data
Ẽ=10. Let the covariance matrix between two non-Massachusetts
states be D, and the covariance within a non-Massachusetts state
be C,. Then the covariance between the countrywide data is the
sum of 100 terms, 90 of which are between states, D,, and 10
of which are within states, C,.153 The covariance between the
countrywide data is therefore (90D,+10C,)=100 = :9D,+ :1C,.
In general, if we had data from n other states each of the same
size, the covariance between the countrywide data would be
((n%1)D,+C,)=n.
We have assumed D, <C,, so that :9D,+ :1C, <C,. Due to

the lack of homogeneity of the countrywide data, its covariance
is less than that for an equivalent volume of data all from a single
state.

The covariance of the countrywide data154 with Massachusetts
is just the average of ten similar terms all involving the covari-
ance between the states.155 Thus, the covariance between Mas-
sachusetts and the countrywide data is D.

In summary, for C and D calculated for the appropriate vol-
umes of data for the state(s) involved:

Sij = covariances within Massachusetts = C,

152Both C and D are a function of the volume of data in the state(s).
153Cov[ 110 "Y1 +Y2 + - - -+Y10#, 110 "Y1 +Y2 + - - -+Y10#] = 1

100 "Cov[Y1,Y1]+Cov[Y1,Y2]+
Cov[Y1,Y3]+ - - -Cov[Y10,Y10]#.
154The state of interest, in this case Massachusetts, is assumed to be excluded from the
countrywide data.
155Cov[X, (Y1 +Y2 + - - -+Y10)=10] = 1

10 "Cov[X,Y1]+Cov[X,Y2]+ - - -+Cov[X,Y10]#.
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Tij = covariances within Countrywide
156 = :1C,+ :9D,,

Uij = covariances between Massachusetts and Countrywide

=D:

8.7. Illustrative Credibilities, Data From Several Other States

These covariances can then be used in Equations 8.1, in or-
der to solve for the credibilities. For example, assume we are
estimating year 54 class relativities in Massachusetts using data
from years 1 to 50, with $1 million of expected annual losses in
Massachusetts and $1 million of expected annual losses in each
of ten other states. Then using Equations 8.1, the most recent
three years of Massachusetts data would be given credibilities of
8.5%, 11.0% and 14.9%. The most recent three years of country-
wide data would be given credibilities of 1.8%, 9.8% and 28.5%.
The remaining weight of 25.5% could be given the prior estimate
of the class relativity.157

Figure 16 shows for a fixed amount of countrywide data, how
the credibilities vary as the volume of data in Massachusetts
changes. Since in Figure 16 there is assumed to be $100,000
in expected annual losses in each of ten states other than Mas-
sachusetts, there is sufficient countrywide data to get a reasonable
estimate of the class relativity. When there is very little Mas-
sachusetts data, for example $3,000 in expected annual losses,
then the most recent three years of Massachusetts data are given
virtually no weight,158 while the most recent three years of coun-

156This is for the case where “countrywide” data consists of 10 equal sized states. In
general, the covariance of countrywide data will be some mixture of C and D covariance
matrices.
157It should be noted that for this case, many older years of countrywide data are given
negative weight. As a practical matter these weights could be set equal to zero and the
weights given to more recent years of countrywide data could be reduced accordingly.
This would increase the weight given to the prior estimate.
158This is in contrast to Figure 13 where, in the absence of the use of countrywide data,
the Massachusetts data was given small but significant weight.
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FIGURE 16

trywide data are given a weight of about 75%.159 As the volume
of Massachusetts data increases, while the volume of country-
wide data remains the same, the weight assigned to the most
recent three years of Massachusetts data increases up to about
75%, while that assigned to the countrywide data declines to
zero.

Figure 17 displays the credibilities assigned to the most re-
cent three years of data, for a fixed amount of Massachusetts
data while the volume of countrywide data varies. As the vol-
ume of countrywide data increases, the credibility assigned to
the most recent three years of countrywide data increases non-
monotonically to about 75%. The credibility assigned to the lat-
est three years of Massachusetts data (with $100,000 in expected

159The remaining weight is given to the prior estimate.
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FIGURE 17

annual losses) varies between 27% and 15% as the volume of
countrywide data varies.

Figure 18 displays the credibilities if Massachusetts and each
of ten other states all have the same expected annual losses for a
given class. As the size of class increases, the sum of the cred-
ibilities given to the most recent three years of Massachusetts
data increases to about 65%. As the size of class increases, the
sum of the credibilities given to the most recent three years of
countrywide data increases and then decreases, as for very large
classes the Massachusetts data is given more weight.

This behavior means that no simple formula for the amount
of credibility given to the countrywide data will be appropriate.
We must know how much data is available within the state of
interest, before we know how much credibility to assign to the
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FIGURE 18

countrywide data.160 If a simple formula such as the “square root
rule” or the “Bühlmann credibility formula” were to be applied
based solely on the volume of countrywide data, it would have
to be supplemented by some other restriction on the credibility
assigned to countrywide data. One commonly used rule of thumb
is to restrict the credibility assigned to the countrywide data to
be no more than:

(12)(1% credibility assigned to the state data):
Figure 19 displays the sensitivity of the credibilities to the

selected ratio of the interstate correlations to the intrastate cor-
relations. For values of this ratio close to the selected value of
70%, the credibilities are relatively insensitive. Note that if the

160The reverse is also true, but the credibility of the Massachusetts data is less sensitive
to the amount of countrywide data, as seen in Figure 16.
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FIGURE 19

intrastate and interstate correlations were equal, then each out-
side state would get the same 7.7% credibility161 as would Mas-
sachusetts.

9. A RATEMAKING EXAMPLE

This section will illustrate how the ideas in this paper might
be applied to the calculation of an overall rate indication.162 The
issue explored here is howmuch weight should be given to differ-
ent years of data. This example will illustrate how adjustments
to the data for trend, development, etc. will affect the optimal
weights.

Assume that for a given line of insurance the six most recent
years of data are being combined in order to calculate a rate

161For a sum of 77% for ten outside states.
162This is an expansion of an example in Mahler [20].
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indication. Specifically, assume we have loss ratios163 from pol-
icy years164 1991, 1992, 1993, 1994, 1995 and 1996, all as of
12/31/96, which will be used to get a rate indication for policy
year 1998.

9.1. Estimation Errors Due to Adjustments to Data

It is assumed that appropriate adjustments have been made to
each year’s data for development, trend, law changes, changes in
deductibles, etc.165 The necessity of these adjustments introduces
estimation error into the process. For example, if we had policy
year 1995 at ultimate rather than at first report, we could make
a more precise estimate of policy year 1998 at ultimate.

The important consideration for this illustrative example is
the pattern of errors for the different types of adjustments for
the different years. For purposes of simplicity only two types
of adjustments will be assumed. Development will be assumed
to have larger estimation errors for recent years. In particular
the “incomplete” policy year 1996 as of 12/31/96 will have an
extremely large amount of development to ultimate. Trend166

will be assumed to have larger estimation errors for more distant
years.

For example, assume the reported Policy Year 1993 losses at
12/31/96 were $90 million. Further, assume that the point esti-
mate167 of Policy Year 1993 losses at ultimate is $96 million.
This corresponds to a point estimate of the age to ultimate loss
development factor of approximately 1.067. However, there is
an error associated with this point estimate.

163The general ideas explored in this example would apply equally well to pure
premiums.
164The general ideas explored in this example would apply equally well to calendar years
or accident years of data.
165We assume that each of the adjusted loss ratios is intended to be an unbiased estimate
of the Policy Year 1998 loss ratio.
166For illustrative purposes this can be thought of as trend, law amendment and other
adjustments.
167Using data evaluated as of 12/31/96.
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For example, an interval estimate of these ultimate losses
might be $92 million to $100 million. This would correspond
to an interval estimate of the age to ultimate loss development
factor of approximately 1:067/ :044.
A 95% confidence interval corresponds to about plus or minus

two standard deviations. Therefore, this interval estimate of the
loss development factor could result from a standard deviation
of .022 or a variance of :0222 ( :0005. Any estimate is subject
to error and in general one can estimate the variance of any
estimator.168

Generally, estimation errors are quantified via variance-
covariance matrices.169 The covariances are introduced in order
to capture the fact that the estimation errors for the years are
usually positively correlated. If the development estimated for
1995 is too high, then it is likely that the development estimated
for 1994 is too high as well. Similarly, if the trend applied to
1993 is too high, that applied to 1992 is likely to be too high as
well.

Let D be the variance-covariance matrix quantifying the esti-
mation errors related to development. An illustrative example of
such a matrix is:

D=

67777777778

0 0 0 0 0 0
0 0 0 0 0 0
0 0 50 45 70 180
0 0 45 100 125 300
0 0 70 125 350 600
0 0 180 300 600 5,000

9:::::::::;
010%5

168See, for example, Klugman, Panjer and Willmot [8].
169The diagonal elements are the variances quantifying the estimation errors. In this case,
the element in the first row and second column is the covariance between the 1991 and
1992 errors. Readers may be familiar with the use of the inverse of the information
matrix as a variance-covariance matrix when estimating parameters of loss distributions
via the method of maximum likelihood. See, for example, Klugman, Panjer and Willmot
[8].
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The rows and columns correspond to the six years of data.
For example, the variance of the estimated age to ultimate loss
development factor of Policy Year 1993 is 50010%5.170 The co-
variance between the estimated age to ultimate loss development
factors for Policy Years 1993 and 1994 is 45010%5.
The particular values are chosen for illustrative purposes.171

While the values would vary considerably depending on the par-
ticular application, the general pattern is expected to apply. The
estimation errors for recent years are large,172 and there is a pos-
itive correlation between the estimation errors for the different
years.

Similarly, let T be the variance-covariance matrix quantifying
the estimation errors related to trend. An illustrate example of
such a matrix is:

T=

67777777778

350 292 240 192 150 110

292 300 247 198 155 114

240 247 250 201 157 115

192 198 201 200 156 115

150 155 157 156 150 110

110 114 115 115 110 100

9:::::::::;
010%5

For example, the variance of the estimated trend factor from
Policy Year 1994 to 1998 is 200010%5.173 The covariance be-

170Thus, the standard deviation is
4
500 10%5 = :022. If the point estimate of this loss

development factor were, for example, 1.067, then using two standard deviations would
result in an interval estimate of 1:067/ :044.
171In particular, for longer tailed lines of insurance there would still be considerable
development left for Policy Year 1991. In actual applications the actuary may have a
good idea of how accurate an estimate is likely to be and thus could judgementally select
a variance-covariance matrix.
172The error in developing the incomplete Policy Year 1996 is potentially extremely
large.
173Thus, the standard deviation is

*
:002 = :045. If the point estimate of this trend factor

were, for example, 1.148, then using two standard deviations would result in an interval
estimate of 1:148/ :090.
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tween the estimated trend factors to 1998 from 1994 and 1995
is 156010%5.
Again the particular values are chosen for illustrative pur-

poses. The pattern was chosen such that the estimation error
from trend is larger for more distant years and such that there is
a large positive correlation174 between the estimation errors for
different years.175

9.2. Covariance Structure for Years of Data

Next we need to assume a variance-covariance structure for
the year’s loss ratios in the absence of any estimation error. Let
this matrix be C. Then following the development in Mahler [1]
of shifting risk parameters, assume that C has the form:176

Cij = ±ije
2=
+
EiEj + r

2½$i%j$, where ±ij =

!
0 i != j
1 i= j

:

(9.1)

It is not necessary to know the source of e2, r2 and ½ in
order to proceed. However, it may be helpful to think of ½ as
the dominant eigenvalue (other than unity) of the transpose of
a transition matrix of a Markov chain, r2 as the variance of the
hypothetical means, and e2=

+
EiEj as the expected value of the

process variance.

In any case, ½ determines the rate of decline in the covariances
as the separation between years increases.177 So ½= :90 would

174For example, the correlation between the estimated trend factors to 1998 from 1994

and 1995 is 156=
4
(200)(150) = :90.

175A similar pattern would be expected for on-level factors to adjust for law amendments.
176This is the covariance structure in the presence of shifting risk parameters, equivalent
to Equation 3.16. If appropriate we could instead use one of the more complicated
covariance structures, for example Equations 5.10 and 5.11.
177For data from an individual insurer, one of the reasons that the covariances between
years declines as the separation increases may be nonrenewals of insureds. The higher
the lapse rate the faster the expected rate of decline in these covariances. As discussed in
Busche [26], the higher the lapse rate, the lower the weight given to older years of data.
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represent a more rapid decline than would ½= :99; the former
would correspond to more rapidly shifting parameters over time
than the latter.

The relative magnitudes of r2 and e2 will control how much
weight is given to distant versus recent years. The larger e2, the
more random noise there is in the data from any one year; when
e2 is large we must give each of the available years significant
weight. The smaller e2, the less random noise there is in the
data and larger weight can be given to more recent years and
insignificant weight to older years. When e2 is small, we can use
a more responsive method. When e2 is large we have to use a
more stable method.

If everything else is equal, the larger the volume178 of data
in a year, the smaller we expect the process variance of the loss
ratios to be. We assume the process variance is inversely pro-
portional to the volume of data.179 Thus, how responsive our
estimation method should be depends on the volume of data
available per year. If more data is available per year, then the
estimation method can be more responsive.

9.3. Credibilities

Assume we are estimating the year Y+¢ by weighting to-
gether years 1,2, : : : ,Y. Then as shown in Appendix B, the least
squares weights Zi, i= 1,2, : : : ,Y, with

.N
i=1Zi = 1, are the solu-

tion to the Y+1 Equations 6.7:
Y"
i=1

ZiVik =Vk,Y+¢+¸=2, k = 1,2, : : : ,Y and

Y"
i=1

Zi = 1:

(9.2)

178The measurement of the volume of data would depend on the particular application.
For example, it could be house-years, man-weeks, car-years, inflation adjusted sales, etc.
See Bouska [27].
179For this example, it has been assumed e2 is the same for each year.
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where V is the variance-covariance matrix and ¸ is the Lagrange
Multiplier.180

9.4. No Estimation Error

If we do not include any estimation error, then in our example
V =C, Y = 6 and ¢= 2. Thus, the Equations 9.2 become:

6"
i=1

ZiCik =Ck,8 +¸=2, k = 1,2, : : : ,6 and

6"
i=1

Zi = 1:

(9.3)

Given values for Ei, e
2, r2, and ½ we can use Equation 9.1 to

calculate the matrix C and then solve these linear Equations 9.3
for the weights Zi.

For example, with Ei = 1 for i= 1 to 8, e
2 = :005, r2 = :007

and ½= :90, we would get:

Z1 = 9:5%,

Z2 = 8:7%,

Z3 = 10:1%,

Z4 = 14:0%,

Z5 = 21:8%, and

Z6 = 35:9%:

Thus, as expected in the presence of shifting risk parameters,
the more recent years 1996 and 1995 get more weight, while the
earlier years 1991 and 1992 get less weight. Note that there is
an “edge effect.” The credibility assigned to 1991 is somewhat

180¸ is an auxiliary variable, whose value will not be of particular interest.
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FIGURE 20

larger than it would otherwise be, since it is assumed to contain
more unique information compared to 1992; the information con-
tent of 1992 is captured to some extent by the years 1991 and
1993 bracketing it on either side. The same “edge effect” applies
to 1996, raising its credibility weight somewhat.

Figure 20 displays what happens as we vary ½. As ½ ap-
proaches unity, parameters are shifting less rapidly, and there-
fore approximately equal weight is given to different years.181

As ½ approaches zero, parameters are shifting more rapidly, and
therefore less weight is given to the older years.

If we were to increase the expected value of the process vari-
ance, by taking E = 1

2, keeping e
2 = 0:005, r2 = :007 and ½= :90,

181Recall that for this illustrative example the volume of data for each year is assumed
to be the same.
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FIGURE 21

then the weights are:

Z1 = 11:7%,

Z2 = 11:4%,

Z3 = 12:6%,

Z4 = 15:5%,

Z5 = 20:5%, and

Z6 = 28:4%:

Compared to E = 1, with E = 1
2 (a smaller volume of data)

there is less weight given to more recent years and more weight
given to more distant years. Figure 21 displays what happens as
we vary E. As E (the volume of data) gets smaller, the weights
become more equal. As E gets larger, more weight is given to
recent years.
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9.5. Taking Into Account Estimation Error

We can now introduce the impact of estimation error. First
take the sum of the variance-covariance matrix discussed above
for Ei = 1 for i= 1 to 8, e

2 = :005, r2 = :007 and ½= :90, and D,
the assumed variance-covariance matrix for the estimation errors
associated with development.182

Vij = (:005)±ij +(:007):90
$i%j$+Dij , for i,j ) 6,

Vij = (:005)±ij +(:007):90
$i%j$, for i or j > 6:

For i or j > 6, the year is one whose losses we are trying to
estimate. Since we are trying to estimate ultimate losses there is
no additional development to be applied to those years. Thus,
there is no D term, or alternately Dij = 0 for i or j > 6.

Solving the Equations 9.2 for the weights we get:

Z1 = 18:4%,

Z2 = 18:7%,

Z3 = 16:5%,

Z4 = 21:0%,

Z5 = 23:1%, and

Z6 = 2:3%:

Taking into account the estimation errors due to development
has decreased the weight given to recent years. In particular the
weight given to incomplete policy year 1996 has declined very
significantly. This is in line with the general practice of giving
reduced or no weight to the incomplete policy year.

182We have assumed for simplicity that the estimation errors due to development are
independent of the variance of the ultimate values for the years, so that the two variance-
covariance matrices add. Also, we have for simplicity not had D depend on the volume
of data E, even though in actual applications it is likely to be dependent.
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Similarly we can include the impact of the estimation error
due to trend using the previously selected variance-covariance
matrix T

Vij = (:005)±ij +(:007):90
$i%j$+Tij , for i,j ) 6,

Vij = (:005)±ij +(:007):90
$i%j$, for i or j > 6:

Solving the Equations 9.2 for the weights one gets:

Z1 = 7:8%,

Z2 = 6:7%,

Z3 = 8:5%,

Z4 = 12:1%,

Z5 = 23:3%, and

Z6 = 41:6%:

Taking into account the estimation errors due to trend has
decreased the weight given to older years.

Finally, we can include the impact of both forms of estimation
error by using the matrix D+T in place of either D or T. (This
assumes the estimation errors due to development and trend are
independent.) The resulting weights are:

Z1 = 16:0%,

Z2 = 16:8%,

Z3 = 15:8%,

Z4 = 20:4%,

Z5 = 27:6%, and

Z6 = 3:4%:

Figure 22 compares the weights with and without the estima-
tion errors.
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FIGURE 22

9.6. General Effects of Estimation Error

The inputs used in the illustrative example can be varied. We
can use more or less than six years of data. The gap between the
latest year of data and the year to be estimated can differ. The
volume of data and therefore the expected value of the process
variance can vary by year. The relative size of the variance of
the hypothetical means and the expected value of the process
variance can differ. The rate at which parameters shift can be
faster or slower. The pattern of estimation errors and their relative
importance can differ.183

As any of these inputs vary, so do the calculated weights.
Nevertheless, approximate values of the inputs can be used to
estimate a pattern of weights that would be reasonable to use for
a particular application.

183Also, in some cases the estimation errors would depend on the volume of data.
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The general conclusions from analyzing this model all make
sense. When we have a smaller volume of data per year we
choose a more stable method.184 Years with less data get less
weight. When there is a lot of potential error from estimating
loss development for a year, we give that year relatively less
weight; this tends to affect more recent years. When there is a
lot of potential error from estimating trend or on-level factors
for a year, we give that year relatively less weight; this tends
to affect more distant years. As there are more rapidly shifting
parameters over time we choose a more responsive method.

Recall that in this illustrative example the weights always add
to 100%. Thus the weight given to a particular year is a reflection
of its value relative to the other years. Giving two years equal
weight implies that they have the same value for purposes of
estimation, but tells us nothing about what that value is in any
absolute sense.

10. EXPERIENCE RATING

In this section, the previous results will be applied to a single
split experience rating plan. While the values for the covariance
structure used in this section were selected based on analyzing
some workers compensation data from one state, they should be
viewed as for illustrative purposes.

Section 10.1 describes the structure of a single-split experi-
ence rating plan. Section 10.2 describes the covariance structure.
Section 10.3 displays the set of linear equations to be solved in
order to get the credibilities. The parameters of the covariance
structure are estimated and selected in Sections 10.4 to 10.8.
Section 10.9 displays the credibilities that correspond to this co-
variance structure and parameters. Section 10.10 discusses the

184This customary practice is illustrated in Stern [28, p. 77]. The larger the premium
volume, the more weight given to the latest year of data and the less weight given to the
prior year of data. The smaller the premium volume, the more equal the weights given
to the two years of data.
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impact on the credibilities of taking into account the maturity of
experience rating data.

10.1. Structure of the Experience Rating Plan

Assume we have split the losses into primary and excess por-
tions, with the first $5,000 of losses primary.185 Assume only
the first $175,000 of any claim enters into experience rating.186

Assume we have Y years of data being used to predict year
Y+¢.187 We wish to determine credibilities to apply to the pri-
mary and excess data for each year.

Define the following quantities:

EPi =Expected Primary Losses for Year i,

EXi =Expected Excess Losses for Year i,

Ei = EPi+EXi = Expected Losses for Year i,

APi =Actual Primary Losses for Year i,

AXi =Actual Excess Losses for Year i,

Di = EPi=Ei =D-ratio for Year i,

Pi = APi=Ei,

Xi = AXi=Ei,

¼i = Pi%Di = (APi%EPi)=Ei
= Primary “Deviation Ratio” for Year i,

»i = Xi% (1%Di) = (AXi%EXi)=Ei
=Excess “Deviation Ratio” for Year i, and

M =Experience Modification:

185This is a single split experience rating plan. The $5,000 split point is currently used
for workers compensation. The general results illustrated here would be similar with a
different split point.
186The $175,000 limit is currently used in Massachusetts workers compensation. Other
states use different limits.
187Typically Y = 3 and ¢= 2. Years 1, 2 and 3 are predicting Year 5.
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Then the experience modification will be of the form:

M = 1+
Y"
i=1

¼iZPi+
Y"
i=1

»iZXi: (10.1)

The primary deviation ratio for year i, ¼i, is given weight ZPi.
The excess deviation ratio for year i, »i, is given weight ZXi.
The complement of credibility is given to unity, i.e., the average
modification and the expected ratio of actual losses to expected
losses.

If we were to introduce ballast and weighting values, as in
the current experience rating plan,188 then one could rewrite the
credibilities as:

ZPi = Ei=(Ei+Bi),

ZXi =WiZPi =WiEi=(Ei+Bi):
(10.2)

Note that there would be separate ballast and weighting values
for each year in the treatment here. In the current experience
rating plan there is a single B and W for a given insured.189

Then using the definitions of the deviation ratios:

¼i = (APi%EPi)=Ei and »i = (AXi%EXi)=Ei,
we can rewrite Equation 10.1 as:

M = 1+
Y"
i=1

APi%EPi+WiAXi%WiEXi
Ei+Bi

: (10.3)

By giving each year its own weight, Equations 10.1 or 10.3
differ somewhat from the usual Equation 10.4.190 If all the years
of data were added together and assigned one combined primary
credibility and one combined excess credibility, then Equation

188See Mahler [12] or Gillam and Snader [19].
189If an insured is interstate rated, the W and B values are a weighted average of those
that would apply to that size risk if it were intrastate rated in each of the states involved.
190See for example Gillam and Snader [19] or Mahler [12].
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10.1 would reduce to an equivalent of the usual equation for the
experience modification for the Workers Compensation single
split plan:

M = 1+Zp(Ap=E%Ep=E)+Zx(Ax=E%Ex=E)

= 1+
Ap%Ep+WAx%WEx

E+B
=
Ap+WAx+(1%W)Ex+B

E+B
(10.4)

10.2. Variances and Covariances

The credibilities that appear in Equations 10.1 or 10.2 will be
derived from the variance-covariance structure.191

There are three types of variances and covariances: those in-
volving just primary deviation ratios, those involving just excess
deviation ratios, and those involving both primary and excess
deviation ratios. Each covariance will involve ratios from two
(possibly different) years.

Define the relevant covariances as:

Sij =Cov[¼i,¼j] = Sji,

Tij =Cov[»i,»j] = Tji, and

Uij =Cov[¼i,»j]:

(10.5)

Each of these three variance-covariance structures S, T and U
would need to be modeled and/or estimated in a manner similar
to that performed in previous sections of this paper. The covari-
ances would differ by the amount of data and would be affected
by risk heterogeneity, parameter uncertainty, and shifting risk
parameters over time.

191The “best” credibilities will be taken as those that minimize the expected squared
error. See Appendix D.
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When the two years involved are the same, we obtain the
total192 variance or covariance:

S1,1 = total variance of the primary deviation ratio,

T1,1 = total variance of the excess deviation ratio, and

U1,1 = total covariance of the primary and excess
deviation ratios:

When the two years involved differ, we obtain in the absence
of shifting risk parameters over time, the variance or covariance
of the hypothetical means:

S1,2 = variance of the hypothetical mean primary
deviation ratios,

T1,2 = variance of the hypothetical mean excess
deviation ratios, and

U1,2 = covariance of the hypothetical mean primary
and excess deviation ratios:

In the presence of shifting risk parameters over time, it will
be assumed that S, T and U each have a structure similar to that
in Equations 5.10 and 5.11:

Cov[Xi,Xj] = r
2
0
½$i%j$+ I°$i%j$=

+
EiEj + ±ij

1
K=
+
EiEj + J

23
,+

EiEj +;

Cov[Xi,Xj] = r
2
0
½$i%j$+ I°$i%j$=+ ±ij

1
K=
+
EiEj + J

23
,+

EiEj ) :
The parameters r2, I, J , K, ½, ° and  in general may vary

between the covariance structures for S, T and U. Thus, we will
write each parameter with a subscript, p for primary, x for excess,

192“Total” means including both the variance (or covariance) of the hypothetical means
and the expected value of the process variance (or covariance). See Mahler [11].
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and m for mixed, resulting in the following equations:

Sij = r
2
p

0
½$i%j$p + Ip°

$i%j$
p =

+
EiEj + ±ij

1
Kp=

+
EiEj + Jp

23
,+

EiEj + p; (10.6)

Sij = r
2
p

0
½$i%j$p + Ip°

$i%j$
p =p+ ±ij

1
Kp=

+
EiEj + Jp

23
,+

EiEj ) p; (10.7)

Tij = r
2
x

0
½$i%j$x + Ix°

$i%j$
x =

+
EiEj + ±ij

1
Kx=

+
EiEj + Jx

23
,+

EiEj +x; (10.8)

Tij = r
2
x

0
½$i%j$x + Ix°

$i%j$
x =x+ ±ij

1
Kx=

+
EiEj + Jx

23
,+

EiEj )x; (10.9)

Uij = r
2
m

0
½$i%j$m + Im°

$i%j$
m =

+
EiEj + ±ij

1
Km=

+
EiEj + Jm

23
,+

EiEj ) m; and (10.10)

Uij = r
2
m

0
½$i%j$m + Im°

$i%j$
m =m+ ±ij

1
Km=

+
EiEj + Jm

23
,+

EiEj )m: (10.11)

The covariance structure given by Equations 10.6 to 10.11 in-
cludes a total of 21 parameters. In theory, these parameters can be
estimated using techniques similar to those used in the previous
sections of this paper. As a practical matter, some of the parame-
ters such as , ½ and ° can be taken equal or approximately equal
for S, T and U. So, for example, we could assume p = x =m;
in other words, we could assume that the transition from risk
homogeneity to risk heterogeneity occurs at (approximately) the
same size193 for all three covariance structures.

193As applied here to experience rating, I have followed the current practice of using the
total expected losses rather than the primary or excess losses to define the size of risk.
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10.3. Equations for Credibilities

Set aside for now the difficult task of estimating the variance-
covariance matrices: S, T and U. As shown in Appendix D, we
can derive 2 Y linear equations for the 2 Y credibilities:

Y"
i=1

(ZPiSik +ZXiUki) = Sk,Y+¢+Uk,Y+¢, k = 1,2, : : :Y, and

(10.12)
Y"
i=1

(ZPiUik+ZXiTki) =UY+¢,k +Tk,Y+¢, k = 1,2, : : :Y:

(10.13)

If the excess losses are set equal to zero; i.e., we have a no-
split plan, then Equation 10.12 reduces to Equation 2.4. In the
absence of shifting risk parameters over time, as shown in Ap-
pendix D, Equations 10.12 and 10.13 reduce to those derived in
Mahler [11].194

10.4. Estimating the Parameters of the Covariance Structure

Prior sections have discussed how we might estimate some of
the needed parameters. Also, the National Council on Compen-
sation Insurance has estimated quantities which are similar to the
I, J and K parameters here.195 These NCCI estimates can aid in
choosing the relative sizes of the I, J and K parameters.

The available data was insufficient to allow independent es-
timates of ½p, ½x and ½m, so it is assumed that ½p ( ½x ( ½m.

Thus, for a given insured, the size of risk to which we compare p, x or m is the
same. In this case, I think it unlikely that p, x and m would differ. Nevertheless, for
generality, I have labeled  with subscripts even though in the example p = x = m.
194See Equations 5.3 and 5.4 in Mahler [11] for Zp and Zx for a split experience rating
plan.
195See Gillam [13] and Mahler [12]. Note that the credibilities in the NCCI Revised
Experience Rating Plan were derived without explicit recognition of the impact of what
has been called herein Uij , the covariance of the primary and excess losses.
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Similarly, assume °p = °x = °m and p = x =m. So we have
assumed that the rate of shifting parameters over time as it im-
pacts S, T and U is similar and that risk homogeneity applies for
risks of size less than .

The primary losses are less subject to random fluctuations
than the excess losses. Therefore, whenever possible the results
of analyzing the primary deviation ratios will be relied upon.

The data analyzed was that used for intrastate experience rat-
ing in one state over a five year period.196 The analysis was
limited to risks that were experience rated over this whole pe-
riod of time.197 For each such risk, for each “rating year” the
data consists of three separate years of actual primary losses, ac-
tual excess losses, expected primary losses, and expected excess
losses, that were used to calculate the experience modification.
The variance-covariance structure of this data was analyzed by
size of risk.

For example, for risks with expected annual losses between
$10,000 and $20,000 the correlations between primary deviation
ratios, (Ap%Ep)=(Ep+Ex), were computed for different separa-
tions and different reports.198 For example, this primary corre-
lation was .331 between the “rating year” 1991 data at first re-
port199 and the “rating year” 1992 data at first report. Table 6
displays the correlations.

There are 12 correlations corresponding to a separation of
1 year, 9 for 2 years, 6 for 3 years, and 3 for 4 years. Based

196For experience modifications applied to policies written during 1991, 1992, 1993,
1994 and 1995 in Massachusetts workers compensation.
197Employers who went out of business, left the state, became self-insured or became
too small to be experience rated would therefore be excluded.
198This differs somewhat from Mahler [12] where correlations between Ap=(Ep+Ex)
were examined. The two sets of correlations are very similar.
199Generally data from a 1989 policy at first report, a 1988 policy at second report, and
a 1987 policy at third report would be used to calculate the experience modification to
apply to the 1991 policy. The data from the 1989 policy at first report is what is being
referred to here.



584 CREDIBILITY WITH SHIFTING RISK PARAMETERS

TABLE 6

CORRELATIONS OF RATIOS OF ACTUAL PRIMARY LOSSES TO
TOTAL EXPECTED LOSSES

Expected Annual Losses1 Between $10,000 and $20,000
Massachusetts Workers Compensation Experience Rating

Rating Years2 Report Separation Correlation

91 92 1 1 .331
91 92 2 1 .230
91 92 3 1 .270
92 93 1 1 .328
92 93 2 1 .326
92 93 3 1 .241
93 94 1 1 .080
93 94 2 1 .300
93 94 3 1 .330
94 95 1 1 .036
94 95 2 1 .073
94 95 3 1 .315
91 93 1 2 .282
91 93 2 2 .255
91 93 3 2 .258
92 94 1 2 .062
92 94 2 2 .268
92 94 3 2 .263
93 95 1 2 .049
93 95 2 2 .029
93 95 3 2 .277
91 94 1 3 .059
91 94 2 3 .211
91 94 3 3 .208
92 95 1 3 .054
92 95 2 3 .029
92 95 3 3 .213
91 95 1 4 .053
91 95 2 4 .030
91 95 3 4 .228

1If E1 and E2 are the expected losses (primary plus excess) for the given report which are used for
experience rating the two rating years, then

4
E1E2 is between $10,000 and $20,000. There were an

average of 3,060 such risks.
291 refers to experience modifications applied to policies written in 1991.
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FIGURE 23

on Mahler [1], it is expected that the logs of these correlations
will decline linearly as the separation increases. A least squares
regression was fit to these correlations, and the result was c=
(:282):709s, where c is the correlation and s is the separation.
The value of .282 will be referred to as the “intercept” while the
value of .709 will be referred to as the “slope” of this regression.
This regression is illustrated in Figure 23.

Similar regressions were fit to the correlations for other size
categories.200 A similar analysis was performed for the corre-
lations of excess deviation ratios and the correlations between
primary and excess deviation ratios. The resulting slopes and
intercepts are displayed in Table 7.

200A few estimated correlations were not positive and were excluded from the regressions.
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TABLE 7

RESULTS OF EXPONENTIAL REGRESSIONS FIT TO
CORRELATIONS OF RATIOS

Massachusetts Workers Compensation Experience Rating

Primary Excess MixedExpected Average
Annual Number of

Losses ($000) Risks Intercept Slope Intercept Slope Intercept Slope

3 to 5 3,952 .224 .727 .034 .820 .089 .775
5 to 10 4,798 .169 .836 .086 .792 .102 .841
10 to 20 3,060 .282 .709 .098 .741 .126 .737
20 to 50 2,197 .380 .992 .146 .842 .167 .950
50 to 100 770 .579 .869 .260 .809 .272 .855
100 to 200 356 .717 .865 .442 .723 .408 .790
200 to 500 186 .661 .877 .471 .812 .355 .825
500 to 1,000 45 .869 .658 .693 .687 .397 .781

1,000 to 2,000 14 .882 .973 .776 .850 .583 .828

10.5. Estimating Ip, Jp, Kp, Ix, Jx and Kx

As discussed previously, the intercepts of the primary correla-
tions are an estimate of the credibility to be assigned to a single
year of data in the absence of shifting risk parameters.201 Thus
we expect a curve of the form:

Z = (E+ Ip)="(1+ Jp)E+ Ip+Kp#, for E +p:

As shown in Figure 24, the values Ip = 18,000, Jp = :10, and
Kp = 80,000 do a reasonable job of approximating the estimated
intercepts for the primary deviation ratios.202

Similarly, as seen in Figure 25, values of Ix = 20,000, Jx =
:15, and Kx = 315,000 do a reasonable job of approximating the
estimated intercepts for the excess deviation ratios.

201The correlation between primary and excess losses is also ignored.
202More data on extremely large risks would improve the estimate of Jp.
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FIGURE 24

The intercepts of the regressions fit to the mixed correlations
have a somewhat different interpretation. Using Equations 10.6,
10.8 and 10.10, for a primary deviation ratio ¼i and excess devi-
ation ratio »j for different years i != j, we have for

+
EiEj + m,

Ei +p and Ej +x:

Corr[¼i,»j] = Cov[¼i,»j]=
+
Var(¼i)Var(»j) =Uij=

+
SiiTjj , and

Corr[¼i,»j] =
r2m

0
½
$i%j$
m + Im°

$i%j$
m =

+
EiEj

3
rprx

+
(1+ Jp+(Ip+Kp)=Ei)(1+ Jx+(Ix+Kx)=Ej)

:

(10.14)

Note that the mixed correlation between different years does
not involve Jm and Km. Thus the regression fit to the mixed inter-
cepts cannot be used to estimate these parameters. The intercept
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FIGURE 25

of that regression should be:203

r2m

0
1+ Im=

+
EiEj

3
rprx

+
(1+ Jp+(Ip+Kp)=Ei)(1+ Jx+(Ix+Kx)=Ej)

:

(10.15)

These intercepts by size of risk will be used subsequently to
check the reasonableness of selected parameter values.

10.6. Estimating ° and ½

The slopes of the regressions fit to the correlations are dis-
played in Table 7. There is considerable random fluctuation, but
generally the slopes are somewhere in the 75% to 90% range.
As discussed previously, the slope for smaller sizes should be

203The result of substituting unity for ½m and °m in Equation 10.14.
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approximately equal to °, while that for larger sizes should
be approximately equal to ½. There is some tendency for the
primary ratios for the slopes to be closer to unity for large
sizes. For illustrative purposes, °p = :80 and ½p = :85 will be se-
lected.

There is less evidence of a dependence on size of risk for
the excess ratios; °x = ½x = :80 will be selected. The rates of
shifting for the mixed correlations are similar to those for the
primary and excess correlations; °m = :80 and ½m = :83 will be
selected.

10.7. Estimating r2, Im, Jm and Km

Besides analyzing correlations between data from different
years, we need to analyze the variance of data from a single
year. The variance is Sii for primary deviation ratios:

Sii = r
2
p(1+ Jp+(Ip+Kp)=Ei), Ei +: (10.16)

Similarly, for the excess deviation ratios the variance is

Tii = r
2
x (1+ Jx+(Ix+Kx)=Ei), Ei +: (10.17)

For a given year, the covariance between the primary and
excess deviation ratios is Uii:

Uii = r
2
m(1+ Jm+(Im+Km)=Ei), Ei + : (10.18)

The estimated variances and covariances for various sizes of
risk are shown in Table 8.204 Using the estimated primary vari-
ances and the previously selected values Ip, Jp and Kp we can
estimate r2p . Similarly, we can estimate r

2
x . The covariances can

be used to estimate r2m, Im, Jm and Km.

Table 9 shows the estimates of r2p and r
2
x that result from the

estimated variances for the different sizes of risk and Equations

204In each case, the value shown is an average of 15 values from 5 years and 3 reports.
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TABLE 8

VARIANCES AND COVARIANCES FOR A SINGLE YEAR
Massachusetts Workers Compensation Experience Rating

Expected Average
Annual Number Primary Excess Mixed

Losses ($000) of Risks Variance Variance Covariance1

3 to 5 6,228 .271 15.444 1.221
5 to 10 6,619 .181 9.754 .791
10 to 20 4,081 .101 5.526 .442
20 to 30 1,569 .077 3.344 .301
30 to 50 1,318 .064 2.459 .222
50 to 100 1,034 .047 1.816 .177
100 to 200 506 .034 1.045 .112
200 to 500 262 .022 .637 .069
500 to 1,000 67 .019 .405 .055

1,000 to 2,000 23 .016 .213 .034

In each case the estimate shown is the average of 15 estimates from each of 5 years at 3 reports.
1Covariance of primary and excess deviation ratios for the same year.

TABLE 9

ESTIMATES OF r2 FROM OBSERVED VARIANCES

Expected
Annual Primary Excess

Losses ($000) Variance r2p Variance r2x

4 .271 .011 15.444 .182
7.5 .181 .013 9.754 .213
15 .101 .013 5.526 .235
25 .077 .015 3.344 .230
40 .064 .018 2.459 .258
75 .047 .020 1.816 .323
150 .034 .019 1.045 .309
350 .022 .016 .637 .302
750 .019 .015 .405 .254

1,500 .016 .014 .213 .155

r2 = Variance=(1+ J + (I+K)=E)
I
p
= 18,000, J

p
= :10, K

p
= 80,000

I
x
= 20,000, J

x
= :15, K

x
= 315,000
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FIGURE 26

10.16 and 10.17. The values of r2p are all in the range of .015. The
similarity of the estimates of r2p that result from the different size
categories tends to confirm the reasonableness of the previously
selected values of Ip, Jp and Kp.

205

Similarly, Table 9 displays estimates for r2x from the differ-
ent size categories using Equation 10.17. The values of r2x vary
considerably. A value r2x ( :26 will be selected.
As seen in Figure 26, using Equation 10.18, the set of pa-

rameters: Im = 20,000, Jm = :13, Km = 140,000, and r
2
m = :040,

provides a reasonable fit to the estimated covariances by size of

205If the initially selected Ip, Jp and Kp did not seem to perform well here, then we could
modify them somewhat so they performed better here. Then we would go back and
check the performance in fitting the intercepts of the regressions fit to the correlations.
We could iterate in this manner until we arrived at the best set of parameters.
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FIGURE 27

risk.206 Bear in mind that the largest size category has a limited
number of risks and so the resulting estimate of the covariance
is not very accurate.

Using the selected set of parameters, we can compare the
theoretical values from Equation 10.15 to the observed intercepts
from the regressions fit to the mixed correlations. As seen in
Figure 27, the fit is not unreasonable. Thus, the selected values
of Ip, Jp, Kp, Ix, Jx, Kx, Im, r

2
p , r

2
x , and r

2
m seem consistent with

the observed mixed intercepts.

10.8. Selecting 

The final parameters to be selected are p, x and m. Based
on the reasonable fits obtained so far,  should be near the

206The value of Jm was selected to be between the selected Jp and Jx. More data on
extremely large risks would improve the estimates of all the J parameters.



CREDIBILITY WITH SHIFTING RISK PARAMETERS 593

FIGURE 28

smaller sizes of risk examined or below the eligibility level
for experience rating in Massachusetts.207 Due to limited in-
formation, one value will be selected for all three parameters,
p =x =m.

Figure 28 displays least squares credibilities estimated from
the 3 years of data used to experience rate policies. The credi-
bilities are those that produced the smallest squared error when
the first 2 years of data were used to predict the third.208 These
are compared to the model credibilities that result from the esti-
mated parameters and the use of Equations 10.12 and 10.13.209

207If  were in the middle of the range of sizes examined, the observed covariance
structure should have been affected.
208For each size category there are five estimates, one for each “rating year.”
209The primary and excess credibilities were averaged: Z =DZp +(1%D)Zx, with D =
:22.
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The model credibilities are in the range indicated by the
data.210

The credibilities for smaller size risks are shown for two val-
ues of ,  = $5,000 and  = $15,000. Based on Figure 28,
 = $15,000 does a better job than  = $5,000. However, a bet-
ter estimate of  would result from a more detailed analysis
of data from risks barely eligible for or too small to be expe-
rience rated in Massachusetts.211 While it is beyond the scope
of this paper, a preliminary review of merit rating data for Mas-
sachusetts workers compensation indicates that  ( $5,000 or
perhaps even a little less. In any case, for illustrative purposes
the selected values will be p =x = m = $5,000.

212

10.9. Estimated Credibilities

The selected parameter values are:

Ip = $18,000 Jp = :10 Kp = $80,000 r2p = :015

Ix = $20,000 Jx = :15 Kx = $315,000 r2x = :26

Im = $20,000 Jm = :13 Km = $140,000 r2m = :040
°p = :80 ½p = :85 p = $5,000

°x = :80 ½x = :80 x = $5,000

°m = :80 ½m = :83 m = $5,000:

Using the above parameter values and Equations 10.12 and
10.13, credibilities were calculated for 3 years of data being used

210Since the parameters were estimated by a different analysis of this exact same data,
this serves as a consistency check rather than an independent test of the results.
211For example, for a risk with $1,000 in expected annual losses, with  = $5,000
Z = 6:7%, while with  = $15,000 Z = 3:3%. Thus an examination of the credibilities
indicated by the data for smaller risks should help to determine the appropriate .
212This would correspond to a minimum ballast value of Kpp=(Ip+p) = ($80,000)
(5=(18+5))( $17:3 thousand. Interestingly, for g = 7 as in Massachusetts, the NCCI
minimum ballast value would be (7) (2,500) = $17,500. The corresponding minimum
weighting value would be (Kp=Kx)(p=x)(Ix+x)=(Ip +p) = (80=300)(1)(25=23) =
:29. The NCCI minimum W is .07.
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TABLE 10

EXPERIENCE RATING CREDIBILITIES1

Using Parameters Listed in Section 10.9

Primary2 Excess3 Combined4Expected
Annual Losses

($000) Z1 Z2 Z3 Z
p

Z1 Z2 Z3 Z
x

Z

.1 :9% 1.1% 1.3% 3.3% .02% .02% .03% .1% .8%

.5 4:0 5.0 6.2 15.2 .09 .11 .14 .3 3.6
1 7:2 9.1 11.7 28.1 .2 .2 .3 .7 6.8
2 12:1 15.6 20.8 48.4 .5 .6 .7 1.7 12.0
3 15:3 20.3 28.1 63.7 .7 .9 1.1 2.7 16.2
4 17:5 23.8 34.1 75.4 1.0 1.3 1.5 3.8 19.6
5 19:0 26.4 39.2 84.5 1.3 1.7 2.0 5.0 22.5

7.5 19:9 27.8 41.6 89.3 1.5 1.8 2.2 5.4 23.9
10 20:6 29.0 43.9 93.5 1.6 2.0 2.4 5.9 25.2
25 22:7 33.5 54.5 110.6 2.3 2.9 3.6 8.8 31.2
50 22:0 35.8 65.4 123.3 3.4 4.4 5.5 13.3 37.5
100 17:3 34.7 77.3 129.3 5.0 6.6 8.7 20.3 44.3
250 6:9 27.0 90.6 124.4 6.8 10.0 15.3 32.1 52.4
500 :8 19.6 95.5 115.9 7.0 11.8 21.5 40.3 56.9

1,000 % 1:3 14.5 94.8 108.1 6.1 12.4 27.9 46.4 59.9
2,500 % :2 12.6 89.1 101.5 4.3 11.6 35.1 51.0 62.1
5,000 1:0 13.1 84.6 98.8 3.3 10.8 38.8 52.9 63.0
10,000 1:9 14.0 81.4 97.3 2.7 10.1 41.1 53.8 63.4

' 2:9 15.5 77.4 95.7 2.0 9.1 43.7 54.8 63.8

1Using data from years 1, 2 and 3 to predict year 5.
2Z

p
is the sum of the primary credibilities for the three years.

3Z
x
is the sum of the excess credibilities for the three years.

4Z = DZ
p
+ (1%D)Z

x
, for D = :22:

to predict the fifth year.213 Table 10 displays the primary and
excess credibilities assigned to each of the three years of data as
well as the sum. Note that the primary credibilities can sum to
greater than 100%. As pointed out in Mahler [11] and Mahler
[12], this is not unusual when we take into account the covari-
ance of the primary and excess losses.214 In such circumstances

213For example, 1994, 1995 and 1996 data is being used to experience rate a policy
written during 1998.
214Note that the numerator of ¼i involves the primary losses while the denominator is
the sum of the primary and excess expected losses. If instead the denominator had been
just primary expected losses, then the ratio would be larger and the weight assigned to
it would be smaller by a factor of the D-ratio. Then the primary weights would sum to
less than 100%.



596 CREDIBILITY WITH SHIFTING RISK PARAMETERS

FIGURE 29

we could constrain the primary credibilities to be equal to unity,
as shown in Mahler [11] and Mahler [12]. In any case, the com-
bined credibility is between 0 and 1. It should also be noted that
the uncertainty in the estimated J and  parameters produces
uncertainty in the credibilities for large and small risks respec-
tively.

As the size of risk increases, the weight assigned to the most
recent year increases relative to that for the most distant year.
For very large risks, we can rely almost solely on the latest
year of data. For very small risks, it would be reasonable to
rely on more than three years of data, since the older years
would have credibilities close to that for the more recent years
of data.

Figure 29 compares the primary and excess credibilities from
Table 10 to those currently used in Massachusetts workers com-
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FIGURE 30

pensation experience rating.215 Figure 30 does the same compar-
ison for the weighted average of the primary and excess credi-
bilities. As in Mahler [12], the indicated primary and combined
credibilities are generally higher than those from the NCCI plan.

At least part of this difference is due to the fact that Mas-
sachusetts average claim costs are higher than the national av-
erage. Using the same $5,000 split point between primary and
excess in every state results in lower than average D-ratios in
Massachusetts. Thus, the primary losses in Massachusetts are
“very primary,” while the excess losses are only “mildly excess.”
Thus, both the Massachusetts primary losses and excess losses
contain more useful information and less random noise than in

215The NCCI Revised Experience Rating program, with g = 7. Here we have ignored the
All Risk Rating Program (ARAP) which is currently applied on top of experience rating
in Massachusetts and in combination produces more responsiveness to the insured’s
losses.



598 CREDIBILITY WITH SHIFTING RISK PARAMETERS

the average state. This would not be the case if the split point
depended on the state specific parameter g.

On the other hand, due to the consideration here of the covari-
ance between the primary and excess losses, the primary credi-
bilities are higher and the excess credibilities are lower than they
would otherwise be. The primary losses contain valuable infor-
mation for predicting both the future primary and excess losses.

On balance, the excess credibilities for the current model are
fairly close to those from the NCCI plan, while the primary cred-
ibilities are much greater. As stated before, the results would be
expected to differ somewhat in low severity states.

In any case, the combined model credibilities are more similar
to what would be obtained in other states.216 The combined cred-
ibilities are between 0 and 1. In this case, they increase smoothly
from zero to a maximum of about 63% for the largest risks.217

Due to shifting risk parameters and parameter uncertainty, the
maximum credibility is less than 100%.

The model combined credibilities are generally larger than
those from the current NCCI plan. For example, for $100,000
in expected annual losses, the model has a combined credibility
of 44.3%, while the current plan has 32.2%. While there are
significant differences,218 the overall magnitude and pattern of
credibilities is very similar.

Note that model credibilities are also shown for risk sizes
below the current eligibility level for experience rating.219 Recall

216The D-ratio is lower in Massachusetts than in the average state, so the primary credi-
bilities receive less weight. This would result in lower combined credibilities, except that
the primary credibilities are larger than average in Massachusetts.
217Due to the limited data for very large risks, the model parameters were chosen to
some extent so that the maximum credibility would be close to that from the NCCI plan.
In an average state the NCCI plan has a maximum credibility of about 67%, as shown
in Mahler [12].
218For most insureds a 13% difference in credibilities would have a less than 3% effect
on their experience modifications.
219The NCCI formulas for credibility are not intended to be applied to very small risks.
As discussed in Mahler [12], minimum B values, etc., are used to deal with this problem.
The NCCI credibilities graphed here are prior to any such refinements.
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FIGURE 31

that these credibilities for very small risks depend very signifi-
cantly on the estimated  parameter. An analysis of data from
these very small risks would refine this estimate.

Figure 31 shows the ballast values corresponding to the model
primary credibilities shown in Table 10. Since B = E((1=Zp)%1),
when Zp >> 100%, it follows that B < 0. While it is currently
the case that B is positive, there is no mathematical reason why
B cannot be negative.220 Small risks have B ( 3,000. B declines
and becomes negative before increasing to very large positive
values. Figure 32 shows W (weighting) values corresponding to
the model credibilities shown in Table 10. Other than a discon-
tinuity in the derivative of W that occurs at  = 5,000, the W
values increase smoothly with size of risk.

220B = 0 would correspond to Zp = 100%.
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FIGURE 32

Currently each of three years used for experience rating is
treated similarly. Instead each year could receive different cred-
ibilities. Figure 33 displays the model primary credibilities as-
signed to each of five years of data for various sizes of risks.
Note that the weights assigned to an individual year of primary
losses can be negative.221 Figure 34 similarly displays the ex-
cess credibilities. The same pattern is observed in each figure,
although for a given size of risk the weights given to different
years are more similar to each other in the excess case than in
the primary case.

It should be noted that for simplicity, equal expected losses
have been assumed for each year. Equations 10.6 to 10.11 and
Equations 10.12 and 10.13 apply equally well when the expected

221Also, the weights assigned to individual years of primary losses can in theory be
greater than 100%.
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FIGURE 33

losses differ by year. In that case, years with more expected
losses get more credibility than they would otherwise receive.
The pattern due to varying volumes of data by year would be
superimposed on that shown in Figures 33 and 34.

10.10. Taking Into Account Differences in the Maturity of the
Experience Rating Data

Generally the data used for experience rating is at different
reports. For workers compensation, generally three years of Unit
Statistical Plan data is used for experience rating. For example,
1995 at first report, 1994 at second report, and 1993 at third
report, might be used to experience rate a 1997 policy. The fact
that the data are not at ultimate can affect the credibilities in
two ways. First, as in Section 7.10, since the 1995 data is at
an earlier report than the 1993 data, the 1995 data is a poorer
estimator of 1997 ultimate losses compared to the 1993 data,
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FIGURE 34

than if both 1993 and 1995 were at the same maturity.222 Thus,
the lack of maturity of the 1995 data reduces its value relative
to the 1993 data and thus the credibility assigned to the 1995
data. In addition, all of the years of data are not at ultimate.
Thus, they are all somewhat worse estimators than if they were
available at ultimate. Thus, they all receive somewhat less cred-
ibility.223

As in Section 7.10, it will be assumed that the effect of loss
development is to reduce the covariances between data at differ-
ent reports. This refinement to the covariance structure will have
the expected impact on the credibilities.

222Since 1995 is more recent than 1993, it is a better estimator of 1997, all other things
being equal.
223Recall that unlike in Section 7.10, here the complement of credibility is given to the
grand mean.
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The first step is to estimate the correlations between the same
experience rating data but at different reports. As before, various
size categories will be used. Also, we can look at correlations
between Primary Deviation Ratios, between Excess Deviation
Ratios and between Primary and Excess Deviation Ratios.

For example, for risks with expected annual losses between
$10,000 and $20,000, for the data at first report during Rating
Year 91 and second report during Rating Year 92, the correlation
of Primary Deviation Ratios is .937. Similar correlations can be
calculated for Rating Year 92 vs. Rating Year 93, Rating Year 93
vs. Rating Year 94, and Rating Year 94 vs. Rating Year 95.224

These four correlations have been averaged and are displayed in
Table 11 as .942.

Table 11 displays similar correlations for other size categories
as well as correlations for 2nd report vs. 3rd report and 1st report
vs. 3rd report data.

The correlations between Primary Deviation Ratios and the
correlations between Excess Deviation Ratios for different re-
ports can be used directly, since for the same reports the correla-
tion is one. However, for the mixed correlation between Primary
Deviation Ratios and Excess Deviation Ratios, one would have
to compare the correlation for different reports to the correla-
tion for the same report, appropriately adjusted. Unfortunately
this is not a practical solution,225 therefore, the observed mixed
correlations will not be used.

The primary and excess correlations in Table 11 do not display
an obvious dependence on size of risk over the size categories
examined.226

224These correlations are .952, .929, .949, illustrating the random fluctuation in the in-
dividual estimates for a given size category based on data from a single state.
225The actual correlations for a single report include a term involving the process vari-
ance. Unlike what was done in Section 7.11, we should not just totally remove this piece
for comparison purposes since the different reports are not independent realizations of
the same risk process, nor are the primary and excess losses independent.
226It is expected that the correlations will get closer to unity for very large risks, based
on the analysis of classification data in Section 7.11.
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TABLE 11

EXPERIENCE RATING, CORRELATIONS BETWEEN SAME DATA
AT DIFFERENT REPORTS

Primary Deviation Ratios

1st to 2nd 2nd to 3rd 1st to 3rd
Expected
Annual

Losses ($000) Corr. # Risks Corr. # Risks Corr. # Risks

3 to 5 .929 3404 .956 4052 .923 3447
5 to 10 .948 4212 .966 5247 .924 4229
10 to 20 .942 2742 .962 3458 .914 2764
20 to 30 .960 1078 .975 1359 .942 1073
30 to 50 .964 909 .972 1144 .941 900
50 to 100 .954 700 .975 900 .942 696
100 to 200 .955 330 .974 437 .940 332
200 to 500 .897 172 .958 222 .913 175
500 to 1,000 .890 46 .987 60 .877 52

1,000 to 2,000 .986 16 .987 19 .974 14

Excess Deviation Ratios

3 to 5 .833 3404 .893 4052 .758 3447
5 to 10 .836 4212 .910 5247 .785 4229
10 to 20 .861 2742 .897 3458 .769 2764
20 to 30 .852 1078 .930 1359 .804 1073
30 to 50 .877 909 .912 1144 .803 900
50 to 100 .858 700 .925 900 .798 696
100 to 200 .864 330 .919 437 .809 332
200 to 500 .779 172 .932 222 .720 175
500 to 1,000 .831 46 .930 60 .762 52

1,000 to 2,000 .924 16 .918 19 .857 14

Mixed Deviation Ratios

3 to 5 .561 3404 .574 4052 .552 3447
5 to 10 .564 4212 .584 5247 .554 4229
10 to 20 .546 2742 .569 3458 .546 2764
20 to 30 .585 1078 .610 1359 .605 1073
30 to 50 .529 909 .538 1144 .515 900
50 to 100 .585 700 .596 900 .576 696
100 to 200 .574 330 .607 437 .580 332
200 to 500 .530 172 .606 222 .540 175
500 to 1,000 .588 46 .648 60 .504 52

1,000 to 2,000 .551 16 .557 19 .504 14
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Excluding the smallest and largest size intervals (with the least
data), the average correlations between the different reports are:

1–2 2–3 1–3

Primary .939 .971 .924
Excess .845 .919 .781

For illustrative purposes the following adjustments for loss
development up to third report will be made to the primary, ex-
cess, and mixed covariances:227

1–2 2–3 1–3

Primary Adjustment Factor .94 .97 .92
Excess Adjustment Factor .84 .92 .78
Mixed Adjustment Factor .89 .94 .85

Using the parameters in Section 10.9, prior to any adjust-
ment for differences in maturity, for $100,000 in expected annual
losses we obtain the credibilities for Years 1, 2 and 3 predicting
Year 5 shown both in Table 10 and in the first row below.

Primary Excess Combined

Year 1 Year 2 Year 3 Total Year 1 Year 2 Year 3 Total

No Adjustment
for Maturity228 17.3% 34.7% 77.3% 129.3% 5.0% 6.6% 8.7% 20.3% 44.3%
Adjusting for
Development to
Third Report 25.3% 36.5% 67.9% 129.8% 5.7% 6.3% 5.8% 17.8% 42.4%
Adjusting for
Development
Both to Third
Report and
Beyond Third
Report 27.4% 39.0% 69.7% 136.1% 4.1% 4.5% 3.7% 12.3% 39.5%

227These adjustment factors will only be applied to risks with expected annual losses
between about $5,000 and $1 million. Risks outside that range would have adjustment
factors that have not been estimated.
228See Table 10.
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FIGURE 35

If we multiply all of the primary covariances between a year
at first report and second report by an adjustment factor of .94,
between second and third by .97, and between first and third
by .92, with similar adjustments applied to the excess and mixed
covariances, then the calculated credibilities are revised as shown
in the second row above. The primary losses for Year 3 data
at first report received less weight than when the maturity of
the data was ignored. The primary losses for Year 1 at third
report receive more weight. The overall credibility goes down
somewhat.

Figure 35 displays the impact on primary credibilities for vari-
ous sizes of risk, for each year separately. Figure 36 displays the
impact on combined primary and excess credibilities for each
year separately. Taking into account development up to third re-
port alters the credibilities assigned to individual years; more
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FIGURE 36

mature years get more weight while less mature years get less
weight. Figure 37 shows the effect on the combined credibilities
summed for the three years. The overall credibility is reduced
by about 2% due to the consideration of development to third
report.

The covariances are also affected by loss development be-
yond third report. The vast majority of such development affects
excess losses rather than primary losses.229 For illustrative pur-
poses it will be assumed that development beyond third report
reduces all the excess covariances between the data years and the
year to be predicted (at ultimate) by .84, the adjustment factor

229In Massachusetts workers compensation, most claims of size less than $5,000 are
closed by third report. Most claims open at third report have incurred amounts at third
report that exceed $5,000 and also settle for more than $5,000.
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for development from the first to the third report. The mixed
covariances will be adjusted by a factor of .92, while the primary
covariances are not adjusted at all.

The resulting credibilities were shown in the third row above
for a risk with $100,000 in expected annual losses. Taking into
account loss development beyond third report in this manner re-
duced the relative value of the excess losses as a predictor. There-
fore, the credibilities assigned to the excess losses decreased,
while those assigned to the primary losses increased.

Figures 35 to 37 compare the credibilities including the im-
pacts of loss development to ultimate to those excluding any
consideration of maturity as well as those including the impacts
of loss development to third report. As expected, the inclusion
of all loss development generally lowers the credibilities.230

10.11. Conclusions-Experience Rating

While similar analyses of experience rating have been made
in the past,231 the present analysis incorporates shifting risk pa-
rameters, risk heterogeneity and parameter uncertainty in a com-
prehensive and integrated manner. While the example was for
a single split experience rating plan for workers compensation,
a similar analysis should be valuable for any experience rating
type situation where the volume of data varies significantly be-
tween entities. For example, general liability experience rating
or the assignment of towns to territories232 would fall into this
category.

On the other hand, situations such as private passenger auto-
mobile Safe Driver Insurance Plans or Bonus–Malus plans would
allow a somewhat simpler analysis, since the size of the insured

230Recall that the adjustment factors were illustrative and not based on any specific
experience rating data beyond third report.
231See, for example, Mahler [11] and Finger [29].
232See Conger [30].
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FIGURE 37

is not significant.233 The phenomenon of risk heterogeneity is not
important in that case. Thus, the situation is the special case ex-
amined in Section 3.6, where parameter uncertainty and shifting
risk parameters are important. In that case, we expect a covari-
ance structure of the form:234

Cov[Xi,Xj] = r
2½$i%j$+ ±ijd

2: (10.19)

The size of risk E has been suppressed as not important in this
case, and therefore the variance due to parameter uncertainty
and that due to the expected value of the process variance can be
combined into one term d2. Equation 10.19 has the same form

233In medical malpractice, as discussed in Finger [29], the simpler situation is that of
experience rating individual doctors, while the more general situation would involve
experience rating groups of doctors.
234Compare to Equation 3.19.
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as Equation 7.1 in Mahler [1]. Thus, the form of analysis in
Mahler [1] should suffice in the case of frequency based private
passenger automobile experience rating and similar situations.

11. MISCELLANEOUS

In this section the methods of Mahler [1] will be applied to
the estimation of the market risk premium, the baseball models
from Mahler [1] and Mahler [20] will be revisited, and the results
in Boor [31] will be related to those herein.

11.1. Market Risk Premium

The market risk premium, an important economic concept
used in the Capital Asset Pricing Model, is the excess return on
stocks expected beyond the risk-free rate. A common estimate
of the market risk premium is the difference between the return
on large company stocks and the return on three-month U.S.
Treasury Bills.235 Table 12 shows this series from 1926 through
1995.

This series is very volatile. Ibbotson [32] recommends using
a long-term (unweighted) average based on a belief that the ex-
pected real returns have been reasonably consistent over time.
Using the currently available data from 1926 to 1995, the un-
weighted average is 8.76%.

While the risk parameters underlying this process are rela-
tively stable, they are unlikely to have absolutely no shifting
over time. The methods developed in Mahler [1] can be used to
estimate the sensitivity of the estimated market risk premium to
assumptions about the stability of the risk process.

Let Xi be the observed difference between the return on large
company stocks and U.S. Treasury Bills for year i. Then one
estimate of the market risk premium is to take all Y years of data

235See Chapter 8 of Ibbotson [32]. The market risk premium is referred to as the equity
risk premium.
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TABLE 12

PART 1

TOTAL RETURN

Large
Company U.S. Treasury

Year Stocks Bills Difference

1926 11.62 3.27 8.35
1927 37.49 3.12 34.37
1928 43.61 3.56 40.05
1929 %8:42 4.75 %13:17
1930 %24:90 2.41 %27:31
1931 %43:34 1.07 %44:41
1932 %8:19 0.96 %9:15
1933 53.99 0.30 53.69
1934 %1:44 0.16 %1:60
1935 47.67 0.17 47.50
1936 33.92 0.18 33.74
1937 %35:03 0.31 %35:34
1938 31.12 %0:02 31.14
1939 %0:41 0.02 %0:43
1940 %9:78 0.00 %9:78
1941 %11:59 0.06 %11:65
1942 20.34 0.27 20.07
1943 25.90 0.35 25.55
1944 19.75 0.33 19.42
1945 36.44 0.33 36.11
1946 %8:07 0.35 %8:42
1947 5.71 0.50 5.21
1948 5.50 0.81 4.69
1949 18.79 1.10 17.69
1950 31.71 1.20 30.51
1951 24.02 1.49 22.53
1952 18.37 1.66 16.71
1953 %0:99 1.82 %2:81
1954 52.62 0.86 51.76
1955 31.56 1.57 29.99
1956 6.56 2.46 4.10
1957 %10:78 3.14 %13:92
1958 43.36 1.54 41.82
1959 11.96 2.95 9.01
1960 0.47 2.66 %2:19
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TABLE 12

PART 2

TOTAL RETURN

Large
Company U.S. Treasury

Year Stocks Bills Difference

1961 26.89 2.13 24.76
1962 %8:73 2.73 %11:46
1963 22.80 3.12 19.68
1964 16.48 3.54 12.94
1965 12.45 3.93 8.52
1966 %10:06 4.76 %14:82
1967 23.98 4.21 19.77
1968 11.06 5.21 5.85
1969 %8:50 6.58 %15:08
1970 4.01 6.52 %2:51
1971 14.31 4.39 9.92
1972 18.98 3.84 15.14
1973 %14:66 6.93 %21:59
1974 %26:47 8.00 %34:47
1975 37.20 5.80 31.40
1976 23.84 5.08 18.76
1977 %7:18 5.12 %12:30
1978 6.56 7.18 %0:62
1979 18.44 10.38 8.06
1980 32.42 11.24 21.18
1981 %4:91 14.71 %19:62
1982 21.41 10.54 10.87
1983 22.51 8.80 13.71
1984 6.27 9.85 %3:58
1985 32.16 7.72 24.44
1986 18.47 6.16 12.31
1987 5.23 5.47 %0:24
1988 16.81 6.35 10.46
1989 31.49 8.37 23.12
1990 %3:17 7.81 %10:98
1991 30.55 5.60 24.95
1992 7.67 3.51 4.16
1993 9.99 2.90 7.09
1994 1.31 3.90 %2:59
1995 37.43 5.60 31.83
Average 12.52% 3.77% 8.76%

Source: Ibbotson [23], Table 2–5.
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and average:

Estimate =
Y"
i=1

1
Y
Xi:

More generally, we can weight together the Xi using weights
Zi such that

.
Zi = 1:

Estimate =
Y"
i=1

ZiXi:

The unweighted average is just a special case, with Zi = 1=Y
for all years.

When parameters shift over time we would expect to have a
covariance structure as per Equation 2.1:

Cov[Xi,Xj] = e
2±ij + r

2½$i%j$, where ±ij =

!
0 i != j
1 i= j

:

Equations 6.7 for the weights Zi that minimize the expected
squared error of the estimate of year Y+1 are:

Y"
i=1

ZiCov[Xi,Xk] = Cov[Xi,XY+1]+¸=2, k = 1,2, : : :Y,

where ¸ is the Lagrange multiplier. We can solve these Y linear
equations plus the constraint equation for the desired weights Zi.
Given an assumed covariance structure, we can obtain weights
and in turn use them to estimate the market risk premium.

The variance of X is very large, about .0427.236 The corre-
lations are small.237 Due to the large random fluctuations there
is insufficient data to estimate the parameters of the covariance
structure. However, we do have:

Cov[X,X] = Var[X] = e2 + r2 ( :0427,

236The standard deviation is .207 compared to the mean of .0876.
237They are not statistically different from zero.
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FIGURE 38

Corr[Xi,Xi+1] = Cov[Xi,Xi+1]=
+
Var[Xi]Var[Xi+1]

= r2½=(e2 + r2)

( r2=(e2 + r2):

Since the correlations between successive years are close to
zero, r2 is much smaller than e2. For example, if r2 = :0005 and
e2 = :0422 then Corr[X1,X2]( 1:2%. The effect of varying r2
between .0005 and .0020 has been tested.

Ibbotson [32] believes that the parameters are not shifting
rapidly. The parameter ½ measures the rate of shifting. For slow
shifting, ½ is near 1. The effect of varying ½ between 1 and .90
has been tested. Figure 38 shows examples of the credibilities
for various values of ½ and r2.
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TABLE 13

SENSITIVITY OF ESTIMATED MARKET RISK PREMIUM

Estimated
Market Risk

r2(:0001) ½ Premium

5 1 8.76%1

5 .975 8.61
5 .95 8.68
5 .90 8.82

10 1 8.761

10 .975 8.52
10 .95 8.67
10 .90 8.91

20 1 8.761

20 .975 8.47
20 .95 8.75
20 .90 9.13

Based on seventy years of data from 1926–1995, (see Table 12).
Assuming total variance of .0427.
1Result of straight average.

As shown in Table 13, the estimated market risk premium is
relatively insensitive to the choice of the parameters of the co-
variance structure. Any reasonable set of inputs gives an answer
in the same range. Bear in mind that just adding the 1995 data
point changed the estimate of the market risk premium based on
an unweighted average from 8.4% to 8.8%.

In conclusion, taking the straight unweighted average of the
available data remains a reasonable method of estimating the
market risk premium. While technical refinements could be in-
cluded to take into account shifting risk parameters, they would
not substantially improve or alter the estimate.

11.2. Baseball Example, Revisited

In Mahler [1], the data for the won-loss records of baseball
teams was approximated by a model involving a single Markov
chain with half-life of about 312 years. When expressed in terms
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FIGURE 39

of games lost, the covariances between years of data Xi and Xj
are:

Cov[Xi,Xj]( (170)(:818$i%j$)+ (37)±ij :
We could instead use a model involving two Markov chains

with different half-lives. This would allow us to approximate the
apparent longer term slower shifting as well as the shorter term
rapid shifting. While the volume of data is not sufficient to allow
us to fit a unique “two-chain” model, as seen in Figure 39 the
following does a reasonable job:

Cov[Xi,Xj] = (127:5)(:75
$i%j$) + (42:5)(:965$i%j$)+ 37±ij :

The more swiftly shifting Markov chain has a dominant eigen-
value of .75 and a half-life238 of about 212 years. The more slowly

238(ln2). (ln :75) = 2:4.
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shifting Markov chain has a dominant eigenvalue of .965 and a
half-life239 of about 1912 years. The two Markov chains are given
75% weight and 25% weight, respectively.

This is an example of how two or more Markov chains of
different half-lives could be used to attempt to model the different
sources of shifting parameters over time.240 Note that this data
set does not lend itself to an examination of credibilities versus
size of risk, since the seasons do not vary sufficiently in the
number of games.

11.3. Boor, “Credibility Based on Accuracy”

As shown in Appendix B, linear Equations 6.7 for the cred-
ibilities with no weight to the mean are closely related to those
in Boor. One difference is that Boor assumes only two estima-
tors,241 while Equations 6.7 assume two or more estimators.

A more fundamental difference is that Equations 6.7 assume
that each of the estimators is unbiased. In Boor [31] no such
assumption is made, so the results in Boor [31] apply in more
general situations than Equations 6.7. Since the estimators in
Boor [31] are possibly biased, the formulas for credibility in-
volve terms such as E[X1X3], rather than Cov[X1,X3] such as in
Equations 6.7.

12. SUMMARY AND CONCLUSIONS

In Sections 2 to 5, a general form of the covariances in the
presence of shifting risk parameters, parameter uncertainty, and
risk heterogeneity was developed. While a simple example using
dice242 was used to develop this covariance structure as shown

239(ln2). (ln :965) = 19:5.
240Perhaps the chain with the shorter half-life relates to the baseball players while the
chain with the longer half-life relates to shifts in management.
241The ideas in Boor [31] can be extended to more than two estimators. Boor presents
the most common situation where two estimators are being combined.
242See Table 1.
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in Equations 5.5, the model in Equations 5.10 and 5.11 is in a
form appropriate for insurance applications.

Equation 3.10 in Section 3.4 shows that in the presence of
parameter uncertainty there is a fundamentally different depen-
dence of the credibility on the number of years of data and the
size of risk in a single year. Section 3.7 discusses the fundamen-
tally different dependence of the credibility on the number of
years of data in the presence of shifting risk parameters versus
parameter uncertainty. We can ameliorate the impact of param-
eter uncertainty by averaging over many years; in contrast, con-
sidering more than one year captures the effects of shifting risk
parameters.

Section 5.2 includes a brief discussion of how we might esti-
mate the parameters of the general covariance structure. Sections
7.3 to 7.6 and 7.11 illustrate how this might be done for clas-
sification data. Sections 10.4 to 10.8 and 10.10 illustrate how
this might be done for experience rating data. While there are
difficulties in estimating the required parameters, in general the
results of applying credibility are relatively insensitive to the es-
timated parameters.243

Matrix equations are presented for calculating the (least
squares) credibilities from the covariance structure. While Equa-
tions 2.4, 6.7, 8.1, 10.12 and 10.13 are similar, they each apply
in a somewhat different situation. Each such set of linear equa-
tions depends on the covariance structure and can be solved for
the credibilities using matrix methods.

Section 4.5 presents the credibilities in the important special
case of stable (or very slowly shifting) risk parameters. Sections
4.3, 4.6, 4.7 and 5.3 explore the different behavior of credibilities
expected for the smallest risks. As discussed in Section 4.8, the
general covariance structure predicts the need for a minimum

243See Mahler [33].
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ballast value in the revised Workers Compensation Experience
Rating Plan.244

Sections 6.1 to 6.4, 7.7, 7.8, 7.12, 8.5, 8.7, 9.3 to 9.5, 10.9
and 10.10 contain illustrative calculations of credibilities. The
general behaviors noted there should carry over to other similar
situations.

Section 7 applies the ideas developed in this paper to an illus-
trative example of classification ratemaking for workers compen-
sation. The parameters of the covariance structure were estimated
in Sections 7.3 to 7.6. The behavior of the credibilities245 when
using data from one state was displayed by year246 and by size
of class in Sections 7.7 to 7.9.

Sections 7.10 to 7.12 illustrated the potential impact of the
different maturity of the years of data on their credibilities. As
expected, the most recent years of data at early reports get some-
what less weight than if we ignored the effects of different ma-
turities.

Section 8 discusses how to incorporate data from outside
the state. While the covariance structure has an extra layer of
complication, it is still tractable. There are twice as many lin-
ear equations in twice as many unknowns, but they can still be
easily solved for the credibilities. This general type of treatment
should be useful whenever there is supplementary information
analogous to the countrywide data.

Section 9 applies the ideas of this paper to an illustrative cal-
culation of an overall rate indication. The effects on the weights

244The minimum ballast value was used based on practical considerations for almost a
decade prior to the developments in this paper. It is pleasant to find an overall theoretical
framework into which it fits.
245It is assumed in Section 7.9 that the complement of credibility is being given to the
prior estimate of the class relativity. Section 7.7 assumed the weights assigned to the data
sum to 100%, while Section 7.8 assumed the complement of credibility is given to the
grand mean.
246The assignment of a separate weight to each year of data is an important refinement
compared to the assignment of a single weight to the combined data for all years.
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to be assigned to individual years of estimation errors, loss devel-
opment and trend factors are discussed. Additional work would
be required to adopt the general ideas presented to any partic-
ular situation. The general conclusions are far from surprising.
When we have a smaller volume of data, we choose a more sta-
ble method; when we have a larger volume of data, we choose a
more responsive method. Data subject to more estimation error
is given less weight, all other things being equal.

Section 10 applies the ideas developed in this paper to workers
compensation experience rating. This analysis should be useful
for any commercial line in which the volume of data varies sig-
nificantly from insured to insured. Sections 10.4 to 10.8 illustrate
how we would estimate the parameters of the covariance struc-
ture in the case of a single split experience rating plan. Due to the
effects of shifting parameters over time, the complicated behav-
ior by size of risk, and the correlations of the primary and excess
losses, the estimation of parameters is difficult and of necessity
requires some judgment. Section 10.9 shows a sample calcula-
tion of the credibilities. The credibilities are displayed by year
and by size of risk. Section 10.10 illustrates how to incorporate
the impact of the different maturities of the data.

Section 11 contains miscellaneous results. The methodology
is applied to an economic index, generalized to two Markov
chains, and related to that in Boor [31].

In each of the various examples presented, there are three
steps. First, we must specify the covariance structure.247 Sec-
ond, we must estimate the parameters of the covariance structure.
Third, we must solve the appropriate set of linear equations for
the credibilities.248

We live in a dynamic rather than stable environment. There-
fore, the ideas presented in this paper on the covariance struc-
ture and resulting credibilities should have application in many

247See for example Table 2.
248See Table 3.
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areas of actuarial work where risk parameters shift significantly
over time. The methods presented can help answer fundamental
questions about how many years of data to use in a particular sit-
uation and whether certain years of data should get significantly
more weight than others. One needs to estimate how stable is the
particular real world situation; how swiftly are risk parameters
shifting over time?
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ibility and Bayesian Analysis,” New England Actuarial Sem-
inars, 1997.

[10] Meyers, Glenn G., “An Analysis of Experience Rating,”
PCAS LXXII, 1985, pp. 278–317.

[11] Mahler, Howard C., Discussion of Meyers: “An Analysis
of Experience Rating,” PCAS LXXIV, 1987, pp. 119–189.

[12] Mahler, Howard C., Discussion of Gillam: “Parametrizing
the Workers Compensation Experience Rating Plan,” PCAS
LXXXX, 1993, pp. 148–183.

[13] Gillam,William R., “Parametrizing theWorkers Compensa-
tion Experience Rating Plan,” PCAS LXXIX, 1992, pp. 21–
56.



CREDIBILITY WITH SHIFTING RISK PARAMETERS 623

[14] Hewitt, Charles C., Jr., “Loss Ratio Distributions—A Mod-
el,” PCAS LIV, 1967, pp. 70–88.

[15] Whitney, Albert W., “The Theory of Experience Rating,”
PCAS IV, 1918, pp. 274–292.

[16] Michelbacher, Gustav F., “The Practice of Experience Rat-
ing,” PCAS IV, 1918, pp. 293–324.

[17] Mahler, Howard C., “Credibility: Practical Applications,”
Casualty Actuarial Society Forum, Fall 1989, pp. 187–199.

[18] Mahler, Howard C., “Introduction to Basic Credibility,” Ca-
sualty Actuarial Society Forum, Winter 1997, pp. 67–103.

[19] Gillam, William R. and Richard H. Snader, “Fundamentals
of Individual Risk Rating,” 1992, available from the CAS.

[20] Mahler, Howard C., “An Example of Credibility and Shift-
ing Risk Parameters,” PCAS LXXVII, 1990, pp. 225–308.

[21] Finger, Robert J., “Risk Classification,” Chapter 5 of Foun-
dations of Casualty Actuarial Science, Casualty Actuarial
Society, 1990.

[22] Kallop, Roy H., “A Current Look at Workers Compensation
Ratemaking,” PCAS LXII, 1975, pp. 62–133.

[23] Feldblum, Sholom, “Workers Compensation Ratemaking
(selected chapters),” Casualty Actuarial Society Forum,
February 1993, pp. 241–312.

[24] Harwayne, Frank, “Use of National Experience Indica-
tors in Workers Compensation Insurance Classification
Ratemaking,” PCAS LXIV, 1977, pp. 74–84.

[25] Meyers, Glenn G., “Empirical Bayesian Credibility for
Workers Compensation Classification Ratemaking,” PCAS
LXXI, 1984, pp. 96–121.

[26] Busche, George R., “AMethod to Include Multiple Years of
Data in a Company’s Rate Indication,” Casualty Actuarial
Society Forum, February 1993, pp. 401–420.

[27] Bouska, Amy S., “Exposure Bases Revisited,” PCAS
LXXVI, 1989, pp. 1–23.



624 CREDIBILITY WITH SHIFTING RISK PARAMETERS

[28] Stern, Phillip K., “Ratemaking Procedures for Automobile
Liability Insurance,” PCAS LII, 1965, pp. 139–202.

[29] Finger, Robert J., “Merit Rating for Doctor Professional
Liability Insurance,” PCAS LXXX, 1993, pp. 291–352.

[30] Conger, Robert F., “The Construction of Automobile Ter-
ritories in Massachusetts,” PCAS LXXIV, 1987, pp. 1–74.

[31] Boor, Joseph A., “Credibility Based on Accuracy,” PCAS
LXXIX, 1992, pp. 166–185.

[32] Stocks, Bonds, Bills and Inflation, 1996 Yearbook, Ibbot-
son Associates, Chicago.

[33] Mahler, Howard C., “An Actuarial Note on Credibility Pa-
rameters,” PCAS LXXIII, 1986, pp. 1–26.

[34] Feller, William, An Introduction to Probability Theory and
its Applications, New York: John Wiley and Sons, 1968.

[35] Resnick, Sidney I., Adventures in Stochastic Processes,
Boston: Birkhauser, 1992.

[36] DeVlyder, F. Etienne, Advanced Risk Theory—A Self-
Contained Introduction, University of Brussels, Belgium,
1996.



CREDIBILITY WITH SHIFTING RISK PARAMETERS 625

APPENDIX A

MARKOV CHAINS247

Assume that each year248 an individual is in a “state.” Each
state could correspond to a different average claim frequency.
Assume that there are a finite number of different states.

Assume with each new year that an individual in State i has
a chance Pij of going to State j. This chance is independent of
which individual we have picked, what its past history was, or
what year it is. The transition probability from State i to State j,
Pij , is only dependent on the two States, i and j.

Arrange these transition probabilities, Pij, into a matrix P. This
transition matrix P, together with the definition of the states,
defines a (finite dimensional) Markov chain.

A vector containing the probability of finding an individual
in each of the possible states is called a “distribution.” If the dis-
tribution in Year 1 is ¯, then the expected distribution in Year 2
is ¯P, where ¯P is the matrix product of the (row vector) distri-
bution ¯ and the transition matrix P. The expected distribution
in Year 3 is (¯P)P = ¯(PP) = ¯P2. The expected distribution in
Year 1+ g is ¯Pg.

Let PT be the matrix transpose of P. Let ¤ be the diagonal
matrix with entries equal to the eigenvalues of PT. Let VT be the
matrix each of whose columns are the eigenvectors of PT. (V
has as its rows the eigenvectors of PT.) Then (VT)%1PTVT = ¤.
Taking the transpose of both sides of this equation and noting
that ¤T = ¤, since ¤ is symmetric: VPV%1 = ¤. So the matrix V
can be used to diagonalize the transition matrix P:

V%1¤2V =V%1(VPV%1)2V =V%1VPV%1VPV%1V = P2:

247See Feller [34], Resnick [35], and Appendix A in Mahler [1].
248Although in this paper the time interval is a year, in general, it can be anything else.
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In general, Pg =V%1(VPV%1)gV =V%1¤gV. So powers of P
can be computed by taking powers of the diagonal matrix ¤ and
using the eigenvector matrix V to transform back. The elements
of the diagonal matrix ¤g are ¸gi . ¸1 = 1 (the order of eigenval-
ues is arbitrary) and $¸i$< 1 for i > 1 (ignoring the very unusual
situation where ¸= 1 is a multiple root of the characteristic equa-
tion).249

249If for any i, $¸i$> 1, then there would be no limiting distribution, instead it would blow
up. However, a finite dimensional Markov chain such that each state can be reached from
every other state and such that no states are periodic has a unique stationary distribution,
which is the limit as time goes to infinity. If for all i, $¸i$< 1, then again there would
be no non-zero limit, instead it would go to zero. Thus, we have all $¸i$ ) 1 and at least
one $¸i$= 1.
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APPENDIX B

MATRIX EQUATIONS FOR LEAST SQUARES CREDIBILITY WITH
NO WEIGHT TO GRAND MEAN250

In this appendix, Equations 6.7 in the main text are derived by
minimizing the squared error. The result is one constraint equa-
tion plus Y linear equations for the credibilities to be assigned
to each of Y years of data. Thus the credibilities can be solved
for in terms of the covariance structure. Also, the related result
in Boor [31] is derived.

Let

Cij =Cov[Xi,Xj] = E[XiXj]%E[Xi]E[Xj]
= Covariance of Year Xi and Year Xj ,

Cii =Variance of Year Xi, and

¹i =E[Xi] = Expected value for Year Xi:

Let Zi be the credibility assigned to Year Xi. We wish to pre-
dict Year XY+¢ using Y years of data X1,X2, : : : ,XY. Assume.Y
i=1Zi = 1.

Then the estimate is:

F =
Y"
i=1

ZiXi and

F %XY+¢ =
#

Y"
i=1

ZiXi

$
%XY+¢ =

Y"
i=1

Zi(Xi%XY+¢)

since
.Y
i=1Zi = 1.

250The derivation is along the same lines as those in Mahler [20] and Mahler [1].
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Therefore,

(F%XY+¢)2 =
#

Y"
i=1

Zi(Xi%XY+¢)
$68 Y"

j=1

Zj(Xj %XY+¢)
9;

=
Y"
i=1

Y"
j=1

ZiZj(Xi%XY+¢)(Xj %XY+¢):

Then the expected value of the squared difference between
the estimate F and XY+¢ is, as a function of the credibilities Z,

V(Z) = E[(F%XY+¢)2]

=
Y"
i=1

Y"
j=1

ZiZjE[(Xi%XY+¢)(Xj %XY+¢)]:

Now

E[(Xi%XY+¢)(Xj %XY+¢)] = E[XiXj]%E[XiXY+¢]
%E[XjXY+¢]+E[X2Y+¢]

E[XiXj] = Cov[Xi,Xj]+E[Xi]E[Xj]

=Cij +¹i¹j:

Thus,

E[(Xi%XY+¢)(Xj %XY+¢)]
=Cij %Ci,Y+¢%Cj,Y+¢+CY+¢,Y+¢
+¹i¹j %¹i¹Y+¢%¹j¹Y+¢+¹2Y+¢:

V(Z) =
Y"
i=1

Y"
j=1

ZiZj

0"Cij %Ci,Y+¢%Cj,Y+¢+CY+¢,Y+¢+¹i¹j
%¹i¹Y+¢%¹j¹Y+¢+¹2Y+¢#
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V(Z) =
Y"
i=1

Y"
j=1

ZiZj(Cij +¹i¹j)

%
#

Y"
i=1

(Ci,Y+¢+¹i¹Y+¢)Zi

$68 Y"
j=1

Zj

9;
%
68 Y"
j=1

(Cj,Y+¢+¹j¹Y+¢)Zj

9;# Y"
i=1

Zi

$

+(CY+¢,Y+¢+¹
2
Y+¢)

#
Y"
i=1

Zi

$68 Y"
j=1

Zj

9; :
The last three terms all simplify since

Y"
i=1

Zi = 1:

Therefore,

V(Z) =
Y"
i=1

Y"
j=1

ZiZj(Cij +¹i¹j)%2
Y"
i=1

(Ci,Y+¢+¹i¹Y+¢)Zi

+CY+¢,Y+¢+¹
2
Y+¢:

We can minimize V(Z) given the constraint
.Y
i=1Zi% 1 = 0

by using Lagrange multipliers. We set equal to zero the partial
derivative with respect to Zk of V(Z)%¸(

.Y
i=1Zi%1):

2
Y"
i=1

Zi(Cik +¹i¹k)%2(Ck,Y+¢+¹k¹Y+¢)%¸= 0:

Therefore,

Y"
i=1

Zi(Cik +¹i¹k) =Ck,Y+¢+¹k¹Y+¢+¸=2 k = 1,2, : : : ,Y:
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Also
Y"
i=1

Zi = 1:

Thus we obtain Y+1 linear equations in Y+1 unknowns (the
credibility assigned to each of Y years and the Lagrange multi-
plier ¸).

If we assume each of the years Xi is an unbiased estimator of
XY+¢, then E[Xi] = E[XY+¢], or ¹i = ¹Y+¢. The above equations
reduce to:

Y"
i=1

ZiCik +¹
2
Y+¢

Y"
i=1

Zi =Ck,Y+¢+¹
2
Y+¢+¸=2:

Since
.Y
i=1Zi = 1, this becomes Equations 6.7 in the main text:
Y"
i=1

ZiCik =Ck,Y+¢+¸=2, k = 1,2, : : : ,Y

Equation 6.7 as well as Equations 2.4, 8.1 and 10.12 to 10.13,
as shown in Table 2, are all variations on the so-called “normal
equations” for credibilities. See, for example, De Vlyder [36] for
an extensive discussion of the relation of the covariance structure
to the credibilities.

Boor, “Credibility Based on Accuracy”

The result in Boor [31] can be obtained as a special case of
the above development as follows, making no assumption con-
cerning whether E[Xi] equals E[XY+¢]. Assume we have two
estimators X1 and X2 that we are using to estimate X3. Then we
get 2 linear equations plus the constraint equation:251

Z1(C11 +¹1¹1)+Z2(C12 +¹1¹2) =C13 +¹1¹3 +¸=2,

Z1(C12 +¹1¹2)+Z2(C22 +¹2¹2) =C23 +¹2¹3 +¸=2, and

Z1 +Z2 = 1:

251Note that C21 = C12.
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Subtracting the first two equations eliminates the Lagrange
multiplier ¸:

Z1(C11%C12 +¹21%¹1¹2) +Z2(C12%C22 +¹1¹2%¹22)
= C13%C23 +¹1¹3%¹2¹3:

Substituting Z2 = 1%Z1 and solving for Z1:

Z1 =
C13%C12%C23 +C22 +¹1¹3%¹1¹2%¹2¹3 +¹22

C11%2C12 +C22 +¹21%2¹1¹2 +¹22
:

As in Boor [31], define the following quantities:

¿21 = E[(X1%X3)2] = E[X21 ]%2E[X1X3]+E[X23 ]
=C11 +¹

2
1 +C33 +¹

2
3% 2C13%2¹1¹3,

¿22 = E[(X2%X3)2] = E[X22 ]%2E[X2X3]+E[X23 ]
=C22 +¹

2
2 +C33 +¹

2
3% 2C23%2¹2¹3, and

±212 = E[(X1%X2)2] = E[X21 ]%2E[X1X2]+E[X22 ]
=C11 +¹

2
1 +C22 +¹

2
2% 2C12%2¹1¹2:

Then we can verify that the numerator of Z1 above is:

1
2(¿

2
2 % ¿21 + ±212):

The denominator of Z1 above is ±
2
12. Therefore:

Z1 =
¿22 % ¿21 + ±212

2±212
, and

Z2 = 1%Z1 =
¿21 % ¿22 + ±212

2±212
,

which is the result obtained in Boor [31].252 We note that the
key distinction is that Boor makes no assumption as to whether

252See page 169 of PCAS 1992.
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the estimators are unbiased.253 Thus his formulas involve terms
like E[X1X3] rather than the covariances such as in Equation 6.7
in the main text.

253Also, Boor only displays the result for combining two estimators. The development
in this appendix works for any number of estimators; we get Y+1 linear equations in
Y+1 unknowns.
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APPENDIX C

CLASSIFICATION DATA

Unit Statistical Plan data for Massachusetts workers compen-
sation insurance was examined.254 A total of 13 composite pol-
icy years255 of data were available at various reports.256 For each
year the latest available report was used: 80/81 to 88/89 @ 5th;
89/90 @ 4th; 90/91 @ 3rd; 91/92 @ 2nd; 92/93 @ 1st report.

For each classification, payrolls and losses were available. The
losses were paid losses plus case reserves. Losses were broken
down by injury kind and between medical and indemnity, but
these splits were not used in the current analysis.

For example, for Class 2003, Bakeries, the experience in com-
posite policy year 92/93 at first report was $68,928,691 in payroll
and $1,477,837 in losses. This corresponds to a pure premium
(per $100 of payroll) of 2.1440.

Class 2003 is one of 270 classes in the Manufacturing indus-
try group. For composite policy year 92/93 at first report there
was $3,896,021,286 in payroll and $67,944,193 in losses for the
Manufacturing industry group. This corresponds to a pure pre-
mium of 1.7439. Thus the relative pure premium for Class 2003
for 92/93 @ 1st is 2:1440=1:7439 = 1:2294.

Performing similar calculations, we obtain the following rel-
ative pure premiums for two example classes:257

254Experience on all insureds in the state was included, except for large deductible poli-
cies. (Large deductibles were only available during the most recent three composite policy
years.)
255A composite policy year runs from July to June. For example, composite policy year
92/93 includes experience from policies with policy effective dates from July 1, 1992 to
June 30, 1993.
256First report is evaluated 18 months after policy inception. Subsequent reports are made
at 12 month intervals, up to and including fifth report.
257The similar calculations were done for each class in the Manufacturing industry group.
Similar but totally separate calculations were then done for the Goods & Services industry
group.
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Relative Pure Premium

Composite
Policy
Year Class 2003 Class 3145258

92/93 @ 1st 1.2294 .7931
91/92 @ 2nd 1.2279 .3741
90/91 @ 3rd 1.5828 .5016
89/90 @ 4th 1.3713 .8561
88/89 @ 5th 1.2380 1.4134
87/88 @ 5th 1.7127 .5199
86/87 @ 5th 1.3507 1.0739
85/86 @ 5th 2.0721 1.1651
84/85 @ 5th 1.4784 .7649
83/84 @ 5th 1.6312 .9236
82/83 @ 5th 1.3711 1.6704
81/82 @ 5th 1.0365 1.5151
80/81 @ 5th 1.7196 .9415

The relative pure premiums show considerable fluctuation be-
cause these are medium-sized classes and the losses used are
unlimited.259

In order to divide the classes into size categories, expected
losses were calculated. Expected losses for a class for a compos-
ite policy year were obtained by multiplying the reported payrolls
by three factors. The first factor was the ratio of the State Av-
erage Weekly Wage for Composite Policy Year 1992/1993260 to
that for the particular composite policy year. The second factor
was the observed pure premium for the industry group for the
particular composite policy year and report. The third and final
factor was the ratio of the current rate261 for the class to the
average rate for the industry group.

258Class 3145 is Screw Manufacturing.
259For classification ratemaking individual claims are usually limited. Currently in Mas-
sachusetts workers compensation each claim is capped at $200,000 for classification
ratemaking. (These excess losses are loaded back via factors which vary by hazard group
and injury kind.)
260The most recent year of data used.
261Rates effective 5/1/96 were used.
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For example, for Class 2003 for Composite Policy Year
91/92 @ 2nd report the payroll was $88,136,418. The State
Average Weekly Wage during 92/93 was $580.73, while dur-
ing 91/92 it was $560.28. Thus the first adjustment factor is
$580:73.$560:28 = 1:036. The observed pure premium for the
Manufacturing industry group for 91/92 @ 2nd report is 2.361.
The current manual rate for Class 2003 is $5.77, while the av-
erage manual rate for Manufacturing is $4.008. Thus the third
adjustment factor is $5:77=$4:008 = 1:43962.

Thus the expected losses for Class 2003 for 91/92 @ 2nd are

($88,135,418.100)(1:036)(2:361)(1:43962) = $3,103,552:
A similar calculation of expected losses was made for each of
the 13 years. Then the average expected annual losses were cal-
culated for each class.262 It is these average expected annual
losses that were used to divide the classes into size categories
for purposes of analysis.

262The average only included years in which the class had reported payrolls. Some classes
were discontinued or newly erected during these 13 years.



636 CREDIBILITY WITH SHIFTING RISK PARAMETERS

APPENDIX D

SPLIT EXPERIENCE RATING PLAN MATRIX EQUATIONS FOR
LEAST SQUARES CREDIBILITY

In this appendix, Equations 10.12 and 10.13 in the main text
will be derived for the optimal primary and excess credibilities
for a split experience rating plan.

Assume we have two well-defined portions of the total losses,
which can be thought of as primary and excess.263 Assume we
have Y years of data being used to predict year Y+¢.264 We wish
to determine credibilities to apply to the primary and excess data
for each year.

Define the following quantities:

EPi =Expected Primary Losses for Year i,

EXi =Expected Excess Losses for Year i,

Ei = EPi+EXi =Expected Losses for Year i,

APi =Actual Primary Losses for Year i,

AXi =Actual Excess Losses for Year i,

Di = EPi=Ei =D-ratio for Year i,

Pi = APi=Ei,

Xi = AXi=Ei,

¼i = Pi%Di = (APi%EPi)=Ei
= Primary “Deviation Ratio” for Year i, and

»i = Xi% (1%Di) = (AXi%EXi)=Ei
=Excess “Deviation Ratio” for Year i:

263For workers compensation insurance, currently the first $5,000 of each claim is pri-
mary, while the remainder up to a claim limit is excess. The claim limit for experience
rating varies by state.
264Typically Y = 3 and ¢= 2 currently. Years 1, 2 and 3 are predicting Year 5.
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The quantity of interest in experience rating is how the in-
sured’s future losses will compare to the expected losses for the
average insured in that class or mixture of classes. That estimate,
the experience modification, can be written as:265

F = 1+
Y"
i=1

¼iZPi+
Y"
i=1

»iZXi:

This differs somewhat from the usual notation in, for example,
Gillam and Snader [19] or Mahler [4], since each individual year
of data will be assigned a separate credibility of each type, rather
than adding the years of data together and having one overall ZP
and ZX .

If we use the data from years 1 to Y in order to predict PY+¢+
XY+¢, the ratio of actual to expected losses for year Y+¢, then
the error is:

F% (PY+¢+XY+¢) = F% (¼Y+¢+ »Y+¢+1)

=
Y"
i=1

(¼i%¼Y+¢)ZPi+
Y"
i=0

(»i% »Y+¢)ZXi

%¼Y+¢
#
1%

Y"
i=1

ZPi

$
% »Y+¢

#
1%

Y"
i=1

ZXi

$
:

Define ¼0 = »0 = 0 and ZP0 = 1%
.Y
i=1ZPi and ZX0 = 1%.Y

i=1ZXi. Then the error is:

Y"
i=0

(¼i%¼Y+¢)ZPi+
Y"
i=0

(»i% »Y+¢)ZXi:

265Equation 10.1 in the main text.
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The squared error is:
Y"
i=0

Y"
j=0

(¼i%¼Y+¢)(¼j %¼Y+¢)ZPiZPj

+2
Y"
i=0

Y"
j=0

(¼i%¼Y+¢)(»j % »Y+¢)ZPiZXj

+
Y"
i=0

Y"
j=0

(»i% »Y+¢)(»j % »Y+¢)ZXiZXj:

Thus, the expected value of the squared error is:
Y"
i=0

Y"
j=0

ZPiZPjE[(¼i%¼Y+¢)(¼j %¼Y+¢)]

+2
Y"
i=0

Y"
j=0

ZPiZXjE[(¼i%¼Y+¢)(»j % »Y+¢)]

+
Y"
i=0

Y"
j=0

ZXiZXjE[(»i% »Y+¢)(»j % »Y+¢)]:

Define the following quantities in terms of covariances:

Sij =Cov[¼i,¼j] = Sji,

Tij =Cov[»i,»j] = Tji, and

Uij =Cov[¼i,»j]:

Note that since E[¼i] = 0 = E[»j], Sij =E[¼i¼j], Tij = E[»i»j],
and Uij = E[¼i»j]. We can rewrite the expression for the expected
value of the squared error in terms of Sij , Tij and Uij .

For example, the “cross term” can be written as:

E[(¼i%¼Y+¢)(»j % »Y+¢)]
= E[¼i»j]%E[¼i»Y+¢]%E[¼Y+¢»j]+E[¼Y+¢»Y+¢]
=Uij %Ui,Y+¢%UY+¢,j +UY+¢,Y+¢:
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Similarly,

E[(¼i%¼Y+¢)(¼j %¼Y+¢)] = Sij % Si,Y+¢% SY+¢,j + SY+¢,Y+¢
E[(»i% »Y+¢)(»j % »Y+¢)] = Tij %Ti,Y+¢%TY+¢,j +TY+¢,Y+¢:

Note that:

E[(¼0%¼Y+¢)(»j % »Y+¢)] =%E[¼Y+¢(»j % »Y+¢)]
=%UY+¢,j +UY+¢,Y+¢,

but U0j =Cov[¼0,»j] = Cov[0,»j] = 0. Thus,

E[(¼0%¼Y+¢)(»j % »Y+¢)]

=U0,j %U0,Y+¢%UY+¢,j +UY+¢,Y+¢:

Thus, the same notation works for index values of zero. There-
fore, the expected value of the squared error is the following
quadratic function of the primary and excess credibilities:

Y"
i=0

Y"
j=0

ZPiZPj(Sij % Si,Y+¢% SY+¢,j + SY+¢,Y+¢)

+2
Y"
i=0

Y"
j=0

ZPiZXj(Uij %Ui,Y+¢%UY+¢,j +UY+¢,Y+¢)

+
Y"
i=0

Y"
j=0

ZXiZXj(Tij %Ti,Y+¢%TY+¢,j +TY+¢,Y+¢):

Some simplification is possible using the facts that:

Y"
i=0

ZPi = 1 =
Y"
i=0

ZXi:
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Thus, the expected value of the squared error is:

Y"
i=0

Y"
j=0

ZPiZPjSij %2
Y"
i=0

ZPiSi,Y+¢+ SY+¢,Y+¢

+2
Y"
i=0

Y"
j=0

ZPiZXjUij %2
Y"
i=0

ZPiUi,Y+¢

%2
Y"
i=0

ZXiUY+¢,i+2UY+¢,Y+¢

+
Y"
i=0

Y"
j=0

ZXiZXjTij %2
Y"
i=0

ZXiTi,Y+¢+TY+¢,Y+¢:

In order to minimize the expected value of the squared error
we set each of the 2Y partial derivatives with respect to one of
the credibilities equal to zero. We get 2Y linear equations in 2Y
unknowns.

Taking the partial derivative of the expected squared error
with respect to ZPk and setting it equal to zero yields:

266

Y"
i=0

ZPi(Sik% Sk,Y+¢)+
Y"
i=0

ZXi(Uki%Uk,Y+¢) = 0:

Taking the partial derivative of the expected squared error
with respect to ZXk and setting it equal to zero yields:

Y"
i=0

ZPi(Uik %UY+¢,k)+
Y"
i=0

ZXi(Tki%Tk,Y+¢) = 0:

Again some simplification is possible using the facts that:

Y"
i=0

ZPi = 1 =
Y"
i=0

ZXi:

266Dividing each term by a factor of two.
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The linear equations become:

Y"
i=0

(ZPiSik+ZXiUki) = Sk,Y+¢+Uk,Y+¢, and

Y"
i=0

(ZPiUik +ZXiTki) =UY+¢,k+Tk,Y+¢:

Since S0k =U0k = T0k = 0 = Sk0 =Uk0 = Tk0, the summation on
the left hand side can start at i= 1 rather than 0. The resulting
2Y linear equations are Equations 10.12 and 10.13 in the main
text.

An important special case occurs in the absence of shifting
parameters over time. Further assume we either use one year of
data or combine several years of data together.

Then Equations 10.12 and 10.13 become:

ZPS11 +ZXU11 = S1,1+¢+U1,1+¢, and

ZPU11 +ZXT11 =U1+¢,1 +T1,1+¢:

The solutions are:

ZP =
(S1,1+¢+U1,1+¢)T11% (U1+¢,1 +T1,1+¢)U11

S11T11%U211
, and

ZX =
(T1,1+¢+U1+¢,1)S11% (U1,1+¢+ S1,1+¢)U11

S11T11%U211
:

This matches the result in Mahler [11],267 with:

S11 = Total variance of the primary losses,

T11 = Total variance of the excess losses,

267See Equations 5.3 and 5.4 in Mahler [11].
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S1,1+¢ =Variance of the hypothetical means of the
primary losses,

T1,1+¢ =Variance of the hypothetical means of the
excess losses,

U11 = Total covariance of the primary and excess losses, and

U1,1+¢ =U1+¢,1 = Covariance of the hypothetical means of
the primary and excess losses:

In the notation in Mahler [11]:

a= Total variance of the primary losses,

b = Total variance of the excess losses,

c=Variance of the hypothetical means of the primary losses,

d =Variance of the hypothetical means of the excess losses,

r = Total covariance of the primary and excess losses, and

s=Covariance of hypothetical means of the primary and
excess losses:

And in the absence of shifting risk parameters over time the
optimum ZP and ZX are:

ZP =
(c+ s)b% (d+ s)r

ab% r2 , and

ZX =
(d+ s)a% (c+ s)r

ab% r2 :
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APPENDIX E

USE OF COUNTRYWIDE CLASSIFICATION DATA, MATRIX
EQUATIONS FOR LEAST SQUARES CREDIBILITY

This appendix will discuss Equations 8.1 in the main text for
the optimal least squares credibility when combining classifica-
tion data from more than one state.

Assume we have a series of observations of Xi, for example,
the class relativities in Massachusetts for each of several years,
i= 1 to Y. Assume we also have a related series of observations
of Ai, for example, the relativities for the same class calculated
from data from some other states.268 Finally, assume we wish to
predict XY+¢, the class relativity in Massachusetts in year Y+¢
in the example in the main text, using a weighted average of the
Xi and Ai.

More specifically the predictor F =
.Y
i=1ZiXi+

.Y
i=1WiAi and.Y

i=1Zi+
.Y
i=1Wi = 1.

Note that here the weights sum to 100%; there is no weight
being given to the grand mean. Note that since we are predicting
XY+¢, X and A will not enter into the matrix equations in a
symmetric fashion.269

Let the covariances be:

Sij =Cov[Xi,Xj] = Sji,

Tij =Cov[Ai,Aj] = Tji, and

Uij =Cov[Xi,Aj]:

268It is not necessary that Ai be available for exactly the same years as Xi, i= 1 to Y,
but the presentation is easier to follow if we assume that this is the case. (Years with no
available data can be treated by giving them a weight of zero.)
269In contrast, the primary and excess losses did enter into the equations in Appendix D
in a mathematically symmetric manner.
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As in Appendices B and D, assume each Xi or Ai is an un-
biased estimator of the quantity of interest, XY+¢. Then the ex-
pected value of the squared error is:

V(Z,W) = E[(F %XY+¢)2]

= E

<=! Y"
i=1

Zi(Xi%XY+¢) +
Y"
i=1

Wi(Ai%XY+¢)
/2>?

=
Y"
i=1

Y"
j=1

ZiZj(Sij % Si,Y+¢% SY+¢,j + SY+¢,Y+¢)

+2
Y"
i=1

Y"
j=1

ZiWj(Uij % Si,Y+¢%UY+¢,j + SY+¢,Y+¢)

+
Y"
i=1

Y"
j=1

WiWj(Tij %UY+¢,i%UY+¢,j + SY+¢,Y+¢):

Some simplification of the expression for V(Z,W) is possible.
Since Si,Y+¢ = SY+¢,i

Y"
i=1

Y"
j=1

ZiZjSi,Y+¢ =
Y"
i=1

Y"
j=1

ZiZjSY+¢,j :

Therefore,

Y"
i=1

Y"
j=1

ZiZjSi,Y+¢+
Y"
i=1

Y"
j=1

ZiZjSY+¢,j +2
Y"
i=1

Y"
j=1

ZiWjSi,Y+¢

= 2
Y"
i=1

Y"
j=1

(ZiZj +ZiWj)Si,Y+¢

= 2

#
Y"
i=1

ZiSi,Y+¢

$68 Y"
j=1

(Zj +Wj)

9;= 2 Y"
i=1

ZiSi,Y+¢,

since
.Y
j=1(Zj +Wj) = 1.
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Similarly,

2
Y"
i=1

Y"
j=1

ZiWjUY+¢,j +
Y"
i=1

Y"
j=1

WiWjUY+¢,i+
Y"
i=1

Y"
j=1

WiWjUY+¢,j

= 2

#
Y"
i=1

(Zi+Wi)

$68 Y"
j=1

WjUY+¢,j

9;= 2 Y"
i=1

WiUY+¢,i:

Also we have:

Y"
i=1

Y"
j=1

ZiZjSY+¢,Y+¢+2
Y"
i=1

Y"
j=1

ZiWjSY+¢,Y+¢

+
Y"
i=1

Y"
j=1

WiWjSY+¢,Y+¢

= SY+¢,Y+¢

#
Y"
i=1

(Zi+Wi)

$68 Y"
j=1

(Zj +Wj)

9;= SY+¢,Y+¢:
Thus, V(Z,W) simplifies to:

V(Z,W) =
Y"
i=1

Y"
j=1

ZiZjSij +2
Y"
i=1

Y"
j=1

ZiWjUij

+
Y"
i=1

Y"
j=1

WiWjTij %2
Y"
i=1

ZiSi,Y+¢

% 2
Y"
i=1

WiUY+¢,i+ SY+¢,Y+¢:

The constraint equation
.Y
i=1Zi+

.Y
i=1Wi% 1 = 0 is incorpo-

rated via the Lagrange multiplier ¸. We minimize V(Z,W)%
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¸(
.Y
i=1Zi+

.Y
i=1Wi%1), by taking each of 2Y partial deriva-

tives with respect to the Zs and Ws and setting them equal to
zero. Setting the partial derivative with respect to Zk equal to
zero:

2
Y"
j=1

ZjSkj +2
Y"
j=1

WjUkj %2Sk,Y+¢%¸= 0:

This equation can be rewritten as:

Y"
j=1

ZjSkj +
Y"
j=1

WjUkj = ¸=2+ Sk,Y+¢:

Similarly, by setting the partial derivative with respect to Wk
equal to zero we get:

Y"
j=1

ZjUjk+
Y"
j=1

WjTkj = ¸=2+UY+¢,k:

The above 2Y linear equations (one from the partial derivative
of each Zk and each Wk) plus the constraint equation are Equa-
tions 8.1 in the main text. Note the similarities to the Equations
2.4, 6.7, 10.12 and 10.13 in the main text. Each set of equa-
tions applies to a somewhat different situation. However, each
such set of linear equations depends on the covariance struc-
ture and can be solved for the credibilities using matrix meth-
ods.

In a situation where there were different years of Mas-
sachusetts and countrywide data, Equations 8.1 would be some-
what different in form. For example, assume Massachusetts data
for years 1, 2, 3 and 4 plus countrywide data for years 2 and
3 were being used to predict Massachusetts relativities for year
8. The Equations 8.1 would become seven linear equations in
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seven unknowns:

Z1S11 +Z2S12 +Z3S13 +Z4S14 +W2U12 +W3U13 = ¸=2+ S18,

Z1S21 +Z2S22 +Z3S23 +Z4S24 +W2U22 +W3U23 = ¸=2+ S28,

Z1S31 +Z2S32 +Z3S33 +Z4S34 +W2U32 +W3U33 = ¸=2+ S38,

Z1S41 +Z2S42 +Z3S43 +Z4S44 +W2U42 +W3U43 = ¸=2+ S48,

Z1U12 +Z2U22 +Z3U32 +Z4U42 +W2T22 +W3T32 = ¸=2+U82,

Z1U13 +Z2U23 +Z3U33 +Z4U43 +W2T23 +W3T33 = ¸=2+U83,

and Z1 +Z2 +Z3 +Z4 +W2 +W3 = 1:

In this case, the equations each have four terms involving
the four weights to each of the years of Massachusetts data, but
only two terms involving the two weights to each of the years of
countrywide data. There are 4+2+1 = 7 unknowns, including
the Lagrange multiplier.
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APPENDIX F

ESTIMATING PARAMETERS OF BETWEEN STATE COVARIANCES

In order to calculate credibilities when using data from one
or more outside states to calculate classification relativities, it is
necessary to estimate the variance-covariance structure. This ap-
pendix will present an example of how to estimate the parameters
of the between state covariances.

Assume as in Section 8 we are estimating Massachusetts class
relativities and will use New York data in addition to that from
Massachusetts.

Then there are three types of variance-covariance matrices.
The first type involves covariances between data from Mas-
sachusetts. The second type involves covariances between data
from New York. The third type of covariance is that involving
data from Massachusetts versus New York. It is expected that
for a given volume of data, the correlation of relativities between
states is less than the correlation of relativities within states. This
is what is observed.

For three years of data combined for each state, adjusted as
it would be for classification ratemaking,270 the relative pure
premiums were calculated for the classes in the Manufacturing
industry group. Then the correlations between the New York
and Massachusetts relative pure premiums were calculated for
various sizes of class.271 The results are in the table below.

How does this compare to the correlation within a single state
that we would expect if we could run the risk process twice

270Claims sizes are limited. Losses would be adjusted for law changes and loss develop-
ment. See Kallop [12] and Feldblum [13]. In this case, these adjustments were performed
by whichever rating bureau has responsibility for that state.
271The size of class was taken as the square root of the product of the payroll (summed
over three years) for each state. In other words, the geometric average of the payroll for
the two states was used for each class.
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Manufacturing Industry Group

Three Years of Payroll
($ million) Correlations NY vs. MA

Number of
Minimum Maximum Classes Observed Capped272

1 3 12 .047 .041
3 10 35 .348 .382
10 30 44 .106 .127
30 100 45 .596 .592
100 300 29 .623 .623
300 1,000 5 .818 .823

and create two parallel universes?273 In that case the portion
of the covariance related to the expected value of the process
variance, the term involving e2 or K, would vanish.274

Ignoring shifting risk parameters,275 the covariances between
single years of data are given by Equation 4.13:

Cov[Xi,Xj] = r
2"1+ I=E+ ±ij(K=E+ J)#, E + :

Then for the sum of three years of data, X1, X2 and X3:

Cov[X1 +X2 +X3,X1 +X2 +X3] = r
2"9+9I=E+3K=E+3J#,

E + :
If we have data from two parallel versions of Massachusetts,

we set K = 0, and J , to represent the possibly different J param-

272The relativity for each class was capped between 5 and 1/5, in order to limit the impact
of any one class on the computed correlation.
273In the dice examples in Sections 3 and 4, one just rerolls the dice keeping everything
else constant.
274For example, if X1 and X2 are each independent results of rolling 10 six-sided dice,
then their covariance is zero, while the process variance of X1 or X2 is positive. The usual
Bühlmann covariance structure is Cov[Xi,Xj] = ¿

2 + ±ij´
2. For i != j, Cov[Xi,Xj] = ¿2;

the term involving the expected value of the process variance, ´2, vanishes.
275Setting ½= 1 and ° = 1.
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eter when taking the covariance between two parallel versions of
Massachusetts.

Then the correlation for three years of data from each of two
parallel versions of Massachusetts is:

9+9I=E+3J ,

9+9I=E+3K=E+3J
=

(3+ J ,)E+3I
(3+ J)E+3I+K

, E + :

If we include shifting risk parameters, we get a slightly dif-
ferent expression for the correlations. The covariances are given
by Equation 5.8:

Cov[Xi,Xj] = r
2"½$i%j$+ °$i%j$I=E+ ±ij(K=E+ J)#, E + :

For the sum of three years of data, the terms involving ½ sum
to 3+4½+2½2. Similarly, the terms involving ° sum to (3+4°+
2°2)I=E. Using the values from Section 7.7, for ½= :98, 3+4½+
2½2 = 8:84, while for ° = :85, 3+4°+2°2 = 7:85.

Thus, the correlations equal:

8:84+7:85I=E+3J ,

8:84+7:85I=E+3K=E+3J
=

(2:95+ J ,)E+2:62I
(2:95+ J)E+2:62I+K

,

E + :
Similarly for E ) starting with Equation 5.9, we obtain a

correlation of:

8:84+7:85I=+3J ,

8:84+7:85I=+3K=E+3J
=

(2:95+ J ,)E+2:62IE=
(2:95+ J)E+2:62IE=+K

,

E ) :
Depending on whether or not the effects that are responsible

for parameter uncertainty are reproduced,276 the term involving
u2 or J may or may not vanish. In the case of MA vs. NY,
the two states would be affected by some of the same macroe-

276In the dice examples in Section 3, do we maintain the same coin flip or is the coin
flipped again?
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conomic and other forces that produce parameter uncertainty.
Thus, for covariances between MA and NY, we would expect
that a portion of the term involving J would remain. Since the
two parallel versions of Massachusetts will be used to compare
to the interstate situation, we will also assume that in that case
a portion of the term involving J will remain. For illustrative
purposes take J , = :05 for the covariances between two parallel
versions of Massachusetts, one-half of the assumed value for the
intrastate covariances.277

Using the estimated parameters from Section 7.7, with J , =
:05, we get the correlations shown below as “Expected In-
trastate.”278 These have been compared to the observed corre-
lations between New York and Massachusetts.

Ratio to Expected
Payroll 3 Years Correlations Intrastate

Expected NY vs. MA, NY vs. MA,
($ million) Intrastate NY vs. MA Capped279 NY vs. MA Capped

2 .215 .047 .041 .22 .19
6.5 .458 .348 .382 .76 .83
20 .600 .106 .127 .18 .21
65 .782 .596 .592 .76 .76
200 .900 .623 .623 .69 .69
650 .955 .818 .823 .86 .86

Similar comparisons were done for other large states and for
the Goods and Services industry group. Here are the ratios of the
observed interstate correlations to the expected intrastate corre-

277The credibilities are relatively insensitive to this choice.
278In order to translate payrolls into expected losses the payrolls were multiplied by the
observed pure premium for the Manufacturing industry group of about $2.50 per $100 of
payroll. Thus $1 million of payroll for 3 years corresponds to $8,333 of annual expected
losses.
279The relativity for each class was capped between 5 and 1/5, in order to limit the impact
of any one class on the computed correlation.
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lations:

RATIO OF INTERSTATE TO EXPECTED INTRASTATE
CORRELATIONS280 BY THREE YEARS OF PAYROLL ($ MILLION)

Manufacturing Goods and Services

State 3 to 10 10 to 30 30 to 100 100 to 300 10 to 100 100 to 1,000

Connecticut %:07 :58 .39 .74 .90 .86
Florida :08 :68 .81 .66 .23 .85
Georgia :11 :34 .23 .40 .61 .84
Illinois :50 :10 .60 .81 .58 .92
Michigan — :09 .59 .56 1.09 .82
Missouri :12 :31 .45 .67 .94 .88
New Jersey :72 :03 .53 .63 — —
New York :76 :18 .76 .69 1.09 .96
Oregon :78 :88 .73 — .95 .87
Wisconsin :18 %:04 .69 .66 .86 .89
Average .35 .32 .58 .65 .81 .87

Generally, the between state correlations are lower than the
within state correlations, for a given volume of data. In this case,
the between state correlations are perhaps 55% of the within state
correlations for Manufacturing281 and perhaps 85% for Goods
and Services. A ratio of 70% would result if the r2 factor multi-
plying the interstate covariances were 70% of the r2 factor mul-
tiplying the intrastate covariances.282

This ratio of 70% will be used for illustrative purposes in Sec-
tion 8. As is shown in Section 8.7, the credibilities are relatively
insensitive to this choice for values within this general range.

280Only results for categories with 15 or more classes are displayed.
281The correlations for the smaller size categories for Manufacturing were affected by
two classes whose observed Massachusetts relativities were vastly different than those
observed in most other states.
282Recall that in the intrastate situation, the r2 factor did not affect the calculated cred-
ibilities. In the interstate situation with two (or more) values for r2, the relative size of
the r2 values will affect the credibilities.
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For the interstate covariances the K parameter will be zero.283

Also, the interstate covariances will use J = :05, one-half of the
assumed value for the intrastate covariances.

283As discussed above, the portion of the covariance related to the expected value of
the process variance would vanish when taking covariances between data from different
states.



A GRAPHICAL ILLUSTRATION OF EXPERIENCE
RATING CREDIBILITIES

HOWARD C. MAHLER

Abstract

This paper combines a simple experience rating ex-
ample with a set of graphs in order to illustrate key
credibility concepts as they relate to experience rating.
As part of this graphical approach, credibility will be
related to linear regression.
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1. INTRODUCTION

Philbrick [1] uses his excellent target shooting example to
graphically illustrate some key concepts of credibility. Hewitt
[2] uses a die/spinner example to illustrate important ideas of
credibility. In this same spirit, this paper will combine a simple
experience rating example with a set of graphs to illustrate key
credibility ideas as they relate to experience rating. As part of
the graphical approach, credibility ideas will be related to linear
regression.

Prior and subsequent experience will be simulated for var-
ious sets of insureds for different sets of simple assumptions.
This simulated data for the various examples will be used to il-
lustrate that the slope of the regression line between prior and
subsequent experience is one estimate of the Bühlmann credi-
bility. Finally, these same examples will be used to illustrate
that the expected squared error between the actual and predicted

654
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subsequent experience is minimized when the weight given
to the observed experience is equal to the Bühlmann credibil-
ity.

2. EXPERIENCE RATING

The goal of experience rating is to use an individual insured’s
experience to help predict future loss costs.1 If the individual
risk’s experience were observed to be worse than average, we
would predict that his future experience would also likely be
somewhat worse than average. Therefore, we would be likely to
charge this insured somewhat more than average.

Credibility, as used in experience rating, quantifies how much
worse or better an insured’s future experience is expected to be
based on a particular deviation from average observed in the past.
In the simplest case:2

New Estimate = (Credibility)(Observation)

+ (1!Credibility)(Overall Mean)
= (Overall Mean)+ (Credibility)

" (Observation!Overall Mean):

In Appendix A, Bühlmann credibilities, Z, are calculated for
various situations, using the formulas:

Z =N=(N +K)

K = EPV/VHM

1See, for example, Meyers [3], Mahler [4], Finger [5], Gillam and Snader [6], and Tiller
[7].
2The actual applications have a number of complications beyond the scope of this
paper.
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where

Z =Bühlmann credibility,

N =Number of years of data (from a single insured),

K =Bühlmann credibility parameter,

EPV=Expected value of process variance for a single
unit of the risk process (i.e., for one insured
for one year),and

VHM=Variance of the hypothetical means for a single
unit of the risk process (i.e., for one insured
for one year).

3. SIMPLE EXAMPLE

The following very simplified assumptions will be used in
various combinations to illustrate credibility ideas. See Table 1
for a summary of the different situations illustrated.

TABLE 1

SUMMARY OF DIFFERENT SITUATIONS

Situation Quantity Types of Figure Credibility
Number* of Interest Insureds Number(s) Estimated Theoretical

1 Frequency 50 Good, 50 Bad 1, 2 40% 33%

1 Frequency 3 Years of Prior Data 3 58% 50%
50 Good, 50 Bad

2 Frequency 50 Excellent, 50 Ugly 4, 5 78% 81.8%

3 Frequency 50 Excellent, 50 Good, 6, 7 72% 71.4%
50 Bad, 50 Ugly

4 Unlimited 125 Excellent, 8, 9 51.5% 52.9%
Losses 125 Ugly

5 Limited 125 Excellent 10 71.4% 70.1%
Losses 125 Ugly

*See Appendix A for more details.
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Claim frequency for individual insureds is assumed to be Pois-
son.3 Claim severity is assumed to be given by a Pareto distribu-
tion4 with shape parameter 3 and scale parameter 20,000. Fre-
quency and severity are assumed to be independent. There are
four possible types of insureds with different Poisson parame-
ters:

Type Average Annual Claim Frequency

Excellent 5
Good 10
Bad 15
Ugly 20

In Appendix A, the usual Bühlmann credibility techniques
have been applied to various situations involving these four types
of insureds in order to quantify the credibility to be assigned
to the past experience of an insured. A set of graphs has been
constructed to illustrate these same situations.

These graphs illustrate the connection between Bühlmann
credibility and least squares linear regression. For the simple sit-
uations dealt with here, the slope of the least squares regression
line between the past and subsequent observations of insureds is
an estimate of the Bühlmann credibility. Appendix B provides a
mathematical demonstration of this relationship. Not only is this
relationship approximate,5 but the slope from the regression will
vary in particular examples due to random fluctuations. Thus,
the estimated credibility will not exactly equal the theoretical
Bühlmann credibility.

4. GRAPHS OF FREQUENCY EXAMPLES

Assume we have 100 insureds all in the same risk classi-
fication, territory, etc. The first graph, Figure 1, shows simu-

3The Poisson parameter for each insured stays the same over time.
4F(x) = 1! (20,000=(20,000+ x))3.
5As derived in Appendix B, one determines the expected value of a numerator
and denominator separately and then assumes that E[A=B]# E[A]=E[B] in the sit-
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FIGURE 1

SIMULATED CLAIMS EXPERIENCE

Situation 1: 50 Good Risks (Poisson 10) and 50 Bad Risks (Poisson 15)

lated claim counts for these 100 insureds divided into two equal
groups. In this graph, the “Good Risks” are labeled with crosses
and the “Bad Risks” with circles. In both the real world6 and
many of the subsequent graphs, the risks come without such
labels attached. (If they did come with such labels, we would
not need to use credibility.)

The 50 Bad Risks each have an expected claim frequency
of 15 while the 50 Good Risks each have an expected claim
frequency of 10. For each of the 100 insureds, a single prior
year of simulated claim counts has been plotted against a single
subsequent year of simulated claim counts. For example, one of

uations to which the result is being applied. In general, E[A]=E[B] is not an unbiased
estimator of A=B.
6In the real world, there is no way to precisely determine any individual’s expected future
frequency.
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FIGURE 2

SIMULATED CLAIMS EXPERIENCE
GOOD AND BAD RISKS

Situation 1: 50 Good Risks (Poisson 10) and 50 Bad Risks (Poisson 15)

the Good Risks had 4 claims in the prior year and 5 claims in the
subsequent year. This is indicated by a cross at the point (4,5).
There is considerable overlap between the groups. Nevertheless,
the Good Risks are more likely to be in the lower left while the
Bad Risks are more likely to be in the upper right of the graph.

The next graph, Figure 2, shows the same 100 insureds with-
out labels. In Figure 2 a least squares regression line has been
fit to the points. One could use this fitted line to predict a future
year’s experience based on an observation. Since the line slopes
upwards, a worse than average former year would lead one to
predict a worse than average subsequent year.

So if one observed 20 claims in a year for an insured, one
might predict about 15 claims for that insured next year, com-
pared to the overall average of 12.5. The formula for this least
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squares line is approximately:

Y = :40X +7:6:

The equation can be restated in the form of the “basic credibility
formula:”

Estimate = Z(Observation)+ (1!Z)(Overall Mean),
with the credibility Z = 40% and

(1!Z)(Overall Mean) = (60%)(12:5) = 7:5# 7:6:
With only 100 insureds, this result is subject to considerable

random fluctuation. Thus, the estimated credibility of 40% is
not equal to the theoretical Bühlmann credibility. The simulation
with many more insureds would give a credibility of 1/3, the
theoretical value as shown in Appendix A, Situation 1.

The credibility is just the slope of the straight line. It is the
weight given to the observation.

Note the way that the fitted line passes through the point
(12:5,12:5), denoted by a plus. Average experience in the prior
year yields an estimate of average experience in the subsequent
year. This follows from rewriting the basic credibility formula as
Estimate = Overall Mean+Z(Observation!Overall Mean).
Note that the line Y = X, with a slope of unity, would corre-

spond to 100% credibility, while the line Y = 12:5 with a slope of
zero, would correspond to zero credibility. In general, the slope
and the Bühlmann credibility will be between zero and one.

These general features displayed in Figure 2 will carry over
to subsequent figures. The least squares line will slope upwards
and pass through the point denoting average experience in the
prior and subsequent period. The slope will be (approximately)
equal to the credibility.

The next graph, Figure 3, is similar to Figure 2 but shows three
years of prior experience rather than one. Note that the X-axis is
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FIGURE 3

SIMULATED CLAIMS EXPERIENCE, 3 PRIOR YEARS
GOOD AND BAD RISKS

Situation 1: 50 Good Risks (Poisson 10) and 50 Bad Risks (Poisson 15)

now the annual claim frequency observed over three years. We
expect three years of data to contain more useful information
and thus be given more weight than would one year. In fact, a
fitted straight line has a larger slope of about 60% (actually 58%)
corresponding to a credibility of 60%. One way to increase the
credibility of data is to increase the volume of data.

In the case of Figures 2 and 3, the credibility is equal to
N=(N +K) where N is the number of years of data and K =
2. (See Appendix A, Situation 1.) This formula is used quite
often, with the “Bühlmann credibility constant” K dependent on
the statistical properties of the particular situation. Note that for
Figure 2 with one year of prior data, Z = 1=(1+2) = 33%, while
in Figure 3 with three years of prior data, Z = 3=(3+2) = 60%.

The next graph, Figure 4, shows 100 risks divided this time
into Excellent Risks and Ugly Risks. The Excellent Risks are
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FIGURE 4

SIMULATED CLAIMS EXPERIENCE

Situation 2: 50 Excellent Risks (Poisson 5) and 50 Ugly Risks (Poisson 20)

shown by asterisks and the Ugly Risks by wedges. The mean
frequencies are 5 and 20 rather than 10 and 15 as in the previous
exhibits. Therefore, the two groups are spread apart much more.
Since there is more dispersion between risks,7 each risk’s data
will be given more credibility than in the first graph.

This can be seen in the next graph, Figure 5, where a straight
line has been fit to these points. The line has a much larger slope
than the line in Figure 2, corresponding to higher credibility of
about 82%. (The estimated credibility is 78%. Again the results
of an experiment with only 100 risks differs from the theoreti-

7The experience is more likely to distinguish between excellent and ugly risks, than
between good and bad risks. This is quantified via the variance of hypothetical means
(VHM). As shown in Appendix A, the VHM in Situation 2 of 56.25 is much larger than
that in Situation 1 of 6.25.



A GRAPHICAL ILLUSTRATION OF EXPERIENCE RATING CREDIBILITIES 663

FIGURE 5

SIMULATED CLAIMS EXPERIENCE
EXCELLENT AND UGLY RISKS

Situation 2: 50 Excellent Risks (Poisson 5) and 50 Ugly Risks (Poisson 20)

cal result of 81.8% in Appendix A, Situation 2, due to random
fluctuation.) So due to the larger variation in hypothetical means
(holding everything else equal) in Figure 5 versus Figure 2, the
Bühlmann credibility increased from 33% to 82%. The value
of the individual risk’s information increased relative to the in-
formation contained in the overall mean. Conversely, the relative
value of the information contained in the overall mean decreased.

The next graph, Figure 6, combines the four different types of
insureds. This starts to approach the real world situations where
risks’ expected claim frequencies are assumed to be along a con-
tinuous spectrum, rather than being of discrete types.8 We can see

8One could approach a continuous situation similar to the Gamma–Poisson frequency
process. The Gamma–Poisson frequency process is explained, for example, in Hossack,
Pollard and Zehnwirth [8], Herzog [9], or Mahler [10].
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FIGURE 6

SIMULATED CLAIMS EXPERIENCE

Situation 3: 50 Excellent Risks (Poisson 5), 50 Good Risks (Poisson 10), 50 Bad Risks (Poisson 15),
and 50 Ugly Risks (Poisson 20)

plenty of overlap between the four types of insureds, although
since we labeled the insureds, we can discern the grouping of
different types.

The next graph, Figure 7, shows a line fit to data from all
four types. There the slope of 72% is between the slopes of 40%
and 78% that we got when dealing with just two groups in Fig-
ures 2 and 5. All else being equal,9 this makes sense since the
variation of the hypothetical means is in between the variations
of hypothetical means for those two situations. The theoretical
credibility of 71% determined in Appendix A, Situation 3, is be-
tween the theoretical credibilities of 33% and 82% for Situations
1 and 2 which deal with only two groups.

9Specifically, the expected value of the process variance is the same in all three situations.
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FIGURE 7

SIMULATED CLAIMS EXPERIENCE
EXCELLENT, GOOD, BAD, AND UGLY RISKS

Situation 3: 50 Excellent Risks (Poisson 5), 50 Good Risks (Poisson 10), 50 Bad Risks (Poisson 15),
and 50 Ugly Risks (Poisson 20)

5. GRAPHS OF PURE PREMIUM EXAMPLES

The following graphs will all involve 125 Excellent and 125
Ugly Risks and not only deal with claim frequency, but with
claim severity as well. By looking at dollars of loss rather than
numbers of claims, as can be seen on the next graph, Figure 8,
we introduce more random fluctuation.10 Therefore, the relative
value of the observation is less compared to the overall average;
the credibility goes down. One way to decrease the credibility of
data is to increase the variability of the data.

10In the absence of the labels, it would be somewhat easier to distinguish the Excellent
and Ugly risks in Figure 4 dealing with frequency only than in Figure 8 dealing with
dollars of loss.
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FIGURE 8

SIMULATED LOSS EXPERIENCE

Situation 4: 125 Excellent Risks (Poisson 5) and 125 Ugly Risks (Poisson 20), Pareto Severity
(3, $20,000)

As can be seen on the next graph, Figure 9, the slope of
the fitted line is 51.5%. As shown in Appendix A, Situation
4, the theoretical credibility is 53% compared to 82% for the
corresponding claim frequency Situation 2. The greater random
fluctuation, which is quantified by the larger “process variance,”
has decreased the credibility assigned to the observations.

In practical applications, one often limits the size of claims
entering into experience rating, since one way to decrease the
variability of the data is to cap losses. The final graph in this
series, Figure 10, shows the results of limiting each claim to
$25,000. (This capping can be just for the purposes of experi-
ence rating or could involve an actual policy limit.) The slope of
the fitted line between prior limited losses and subsequent lim-
ited losses is 71.4%. As determined in Appendix A, Situation 5,
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FIGURE 9

SIMULATED LOSS EXPERIENCE

Situation 4: 125 Excellent Risks (Poisson 5) and 125 Ugly Risks (Poisson 20), Pareto Severity
(3, $20,000)

the theoretical credibility of 70% when using limited losses com-
pares to 53% for total losses in Situation 4. Capping the losses
has reduced the random fluctuations (i.e., has reduced the pro-
cess variance) thereby increasing the credibility assigned to the
experience. (Basic limit losses are less volatile than total limits
losses.) For more on how to analyze experience rating plans, see
for example Meyers [3] or Mahler [4].

6. EFFECT OF RANDOM FLUCTUATIONS ON ESTIMATED
CREDIBILITIES

As mentioned above, the credibility estimated from regress-
ing actual data sets will be affected by random fluctuations and,
therefore, will not equal the theoretical Bühlmann credibility cal-
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FIGURE 10

SIMULATED LOSS EXPERIENCE
Each Claim Limited to $25,000

Situation 5: 125 Excellent Risks (Poisson 5) and 125 Ugly Risks (Poisson 20), Pareto Severity
(3, $20,000)

culated in Appendix A. The fewer insureds in the data set and/or
the larger the process variance,11 the larger is the impact from
random fluctuations.

Figures 11 and 12 show the results of simulation experiments.
Figure 11 deals with the frequency example with all four types
of insureds as illustrated in Figures 6 and 7. The situation in
Figure 7 with 200 insureds was simulated 10 separate times. This
resulted in 10 different estimates of the credibility, ranging from
63.4% to 77.8%, as shown in Figure 11. Similar simulation ex-

11If the expected claim frequencies had been smaller, then the process variance would
have been larger. For example, if the expected claim frequency for excellent risks were
.05 rather than 5, one would need many more insureds to get as good an estimate of the
credibility.



A GRAPHICAL ILLUSTRATION OF EXPERIENCE RATING CREDIBILITIES 669

FIGURE 11

SIMULATION EXPERIMENTS
CREDIBILITIES ESTIMATED BY REGRESSION

CLAIM COUNTS
EXCELLENT, GOOD, BAD, AND UGLY RISKS

Credibilities are those to be applied to one observation of one insured. The theoretically correct value
is 71.4%. Credibilities are estimated from the slope of the regression between one year of observations
for the class and a subsequent year of observations for the class.

periments were performed for data sets of 2,000 and 20,000. As
shown in Figure 11, with more insureds the credibility estimates
are more tightly bunched and closer to the theoretically correct
value.

Figure 12 is similar to Figure 11 but deals with the pure pre-
miums rather than frequencies. With only 250 insureds there is
considerable random fluctuation in the estimates. With 25,000
insureds the estimates are clustered between 50% and 54%. Due
to the larger process variance, the estimates are less tightly clus-
tered than they are in the examples involving frequency shown
in Figure 11.
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FIGURE 12

SIMULATION EXPERIMENTS
CREDIBILITIES ESTIMATED BY REGRESSION
LOSSES FOR EXCELLENT AND UGLY RISKS

Credibilities are those to be applied to one observation of one insured. The theoretically correct value
is 52.9%. Credibilities are estimated from the slope of the regression between one year of observations
for the class and a subsequent year of observations.

7. SQUARED ERRORS

Figures 13 through 17 illustrate the expected squared er-
rors between the prediction and future observation for various
weights applied to the observed data.

Figures 13 and 15 deal with the frequency example with all
four types of insureds as illustrated in Figures 6 and 7. Figure
13 displays the expected squared error12 as a function of the
weight (credibility) given to the observed frequency. The ex-
pected squared error is a parabola as a function of the weight.13

12The expected value of the squared difference between the future observation and the
prediction.
13This mathematical fact is demonstrated in Appendix C.
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FIGURE 13

EXPECTED SQUARED PREDICTION ERRORS VS. WEIGHT GIVEN
TO OBSERVED FREQUENCY

EXCELLENT, GOOD, BAD, AND UGLY RISKS

Equal numbers of: Excellent Risks (Poisson 5), Good Risks (Poisson 10), Bad Risks (Poisson 15),
and Ugly Risks (Poisson 20). Expected value of process variance = 12:5, variance of the hypothetical
means = 31:25. K = 12:5=31:25 = 0:4. Least squares credibilities are 71.4%, 88.2%, and 96.2%, for
1, 3, and 10 years of data, respectively.

For one year of observed data, the expected squared error is
minimized for a weight of 71.4%, the Bühlmann credibility for
this situation. For three years of observed data, the minimum
occurs for a weight of 88.2%. For ten years of observed data,
the minimum occurs for a weight of 96.2%.14

As seen in Figure 13, as the number of years of observations
increases, the prediction error from relying solely on the data
(weight = 100%) declines, while the prediction error from rely-
ing solely on the a priori mean (weight = 0) remains the same.
Thus, the place where the parabola reaches its minimum moves

14Note 10=(10+ :4) = 96:2%. Similarly 3=(3+ :4) = 88:2% and 1=(1+ :4) = 71:4%.
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FIGURE 14

EXPECTED SQUARED PREDICTION ERRORS VS. WEIGHT GIVEN
TO OBSERVED FREQUENCY

EXCELLENT, GOOD, BAD, AND UGLY RISKS

Equal numbers of: Excellent Risks (Poisson 5), Good Risks (Poisson 10), Bad Risks (Poisson 15),
and Ugly Risks (Poisson 20). Expected value of process variance = 12:5, variance of the hypothetical
means = 31:25. K = 12:5=31:25 = 0:4. Least squares credibilities are 71.4%, 88.2%, and 96.2%, for
1, 3, and 10 years of data, respectively.

to the right as the number of years of data increases; the credibil-
ity increases becoming 100% in the limit as the number of years
increases. For example, for one year of data the parabola reaches
its minimum at 71.4%, while for three years of data the corre-
sponding parabola reaches its minimum at 88.2%. Figure 14 is a
magnified version of Figure 13, which more clearly displays the
minima.

Figure 15 is similar to Figure 13, but here the expected
squared error is displayed as a function of the “credibility pa-
rameter.” In other words, we give N years of data weight Z =
N=(N +K), using the Bühlmann credibility formula with credi-
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FIGURE 15

EXPECTED SQUARED PREDICTION ERRORS VS. CREDIBILITY
PARAMETER USED TO DETERMINE WEIGHT GIVEN TO

OBSERVED FREQUENCY
EXCELLENT, GOOD, BAD, AND UGLY RISKS

Equal numbers of: Excellent Risks (Poisson 5), Good Risks (Poisson 10), Bad Risks (Poisson 15),
and Ugly Risks (Poisson 20). Expected value of process variance = 12:5, variance of the hypothetical
means = 31:25, K = 12:5=31:25 = 0:4.

bility parameter K.15 As shown in Appendix A, for Situation 3,
the Bühlmann credibility parameter is 0.4; as seen in Figure 15,
the expected squared error is indeed minimized for this value of
the credibility parameter. Note the same credibility parameter of
0.4 is optimal regardless of the number of years of data observed.

Figures 16 and 17 are similar to Figures 13 and 15, but deal
with the pure premiums rather than frequencies. Figure 16 shows
the expected squared errors, which are parabolas as a function of

15In Figure 15 K is not necessarily the Bühlmann credibility parameter. Rather, we use
a value of K to calculate a value of Z , which may not be the least squares Bühlmann
credibility. In the case of Figure 15, 0.4 is the Bühlmann credibility parameter.
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FIGURE 16

EXPECTED SQUARED PREDICTION ERRORS (BILLIONS) VS.
WEIGHT GIVEN TO OBSERVED FREQUENCY

EXCELLENT AND UGLY RISKS

Equal numbers of: Excellent Risks (Poisson 5) and Ugly Risks (Poisson 20). Expected Value of
Process Variance = 5,000 million, Variance of the Hypothetical Means = 5,625 million. K = 0:8889.
Least Squares Credibilities are 52.9%, 77.1%, and 91.8%, for 1, 3, and 10 years of data respectively.

the weight applied to the observed losses. Again, the expected
squared errors are minimized when the weight given to the ob-
served losses corresponds to the Bühlmann credibility.

Figure 17 shows the expected squared error as a function of
the credibility parameter. As shown in Appendix A, for Situation
4, the Bühlmann credibility parameter K = :8889. As seen in
Figure 17, this value of the credibility parameter minimizes the
expected squared errors.

8. CONCLUSIONS

Credibility, as used in experience rating, has been illustrated
via graphs. The estimated credibility was equal to the slope of
the line obtained from a least squares regression.
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FIGURE 17

EXPECTED SQUARED PREDICTION ERRORS (BILLIONS) VS.
CREDIBILITY PARAMETER USED TO DETERMINE WEIGHT

GIVEN TO OBSERVED LOSSES
EXCELLENT AND UGLY RISKS

Equal numbers of: Excellent Risks (Poisson 5) and Ugly Risks (Poisson 20). Expected value of
process variance = 5,000 million, variance of the hypothetical means = 5,625 million. K = 0:8889.

Prior and subsequent experience has been simulated for var-
ious sets of insureds for different sets of simple assumptions.
This simulated data for the various examples was used to il-
lustrate that the slope of the regression line between prior and
subsequent experience is one estimate of the Bühlmann credi-
bility. Finally, these same examples were used to illustrate that
the expected squared error between the actual and predicted sub-
sequent experience is minimized when the weight given to the
observed experience is equal to the Bühlmann credibility.

The regression technique shown here for illustrative purposes
could be employed in simple situations. Where greater accuracy
is desired or where the behavior is more complicated empirical
Bayesian and other techniques have been developed to estimate
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credibilities from data.16 In any case, the regression techniques
applied to simulations of simple examples are another useful way
to learn and understand the important basic ideas of credibility
and experience rating.

16See for example ISO [11], Venter [12], Mahler [13], or Mahler [14].
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ibility and Bayesian Analysis,” New England Actuarial Sem-
inars, 1997.

[18] Mahler, Howard C., “A Student’s Guide to Classical Cred-
ibility,” New England Actuarial Seminars, 1997.

[19] Mahler, Howard C., “A Student’s Guide to Loss Distribu-
tions,” New England Actuarial Seminars, 1997.

[20] Klugman, Stuart A., Harry H. Panjer and Gordon E. Will-
mot, Loss Models: From Data to Decisions, Wiley, 1998.

[21] Hogg, Robert V. and Klugman, Stuart A., Loss Distribu-
tions, Wiley, 1984.



A GRAPHICAL ILLUSTRATION OF EXPERIENCE RATING CREDIBILITIES 679

APPENDIX A

CREDIBILITY FOR THE EXAMPLES

The formulas to be used are:17

K = EPV/VHM,

Z =N=(N +K),

where

K =Bühlmann credibility parameter,

EPV=Expected value of process variance for a single unit
of the risk process (i.e., for one insured for one year,

VHM=Variance of the hypothetical means for a single unit
of the risk process (i.e., for one insured for one year,

Z =Bühlmann credibility, and

N =Number of years of data (from a single insured).

The following information will be used in various combina-
tions to illustrate credibility ideas.

Claim frequency for individual insureds is assumed to be Pois-
son.18 Claim severity is assumed to be given by a Pareto distribu-
tion19 with shape parameter 3 and scale parameter 20,000.Fre-
quency and severity are independent. There are four possible
types of insureds with different Poisson parameters:

Type Average Annual Claim Frequency

Excellent 5
Good 10
Bad 15
Ugly 20

17These formulas are explained or derived in, for example, Mayerson [15], Hewitt [16],
Hewitt [2], Philbrick [1], Herzog [9], Venter [12], and Mahler [17].
18The Poisson parameter for each insured stays the same over time.
19F(x) = 1! (20,000=(20,000+ x))3.
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Situation 1: Frequency with Good and Bad Risks

A risk is selected at random from a class made up equally of
Good and Bad Risks.

Since the frequencies are Poisson, their variance is equal to
their mean. Therefore, the expected value of the process variance
is equal to the overall mean = 12:5.

VHM= $(10!12:5)2 + (15!12:5)2%=2 = 6:25:
K = EPV/VHM= 12:5=6:25 = 2:

For one year of data (as in Figure 2), Z = 1=(1+2) = 33%.

For three years of data (as in Figure 3), Z = 3=(3+2) = 60%.

Situation 2: Frequency with Excellent and Ugly Risks

A risk is selected at random from a class made up equally of
Excellent and Ugly Risks.

EPV= overall mean = 12:5:

VHM= $(5!12:5)2 + (20! 12:5)2%=2 = 56:25:
K = EPV/VHM= :222:

For one year of data (as in Figure 5), Z = 1=(1+ :222) =
81:8%.

Situation 3: Frequency with Excellent, Good, Bad, and Ugly
Risks

A risk is selected at random from a class made up equally of
Excellent, Good, Bad, and Ugly Risks.

EPV= overall mean = 12:5:

VHM= $(5!12:5)2 + (10! 12:5)2 + (15!12:5)2
+ (20! 12:5)2%=4 = 31:25:

K = 12:5=31:25 = :4:

For one year of data (as in Figure 7), Z = 1=(1+ :4) = 71:4%.
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Situation 4: Pure Premiums (Unlimited Losses) for Excellent and
Ugly Risks

A risk is selected at random from a class made up equally of
Excellent and Ugly risks.

With a Poisson frequency,20 the process variance of the pure
premiums = (mean frequency)(second moment of the severity).
(See, for example, Mahler [18].) Since the severity distribution
is assumed to be the same for all risks, the expected value of the
process variance = (overall mean frequency)(second moment of
the severity).

For a Pareto distribution, F(x) = 1! (¸=(¸+ x))®, the second
moment of the severity is 2¸2=$(®!1)(®! 2)%, which in this
case is 400 million. Therefore, since the mean frequency is 12.5,
EPV= (12:5) (400 million) = 5 billion.

For a Pareto distribution, the mean is ¸=(®! 1) = 10,000.
Thus, the hypothetical mean pure premiums are 50,000 and
200,000. Thus, the VHM= 5:625 billion.

Thus, K = EPV/VHM= 0:8889.

For one year of data (as in Figure 9), Z = 1=(1+ :8889) =
52:9%.

Situation 5: Limited Losses for Excellent and Ugly Risks

A risk is selected at random from a class made up equally
of Excellent and Ugly Risks. One observes the losses limited
to $25,000 per claim and attempts to predict the future limited
losses for the same insured.

20In general, for cases where frequency and severity are independent, the process variance
of the pure premium= (mean frequency)(variance of severity)+ (mean severity)2 (vari-
ance of frequency). For a Poisson, mean frequency = variance of the frequency. Thus, the
process variance of the pure premiums = (mean frequency)(variance of severity+mean
severity2) = (mean frequency)(second moment of severity).
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For a Pareto distribution, F(x) = 1! (¸=(¸+ x))®, the limited
second moment is given by21

E[X2;L] = E[X2]$1! (1+L=¸)1!®[1+ (®!1)L=¸]%:
In this case, E[X2;25,000] = 400 million $1! (1+1:25)!2[1+
(2)(1:25)]%= 123:5 million. As in Situation 4, EPV= (overall
mean frequency)(second moment of the severity) = (12:5)(123.5
million) = 1:544 billion.

For a Pareto distribution, the limited expected value is given
by22

E[X;L] = E[X]$1! (1+L=¸)1!®%:
In this case, E[X;25,000] = (10,000)(1! (1+1:25)!2) = 8,025.
Thus, the hypothetical mean pure premiums are (5)(8,025) =
40,125 and (20)(8,025) = 160,500. Therefore, VHM= 3:623 bil-
lion. K = EPV/VHM= 0:426. Note that while both the EPV and
VHM declined compared to Situation 4, the EPV declined more.
Therefore, the Bühlmann credibility parameter K declined from
0.8889 to 0.426. Thus, for one year of data (as in Figure 10)
Z = 1=(1+ :426) = 70:1%.

21See Mahler [19] or Klugman, Panjer, and Willmot [20].
22See Hogg and Klugman [21], Mahler [19], or Klugman, Panjer, and Willmot [20].
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APPENDIX B

REGRESSION AND CREDIBILITY

It turns out that in the example here,23 the Bühlmann credibil-
ity is approximately the slope of the least squares line between
prior and subsequent observations, as will be shown in this Ap-
pendix. Also, it will be shown that the regression line is expected
to pass approximately through the point (M,M), where M is the
overall mean.

Let Xi be the prior observations (for one year) for the insureds
in the portfolio and let Yi be the subsequent observations (for
one year) for the insureds in the portfolio. A regression line
y = ax+b, with slope a and intercept b, can be fit between the
prior and subsequent observations.24 Then the slope of the least
squares line is given by:25

a=
(§XiYi=O)! (§Xi=O)(§Yi=O)

(§X2i =O)! (§Xi=O)2
:

Where O is the number of insureds observed.

The numerator has an expected value equal to the covariance
of Xi and Yi, the observations in two separate years.

26 This is
assumed to be ¿2, the variance of the hypothetical means.27

The denominator has an expected value equal to the variance
of the observations in a single year.28 It is assumed that this

23This result holds in the case of the covariance structure assumed in Appendices A and
C. In particular, there are no shifting risk parameters over time. More general covariance
structures are discussed, for example, in Meyers [3], Mahler [4], Mahler [13], and Mahler
[14].
24As is done in Figures 2, 3, 5, 7, 9, and 10.
25For simplicity we have assumed that each insured is of the same size and gets the same
weight. Thus, we perform an unweighted regression.
26Recall that Cov[A,B] = E[AB]!E[A]E[B].
27One of the assumptions underlying Bühlmann’s credibility formula is that the covari-
ance between different years of data is the variance of the hypothetical means.
28Recall that Var[A] = E[A2]!E[A]2.
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expected value is ¿2 + ´2, the sum of the variance of the hypo-
thetical means and the expected value of the process variance.29

If one plugs in the expected values of both the numerator and
denominator, then we expect:30

a# ¿2=(¿2 + ´2) = Bühlmann credibility for one year:31

If X had been an observation for N years rather than one year,
then the expected value of the process variance (of the frequency
or pure premiums) would have declined by a factor of 1=N; it
would have been ´2=N rather than ´2 as for one year.32 On the
other hand, the variance of the hypothetical means would have
remained the same.33 Thus, with N years of data rather than
one, the expected value of the numerator would have been the
same, but the expected value of the denominator would have
been ¿2 + ´2=N and

a# ¿2=(¿2 + ´2=N) =N=(N + ´2=¿2) =N=(N +K)
= Bühlmann credibility for N years:

Thus, the slope of the regression line is approximately34 equal
to the Bühlmann credibility.

29The terms are each defined in terms of a single year of data. The total variance is equal
to the VHM plus EPV.
30Note that this estimator which is a ratio of two unbiased estimators can be biased. This
subject has been extensively discussed in relation to empirical Bayes credibility. See, for
example, ISO [11] and Venter [12].
31¿2=(¿2 + ´2) = VHM=(VHM+EPV) = 1=(1+EPV/VHM) =N=(N +K), withN = 1 and
K = EPV/VHM.
32See, for example, Mahler [17] or Mahler [14]. The process variance of the number of
claims increases by a factor of N, since variances add for (independent) years. However,
the claim frequency is the claim count divided by N , which introduces a factor of 1=N2

into the variances. The net result is a factor of N=N2 = 1=N for the process variance of
the claim frequency.
33See, for example, Mahler [17] or Mahler [14]. The hypothetical annual means of the
claim frequency are unchanged, thus, their variance is also unaffected. Alternately, the
hypothetical mean claim counts are multiplied by N and, thus, their variance is multiplied
by N2. However, claim frequency is divided by N, which introduces a factor of 1=N2

into the variance. The VHM is, thus, multiplied by N2=N2 = 1.
34In general E[A=B] &=E[A]=E[B]. Nevertheless, for the situations such as being dealt
with here, E[A=B]# E[A]=E[B].
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Also, one can show that the regression line is expected to pass
approximately through the point (M,M) where M is the overall
mean. The intercept of the least squares line is

b =
(§Yi=O)(§X

2
i =O)! (§XiYi=O)(§Xi=O)

(§X2i =O)! (§Xi=O)2
,

where O is the number of insureds observed each year,

§Yi=O has an expected value equal to the overall mean M,
and §X2i =O has an expected value of the second moment of the
average of N years of data. This is the sum of the variance of the
average of N years of data plus the square of the overall mean.
In turn, the variance of the average of N years of data35 is equal
to ¿2 + ´2=N.

Thus, the expected value of §X2i =O is equal to ¿2 + ´2=N +
M2.

The numerator of a is equal to §XiYi=O! (§Xi=O)(Yi=O).
Thus, the expected value of §XiYi=O is equal to that of the nu-
merator of a, ¿2, plus the expected value of (§Xi=O)(§Yi=O)
which is (M) (M). Therefore, the expected value of §XiYi=O is
¿2 +M2.

§Xi=O has an expected value equal to the overall mean M.

Thus, the expected value of the numerator of b with N years
of data is

M(¿2 + ´2=N +M2)! (¿2 +M2)M =M´2=N:

35Where Wj is the vector of data for year j

Var[(1=N)§Wj , (1=N)§Wk] = (1=N
2)Var[§Wj ,§Wk]

= (1=N2)§Var[Wj ,Wj]+ (1=N
2)§j &=kVar[Wj ,Wk]

= (1=N2)N(¿2 + ´2)+ (1=N2)((N2!N)(¿2))

= ¿2 +´2=N:
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The denominator of b is the same as that of a, and has an
expected value of ¿2 + ´2=N (for N years of data).

Thus, by substitution we expect

b # M´2=N

¿2 + ´2=N
:

Thus, since as was shown above,

a# ¿2=(¿2 + ´2=N),
aM +b #M¿2=(¿2 + ´2=N)+ (M´2=N)=(¿2 + ´2=N) =M:
Thus, we indeed expect the regression line y = ax+b to pass

approximately through the point (M,M). Prior experience for
an insured equal to the overall a priori expectation results in a
prediction equal to the overall a priori expectation.
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APPENDIX C

EXPECTED VALUE OF SQUARED ERRORS

This appendix discusses the expected value of the squared
errors that result from the use of credibility to estimate an in-
sured’s future experience from the insured’s past observed ex-
perience. The results of this appendix are illustrated in Figures
13 through 17. This appendix also shows how to calculate the
Bühlmann credibility, which is the value that minimizes this ex-
pected squared error.36

Assume we have a time series, Xi, and we wish to estimate a
future year of the same time series, XN+¢, by weighting together
observations Xi for i= 1 to N and the overall meanM. For exam-
ple, the Xi could be the observed frequencies for a single insured
over a series of individual years. If Zi is the weight applied to
year Xi, then

Estimate =
N!
i=1

ZiXi+

"
1!

N!
i=1

Zi

#
M:

Then the expected squared error comparing the estimate to
the observation37 is a quadratic function of the weights Zi:

38

V(Z) =
N!
i=1

N!
j=1

ZiZjCij ! 2
N!
i=1

ZiCi,N+¢+CN+¢,N+¢,

where Cij =Cov[Xi,Xj].

36It turns out that this value of credibility also minimizes the squared error between the
predictions and the true/hypothetical means and between the predictions and the Bayesian
estimates. See for example Mahler [17].
37The expected squared error compared to the observation, with respect to the hypothet-
ical mean, or with respect to the Bayesian estimate are each minimized by the value for
credibility calculated using the formula derived in this appendix.
38See for example Mahler [13].



688 A GRAPHICAL ILLUSTRATION OF EXPERIENCE RATING CREDIBILITIES

In the examples in Appendix A, the covariance structure is
that underlying the Bühlmann credibility formulation:

Cij = ¿
2 + ±ij´

2,

where Cij =Covariance of year i and year j,

´2 = Expected value of the process variance,

¿2 = Variance of the hypothetical means, and

±ij = 1 if i= j and 0 if i &= j:
Due to symmetry in this case, it turns out that the expected

squared errors are minimized for Zi = Zj. Let Z =
$N
i=1Zi = total

weight to be applied to N years of data. Then if Zi = Zj = Z=N,
substituting into the formula for the expected squared errors:

V(Z) =
N!
i=1

N!
j=1

ZiZj(¿
2 + ±ij´

2)!2
N!
i=1

Zi¿
2 + ¿2 + ´2

= Z2¿2 + ´2(Z=N)2N !2¿2Z + ¿2 + ´2
= Z2(¿2 + ´2=N)!2¿2Z + ¿2 + ´2:

For Situation 3 in Appendix A, ´2 = 12:5 and ¿2 = 31:25.
Thus, for ten years of data V(Z) = 32:5Z2!62:5Z +43:75. This
is one of the parabolas shown in Figure 13.

In order to minimize the expected squared error, we set
the derivative V'(Z) = 0. This results in Z = ¿2=(¿2 + ´2=N)
=N=(N+ ´2=¿2) =N=(N +K), where K = ´2=¿2 = EPV/VHM.
For example, for 10 years of data in Figures 13 or 14, the
parabola is minimized for Z = 31:25=(31:25+12:5=10) = 0:962.
Alternatively, K = 12:5=31:25 = 0:4 and Z = 10=(10+ :4) =
0:962. As seen in Figure 15, this value of K minimizes the ex-
pected squared error.



THE MYERS–COHN PROFIT MODEL,
A PRACTICAL APPLICATION

HOWARD C. MAHLER

Abstract

The Myers–Cohn Profit Model is presented via both a
simple example and a practical application. The practi-
cal application is shown in considerable detail in order
to illustrate some of the techniques required in applying
theory in the real world. This should help actuaries un-
derstand the model as well as illustrate the importance
of the inputs chosen and assumptions made. Since most
of the inputs used in this profit model are required by
other profit models, the illustrations of how to quantify
these input values should be of more general applicabil-
ity.

ACKNOWLEDGEMENT

I wish to thank Alexandra St. Onge for preparing the exhibits
and Silvia Fitcher and Dotty Culleton for typing this paper.

1. INTRODUCTION

Beginning with Commissioner James M. Stone’s automobile
bodily injury liability decision for 1976 state set rates, explicit
account has been taken of investment income in ratemaking for
the major lines of automobile and workers compensation insur-
ance in Massachusetts. Although the computational techniques
have changed over the years, the common thread has been to
attempt to allow insurers a fair return on their equity.

This paper will present one profit model that has been used.
A simple example will be presented as well as a practical appli-
cation.

689
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2. THE MYERS–COHN MODEL

The Myers–Cohn net present value model was developed for
the Massachusetts Rating Bureaus by Professors Stewart My-
ers and Richard Cohn. It was intended as an improvement of
the Fairley model which was used previously.1 The basic con-
cepts underlying the Fairley model, the model shown in Mahler
[2]2 and the Myers–Cohn model are all similar. Given similar
inputs all three models give similar (but not identical) results.
The Myers–Cohn model was first presented in the fall of 1981
at the 1982 automobile rate hearings. Then Commissioner Sab-
bagh used a modified version of this model to fix and establish
the 1982 private passenger automobile rates. The Massachusetts
Rating Bureaus used the Myers–Cohn model to derive its pro-
posed workers compensation underwriting profit provision as
well. It is currently used, with some technical refinements, to
set profit provisions for both automobile and workers compen-
sation insurance in Massachusetts.

The basic premise underlying the Myers–Cohn model can be
stated this way: a fair premium must be equal to the expected
losses and expenses discounted to present value at a risk-adjusted
rate, plus the present value of the federal income taxes on un-
derwriting and investment income discounted at an appropriate
rate.3 Premiums calculated this way should preserve the equity
invested in the company and give the investor a fair return for
the risk of underwriting by the company.

The Myers–Cohn model shares many features of other profit
models. One estimates the length of time an insurer can invest

1The original Fairley Model, an improvement by Hill and Modigliani, and the Myers–
Cohn Model, are all presented in Fair Rate of Return in Property-Liability Insurance [1].
2This model was first presented in the spring of 1981 and is described as “Model A” in
Part III of the 1984 NAIC Study of Investment Income [3].
3As shown in Exhibits 3 and 5, and as discussed below, those underwriting taxes corre-
sponding to the loss and expense payments are discounted at a risk-adjusted rate, while
the other income taxes are discounted at the risk-free rate.
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premium dollars prior to paying losses and expenses.4 One esti-
mates the investment income an insurer will earn on this cashflow
and the necessary equity (surplus) backing up the policies. One
takes into account the resulting income tax payments. Finally,
one incorporates a reward to the insurer for taking the risk of
writing insurance.

While this feature is shared with many other profit models,5

the manner of doing so in the Myers–Cohn model is different.
In the Myers–Cohn model selecting a risk-adjusted discount rate
takes the place of selecting an appropriate rate of return on equity.

In the application of the Myers–Cohn model shown here, as
well as the original paper by Myers and Cohn [1], the risk of writ-
ing insurance is quantified via the Capital Asset Pricing Model
(CAPM). However, this is not a requirement. The Myers–Cohn
model uses a risk-adjusted discount rate as an input. The differ-
ence between the risk-free and risk-adjusted rate determines the
reward for taking the risk of underwriting. How this difference
is selected is up to the person using the model. The CAPM is
only one way to go about selecting this difference.

Once all the inputs have been determined, the Myers–Cohn
equation yields the necessary premium as a ratio to losses and
expenses. As shown in Exhibit 5,6

P

L+E
=

∙1! ¿1∙5
∙2! ¿2r∙3! ¿1∙4! ¿1®∙6

:

Then one calculates the corresponding underwriting profit pro-
vision as 1! (Losses+Expenses)/Premiums.
In order to illustrate the use of the Myers–Cohn model, a

simplified example will be presented first. Later a practical ap-
plication to Massachusetts workers compensation will be shown.

4Consideration of policyholder dividend payments may also be included in the model.
5See for example, Mahler [2].
6The terms in the equation are defined and discussed in Section 3 and in Exhibit 5.
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It is neither the purpose nor intention of this paper to justify
particular selections of inputs nor to determine the appropriate
underwriting profit provision for use in any particular circum-
stance. All chosen inputs and calculated profit provisions are
solely for illustrative purposes. As with all profit models, the
profit provision calculated using the Myers–Cohn model is very
sensitive to the inputs chosen and assumptions made. This sen-
sitivity will be illustrated.

3. SIMPLE EXAMPLE

This section will illustrate the Myers–Cohn model via a simple
example. The corresponding calculations are shown in Exhibits
1 through 5.

3.1. Simple Example, Inputs and Assumptions

For this simplified example, make the following assumptions:

" All premiums are collected in Quarter 1.
" All losses are paid in Quarter 5.
" Variable expenses are 20% of premiums, and are paid in Quar-
ter 2.

" The ratio of fixed expenses to losses is 5%.
" Fixed expenses are paid in Quarter 2.
" Loss adjustment expenses are 10% of losses, and are paid
when losses are in Quarter 5.

" The federal income tax rate on underwriting is 35%.
" Investments are made solely in risk-free Treasury securities.
" There are no investment expenses.
" The federal income tax rate on investment income is 35%.
" There is no discounting of reserves for tax purposes and no
revenue offset feature of the tax code.
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" There are no dividend payments.
" The risk-free rate is assumed to be 9%.
" A risk-adjusted rate of 7% is used. The important concept is
that discounting “risky” loss and expense flows at the smaller
risk-adjusted rate is intended to compensate insurers for the
risk of underwriting insurance.7

" A 2-to-1 initial premium-to-surplus ratio is chosen.
" The surplus allocated to this policy is assumed to decline in
proportion to the losses and expenses paid.

3.2. Simple Example, Result and Outputs

Using the Myers–Cohn profit model, the calculated under-
writing profit provision is !3:0% as shown in Exhibit 1. The
purpose of this example is to illustrate and help to understand
the method of calculation, rather than concentrate on the an-
swer itself. Exhibits 2, 3 and 4 show in detail how the cashflows
are constructed and how the kappa values are determined. The
kappa values are “timing parameters.” They are calculated by
discounting the various cashflows at either the risk-free or risk-
adjusted rate. Exhibit 2 shows the cashflows for the initial set of
weights.8 However, as the profit provision varies so does the rel-
ative weight given to variable expenses, so that the profit model
is solved via iteration.9 The initial weights based on a profit pro-
vision of zero are used to calculate a profit provision which in
turn yields a new relation of premiums to losses and a new set of

7One could combine a 9% risk-free rate with an assumed beta of liabilities of !:2 and
a market risk premium of 10%, to get a risk adjusted rate of 7%. 7%= 9%! :2# 10%.
This is the method used in Section 4.8. While this is based on the Capital Asset Pricing
Model, some other means could be used to get the risk-adjusted rate.
8The cashflows are constructed for a single policy (or set of policies with the same
effective date), with a policy effective period of Quarters 1, 2, 3, and 4. Thus, the policy
effective date (time=0) is at the end of Quarter 0, and the beginning of Quarter 1.
9While one might attempt to solve for P in closed form, this would be very complicated
and have little if any practical value. For an analogous situation, Mahler [2, p. 257]
discusses an approximation which allows one to solve for P in closed form.
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weights. This new set of weights is used to calculate a new profit
provision. The process continues until the iteration converges to
the “final weights” and profit provision.10 Exhibit 4 shows the
cashflows for the final weights.

3.3. Simple Example, Details

The top portion of Exhibit 1 shows the inputs and assump-
tions chosen for this example. Next are shown the various kappa
values, which are defined as follows:11

∙1 = Risk-adjusted discounted losses and expenses factor

∙2 = Risk-free discounted premiums factor

∙3 = Risk-free discounted investment balance tax factor

∙4 = Risk-free discounted underwriting profit tax factor
(contribution of premiums)

∙5 = Risk-adjusted discounted underwriting profit tax factor
(contribution of losses and expenses)

∙6 = Risk-free discounted revenue offset tax factor:

The calculation of the kappa values is shown in Exhibit 3,
for the initial weights. ∙1 is the risk-adjusted discounted loss
and expense factor. It is calculated by discounting the loss and
expense flows from Exhibit 2 at the risk-adjusted rate of 7%.
The result is divided by the sum of losses and expenses, which
has been selected as 1,000.

∙2 is the result of discounting the premium flow at the 9%
risk-free rate.

10Generally, this takes three or four iterations.
11The Myers–Cohn paper had only four kappas. One additional kappa was introduced
in implementation to allow for the difference in timing between the payment of losses
and expenses, and the timing of the tax consequences of incurring losses and expenses.
∙6 was introduced in order to take into account the “revenue offset” feature of the Tax
Reform Act of 1986.
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∙3 is the result of discounting the investment balance for taxes
at the risk-free rate. The investment balance for taxes shown on
Exhibit 2 is the sum of the surplus plus the premium dollars
collected that have yet to be paid out as losses, expenses, or
dividends.

∙4 is the discounted contribution of premiums to the under-
writing profit tax. ∙5 is similar but for losses and expenses, and
thus discounted at a risk-adjusted rate. It’s assumed these take
place evenly in the four policy quarters.

∙6 is the discount factor used to take into account the revenue
offset feature of the tax code.

The bottom portion of Exhibit 1 shows how the different fac-
tors are put together to calculate the ratio of premiums to losses
and expenses and in turn the underwriting profit provision:

P=(L+E) = (∙1! ¿1∙5)=(∙2! ¿2r∙3! ¿1∙4! ¿1®∙6):
Those terms involving losses and expenses are in the numerator.
The terms involving taxes include the tax rates, either ¿1, the
underwriting tax rate, or ¿2, the investment income tax rate.

The term ¿2r∙3 is the tax rate ¿2 times the investment income
of r∙3, which is the quarterly rate of return times the (discounted)
investment balance.

Once the ratio of P=(L+E) is calculated as 0.9712, the profit
provision is 1! (1=0:9712) =!3:0%. This can be thought of as
a target combined ratio of 103%.

4. PRACTICAL APPLICATION, MASSACHUSETTS WORKERS
COMPENSATION

This section describes a practical application to Massachusetts
workers compensation insurance. The calculations are shown in
Exhibits 5 through 23.
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Exhibit 5 shows the equations for the Myers–Cohn model.12

As in the simple example in the previous section, the various in-
puts are brought together to calculate the profit provision shown
in Exhibit 5.

In many cases, inputs have been taken from elsewhere in the
ratemaking procedure.13 The calculations that produced those in-
puts are beyond the scope of this paper. However, in general it
is important to choose a set of consistent inputs to any under-
writing profit model. The set of inputs should be consistent both
internally and with other parts of the ratemaking process.

Certain complications present in recent rate filings have been
removed to aid in exposition. Enough complications have been
left to illustrate the usual types of difficulties that arise in prac-
tical situations. However, every application can have its own pe-
culiar details that require special treatment. Many of those that
have arisen in Massachusetts workers compensation are beyond
the scope of this paper.

For completeness, the changes that were made from the filing
for 1/1/98 rates to get the practical application shown here are
listed in the Appendix.14

4.1. Calculation of the Underwriting Profit Provision

As in the simple example in the previous section, the various
inputs are used to calculate six timing parameters, ∙1 through ∙6.
These are then combined in Exhibit 5 using the formulas:

P

L+E
=

∙1! ¿1∙5
∙2! ¿2r∙3! ¿1∙4! ¿1®∙6

and

¹= 1! (P=(L+E))!1,
12These were also used in the simple example in the previous section.
13For example, the estimate of loss flows employs estimates of ultimate losses by accident
year.
14Among the complications not presented here, is the use of a simulation model (along
the same general lines as in Venter and Gillam [4]) in order to estimate the impact on
the indemnity loss flows of a major law change.
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where r is the quarterly risk-free rate, ¿1 is the underwriting
income tax rate, ¿2 is the investment income tax rate and ® is a
factor related to the revenue offset feature of the tax law.

As shown in Exhibit 5, this results in a model profit provision
of !3:6% for the Massachusetts workers compensation exam-
ple.15 In order to apply this model profit provision in the usual
Massachusetts workers compensation ratemaking procedure one
final step is needed.16

Premium discounts are reductions in premiums for larger in-
sureds to reflect their lower expense needs as a percent of Stan-
dard Premium. Standard Premium is prior to the impact of pre-
mium discounts.17

Ignoring the existence of Standard Premium and premium
discounts in the profit model should have no economic impact
since premium discounts merely represent money the insurer did
not receive and never expected to receive.18

This idea is implemented as follows:

The premium flow is net of premium discounts. (See
Exhibit 6.)

The expense flows do not include any weight for pre-
mium discounts. The initial weights are determined
without the premium discount. Variable expenses are
a percent of net premiums rather than Standard Premi-
ums. (See Exhibit 9.)

15This result should be viewed as illustrative. Many of the input values (even if selected
by the same individual) would vary considerably over time, state, line of insurance, etc.
16This step is needed because the rate indication is based on Standard Premiums (plus
ARAP), prior to the impact of any premium discounts.
17Standard Premium can be thought of as the product of payroll, manual rate, and expe-
rience modification. (As reported on Financial Aggregate Data Calls, it includes expense
constants as well.)
18The size of the premium discount is not uncertain.
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Then as shown in Exhibit 5, one calculates the Underwriting
Profit Allowance to load into the ratemaking procedure as:

Underwriting Profit Allowance

= (Model Profit Provision)

# (1!Premium Discount as % of Standard Premium)

In this case, the

Underwriting Profit Allowance

= (!3:6%)(1! 6:8%) =!3:4%:19

4.2. Premium Cash Flow

The premium flow used in the profit model is shown in Ex-
hibit 6, Part 1. It is estimated from a study conducted by the
Rating Bureau and reported in the filing for rates to be effective
1/1/91.

Fourteen separate flows were calculated by combining the
sample returns into categories formed by stock/non-stock, retro/
non-retro, and size characteristics. Four premium size intervals,
0–4,999; 5,000–99,999; 100,000–499,999; and over 500,000
were used to distinguish among the premium flows for small,
medium, and large risks.20 The 14 flows were determined by
calculating the time, in days, from the policy’s effective date to
the actual payment date. Summaries were then made for 90 day
periods.

A raw combined flow was constructed by combining the
fourteen individual flows with industrywide weights obtained
from Unit Statistical Plan data and representing actual Mas-

19Thus, if expected losses, expenses including premium discounts, plus any provision
for policyholder dividends, is equal to $1,000, then indicated Standard Premiums would
be: $1,000=(1! (!0:034)) = $967:12.
20These are the same size intervals that were used in the schedule of premium discounts
at the time of the study.
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sachusetts distributions of premium. The individual flows were
first weighted by the stock/non-stock/retro/non-retro distribution.
A final combination of those flows by size was accomplished us-
ing prospective Standard Premium size distributions at projected
rates for each combination of stock/non-stock/retro/non-retro.

The raw weighted flow is shown in Exhibit 6, Part 2 as the
“untrimmed” flow. Modifications are performed in order to arrive
at a final company premium flow. First, the data for the quarter
directly preceding the effective date is biased toward the end
of that quarter. Most of that data represents deposit premiums
which are made immediately prior to the effective date. Indeed,
the average date in the sample for that quarter was only 6.5
days prior to the effective date. The use of this aggregate data
valued as of the middle of the quarter (45 days) would produce
erroneous results. In order to take this effect into account, the
data was combined with the first quarter after the effective date
for discounting purposes. The average date of the combined data
should produce reasonably unbiased discounting results.21

Along with the above refinement, the tails of the “untrimmed”
flows were truncated to eliminate the noise in the sample data
and the remaining flow was normalized to unity. This result is
shown in Exhibit 6 as the “trimmed” flow. It will serve as the
paid premium flow, the flow pattern for commissions and as the
net premium flow.

4.3. Policyholder Dividends

Historically, policyholder dividends have played an impor-
tant part in a healthy workers compensation insurance market.
Dividend plans have provided a means to reward those insureds
with better experience. “Sliding scale” dividend plans, in which
the payment of the dividend depends on the insured’s loss ratio,
have provided important incentives for safety and loss control.

21It is the discounted value of the flows that affects the underwriting profit provision
calculated by the model.
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Historically, substantial dividend payments have been made to
Massachusetts workers compensation policyholders.

It is expected that companies will continue to pay dividends to
policyholders to maintain their competitive position, particularly
if the rates are adequate, as they are intended to be. Therefore,
these anticipated policyholder dividend payments have been re-
flected in the cash flows used in the profit model, in the same
way as all other flows are recognized. If these policyholder div-
idend flows were not recognized, imaginary investment income
would be imputed to companies on funds they do not hold.

The payment of policyholder dividends has been estimated to
occur at the seventh quarter. Themagnitude of dividend payments
is calculated in Exhibit 7 from theMassachusetts ratios of policy-
holder dividends to the earned premium from the previous year.

Since the proposed expenses and premium discounts else-
where in the ratemaking process are based on all companies,
the estimate of the level of policyholder dividends is based on
the most recently available 11-year average ratio of dividends to
net earned premiums for Massachusetts workers compensation
for all companies.22

4.4. Expense Flows

The expense flows were derived using a weighted average
of separately determined flows for commissions, premium and
other taxes, general expenses, other acquisition expenses, allo-
cated loss adjustment expenses, and unallocated loss adjustment
expenses.

The magnitude of each of these flows is determined by the
corresponding expense provisions determined elsewhere in the
ratemaking process. The pattern of each of these flows is deter-
mined as described below.

22To the extent that in many of these years the rates were inadequate, this procedure may
underestimate dividends expected in a healthy market with an adequate rate level.
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In order to run the Myers–Cohn profit model, expenses that
vary with premium are aggregated into one flow while expenses
that do not vary with premiums are aggregated into another flow.
Each of these combined expense flows is a weighted average that
reflects the relative expense provisions in this filing. The weights
are shown in Exhibit 9.

The resulting expense flows used in the profit model are dis-
played in Exhibit 8.

A study of general expense flow patterns was performed by
the Rating Bureau and were reported in the July 13, 1977 fil-
ing for Massachusetts workers compensation rates. Briefly, gen-
eral expenses were divided into general administration, audit,
inspection, and Bureau expenses. A time line was constructed
to indicate a particular type of expenditure’s distance from the
effective date of a typical policy. Expenses by cost center, includ-
ing home and field office expenses, were analyzed to establish
those patterns of expenditures relative to the effective date of the
policy. The combination of all such expense patterns resulted in
the overall general expense pattern listed in Exhibit 10.23

The distribution of other acquisition costs was estimated from
the same time pattern study that was used for general expense.
Marketing field offices and services, billing and collection, pol-
icy issuance, and advertising expenses were examined for their
occurrence relative to the issuance of a policy. The combina-
tion of all such expense patterns resulted in the other acquisition
expense pattern listed in Exhibit 10.

Premium taxes are estimated and paid quarterly based upon a
flat percentage of a flat amount (the previous year’s net written
premium). An adjustment is made to this estimation process in
the first quarter of the following year. For purposes of estimating
the expense flows we assume that adjustment will be zero. Based
on these statutory provisions, the premium tax liability for any

23The profit provision is insensitive to the precise timing of general expenses and other
acquisition expenses.
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individual policy is assumed to be incurred and paid as the policy
is written. The other tax payment pattern was estimated from the
same time pattern study that was used for general expense.

The commission flow pattern is assumed to coincide with the
paid premium flow.24

The loss adjustment expense (LAE) flow patterns, both allo-
cated and unallocated, are based on the loss flow. The allocated
LAE flow is assumed to have the same pattern as the loss flow.
This corresponds to an assumption that on average the allocated
LAE payments occur at approximately the same time as claim
payments.

The pattern of the unallocated LAE flow is assumed to be
the same as the straight average of the loss flow and an earned
premium flow. This corresponds to an assumption that on aver-
age half of the unallocated LAE payments are made as accidents
occur over the course of the policy effective period and that the
other half of the unallocated LAE payments are made as claims
are paid.

The weights used to combine the various expense flow pat-
terns into final expense flows are calculated using the expense
provisions used elsewhere in the ratemaking process. Since the
premium flow is constructed net of premium discounts, it is nec-
essary to calculate the proportions of expenses to net premiums.
The acquisition expense and premium taxes are treated as vary-
ing in proportion to net premium. Loss adjustment expense is
treated as varying in proportion to losses. General expense and
other taxes are assumed not to vary with premium levels. These
shall be referred to as fixed expenses.

Since the underwriting profit provision is one factor that de-
termines the premium, and since losses, loss adjustment expense,
and fixed expenses are all treated as not varying with premium

24The commission flow is the same as the flow of premium payments (the trimmed flow).
See Exhibit 6.
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levels, their fraction of premiums depends on the underwriting
profit provision. Thus, their weight relative to those items that
vary in proportion to premiums will change as the profit provi-
sion does. However, their weight relative to each other will not
change. Thus, it is important that the weights for loss adjustment
expense and fixed expenses be in the proper ratio to losses. A
set of such initial weights is calculated in Exhibit 9.

The profit model is run through several iterations until the
weights and profit provision converge to their final values.25 At
each iteration the weights assigned to losses, loss adjustment
expense, fixed expenses, and variable expenses are adjusted for
the profit provision. These new weights are then used to calculate
another profit provision which in turn leads to another set of
weights. The final weights are shown in Exhibit 9.

4.5. Loss Cash Flow

A medical and an indemnity loss cash flow have been esti-
mated from the most recent available Financial Aggregate data.26

The combined loss flow used in the profit model reflects a
weighted average of the medical and indemnity flows and is
shown in Exhibit 11.27

As shown in Exhibit 12, the flow for medical losses is based
on the paid losses combined with an estimate of ultimate med-
ical losses for each accident year taken from elsewhere in the
ratemaking process. The percent of these ultimate losses paid in
each year is computed. (See Exhibit 12, Part 2.) The increment
between reports for each accident year is then computed (see
Exhibit 12, Part 3), and the latest three-year average has been
calculated for each reporting interval until the 17th report.28 Be-
yond that report, the selected percentage of paid to ultimate loss

25Usually convergence takes 3 or 4 iterations.
26These are the same data relied upon elsewhere in the ratemaking process in order to
estimate ultimate losses.
27The loss flow in Exhibit 11 sums to 1,000 solely for convenience.
28A two year average was calculated for the 17th report.
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has been extended judgmentally.29 The resulting medical loss
flow is shown in Part 4 of Exhibit 12.

The indemnity flow is estimated in a similar manner in Exhibit
13. The indemnity and medical flows are then weighted together
using an estimate of the percentage of total losses represented by
each type,30 in order to get the loss flow shown in Exhibit 11.

4.6. Determination of the Risk-Free Rate of Return

The risk-free rate of return is calculated as an average,
weighted by annual net cash flows of duration-matched Trea-
sury yields. This calculation is displayed in Exhibit 14.31 The
yields are taken from Part 4 of Exhibit 14 and are calculated
from the observed yields over the most recent 12 months for
the different maturities of Treasury securities.32 The weights are
taken from Part 5 of Exhibit 14 and reflect the length of time be-
tween receipt of premiums and payment of losses and expenses
for Massachusetts workers compensation estimated in prior ex-
hibits.

4.7. Federal Income Tax Rate33

For the federal income tax rate on investments, the cor-
porate 35% tax rate currently applicable to Treasury securi-
ties has been used. This corresponds to the so-called “statu-
tory/regulatory company” assumption, which is used with the
Myers–Cohn Model.

29The manner in which this is done has no significant impact on the net present value
of the flow or the resulting profit provision.
30This estimate is taken from elsewhere in the ratemaking process. For this illustration
the indemnity flow has been weighted 68%, while the medical flow has been weighted
32%.
31The risk-free rate resulting from this calculation (as applied to Massachusetts workers
compensation) is approximately the yield available on seven-year treasury bonds. A more
elaborate method of duration matching could be employed if desired. Any uncertainty in
the timing of the cashflows (as well as their magnitude) is not taken into account here,
but should be incorporated in the selection of the risk-adjustment.
32The yield on Treasury securities usually increases as the term increases.
33See Almagro and Ghezzi [5] for a discussion of federal income tax provisions affecting
property/casualty insurers.
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The model company is assumed to invest in risk-free U.S.
government securities matched to the length of the expected
cashflow. The statutory/regulatory company assumption was
adopted by former Commissioner of Insurance Stone in 1976,
and was used by both the Rating Bureau and former Commis-
sioner of Insurance Sabbagh in the original implementations of
the Myers–Cohn profit model. The assumption that the model
insurer’s entire portfolio is invested in taxable government secu-
rities has several important implications:

" The investment income to be imputed to insurers is to be de-
termined by matching the maturities of taxable government
securities with the investment cash flow.

" The tax rate to be applied to determine the after-tax investment
income should be the tax rate applicable to taxable government
securities.

" No adjustment for investment risk needs to be made, because
the investment is “risk-free.”

" A smaller allowance for investment expenses is appropriate,
because such a model insurer would have smaller investment
expenses than would an insurer investing in a variety of other
assets.34

" No adjustment need be made to take into account the Alternate
Minimum Tax.

In the author’s opinion, this assumption has a number of ad-
vantages.35 The assumption makes the measure of investment
income relatively stable and predictable; it establishes an invest-
ment standard that real world companies can meet; and it in-
sulates the policyholders from the fluctuations in the stock and
bond market to which they might be exposed if an actual port-
folio model were used. Using the statutory/regulatory assump-

34No provision for investment expenses has been included.
35At least when used by a Rating Bureau. Different considerations would apply in other
situations.
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tion, current purchasers of insurance are neither penalized by, nor
credited with, past investment decisions of the insurer. Rather
we assume that the insurer will invest the fresh funds supplied
by the premium of the insured at the currently available rates of
return. The policyholder is thus credited with investment income
at the risk-free rate. The policyholder shares neither the risk nor
the reward of any more risky investment strategy.36

A 35% tax rate for underwriting income (or losses) has also
been used. Underwriting credits will be available at 35%, because
this model insurer has investment income taxed at 35% which
can be offset by an underwriting loss. Such a model insurer will
also not be subject to the Alternate Minimum Tax. In any case,
the investment income tax rate, investment strategy, investment
return, reward for risk, etc., used in the profit model need to all
be consistent.

How one might incorporate some assumed set of investment
other than Treasury securities into the Myers–Cohn model has
been a controversial subject from the model’s inception. Other
investments would have differing risk, return, and tax implica-
tions than Treasury securities. One requires a consistent set of
inputs that properly takes into account all of the impacts on the
operation of the model company, including its required rate of
return.

While some calculations of profit provisions using the Myers–
Cohn model assuming other investments have been presented, I
am not convinced that the resulting profit provisions are rea-
sonable. In my opinion, the structure of the Myers–Cohn model
without an explicit rate of return on equity makes it very diffi-
cult to properly consider the impacts of investment choices on
risk and the needed profit provision. In any case, this subject is
beyond the scope of this paper.37

36Consistent with the model company, there is no loading for investment expenses. So
the policyholder is not being asked to share the cost of any investment strategy.
37See for example, Derrig [6], which discusses the “Myers Theorem,” which states that
the present value of the tax on investment income does not depend on the risk of the
securities held by the insurance company.
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4.8. Risk-Adjusted Rate of Return

An input to the Myers–Cohn model is the risk-adjusted rate of
return. In this implementation of the model, as well as the paper
by Myers and Cohn, the risk-adjusted rate (rL) is set equal to the
risk-free rate (rf) plus the product of the negative liability beta
(¯L) and the long term market risk premium (M). As calculated
in Exhibit 15:

rL = rf +¯LM:

Exhibit 16 displays the estimation of the market risk pre-
mium. For each available year the total return on large company
stocks has subtracted from it the return on U.S. Treasury Bills.38

Then, per the recommendation of Ibbotson Associates [7], the
long term (unweighted arithmetic) average of these differences
is taken as the estimate of the market risk premium.

The yearly points that form the basis for this average are an
extremely volatile data series.39 For example, Figure 1 shows the
yearly points while Figure 2 shows the ten year moving average,
which is still fairly volatile.

Figure 3 shows the average of the series starting in various
years since 1926 through the present. Depending on when one
starts, the average can range from about 6% to about 11%.

Thus, the years of data relied upon can have a significant im-
pact on the estimated market risk premium. The use of a long
term average is consistent with an assumption of a stable or rel-
atively stable expected value over time, which Ibbotson believes
is the case. Mahler [8] briefly discusses the insensitivity of the
estimate to somewhat different weights rather than the long term
unweighted average, provided one assumes a relatively slow rate
of shifting parameters over time.

In any case, a value of the market risk premium between about
8.5% and 9% seems to be regarded as reasonable. There is noth-

38See Ibbotson [7].
39While the mean is between 8% and 9%, the standard deviation is about 21%.
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FIGURE 1

DIFFERENCE IN TOTAL RETURN ON LARGE COMPANY STOCKS
AND U.S. TREASURY BILLS

ing insurance specific about this value. This contrasts with the
beta of liabilities which is insurance specific and for which there
is no method of estimation generally regarded as reliable.

The beta of liabilities is intended to measure the covariance of
insurance underwriting (as opposed to investing) with the stock
market.40 When combined with the market risk premium, it is
intended to reward the insurer for the risk of underwriting insur-
ance. Provided the beta of liabilities is negative, the risk-adjusted
rate is smaller than the risk-free rate. Discounting the risky loss
and expense flows at this smaller risk-adjusted rate results in a
larger indicated premium than if these flows were discounted at

40This is based on the Capital Asset Pricing Model (CAPM).
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FIGURE 2

DIFFERENCE IN TOTAL RETURN ON LARGE COMPANY STOCKS
AND U.S. TREASURY BILLS

TEN YEAR MOVING AVERAGE OF THE SERIES

the risk-free rate. For this calculation a value of !0:21 used by
the Massachusetts Commissioner of Insurance has been used for
the beta of liabilities.

Unfortunately, as concluded by Kozik [9], “reliable estimates
of the underwriting beta do not exist.”41 Thus, this is a ma-
jor potential weakness of the Myers–Cohn model. Some tech-
nique must be employed to select or estimate the appropriate
risk-adjustment. (The Capital Asset Pricing Model is the only

41As stated by Kozik, “Perhaps better methods of estimation may some day be devel-
oped.” The discussion by Feldblum [10] is even more negative towards the whole idea
of even considering something like a beta of liabilities.
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FIGURE 3

DIFFERENCE IN TOTAL RETURN ON LARGE COMPANY STOCKS
AND U.S. TREASURY BILLS

AVERAGE OF SERIES FROM THE GIVEN YEAR THROUGH 1996

technique the author has seen used for this piece of the Myers–
Cohn model.) However, this is the same basic difficulty that one
encounters in the use of other profit models that require the se-
lection or estimation of the target rate of return or target internal
rate of return. So while this presents a serious difficulty with the
use of the Myers–Cohn model, it should be weighed against the
similar difficulties in the use of other profit models.42

It should also be noted that since the reward for risk is based
on using a risk-adjusted rate, the Myers–Cohn model would pro-
vide little risk return for a line of insurance that had a very quick

42This paper, in describing one profit model, is neither advocating for or against its use
compared to some other profit model.
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payment of losses such as hurricane insurance, unless one used a
very large per-period risk-adjustment. Since it is very difficult to
select an overall risk-adjustment to use on average for insurance,
it would be extremely difficult, if not impossible, to come up with
a risk-adjustment by line of insurance.

Exhibit 21, Part 1 displays the calculation of the “risk load.”
Let Z be the expected risk loading. Then Z = 1! (P$=P), where
P is the premium using a risk-adjusted discount rate while P$ is
the premium (for the same cashflows) calculated with only the
risk-free discount rate (¯L = 0). P

$ is less than P, and the risk
loading Z is positive.43

While in this illustrative calculation no specific use is made
of Z,44 it does quantify the effect of the risk-adjustment in the
Myers–Cohn model.

4.9. Surplus

Initially surplus is assumed to be one-half of premiums and
is assumed to decline in proportion to outstanding liabilities.45

Thus, the surplus allocated to this policy or policy cohort is as-
sumed to decline in proportion to the losses and expenses paid,
as shown in Exhibit 17.

It should be noted that the Myers–Cohn model, as in the case
with most profit models, is able to accommodate any magnitude
or pattern of surplus flow selected by the user. However, for
purposes of running the model, one does have to allocate surplus.

All of an insurer’s surplus is in theory available to back up
each policy, so in that sense one cannot allocate surplus to pol-

43For Massachusetts workers compensation, for ¯L =!0:21, Z % 5% or 6% of premiums.
44As explained in the Appendix, in recent rate filings, Z has been used in a technical
refinement that alters the investment balance for taxes.
45As explained in Mahler [2], the premium-to-surplus ratio one would observe for a
given calendar year differs from the initial premium-to-surplus ratio selected here. Given
the timing and magnitude of surplus flow selected here, one could compute what cal-
endar year premium-to-surplus ratio would be observed for an assumed growth rate in
premiums.
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icy cohort, to line, or to state. On the other hand, each year,
line, and state is expected to help contribute to the profitability
of the insurer. The allocation of surplus for purposes of running
the profit model allows one to allocate the needed return on sur-
plus46 among the different lines and states.47 In that sense it is
analogous to allocating by line and state certain expenses that
have no direct relationship to any particular line or state. Ex-
pense allocation in the ratemaking process allows the collection
of dollars needed to pay for these expenses. Similarly, surplus
allocation allows the collection of dollars needed to achieve the
desired return on surplus on an expected basis.

4.10. Construction of the Investment Balance for Tax Flow

The Investment Balance for Taxes is shown in Exhibit 18,
Part 1.

The investment balance for any quarter is calculated as the
sum of two components: assets available from the policy cash
flow and those available from shareholders’ equity. These two
components are quantified each quarter as:

1. cumulative premiums minus cumulative losses, expenses,
and dividends48 (see Exhibit 18, Part 2) and

46While we have used the term “surplus” as per Myers and Cohn, a better term would be
“equity.” The concepts of surplus and equity are closely related but not identical. Surplus
generally refers to statutory surplus while equity refers to economic net worth.
47Bingham [11], [12], and [13] discusses how one insurer uses allocation methods to
measure returns and set targets by line of insurance. It is necessary to assign “benchmark”
surplus to each line of insurance in order to apply the methodology used by Bingham.
Bingham in his papers as well as Bender [14] discuss the relationship of risk, return, and
required surplus. These issues apply when using the Myers–Cohn or most other profit
models.
48It is important to note that in this computation the total premium equals the total losses,
expenses, and dividends. In other words, this computation is performed using a profit
provision of zero. This produces the appropriate estimate of investment income excluding
any underwriting income (or loss). Mahler [2, Appendix VI] shows that the method used
in Myers–Cohn to compute the investment income tax corresponds to a particular set of
assumptions on the timing of income that is used in the model in that paper. Under these
assumptions, the ratio of the present value of the income on the cashflows to the income
on the cashflows is equal to the ratio of the present value of the outflows to the outflows.
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2. surplus49 (See Exhibit 17).

The tax on investment income can then be quantified by advanc-
ing the investment balance by one quarter (to the quarter in which
the income is earned) and applying the quarterly investment rate
and income tax rate.

4.11. Underwriting Tax Flows

The underwriting tax flows are shown in Exhibit 19, Part 1.

Premiums are earned equally throughout the year of the pol-
icy. This results in the premium portion of the underwriting tax
flow shown in Exhibit 19, Part 1. This flow will be discounted
to get ∙4 as shown in Exhibit 21.

The loss plus expense and dividend portion of the underwrit-
ing tax flow is shown in Exhibit 19, Part 1. This flow will be
discounted to get ∙5 as shown in Exhibit 21.

The contribution of expenses (other than loss adjustment ex-
pense) and dividends to the underwriting tax flow is determined
in Part 2 of Exhibit 19 by summing expenses and dividends paid
in each quarter.

The contribution of losses and loss adjustment expense to
this underwriting tax flow is determined in Part 3 of Exhibit
19, based on the reserve discount factors calculated in Exhibit
20. This follows the Tax Reform Act of 1986, which required
insurers to discount loss reserves for tax purposes and specified
how this was to be done.

The incurred loss plus LAE calculated in Part 3 of Exhibit 19
can be thought of as the sum of two pieces.50 The first piece is the
difference between the amount paid in a year and the discounted
reserve previously held for those losses. The latter amount is

49As used in the Myers–Cohn model, “surplus” actually refers to shareholder equity
rather than statutory surplus.
50Column 8 =Column 6+Column 7, in Part 3 of Exhibit 19.
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the paid losses in that year51 times the appropriate reserve dis-
count factor. Thus, the difference is the losses paid times unity
minus the reserve discount factor.52 The second piece is the
change in discounted reserves on subsequent years. This is the
product of the losses paid in subsequent years and the difference
in reserve discount factors.53

The reserve discount factors are calculated in Exhibit 20 us-
ing a rolling sixty-month average of the mid-term “Applicable
Federal Rate” (AFR) effective as of the beginning of each calen-
dar month, and the reserve loss flow for workers compensation
prescribed by the Internal Revenue Service.54

4.12. Discounted Flows

Each flow in the Myers–Cohn profit model has to be dis-
counted at the appropriate risk-free or risk-adjusted rate. The
risk-free discount rate is determined in Exhibit 14. The premium
flow, the investment balance for tax, and the underwriting tax
premium flow are discounted at the risk-free rate.

The risk-adjusted rate is determined in Exhibit 15. Discount
factors based on the risk-adjusted rate are applied then to the
total loss and expense flow and the underwriting tax loss flow.

Exhibit 21 shows the resulting values of the kappas. Also
shown is the expected compensation to shareholders, i.e., the
risk premium. This compensation for taking the risk of writing
insurance is computed as unity minus the ratio of the premium

51For modeling purposes, the reserves and loss payments are assumed to be based on
the same expected value. Also, the reserve discount factors are applied as if year one
of the policy flow were accident year one in the Annual Statement, etc. This is only
true for policies written January 1. This simplification has no significant impact on the
calculation of the underwriting profit provision.
52Column 6 = 1!Column 2#Column 4, in Part 3 of Exhibit 19.
53Column 7 =Column 3#Column 5, in Part 3 of Exhibit 19.
54For additional details, see Almagro and Ghezzi. [5, pp. 144, 145]. The reserve loss
flow is updated by the IRS once every five years.
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calculated using a risk-free discount rate (¯ = 0) and the pre-
mium calculated using a risk-adjusted rate.55

4.13. Revenue Offset Provision of the Tax Reform Act of 1986

Exhibit 22 contains the calculation of the unearned premium
reserve “alpha” factor. When multiplied by ∙6 and the Federal
Income Tax rate on underwriting, the alpha factor incorporates
into the profit model the “revenue offset” provision of the 1986
Tax Reform Act.

This provision is explained in Almagro and Ghezzi [5]:

Statutory income includes the change in unearned pre-
mium reserve during the tax year as a deduction. In-
surers’ acquisition expenses, however, are generally in-
curred and deducted near the time premiums are col-
lected. Therefore, the statutory calculation does not ac-
curately match recognition of premium income with
recognition of related expenses.

To approximately adjust for this mismatch, the IRS al-
lows only 80% of the change in unearned premium
reserve as a deduction. The limitation of the deduction
is accomplished through an adjustment to statutory in-
come, referred to as “revenue offset,” whereby 20%
of the unearned premium reserve change is added to
statutory income for tax purposes.

This can be usefully thought of as accelerating the taxation of
20% of the premium income from a policy. Prior to this change,
premium would be taxed as earned. Now 20% of premium is
taxed as it is written or more precisely as an unearned premium
reserve is set up. Then when the unearned premium reserve is

55This risk premium is calculated for informational purposes. While it is not used in the
calculation of the underwriting profit provision, it is implicitly part of the profit provision
calculated by the Myers–Cohn model. The value of the risk premium depends on the
inputs chosen, most importantly the beta of liabilities, the market risk premium, and the
timing of the cashflows.



716 THE MYERS–COHN PROFIT MODEL

taken down, 20% of the reduction in unearned premium reserve
balances 20% of premium being earned at the same time. Thus,
the timing of the reflection of this premium income has been
moved from when it is earned to when the unearned premium
reserve is set up.

Alpha is calculated in Exhibit 22 as 20% times the ratio of un-
earned premium reserves to premium times four times the quar-
terly risk-free rate.56 ∙6 is calculated in Exhibit 23 based on the
timing of the unearned premium reserves illustrated in the fol-
lowing example.57 Table 1 shows how to specify the timing of
the tax flows (due to the revenue offset) resulting from writing
a new policy.

Assume $1,000 in written premiums and $120 in unearned
premium reserves.58 This 12.0% ratio of unearned premium re-
serves to premium approximates the current figure for workers
compensation.

Continuing this example, let us assume a risk-free rate of 6%
for illustrative purposes.59 At 6%, the present value of the income
tax due to the revenue offset is 0.4784.

Let ∙6 be the present value at 6% of a vector starting in Quar-
ter 160 with the assumed pattern of unearned premium reserves:

180
480

,
140
480

,
100
480

,
60
480

:

Then ∙6 = 0:9702.

56Thus alpha is approximately 20% of the unearned premium reserves times the annual
risk-free rate.
57The final profit provision is insensitive to the particular choice of timing made.
58The sum over quarters is 4#$120 = $480; this is $120 in unearned premium reserves
on an annual basis.
59The actual calculation of ∙6 and alpha used in the calculation of the profit provision
use the risk-free rate determined in Exhibit 14. The 6% value has been selected solely
for illustrative purposes.
60The vector starts in Quarter 1 rather than Quarter 0 as per the unearned premium
reserve. Advancing one quarter adds a factor of (1+ r)!1 which is required in order to
match the present value of the income tax due to the revenue offset.



THE MYERS–COHN PROFIT MODEL 717

TABLE 1

Unearned Premium Change in Unearned Income Tax Due to
Quarter Reserve Premium Reserve Revenue Offset61

0 180 180 12:60
1 140 !40 !2:80
2 100 !40 !2:80
3 60 !40 !2:80
4 0 !60 !4:20

Total 480 0 0

It is the case that:

0:4784 = 480# 35%#20%#0:01467#∙6
where:

480 is the unearned premium reserve (UPR),

35% is the federal income tax rate on underwriting (FITU),

20% is the revenue offset factor, and

0.01467 is the quarterly risk-free rate of return (assuming a 6%
annual rate).

Thus, the present value of the income tax due to the revenue
offset is

UPR#FITU#20%# r#∙6
= 4#P#UPRR#FITU#20%# r#∙6
= P#FITU#®#∙6,

where

®= 4#UPRR# r#20,
UPRR= unearned premium reserve ratio (to premiums),

r = quarterly risk-free rate, and

P =written premium:

61Change in unearned premium reserve# 35%#20%.
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This is the formula for alpha that is used in Exhibit 22. The
impact of the revenue offset enters into the Myers–Cohn profit
calculation via the term FITU#®#∙6, as shown in Exhibit 5.

5. SENSITIVITY ANALYSIS

For the practical example described in the previous section,
the inputs combine to produce a model underwriting profit pro-
vision of !3:6%, as shown in Exhibit 5. As with any model, the
result depends on both the structure of the model and particular
inputs chosen.

Exhibit 24 shows the sensitivity of the Myers–Cohn model to
the choice of different inputs. While individual inputs are varied
one at a time for illustrative purposes, it is important to choose
a consistent set of inputs for use in the profit model.

The risk-free rate of return can vary by several percentage
points from one year to the next. Generally, in Massachusetts an
average of the last year’s rates available on a duration-matched
portfolio of Treasury securities has been used to estimate the risk-
free rate. For long-tailed lines like workers compensation, the
profit provision is very sensitive to changes in interest rates. The
higher the risk-free rate of return, the more investment income
that can be earned, and therefore, the less premium is needed.
Thus, all other things being equal, a higher risk-free rate of return
corresponds to a more negative underwriting profit provision.

The more negative the beta of liabilities, the more positive the
underwriting profit provision. If one assumed that underwriting
was risk-free (beta of liabilities equal to zero), there would be
a more negative profit provision. The difference between this
profit provision and the calculated profit provision represents
the reward for taking the risk of writing insurance. In recent
workers compensation filings this risk premium has been about
5% or 6%. More generally, the further the risk-adjusted rate62 is

62Whether one uses the CAPM or some other method to determine to the risk-adjusted
rate.
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from the risk-free rate the larger the risk load and the higher the
profit provision.

Since the market risk premium and the beta of liabilities en-
ter into the calculation only as a product,63 their effect on the
profit provision is similar. For a larger (magnitude) market risk
premium, the profit provision is less negative, since the risk-
adjustment is larger. The same effect is seen as for a similar
increase in the magnitude of the beta of liabilities.

The investment income tax rate and premium-to-surplus ra-
tio are other important and sometimes controversial inputs. The
higher the assumed investment income tax rate, the more positive
the profit provision. The insurer earns less investment income af-
ter taxes and thus needs more income from underwriting.

The higher the premium-to-surplus ratio, the more negative
the profit provision. The more leveraged the insurance operation,
the more important investment income considerations become. It
should be noted that in this implementation of the Myers–Cohn
model, the beta of liabilities is assumed to be independent of the
premium-to-surplus ratio.

The sensitivity of the underwriting income tax rate depends
on the profit provision. For profit provisions near zero, there is
little underwriting income assumed and therefore little sensitivity
to the tax rate. For substantially negative profit provisions, there
is an assumed underwriting loss which is assumed to generate a
credit against other taxable income. Thus, the higher the assumed
underwriting tax rate, the more valuable is this tax credit. There-
fore, the higher the underwriting tax rate the more negative the
profit provision. The situation is reversed for a substantially pos-
itive underwriting profit provision. All other things being equal,
the higher the underwriting tax rate, the further the underwrit-
ing profit provision is from zero. (A negative provision becomes

63The risk-adjusted rate is equal to the risk-free rate plus the product of the market risk
premium and the beta of liabilities.
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more negative, while a positive provision becomes more posi-
tive.)

It should be noted that in this example, the investments are
assumed to be solely in Treasury securities taxed at the marginal
corporate rate. Therefore, if the underwriting income tax rate
were to change, one would also change the investment income
tax rate. For example, in 1987 the marginal corporate tax rate
declined from 46% to 34%. For a long-tailed line of insurance
such as workers compensation, such a decline in both tax rates
in the Myers–Cohn model would lead to a more negative profit
provision. This is an example of why varying the inputs one at
a time can only be for illustrative purposes.

The target underwriting profit provision calculated here in-
cludes the effect on investment income of the payment of ex-
pected policyholder dividends. In this case, policyholder divi-
dends are paid out earlier than the average payment of losses
plus expenses. Thus, dividend payments reduce expected invest-
ment income compared to the average payment for losses plus
expenses. Therefore, the more that is assumed to be paid out in
policyholder dividends (compared to losses and expenses) the
more positive the underwriting profit provision.

The Tax Reform Act of 1986 introduced the discounting of
loss reserves for tax purposes and the revenue offset feature.
As expected, since each of these changes was intended to pro-
duce more taxes for the federal government, they each lead to a
less negative underwriting profit provision. Insurers need more
money to pay these taxes, all other things being equal.

Finally, the average timing of the loss payments is an ex-
tremely important input. The longer it takes to pay losses the
more negative the profit provision. Investment income consid-
erations are generally more important for long-tailed lines of
insurance.

The risk-free rate, the size of the adjustment for risk, the in-
vestment income tax rate, the premium-to-surplus ratio, and the
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timing of the loss flow are usually the inputs to the Myers–Cohn
model with the most significant impact on the underwriting profit
provision. Of these, the investment income tax rate and the size
of the adjustment for risk64 have been the most intensely debated
at rate hearings.

6. CONCLUSION

In Massachusetts, the Myers–Cohn model has been used to
set many profit provisions over the last decade. As with any
profit model, in any real world application, one must carefully
examine the underlying assumptions and inputs to make sure that
everything is consistent. It has proven very easy for two people to
get extremely different profit provisions using the same model.65

The last two decades have demonstrated the impossibility of
coming up with either a universally accepted profit model or
profit provision. However, the possibility of differing answers
no more makes profit models useless than would the inability to
agree on future loss levels make trending and loss development
techniques useless. Profit models provide a framework for a ra-
tional discussion and allow the testing of the effect of changes
to the tax law, investment policy, claims payment patterns, eco-
nomic conditions, etc. The Myers–Cohn model provides one
framework in which to attempt to quantify these effects.

64In the CAPM implementation, the adjustment for risk is the product of the beta of
liabilities and the market risk premium.
65Disagreements about the risk-free rate, the risk-adjusted rate, the investment income
tax rate, the amount of surplus, etc., can quickly add up to a substantial disagreement
on the overall profit provision. Even when using the same profit model for workers
compensation insurance, disagreements of 10% or more in proposed profit provisions
are not unheard of. These disagreements parallel those that can occur at contested rate
hearings with respect to the indicated rate change, where expert witnesses can have very
significant disagreements with respect to loss development, trend, law impacts, etc.
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EXHIBIT 1

MYERS–COHN PROFIT MODEL
EXAMPLE OF CALCULATION OF UNDERWRITING

PROFIT PROVISION

Inputs

Risk-Free Rate = 9%
Beta of Liabilities =!:20
Market Risk Premium= 10%
Risk-Adjusted Rate = 9%! :20#10%= 7%
Premium-to-Surplus Ratio = 2
Federal Income Tax Rate on Underwriting = 35%
Federal Income Tax Rate on Investment = 35%
Expenses (other than loss adjustment expense) are all paid in Quarter 2.
Variable Expenses are 20% of Premium.
Fixed Expenses are 5% of Losses.
Loss Adjustment Expenses are 10% of Losses.
Premiums are collected in Quarter 1.
Losses and loss adjustment expense are paid in Quarter 5.
There are no Policyholder Dividends paid.
There is no discounting of reserves (for tax purposes).
There is no revenue offset provision; alpha = 0.

Kappas Initial Weights Final Weights

∙1 .9380 .9378 Risk-adjusted discounted losses and
expenses factor.

∙2 .9893 .9893 Risk-free discounted premiums factor.
∙3 4.8935 4.9165 Risk-free discounted investment

balance tax factor.
∙4 .9478 .9478 Risk-free discounted underwriting

profit tax factor.
∙5 .9588 .9588 Risk-adjusted discounted underwriting

profit tax factor.
∙6 N.A. N.A. Risk-free discounted revenue offset tax

factor.

Profit Provision

P

L+E
=

∙1 ! ¿1∙5
∙2! ¿2r∙3 ! ¿1∙4! ¿1®∙6

=
:9378! :35(:9588)

:9893! (:35# :021778#4:9165)! (:35# :9478)
= :9712

¹= 1! (P=(L+E))!1 =!3:0%



THE MYERS–COHN PROFIT MODEL 725

EXHIBIT 2

EXAMPLE CASHFLOWS
(Initial Weights)

Cumulative Investment
Quarter Premiums Losses Expenses1 Difference Surplus2 Balance3

0 0 0 0 0 250.00 250.00
1 1,000.00 0 0 1,000.00 500.00 1,500.00
2 0 0 234.78 765.22 382.61 1,147.83
3 0 0 0 765.22 382.61 1,147.83
4 0 0 0 765.22 382.61 1,147.83
5 0 695.65 69.57 0 0 0

Total 1,000.00 695.65 304.35
1Expenses are the sum of $200 (20% of premium) representing variable expense in Quarter 2, 34.78
(5% of losses) representing fixed expense in Quarter 2, and 69.57 (10% of losses) representing LAE
in Quarter 5. Note that for the initial weights, losses plus expenses = 1,000 = premiums.
2Initially, surplus is taken as half of premiums at policy inception. (This is approximated by having
$250 of surplus flow in during Quarter 0, prior to policy inception and an additional $250 of surplus
flow in during Quarter 1.) The suplus allocated to this policy is assumed to decline in proportion to
the payment of losses and expenses.
3Investment Balance is the sum of the surplus and the cumulative difference of premiums and losses
plus expenses.

The policy inception date is at the end of Quarter 0 and the beginning of Quarter 1.
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EXHIBIT 3

EXAMPLE CALCULATION OF KAPPAS
(Initial Weights)

∙1 = Risk-adjusted discounted losses and expenses factor
:76522# (1:07)!4:5=4 + :23478# (1:07)!1:5=4

= .9380

Note: Losses and loss adjustment expenses discounted to the middle of the fifth
quarter. Expenses discounted to the middle of the second quarter.

∙2 = Risk-free discounted premiums factor
= Discounted Value of Premium Flow
= .9893

Note: Discounting to the middle of the first quarter :9893 = (1:09)!:5=4.

∙3 = Risk-free discounted investment balance tax factor
= Discounted Investment Balance for Taxes
= &(250# :9893)+ (1500# :9682)+ (1147:83# :9476)+ (1147:83# :9274)+

(1147:83# :9076)'=1000
= 4.8935

∙4 = Risk-free underwriting profit tax factor (contribution of premiums)
= (:25# :9787)+ (:25# :9578)+ (:25# :9374)+ (:25# :9174)
= .9478

Note: Discounting to the end of the first, second, third, and fourth quarters.

∙5 = Risk-adjusted discounted underwriting profit tax factor (contribution of
losses and expenses)

= (:25# :9832)+ (:25# :9667)+ (:25# :9505)+ (:25# :9346)
= .9588

Note: Discounting to the end of the first, second, third, and fourth quarters.

∙6 = Not applicable since no revenue offset provision is assumed.
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EXHIBIT 4

EXAMPLE CASHFLOWS
(Final Weights)1

Cumulative Investment
Quarter Premiums2 Losses Expenses3 Difference Surplus Balance4

0 0 0 0 0 250.00 250.00
1 1,000.00 0 0 1,000.00 500.00 1,500.00
2 0 0 229.27 770.73 385.37 1,156.10
3 0 0 0 770.73 385.37 1,156.10
4 0 0 0 770.73 385.37 1,156.10
5 0 700.66 70.07 0 0 0

Total 1,000.00 700.66 299.34
1As the profit provision varies so does the relative weight given to variable expenses, so that the
profit model is solved via iteration.
2Premiums shown are prior to the profit loading. The premium loaded for profit is 971.18.
3Expenses are the sum of 194.24 (20% of premiums loaded for profit of 971.18 ) representing variable
expense in Quarter 2, 35.03 (5% of losses) representing fixed expense in Quarter 2, and 70.07 (10%
of losses) representing LAE in Quarter 5. Note that losses plus expenses = 1000.
4Investment Balance is the sum of the surplus and the cumulative difference of premiums and losses
plus expenses.

The policy inception date is at the end of Quarter 0 and the beginning of Quarter 1.
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EXHIBIT 5

PART 1

THE MYERS–COHN COST OF CAPITAL UNDERWRITING PROFIT
PROVISION MODEL1

Let

Flows Capital Market Rates

P = Premium r = Risk-Free Rate
L = Losses rL = Risk-Adjusted Rate (Adjusted for

Risk of Underwriting by Line)
E = Expenses ¿1 = Federal Underwriting Income Tax

Rate
IVB = Investment Balance ¿2 = Federal Investment Income Tax

Rate
IVBT = Investment Balance for Tax ¹ = Underwriting Profit Margin
UWP = Underwriting Profit ® = Revenue Offset Factor for Taxes

Then, given the basic valuation equations of the Myers–Cohn model,

Present Value of Premium = Present Value of Losses and Expenses plus Present
Value of Federal Tax Liabilities on Underwriting
Profits and Investment Income on the Investment
Balance,

or

(1) PV(P) = PV(L+E) +PV(UWP¿1)+PV(IVBTr¿2)

where

UWP is Underwriting Profit and IVBT is the Investment Balance for Taxes. The
investment balance flow, IVB, is defined as the funds available for investment
from the policy cash flow, cumulative premium minus cumulative losses, plus
those funds available from other supporting assets. IVBT is IVB advanced one
quarter to the time period when the income is earned and the tax liability is
incurred.

Then, if premiums and investment income are valued at the risk-free rate r, losses and
expenses valued at a risk-adjusted rate rL; underwriting and investment income taxed at

1Chapter 3 of Fair Rate of Return on Property-Liability Insurance [1].
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rates ¿1 and ¿2; and underwriting profits taxed using discounted loss reserves:

PVr(P) = PVrL (L+E)+PVr(P¿1UWP=(P! (L+E)))(2)

!PVrL ((L+E)¿1UWP=(P! (L+E))+PVr(r¿2(IVBT)):

The various discounted values can be rewritten in terms of the kappas defined
below. Note that the term involving ∙6 relates to the revenue offset provision,
which as explained in Section 4.13 adjusts the timing for income tax purposes
of the premium portion of the underwriting profit.

P∙2 = (L+E)∙1 +P¿1∙4 +P®¿1∙6! (L+E)¿1∙5 +Pr¿2∙3
P(∙2! ¿2r∙3! ¿1∙4!®¿1∙6) = (L+E)(∙1! ¿1∙5)

or

(3)
P

L+E
=

∙1! ¿1∙5
∙2 ! ¿2r∙3 ! ¿1∙4!®¿1∙6

and
¹= 1! (P=(L+E))!1

where ∙1 = Risk-adjusted discounted losses and expenses factor
∙2 = Risk-free discounted premiums factor
∙3 = Risk-free discounted investment balance tax factor
∙4 = Risk-free discounted underwriting profit tax factor
∙5 = Risk-adjusted discounted underwriting profit tax factor
∙6 = Risk-free discounted revenue offset tax factor
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EXHIBIT 5

PART 2

MASSACHUSETTS WORKERS COMPENSATION

(1) Model Profit Allowance (Part 4) !3:6%
(2) Average Premium Discount as a Percent

of Standard Premium plus ARAP2
6:8%

(3) Adjustment for Investment Expenses 0:0%
Underwriting Profit Allowance

(4) = [(1)# (1! (2))]+ (3) !3:4%

Parameters

1. Cash Flows
a. Premium Exhibit 6
b. Expenses Exhibit 8
c. Losses Exhibit 11
d. Expense/Loss Weights Exhibit 9
e. Policyholder Dividends Exhibit 7
f. Surplus Exhibit 17
g. Underwriting Tax Flow Exhibit 19

2. Capital Market Rates
a. Risk-Free Rate 6.60%
b. Risk-Adjusted Rate 4.73%

(Beta =!:21, Market Risk Premium 8.9%)

3. Federal Income Tax Rates
a. Underwriting 35%
b. Investment 35%

4. Initial Premium/Surplus Ratio 2 to 1

2From elsewhere in the ratemaking process. ARAP (All Risk Adjustment Program) is applied in
Massachusetts workers compensation as a surcharge on top of experience rating. The rate indica-
tion is calculated in terms of Standard Premium plus ARAP = payrolls#manual rates# experience
modification#ARAP surcharge, if any.
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EXHIBIT 5

PART 3

MASSACHUSETTS WORKERS COMPENSATION
CALCULATION OF UNDERWRITING PROFIT PROVISIONS USING

MYERS–COHN COST OF CAPITAL MODEL

P

L+E
=

∙1! ¿1∙5
∙2 ! ¿2r∙3 ! ¿1∙4! ¿1®∙6

¹= 1! (P=(L+E))!1

r = 0:016107 rL = 0:011623 ¿1 = 0:35 ¿2 = 0:35

¯ =!0:21 rM ! r = 0:089 ®= 0:00155

Discounting Factors

∙1 = :856659

∙2 = :962190

∙3 = 14:558852

∙4 = :960994

∙5 = :949474

∙6 = :967392

P

L+E
=

0:856659! 0:35(0:949474)
0:962190! 0:35(0:016107)(14:558852)

!0:35(0:960994)! 0:35(0:00155)(0:967392)
= 0:965210

¹= 1! (:965210)!1 =!0:0360
Model Provision =!3:6%
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EXHIBIT 6

PART 1

MASSACHUSETTS WORKERS COMPENSATION
PREMIUM FLOW

Quarter Premium Flow

1 0:2397
2 0:2120
3 0:2355
4 0:1948
5 0:0462
6 0:0159
7 0:0271
8 0:0043
9 0:0060
10 0:0148
11 0:0043
12 0:0007
13 0:0001
14 !0:0007
15 0:0000
16 !0:0002
17 !0:0006
18 0:0000
19 0:0000
20 !0:0002
21 !0:0001
22 0:0004

Sum 1:0000

From Exhibit 6, Part 2, selected net premium flow.
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EXHIBIT 6

PART 2

DETERMINATION OF SELECTED PREMIUM FLOW
FROM PREMIUM CALL

(1) (2) (3)
Days From Untrimmed Trimmed Selected Net
Effective Date Flow Flow* Premium

!89– 0 0:0082
1– 90 0:2316 0:2397 0:2397
91– 180 0:2120 0:2120 0:2120
181– 270 0:2355 0:2355 0:2355
271– 360 0:1948 0:1948 0:1948
361– 450 0:0462 0:0462 0:0462
451– 540 0:0159 0:0159 0:0159
541– 630 0:0271 0:0271 0:0271
631– 720 0:0043 0:0043 0:0043
721– 810 0:0060 0:0060 0:0060
811– 900 0:0148 0:0148 0:0148
901– 990 0:0043 0:0043 0:0043
991– 1080 0:0007 0:0007 0:0007
1081– 1170 0:0001 0:0001 0:0001
1171– 1260 !0:0007 !0:0007 !0:0007
1261– 1350 0:0000 0:0000 0:0000
1351– 1440 !0:0002 !0:0002 !0:0002
1441– 1530 !0:0006 !0:0006 !0:0006
1531– 1620 0:0000 0:0000 0:0000
1621– 1710 0:0000 0:0000 0:0000
1711– 1800 !0:0002 !0:0002 !0:0002
1801– 1890 !0:0001 !0:0001 !0:0001
1891– 1980 0:0003 0:0004 0:0004
1981– 2070 0:0000
2071– 2160 0:0000
2161– 2250 0:0001
2251– 2340 0:0000
2341– 2430 0:0000
2431– 2520 0:0000
2521– 2610 0:0000
2611– 2700 0:0000
2701– 2790 0:0000
2791– 2880 0:0000
2881– 2970 0:0000
2971– 3060 0:0000
3061– 3150 0:0000
3151– 3240 0:0000
3241– 3330 0:0000
3331– 3420 0:0000

1:0000 1:0000 1:0000

*The quarter preceding the effective date in (1) was biased toward the end of the quarter (average
time from effective date =!6:5 days). Therefore, that percentage of premium from quarter zero was
added into the first quarter. The combined first quarter in (2) has a resulting average effective date at
56 days.
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EXHIBIT 7

MASSACHUSETTS WORKERS COMPENSATION
RATIO OF POLICYHOLDER DIVIDENDS TO THE EARNED

PREMIUM FROM THE PREVIOUS YEAR*

Massachusetts Countrywide

Total Non- All Total Non- All
Year Stock Stock Companies Year Stock Stock Companies

85 9.72 15.32 11.34
86 6.36 12.04 7.85 86 8.26 13.09 9.79
87 5.05 9.57 6.24 87 7.41 11.11 8.70
88 3.55 6.43 4.32 88 6.52 10.17 7.88
89 2.70 2.37 2.60 89 6.30 8.55 7.08
90 2.62 2.10 2.44 90 5.66 8.88 6.74
91 1.76 1.81 1.77 91 4.82 7.69 5.78
92 1.19 2.19 1.57 92 3.91 6.72 4.81
93 1.04 2.30 1.52 93 4.19 6.44 4.96
94 0.87 1.79 1.21 94 5.25 9.02 6.54
95 1.14 2.44 1.57 95 4.72 9.48 6.38
96 1.84 3.47 2.25 96 Not Available

Average 2.56 4.23 3.03 Average 6.07 9.68 7.27

*Computed using the data compiled from Annual Statements.

Policyholder Dividends Policyholder Dividends
Net Premium1 Premium Tax Rate2 Net of Premium Tax

3.03% 2.30% 3.0%

Policyholder dividends are assumed on average to be paid in quarter 7.3

1Average for all insurers in Massachusetts.
2From elsewhere in the ratemaking process.
3This corresponds to 19.5 months on average from policy inception.
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EXHIBIT 8

MASSACHUSETTS WORKERS COMPENSATION
EXPENSE FLOWS

Variable Expense
Flow2

Variable Expense
Flow2

Fixed Expense
Flow1

Plus Dividend
Flow

Fixed Expense
Flow1

Plus Dividend
Flow

Initial Final Initial Final Initial Final Initial Final
Quarter Weights Weights Weights Weights Quarter Weights Weights Weights Weights

!3 0.690 0.694 0:580 0:560 36 0.374 0.376 0.000 0.000
!2 0.740 0.744 1:740 1:679 37 0.266 0.268 0.000 0.000
!1 10.300 10.355 3:480 3:359 38 0.266 0.268 0.000 0.000
0 16.170 16.256 12:760 12:316 39 0.266 0.268 0.000 0.000
1 27.883 28.032 43:925 42:397 40 0.266 0.268 0.000 0.000
2 20.093 20.200 11:392 10:996 41 0.118 0.118 0.000 0.000
3 19.403 19.506 12:301 11:872 42 0.118 0.118 0.000 0.000
4 19.403 19.506 10:225 9:869 43 0.118 0.118 0.000 0.000
5 13.850 13.924 2:936 2:834 44 0.118 0.118 0.000 0.000
6 7.740 7.782 0:811 0:783 45 0.223 0.224 0.000 0.000
7 7.050 7.088 31:382 30:290 46 0.223 0.224 0.000 0.000
8 7.050 7.088 0:219 0:212 47 0.223 0.224 0.000 0.000
9 4.018 4.039 0:306 0:295 48 0.223 0.224 0.000 0.000
10 4.018 4.039 0:755 0:729 49 0.230 0.231 0.000 0.000
11 4.018 4.039 0:219 0:212 50 0.230 0.231 0.000 0.000
12 4.018 4.039 0:036 0:034 51 0.230 0.231 0.000 0.000
13 2.274 2.286 0:005 0:005 52 0.230 0.231 0.000 0.000
14 2.274 2.286 !0:036 !0:034 53 0.262 0.263 0.000 0.000
15 2.274 2.286 0:000 0:000 54 0.262 0.263 0.000 0.000
16 2.274 2.286 !0:010 !0:010 55 0.262 0.263 0.000 0.000
17 1.361 1.368 !0:031 !0:030 56 0.262 0.263 0.000 0.000
18 1.361 1.368 0:000 0:000 57 0.197 0.198 0.000 0.000
19 1.361 1.368 0:000 0:000 58 0.197 0.198 0.000 0.000
20 1.361 1.368 !0:010 !0:010 59 0.197 0.198 0.000 0.000
21 0.928 0.933 !0:005 !0:005 60 0.197 0.198 0.000 0.000
22 0.928 0.933 0:020 0:020 61 0.248 0.249 0.000 0.000
23 0.928 0.933 0:000 0:000 62 0.248 0.249 0.000 0.000
24 0.928 0.933 0:000 0:000 63 0.248 0.249 0.000 0.000
25 0.632 0.636 0:000 0:000 64 0.248 0.249 0.000 0.000
26 0.632 0.636 0:000 0:000 65 0.171 0.171 0.000 0.000
27 0.632 0.636 0:000 0:000 66 0.171 0.171 0.000 0.000
28 0.632 0.636 0:000 0:000 67 0.171 0.171 0.000 0.000
29 0.452 0.455 0:000 0:000 68 0.171 0.171 0.000 0.000
30 0.452 0.455 0:000 0:000 69 0.278 0.279 0.000 0.000
31 0.452 0.455 0:000 0:000 70 0.278 0.279 0.000 0.000
32 0.452 0.455 0:000 0:000 71 0.278 0.279 0.000 0.000
33 0.374 0.376 0:000 0:000 72 0.278 0.279 0.000 0.000
34 0.374 0.376 0:000 0:000 73 0.169 0.170 0.000 0.000
35 0.374 0.376 0:000 0:000 74 0.169 0.170 0.000 0.000

etc.3

1General expense, other tax, allocated loss adjustment expense, and unallocated loss adjustment ex-
pense flows combined using the weights in Exhibit 9.
2Commissions, other acquisition expense and premium tax combined using the weights in Exhibit 9.
3Flow continues out to the same quarter as the loss flow.
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EXHIBIT 9

PART 1

MASSACHUSETTS WORKERS COMPENSATION
CASH FLOW WEIGHTS

Initial
Weights Final Weights

Loss+Exp
Item of Expense Allowance Prem(%)1 Prem(%) +Div(%)
Premium (Net of Premium Discounts) 100.0% 100.00% 96.52%
Expected Losses 65.9% 68.64% 66.25%
Total Expenses Plus Dividends 34.1% 34.96% 33.75%
Fixed Expenses:
(Total Expenses not varying with
Premium)

20.8% 21.66% 20.91%

Loss Adjustment Expense1 13.9% 14.48% 13.97%
Allocated2 7.4% 7.71% 7.44%
Unallocated2 6.5% 6.77% 6.53%

General Expenses3 6.4% 6.67% 6.43%
Other Tax3 0.5% 0.52% 0.50%

Variable Expenses Plus Dividends:
(Varying with Premium) 13.3% 13.30% 12.84%

Total Acquisition 8.0% 8.00% 7.72%
Commissions3 5.1% 5.10% 4.92%
Other Acquisition3 2.9% 2.90% 2.80%

Premium Tax 2.3% 2.30% 2.22%
Policyholder Dividends 3.0% 3.00% 2.90%

1From Part 2.
2The loss adjustment expense split between allocated and unallocated is 53.4% & 46.6% based on a
two-year average of Annual Statement data for thirteen major writers in Massachusetts.
3Weighted based on calculations underlying other portions of the ratemaking process.
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EXHIBIT 9

PART 2

MASSACHUSETTS WORKERS COMPENSATION
DETERMINATION OF INITIAL CASH FLOW WEIGHTS

(1) Acquisition and Field Supervision (as a Percent of Net
Premium)

8.0%

(2) Premium Taxes (as a Percent of Net Premium) 2.3%
(3) Policyholder Dividends (as a Percent of Net Premium, Net of

Taxes)
3.0%

(4) Variable Expenses (excluding profit provision) plus
Policyholder Dividends

13.3%

(5) Loss, Loss Adjustment Expense Ratio, and Fixed Expense
Ratio

86.7%

(6) Loss Adjustment Expense as a Percent of Losses 21.0%
(7) Ratio of Fixed Expense as a Percent of Losses 10.5%
(8) Loss Ratio to Net of Premium Discount (if there were no

loading for profits)
65.9%

(9) Loss Adjustment Expense as a Percent of Premiums Net of
Premium Discount

13.9%

(10) Fixed Expenses as a Percent of Premiums Net of Premium
Discount

6.9%

(11) Expenses (excluding profit provision) plus Policyholder
Dividends

34.1%

(1) From elsewhere in the ratemaking process.
(2) From elsewhere in the ratemaking process.
(3) From elsewhere in the ratemaking process.
(4) = (1)+ (2)+ (3)
(5) = 1! (4)
(6) From elsewhere in the ratemaking process.
(7) From elsewhere in the ratemaking process.
(8) = (5)=[1+ (6)+ (7)]
(9) = (6)# (8)
(10) = (7)# (8)
(11) = (4)+ (9)+ (10)

Values may differ somewhat due to rounding and the desire to have the weights add up to exactly
100% for illustrative purposes.
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EXHIBIT 10

MASSACHUSETTS WORKERS COMPENSATION
PERCENTAGE DISTRIBUTIONS OF GENERAL, OTHER

ACQUISTION, AND TAXES

(1) (2) (3) (4) (5)
Time from Distribution (%)
Eff. Date Distribution (%) Other Distribution (%) Distribution (%)
(Days) General Exp. Acquisition Premium Tax Other Tax

!359 to !270 1 2 0 1
!269 to !180 1 6 0 2
!179 to !90 15 12 0 14
!89 to 0 23 44 0 29
1 to 90 21 30 100 23
91 to 180 10 2 0 8
181 to 270 9 1 0 7
271 to 360 9 1 0 7
361 to 450 10 2 0 8
451 to 540 1 0 0 1

Total 100 100 100 100

Source: (2) from filing for 1977 Massachusetts workers compensation rates, Exhibit 20.
(3) & (5) from filing for 1977 Massachusetts workers compensation rates, Exhibit 21.
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EXHIBIT 11

MASSACHUSETTS WORKERS COMPENSATION
COMBINED LOSS FLOW

Quarter Losses Quarter Losses Quarter Losses

0 0.000 46 2.096 92 1.590
1 48.524 47 2.096 93 1.590
2 48.524 48 2.096 94 1.590
3 48.524 49 2.159 95 1.590
4 48.524 50 2.159 96 1.590
5 66.200 51 2.159 97 1.590
6 66.200 52 2.159 98 1.590
7 66.200 53 2.457 99 1.590
8 66.200 54 2.457 100 1.590
9 37.726 55 2.457 101 1.590
10 37.726 56 2.457 102 1.590
11 37.726 57 1.853 103 1.590
12 37.726 58 1.853 104 1.590
13 21.349 59 1.853 105 1.590
14 21.349 60 1.853 106 1.590
15 21.349 61 2.324 107 1.590
16 21.349 62 2.324 108 1.590
17 12.779 63 2.324 109 1.590
18 12.779 64 2.324 110 1.590
19 12.779 65 1.601 111 1.590
20 12.779 66 1.601 112 1.590
21 8.713 67 1.601 113 1.590
22 8.713 68 1.601 114 1.590
23 8.713 69 2.610 115 1.590
24 8.713 70 2.610 116 1.590
25 5.936 71 2.610 117 1.228
26 5.936 72 2.610 118 1.228
27 5.936 73 1.590 119 1.228
28 5.936 74 1.590 120 1.228
29 4.248 75 1.590 121 1.190
30 4.248 76 1.590 122 1.190
31 4.248 77 1.590 123 1.190
32 4.248 78 1.590 124 1.190
33 3.512 79 1.590 125 1.190
34 3.512 80 1.590 126 1.190
35 3.512 81 1.590 127 1.190
36 3.512 82 1.590 128 1.190
37 2.500 83 1.590 129 1.190
38 2.500 84 1.590 130 1.190
39 2.500 85 1.590 131 1.190
40 2.500 86 1.590 132 1.190
41 1.104 87 1.590 133 0.024
42 1.104 88 1.590 134 0.024
43 1.104 89 1.590 135 0.024
44 1.104 90 1.590
45 2.096 91 1.590
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EXHIBIT 12

PART 4

MASSACHUSETTS WORKERS COMPENSATION
MEDICAL LOSS FLOW ESTIMATED FROM FINANCIAL

AGGREGATE DATA

Annual Flow Quarterly Flow

Accident Selected
Year % Paid Cumulative % Paid % Paid % Paid
Report In Year1 Paid Quarter in Quarter Quarter in Quarter Quarter in Quarter

1 0.310309 0.310309 1 0.077577 46 0.001552 91 0.001250
2 0.321294 0.631603 2 0.077577 47 0.001552 92 0.001250
3 0.104578 0.736181 3 0.077577 48 0.001552 93 0.001250
4 0.054505 0.790686 4 0.077577 49 0.001454 94 0.001250
5 0.031742 0.822428 5 0.080324 50 0.001454 95 0.001250
6 0.021326 0.843754 6 0.080324 51 0.001454 96 0.001250
7 0.016776 0.860530 7 0.080324 52 0.001454 97 0.001250
8 0.013091 0.873621 8 0.080324 53 0.002088 98 0.001250
9 0.017439 0.891060 9 0.026145 54 0.002088 99 0.001250
10 0.006767 0.897827 10 0.026145 55 0.002088 100 0.001250
11 0.002804 0.900631 11 0.026145 56 0.002088 101 0.001250
12 0.006206 0.906837 12 0.026145 57 0.001484 102 0.001250
13 0.005815 0.912652 13 0.013626 58 0.001484 103 0.001250
14 0.008350 0.921002 14 0.013626 59 0.001484 104 0.001250
15 0.005935 0.926937 15 0.013626 60 0.001484 105 0.001250
16 0.006725 0.933662 16 0.013626 61 0.001681 106 0.001250
17 0.005863 0.939525 17 0.007936 62 0.001681 107 0.001250
18 0.005000 0.944525 18 0.007936 63 0.001681 108 0.001250
19 0.005000 0.949525 19 0.007936 64 0.001681 109 0.001250
20 0.005000 0.954525 20 0.007936 65 0.001466 110 0.001250
21 0.005000 0.959525 21 0.005332 66 0.001466 111 0.001250
22 0.005000 0.964525 22 0.005332 67 0.001466 112 0.001250
23 0.005000 0.969525 23 0.005332 68 0.001466 113 0.001250
24 0.005000 0.974525 24 0.005332 69 0.001250 114 0.001250
25 0.005000 0.979525 25 0.004194 70 0.001250 115 0.001250
26 0.005000 0.984525 26 0.004194 71 0.001250 116 0.001250
27 0.005000 0.989525 27 0.004194 72 0.001250 117 0.000119
28 0.005000 0.994525 28 0.004194 73 0.001250 118 0.000119
29 0.005000 0.999525 29 0.003273 74 0.001250 119 0.000119
30 0.000475 1.000000 30 0.003273 75 0.001250 120 0.000119

31 0.003273 76 0.001250
32 0.003273 77 0.001250
33 0.004360 78 0.001250
34 0.004360 79 0.001250
35 0.004360 80 0.001250
36 0.004360 81 0.001250
37 0.001692 82 0.001250
38 0.001692 83 0.001250
39 0.001692 84 0.001250
40 0.001692 85 0.001250
41 0.000701 86 0.001250
42 0.000701 87 0.001250
43 0.000701 88 0.001250
44 0.000701 89 0.001250
45 0.001552 90 0.001250

1Latest three-year average of increments in Exhibit 12, Part 3.
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EXHIBIT 13

PART 4

MASSACHUSETTS WORKERS COMPENSATION
INDEMNITY LOSS FLOW ESTIMATED FROM FINANCIAL

AGGREGATE DATA

Annual Flow Quarterly Flow

Accident Selected
Year % Paid Cumulative % Paid % Paid % Paid
Report In Year1 Paid Quarter in Quarter Quarter in Quarter Quarter in Quarter

1 0.139406 0.139406 1 0.034852 49 0.002490 97 0.001750
2 0.238216 0.377622 2 0.034852 50 0.002490 98 0.001750
3 0.172706 0.550328 3 0.034852 51 0.002490 99 0.001750
4 0.099931 0.650259 4 0.034852 52 0.002490 100 0.001750
5 0.060230 0.710489 5 0.059554 53 0.002631 101 0.001750
6 0.041214 0.751703 6 0.059554 54 0.002631 102 0.001750
7 0.027021 0.778724 7 0.059554 55 0.002631 103 0.001750
8 0.018825 0.797549 8 0.059554 56 0.002631 104 0.001750
9 0.012450 0.809999 9 0.043177 57 0.002027 105 0.001750
10 0.011521 0.821520 10 0.043177 58 0.002027 106 0.001750
11 0.005174 0.826694 11 0.043177 59 0.002027 107 0.001750
12 0.009407 0.836101 12 0.043177 60 0.002027 108 0.001750
13 0.009961 0.846062 13 0.024983 61 0.002627 109 0.001750
14 0.010523 0.856585 14 0.024983 62 0.002627 110 0.001750
15 0.008106 0.864691 15 0.024983 63 0.002627 111 0.001750
16 0.010508 0.875199 16 0.024983 64 0.002627 112 0.001750
17 0.006660 0.881859 17 0.015058 65 0.001665 113 0.001750
18 0.013000 0.894859 18 0.015058 66 0.001665 114 0.001750
19 0.007000 0.901859 19 0.015058 67 0.001665 115 0.001750
20 0.007000 0.908859 20 0.015058 68 0.001665 116 0.001750
21 0.007000 0.915859 21 0.010304 69 0.003250 117 0.001750
22 0.007000 0.922859 22 0.010304 70 0.003250 118 0.001750
23 0.007000 0.929859 23 0.010304 71 0.003250 119 0.001750
24 0.007000 0.936859 24 0.010304 72 0.003250 120 0.001750
25 0.007000 0.943859 25 0.006755 73 0.001750 121 0.001750
26 0.007000 0.950859 26 0.006755 74 0.001750 122 0.001750
27 0.007000 0.957859 27 0.006755 75 0.001750 123 0.001750
28 0.007000 0.964859 28 0.006755 76 0.001750 124 0.001750
29 0.007000 0.971859 29 0.004706 77 0.001750 125 0.001750
30 0.007000 0.978859 30 0.004706 78 0.001750 126 0.001750
31 0.007000 0.985859 31 0.004706 79 0.001750 127 0.001750
32 0.007000 0.992859 32 0.004706 80 0.001750 128 0.001750
33 0.007000 0.999859 33 0.003113 81 0.001750 129 0.001750
34 0.000141 1.000000 34 0.003113 82 0.001750 130 0.001750

35 0.003113 83 0.001750 131 0.001750
36 0.003113 84 0.001750 132 0.001750
37 0.002880 85 0.001750 133 0.000035
38 0.002880 86 0.001750 134 0.000035
39 0.002880 87 0.001750 135 0.000035
40 0.002880 88 0.001750 136 0.000035
41 0.001294 89 0.001750 137 0.000000
42 0.001294 90 0.001750 138 0.000000
43 0.001294 91 0.001750 139 0.000000
44 0.001294 92 0.001750 140 0.000000
45 0.002352 93 0.001750 141 0.000000
46 0.002352 94 0.001750 142 0.000000
47 0.002352 95 0.001750 143 0.000000
48 0.002352 96 0.001750 144 0.000000

1Latest three-year average of increments in Exhibit 14.
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EXHIBIT 14

PART 1

CALCULATION OF RISK-FREE
RATE OF RETURN

Duration Yield* Weight**

1 5.70% 1# 152.045
2 6.09% 2# 91.034
3 6.25% 3# 66.128
4 6.35% 4# 39.887
5 6.45% 5# 26.394
6 6.52% 6# 18.176
7 6.57% 7# 13.008
8 6.62% 8# 10.752
9 6.66% 9# 7.656
10 6.70% 10# 3.380
11 6.74% 11# 6.416
12 6.78% 12# 6.608
13 6.82% 13# 7.524
14+ 6.83% 14# 93.996

Weighted
Average 6.60%

*Yield from Exhibit 14, Part 4.
**Weight is the product of the duration and the corresponding values from Exhibit 14, Part 5.
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EXHIBIT 14

PART 2

TREASURY BOND YIELD RATES

Month 1 Year 2 Year 3 Year 5 Year 7 Year 10 Year 30 Year

Jul 96 5.85 6.27 6.45 6.64 6.76 6.87 7.03
Aug 96 5.67 6.03 6.21 6.39 6.52 6.64 6.84
Sep 96 5.83 6.23 6.41 6.60 6.73 6.83 7.03
Oct 96 5.55 5.91 6.08 6.27 6.42 6.53 6.81
Nov 96 5.42 5.70 5.82 5.97 6.10 6.20 6.48
Dec 96 5.47 5.78 5.91 6.07 6.20 6.30 6.55
Jan 97 5.61 6.01 6.16 6.33 6.47 6.58 6.83
Feb 97 5.53 5.90 6.03 6.20 6.32 6.42 6.69
Mar 97 5.80 6.22 6.38 6.54 6.65 6.69 6.93
Apr 97 5.99 6.45 6.61 6.76 6.86 6.89 7.09
May 97 5.87 6.28 6.42 6.57 6.66 6.71 6.94
Jun 97 5.69 6.09 6.24 6.38 6.46 6.49 6.77

Average 5.69 6.07 6.23 6.39 6.51 6.60 6.83

(July 1996–June 1997)
Source: Federal Reserve Board (Statistical Release G-13)
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EXHIBIT 14

PART 3

DURATIONS OF TREASURY SECURITIES

Maturity Yield* Duration

1 Year 5.69% 0.99
2 Year 6.07% 1.91
3 Year 6.23% 2.79
5 Year 6.39% 4.37
7 Year 6.51% 5.75
10 Year 6.60% 7.51
30 Year 6.83% 13.26

Note: Duration is a weighted average term to maturity, where the years are weighted by the present
value of the related cash flow.
For bonds with semiannual coupons, duration in years is:

[(1+Y)! (1+Y)( (1! 2M)]=2Y
where Y is the semi-annual coupon yield = [(1 +yield)( :5]!1 and M is the maturity.
*From Exhibit 14, Part 2.
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EXHIBIT 14

PART 4

INTERPOLATED YIELDS BY DURATION

Duration Yield

0.99 * 5.69% *
1.00 5.70% **
1.91 * 6.07% *
2.00 6.09% **
2.79 * 6.23% *
3.00 6.25% **
4.00 6.35% **
4.37 * 6.39% *
5.00 6.45% **
5.75 * 6.51% *
6.00 6.52% **
7.00 6.57% **
7.51 * 6.60% *
8.00 6.62% **
9.00 6.66% **
10.00 6.70% **
11.00 6.74% **
12.00 6.78% **
13.00 6.82% **
13.26 * 6.83% *
14.00 6.83% ***

*From Exhibit 14, Part 3.
**Interpolated.
***Taken equal to last observed value.
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EXHIBIT 14

PART 5

MASSACHUSETTS WORKERS COMPENSATION
CALCULATION OF NET CASH FLOWS BY YEAR

Sum for Sum for
Net Duration Duration Net Duration Duration

Quarter Cash Flow Period Period Quarter Cash Flow Period Period

!3 !1:270 30 !3:252 7 Yr
!2 !2:480 31 !3:252 7 Yr
!1 !13:780 32 !3:252 7 Yr 13.008
0 !28:930 33 !2:688 8 Yr
1 135.915 34 !2:688 8 Yr
2 148.538 35 !2:688 8 Yr
3 171.820 36 !2:688 8 Yr 10.752
4 133.195 37 !1:914 9 Yr
5 !14:213 1 Yr 38 !1:914 9 Yr
6 !36:277 1 Yr 39 !1:914 9 Yr
7 !54:959 1 Yr 40 !1:914 9 Yr 7.656
8 !46:596 1 Yr 152.045 41 !0:845 10 Yr
9 !23:186 2 Yr 42 !0:845 10 Yr
10 !14:834 2 Yr 43 !0:845 10 Yr
11 !24:799 2 Yr 44 !0:845 10 Yr 3.38
12 !28:215 2 Yr 91.034 45 !1:604 11 Yr
13 !16:247 3 Yr 46 !1:604 11 Yr
14 !17:007 3 Yr 47 !1:604 11 Yr
15 !16:342 3 Yr 48 !1:604 11 Yr 6.416
16 !16:532 3 Yr 66.128 49 !1:652 12 Yr
17 !10:351 4 Yr 50 !1:652 12 Yr
18 !9:782 4 Yr 51 !1:652 12 Yr
19 !9:782 4 Yr 52 !1:652 12 Yr 6.608
20 !9:972 4 Yr 39.887 53 !1:881 13 Yr
21 !6:764 5 Yr 54 !1:881 13 Yr
22 !6:290 5 Yr 55 !1:881 13 Yr
23 !6:670 5 Yr 56 !1:881 13 Yr 7.524
24 !6:670 5 Yr 26.394 57 !1:418 14 Yr
25 !4:544 6 Yr 58 !1:418 14 Yr
26 !4:544 6 Yr 59 !1:418 14 Yr
27 !4:544 6 Yr 60 !1:418 14 Yr 5.672
28 !4:544 6 Yr 18.176 61–400 !88:324 15+ Yr 88.324
29 !3:252 7 Yr

Note: Net Cash Flow = Premium!Total Losses & Expenses (including dividends).



THE MYERS–COHN PROFIT MODEL 753

EXHIBIT 15

CALCULATION OF THE RISK-ADJUSTED RATE OF RETURN

(1) Risk-Free Rate of Return 6:60%
(2) Beta of Liabilities !0:21
(3) Market Risk Premium 8:9%
(4) Risk-Adjusted Rate of Return 4:73%

= (1)+ [(2)# (3)]
(1) From Exhibit 14.
(2) The Beta of Liabilities is the same as used by the Massachusetts Commissioner of Insurance in
the past to set private passenger automobile rates.
(3) From Exhibit 16.
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EXHIBIT 16

MARKET RISK PREMIUM

Total Return
Large Company U.S. Treasury

Year Stocks Bills Difference

1926 11:62 3.27 8:35
1927 37:49 3.12 34:37
1928 43:61 3.56 40:05
1929 !8:42 4.75 !13:17
1930 !24:90 2.41 !27:31
1931 !43:34 1.07 !44:41
1932 !8:19 0.96 !9:15
1933 53:99 0.30 53:69
1934 !1:44 0.16 !1:60
1935 47:67 0.17 47:50
1936 33:92 0.18 33:74
1937 !35:03 0.31 !35:34
1938 31:12 !0:02 31:14
1939 !0:41 0.02 !0:43
1940 !9:78 0.00 !9:78
1941 !11:59 0.06 !11:65
1942 20:34 0.27 20:07
1943 25:90 0.35 25:55
1944 19:75 0.33 19:42
1945 36:44 0.33 36:11
1946 !8:07 0.35 !8:42
1947 5:71 0.50 5:21
1948 5:50 0.81 4:69
1949 18:79 1.10 17:69
1950 31:71 1.20 30:51
1951 24:02 1.49 22:53
1952 18:37 1.66 16:71
1953 !0:99 1.82 !2:81
1954 52:62 0.86 51:76
1955 31:56 1.57 29:99
1956 6:56 2.46 4:10
1957 !10:78 3.14 !13:92
1958 43:36 1.54 41:82
1959 11:96 2.95 9:01
1960 0:47 2.66 !2:19
1961 26:89 2.13 24:76
1962 !8:73 2.73 !11:46
1963 22:80 3.12 19:68
1964 16:48 3.54 12:94
1965 12:45 3.93 8:52
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EXHIBIT 16

MARKET RISK PREMIUM
(Continued)

Total Return
Large Company U.S. Treasury

Year Stocks Bills Difference

1966 !10:06 4.76 !14:82
1967 23:98 4.21 19:77
1968 11:06 5.21 5:85
1969 !8:50 6.58 !15:08
1970 4:01 6.52 !2:51
1971 14:31 4.39 9:92
1972 18:98 3.84 15:14
1973 !14:66 6.93 !21:59
1974 !26:47 8.00 !34:47
1975 37:20 5.80 31:40
1976 23:84 5.08 18:76
1977 !7:18 5.12 !12:30
1978 6:56 7.18 !0:62
1979 18:44 10.38 8:06
1980 32:42 11.24 21:18
1981 !4:91 14.71 !19:62
1982 21:41 10.54 10:87
1983 22:51 8.80 13:71
1984 6:27 9.85 !3:58
1985 32:16 7.72 24:44
1986 18:47 6.16 12:31
1987 5:23 5.47 !0:24
1988 16:81 6.35 10:46
1989 31:49 8.37 23:12
1990 !3:17 7.81 !10:98
1991 30:55 5.60 24:95
1992 7:67 3.51 4:16
1993 9:99 2.90 7:09
1994 1:31 3.90 !2:59
1995 37:43 5.60 31:83
1996 23:07 5.21 17:86

Average 12.67 3.79 8:88

Selected Market Risk Premium is 8.9.
Source: SBBI, 1997 Year Book from Ibbotson Associates, Table 2-5.
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EXHIBIT 17

SURPLUS FLOW
(Computed Using Final Weights)

Proportion of
Loss+Expense and

Dividends
Quarter Remaining to be Paid Surplus1

0 0.954041 238.510
1 0.851465 425.733
2 0.788122 394.061
3 0.724595 362.298
4 0.663072 331.536
5 0.602455 301.227
6 0.550032 275.016
7 0.468795 234.397
8 0.417636 208.818
9 0.388307 194.154
10 0.358545 179.272
50 0.105393 52.697
100 0.034422 17.211

Note: Quarters 11, 12, etc. have not been displayed solely in the interests of space.
1Equal to the premium times the proportion of loss, expenses, and dividends remaining to be paid,
divided by the premium-to-surplus ratio. For example, in Quarter 50, (1000)# (:105393)=2 = 52:697.
The premium-to-surplus ratio has been selected as 2 for all quarters. In Quarter 0, only one-half of
the calculated surplus is included to represent the surplus flow starting at policy inception, which
occurs at the end of Quarter 0.
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EXHIBIT 18

PART 1

INVESTMENT BALANCE FOR TAX FLOW

Using Using
Quarter Initial Weights Final Weights

!3 0:000 0:000
!2 !1:270 !1:254
!1 !3:750 !3:677
0 !17:530 !17:391
1 191:926 192:547
2 514:335 516:894
3 631:142 633:879
4 771:122 774:089
5 873:515 876:604
6 829:096 831:878
7 766:730 769:144
8 670:742 674:388
9 598:699 601:950

10 560:920 563:957
50 159:725 160:578
100 53:181 53:465

Note: Quarters 11, 12, etc. have not been displayed solely in the interests of space.
The Investment Balance for Taxes is the Investment Balance advanced one quarter.
The Investment Balance is the sum of the Surplus Flow (Exhibit 17) and the Cumulative Premiums
minus Losses, Expenses, and Dividends (Exhibit 18, Part 2).
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EXHIBIT 18

PART 2

CUMULATIVE PREMIUM
MINUS LOSSES, EXPENSES, AND DIVIDENDS

Using Using
Quarter Initial Weights Final Weights

!3 !1:270 !1:254
!2 !3:750 !3:677
!1 !17:530 !17:391
0 !46:460 !45:963
1 89:455 91:161
2 237:994 239:818
3 409:813 411:791
4 543:009 545:068
5 528:796 530:651
6 492:519 494:128
7 437:560 439:991
8 390:964 393:132
9 367:779 369:803
10 352:944 354:841
50 104:830 105:389
100 34:236 34:418

Note: Quarters 11, 12, etc. have not been displayed solely in the interests of space.
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EXHIBIT 19

PART 1

UNDERWRITING TAX FLOWS

Contribution to the Underwriting Tax Flow of:

Losses and Expenses (plus Dividends)*

Quarter Premiums Final Weights Initial Weights

!3 0.00 1.254 1.270
!2 0.00 2.423 2.480
!1 0.00 13.714 13.780
0 0.00 28.572 28.930
1 250.00 231.876 232.398
2 250.00 192.643 192.075
3 250.00 192.826 192.294
4 250.00 190.823 190.218
5 0.00 14.936 14.974
6 0.00 6.743 6.739
7 0.00 35.556 36.620
8 0.00 5.478 5.458
9 0.00 3.712 3.704

*Loss and LAE contribution from Exhibit 19, Part 3, converted to a quarterly flow. (Exhibit 19, Part
3 only displays the result for the initial weights.) Dividends plus Expenses Other than LAE from
Exhibit 19, Part 2. For example, for the initial weights for Quarter 6, (20:953=4)+1:501 = 6:739.
Quarters 10, 11, etc. have not been displayed solely in the interests of space.
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EXHIBIT 19

PART 2

UNDERWRITING TAX FLOW FOR EXPENSES
(INCLUDING DIVIDENDS) OTHER THAN LAE

Final Initial
Quarter Weights Weights

!3 1:254 1:270
!2 2:423 2:480
!1 13:714 13:780
0 28:572 28:930
1 57:065 58:515
2 17:832 18:192
3 18:015 18:411
4 16:012 16:335
5 9:670 9:736
6 1:476 1:501
7 30:290 31:382
8 0:212 0:219
9 0:295 0:306
10 0:729 0:755
11 0:212 0:219
12 0:034 0:036
13 0:005 0:005
14 !0:034 !0:036
15 0:000 0:000
16 !0:010 !0:010
17 !0:030 !0:031

Note: Quarters 18, 19, etc. have not been displayed solely in the interests of space.
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EXHIBIT 19

PART 3

CONTRIBUTION TO THE UNDERWRITING TAX FLOW OF LOSS
AND LOSS ADJUSTMENT EXPENSE–INITIAL WEIGHTS

(1) (2) (3) (4) (5) (6)3 (7) (8)
Loss+LAE

Difference Loss+LAE Loss+LAE Contribution
Reserve in Reserve Paid Paid Change in to
Discount Discount During Subsequent Discounted Underwriting

Year Factors1 Factors Year2 to the Year Reserves4 Tax Flow

1 0.0000 0:8339 181.079 616.924 181.079 514:453 695.533
2 0.8339 !0:0307 202.706 414.219 33.669 !12:717 20.953
3 0.8032 !0:0306 115.518 298.701 22.734 !9:140 13.594
4 0.7726 !0:0188 65.369 233.331 14.865 !4:387 10.478
5 0.7538 !0:0104 39.128 194.203 9.633 !2:020 7.614
6 0.7434 !0:0146 26.678 167.525 6.846 !2:446 4.400
7 0.7288 0:0014 18.175 149.350 4.929 0:209 5.138
8 0.7302 !0:0051 13.006 136.344 3.509 !0:695 2.814
9 0.7251 0:0335 10.753 125.591 2.956 4:207 7.163
10 0.7586 0:0263 7.655 117.936 1.848 3:102 4.950
11 0.7849 0:0287 3.380 114.556 0.727 3:288 4.015
12 0.8136 0:0316 6.417 108.138 1.196 3:417 4.613
13 0.8452 0:0354 6.610 101.529 1.023 3:594 4.617
14 0.8806 0:0407 7.524 94.005 0.898 3:826 4.724
15 0.9213 0:0486 5.674 88.332 0.447 4:293 4.739
16 0.9699 0:0000 7.117 81.215 0.214 0:000 0.214
17 0.9699 0:0000 4.903 76.311 0.148 0:000 0.148
18 0.9699 0:0000 7.992 68.319 0.241 0:000 0.241

1Exhibit 20.
2Sum of quarterly paid losses from Exhibit 11 plus paid LAE.
3Losses paid in the year minus previously held discounted reserve for those losses.
4On losses for subsequent year.
(6) = [1! (2)]# (4)
(7) = (3)# (5)
(8) = (6)+ (7)
Note: Years beyond 18 are not displayed solely in the interest of space. The contribution to the
underwriting tax flow declines slowly to zero.
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EXHIBIT 20

PART 1

SUMMARY OF DISCOUNT RESERVE FACTORS

Discount Reserve
Year Factor

1 0.8339
2 0.8032
3 0.7726
4 0.7538
5 0.7434
6 0.7288
7 0.7302
8 0.7251
9 0.7586
10 0.7849
11 0.8136
12 0.8452
13 0.8806
14 0.9213
15 0.9699
16 0.9699

Calculated using the reserve flow from Exhibit 20, Part 3 and the interest rate (average mid-term
AFR) from Exhibit 20, Part 4. The calculation of the values for the first two years are shown on
Exhibit 20, Part 2; the remaining values are calculated similarly.
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EXHIBIT 20

PART 2

CALCULATION OF COUNTRYWIDE LIABILITY
RESERVE DISCOUNT FACTORS

Discount Discounted
Year Reserve Flow* Factors** Reserve Flow

1 28.3575 0.9699 27.5043
2 15.4945 0.9124 14.1377
3 8.2342 0.8584 7.0679
4 5.1434 0.8075 4.1532
5 4.1564 0.7596 3.1573
6 2.4089 0.7146 1.7214
7 2.3136 0.6723 1.5553
8 0.5173 0.6324 0.3271
9 0.9641 0.5949 0.5736
10 0.9641 0.5597 0.5396
11 0.9641 0.5265 0.5076
12 0.9641 0.4953 0.4775
13 0.9641 0.4659 0.4492
14 0.9641 0.4383 0.4226
15 5.2530 0.4124 2.1661
16 0.0000 0.3879 0.0000

Total 77.6634 64.7605

Total Discounted Reserve/Total Reserve = 0.8339

Discount Discounted
Year Reserve Flow* Factors** Reserve Flow

1 15.4945 0.9699 15.0283
2 8.2342 0.9124 7.5131
3 5.1434 0.8584 4.4149
4 4.1564 0.8075 3.3562
5 2.4089 0.7596 1.8299
6 2.3136 0.7146 1.6533
7 0.5173 0.6723 0.3478
8 0.9641 0.6324 0.6097
9 0.9641 0.5949 0.5736
10 0.9641 0.5597 0.5396
11 0.9641 0.5265 0.5076
12 0.9641 0.4953 0.4775
13 0.9641 0.4659 0.4492
14 5.2530 0.4383 2.3025
15 0.0000 0.4124 0.0000

Total 49.3059 39.6032

Total Discounted Reserve/Total Reserve = 0.8032

*From Exhibit 20, Part 3.
**Based on the average mid-term AFR (see Exhibit 20, Part 4) of 6.30%.
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EXHIBIT 20

PART 3

WORKERS COMPENSATION COUNTRYWIDE RESERVE FLOW

Annual Liability
Year Loss Flow

1 22.3366
2 28.3575
3 15.4945
4 8.2342
5 5.1434
6 4.1564
7 2.4089
8 2.3136
9 0.5173
10 0.9641
11 0.9641
12 0.9641
13 0.9641
14 0.9641
15 0.9641
16 5.2530

Source: Revenue Procedure 92-47 (Tables of Discount Factors).
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EXHIBIT 20

PART 4

CALCULATION OF INTEREST RATE
FOR RESERVE DISCOUNT FACTORS

Month Midterm AFR* Month Midterm AFR*

Jun. 1992 7.04% Jun. 1995 6.83%
Jul. 1992 6.85% Jul. 1995 6.28%
Aug. 1992 6.49% Aug. 1995 6.04%
Sep. 1992 5.98% Sep. 1995 6.38%
Oct. 1992 5.78% Oct. 1995 6.31%
Nov. 1992 5.68% Nov. 1995 6.11%
Dec. 1992 6.15% Dec. 1995 5.91%
Jan. 1993 6.34% Jan. 1996 5.73%
Feb. 1993 6.22% Feb. 1996 5.61%
Mar. 1993 5.88% Mar. 1996 5.45%
Apr. 1993 5.45% Apr. 1996 5.88%
May 1993 5.46% May 1996 6.36%
12 Month Average 6.11% 48 Month Average 6.24%

Jun. 1993 5.33% Jun. 1996 6.58%
Jul. 1993 5.54% Jul. 1996 6.74%
Aug. 1993 5.32% Aug. 1996 6.84%
Sep. 1993 5.35% Sep. 1996 6.64%
Oct. 1993 5.00% Oct. 1996 6.72%
Nov. 1993 4.92% Nov. 1996 6.60%
Dec. 1993 5.07% Dec. 1996 6.31%
Jan. 1994 5.32% Jan. 1997 6.10%
Feb. 1994 5.34% Feb. 1997 6.38%
Mar. 1994 5.36% Mar. 1997 6.42%
Apr. 1994 5.88% Apr. 1997 6.49%
May 1994 6.43% May 1997 6.85%
24 Month Average 5.76% 60 Month Average 6.30%

Jun. 1994 6.92%
Jul. 1994 6.83%
Aug. 1994 7.05%
Sep. 1994 7.05%
Oct. 1994 7.10%
Nov. 1994 7.45%
Dec. 1994 7.74%
Jan. 1995 7.92%
Feb. 1995 7.96%
Mar. 1995 7.75%
Apr. 1995 7.34%
May 1995 7.12%
36 Month Average 6.29%

*Midterm “Applicable Federal Rate” published monthly by the Internal Revenue Sevice.
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EXHIBIT 21

PART 1

VALUES OF KAPPAS

Initial Final
Weights Weights

∙1 = Risk-adjusted discounted loss, expense and dividend
factor

.8573 .8567

∙2 = Risk-free discounted premiums .9622 .9622
∙3 = Risk-free discounted investment value tax 14.4878 14.5589
∙4 = Risk-free discounted underwriting profit tax factor

(contribution of premiums)
.9610 .9610

∙5 = Risk-adjusted discounted underwriting profit tax
factor (contribution of losses, expenses, and
dividends)

.9496 .9495

∙6 = Risk-free discounted revenue offset tax factor .9674 .9674

EXHIBIT 21

PART 2

VALUES USED SOLELY TO COMPUTE THE RISK PREMIUM

Initial Final
Weights Weights

Risk-Free ∙1 .8195 .8187
Risk-Free ∙5 .9331 .9330
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EXHIBIT 21

PART 3

CALCULATION OF THE RISK PREMIUM

(1) Premium calculated using a risk-adjusted discount rate 965
(2) Premium calculated using a risk-free discount rate

(Beta = 0)
906

(3) Risk Load 6.1%
1! (2)=(1)

EXHIBIT 21

PART 4

CALCULATION OF KAPPAS

Discounted
to Time Zero
From Middle

Discount or End of
Flow Discounted Rate Quarter

∙1 Losses, Expenses, and Dividends Risk-Adjusted Middle
(Exhibits 10 and 11)

∙2 Premiums Risk-Free Middle
(Exhibit 6)

∙3 Investment Balance for Taxes Risk-Free Middle
(Exhibit 18)

∙4 Premium Contribution to U/W Tax Flow Risk-Free End
(Exhibit 19)

∙5 Loss, Expense, and Dividends
Contribution to U/W Tax Flow

Risk-Adjusted End

(Exhibit 19)
∙6 Unearned Premium Reserve Risk-Free End

Contribution to Revenue Offset Tax
Provision
(Exhibit 22)
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EXHIBIT 22

PART 1

MASSACHUSETTS WORKERS COMPENSATION
CALCULATION OF ALPHA—

THE REVENUE OFFSET TAX FACTOR

(1) Unearned Premium Reserve/Premium (Exhibit 22, Part 2) 0.120
(2) Risk-Free Rate (See Exhibit 14) 6.60%
(3) Quarterly Risk-Free Rate = [1+ (2)]0:25! 1 1.61%
(4) Proportion of Unearned Premium Reserve change brought

into income (TRA 1986)
20%

(5) Alpha = 4# (1)# (3)# (4) 0.00155

EXHIBIT 22

PART 2

MASSACHUSETTS WORKERS COMPENSATION
CALCULATION OF UNEARNED PREMIUM RESERVE RATIO

(1) Countrywide Net Written Premium—1995 26,188,620
(2) Unearned Premium (Prior Year—1994) 3,323,798
(3) Unearned Premium (Current Year—1995) 3,506,306
(4) Average Unearned Premium= [(2)+ (3)]=2 3,415,052
(5) Ratio Unearned/Written Premium (Prior Year) 0.127

= (2)=(1)
(6) Ratio Unearned/Written Premium (Current Year) 0.134

= (3)=(1)
(7) Average Ratio = (4)=(1) 0.130
(8) Ratio Underlying Current Rates 0.110
(9) Selected Unearned Premium Reserve Ratio 0.120

Source: “1996 Best’s Aggregates & Averages” ($000)
Annual Statement & Insurance Expense Exhibit
“Underwriting & Investment Exhibit, Part 2—Premium Earned”.
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EXHIBIT 23

MASSACHUSETTS WORKERS COMPENSATION
RISK-FREE DISCOUNTED UNEARNED PREMIUM TAX FACTOR

(1) (2) (3)
Unearned Unearned
Premium Premium Reserve

Quarter Reserve Lagged One Quarter

0 180 0
1 140 180
2 100 140
3 60 100
4 0 60

Total 480 480

(4) Annual Risk-Free Rate (Exhibit 14) 6.60%
(5) Present value of Column (3) at interest rate in (4) 464.3483
(6) ∙6 = (5)=Sum of (3) 0.967392

(2) = Selected Relative Values (see Text).
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EXHIBIT 24

SENSITIVITY ANALYSIS
BASED ON PRACTICAL EXAMPLE IN SECTION 4

Model Profit
Risk-Free Rate Provision Difference

12.6% !11:5% !7:9%
10.6% !9:2% !5:6%
8.6% !6:6% !3:0%
6.6% !3:6% Base
4.6% !0:1% +3:5%

Beta of
Liabilities

!:11 !6:9% !3:3%
!:21 !3:6% Base
!:31 !0:2% +3:4%

Investment Income
Tax Rate

25% !8:2% !4:6%
30% !5:9% !2:3%
35% !3:6% Base
40% !1:4% +2:2%

Underwriting
Income Tax Rate1

25% !3:3% +0:3%
30% !3:4% +0:2%
35% !3:6% Base
40% !3:8% !0:2%

(Initial) Premium-to-
Surplus Ratio

3 !5:7% !2:1%
2 !3:6% Base
1 2:5% +6:1%

1The sensitivity exhibited here is not typical. This type of sensitivity will be present when a small
negative underwriting profit provision has been calculated. The magnitude and direction of sensitivity
to the underwriting income tax rate depends on whether there is an indicated underwriting loss or
gain and the magnitude of that loss or gain.
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EXHIBIT 24

SENSITIVITY ANALYSIS
BASED ON PRACTICAL EXAMPLE IN SECTION 4

(Continued)

Market Risk
Premium

8% !4:3% !0:7%
8.9% !3:6% Base
10% !2:7% +0:9%

Policyholder
Dividends2

0 !3:9% !0:3%
3% !3:6% Base
5% !3:4% +0:2%
10% !3:0% +0:6%

Reserves for Tax
Purposes

No Discounting !5:2% !1:6%
Discounting as per

TRA 1986
!3:6% Base

Revenue Offset
Feature3

None !3:7% !0:1%
As per TRA 1986 !3:6% Base

Timing of Loss
Payments4

Two Quarters Later !4:4% !0:8%
One Quarter Later !4:0% !0:4%
As per Exhibit 9 !3:6% Base
One Quarter Earlier !3:3% +0:3%

2The observed sensitivity is due to the profit provision taking into account the effect of policyholder
dividends on investment income. It does not include any change in rates due to any loading of a
provision for dividends themselves.
3The impact would be greater for lines of insurance with a larger ratio of unearned premium reserves
to premium. Also the impact is greater the higher the risk-free rate.
4Includes the impact of the corresponding changes in the LAE flows. The impact is greater with a
higher risk-free rate. (A higher risk-free rate enhances the impact of time on the value of money.)
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APPENDIX

Section 4 contains a practical application of the Myers–Cohn
model to Massachusetts workers compensation insurance. Input
values were selected to be reasonable at the time this calculation
was first prepared in 1997. Most of the inputs will change over
time and thus should be updated on a regular basis. While the
particular input values shown will not be up to date, the means
of getting these values should still be applicable.

In many cases, inputs have been taken from elsewhere in the
ratemaking procedure. The calculations that produced those in-
puts are beyond the scope of this paper. However, in general it
is important to choose a set of consistent inputs to any under-
writing profit model. The set of inputs should be consistent both
internally and with other parts of the ratemaking process.

In this application of the Myers–Cohn model, time has been
divided into quarters of a year. While this has been found to be
a very useful choice in practical applications, there is no reason
why some other choice could not be made.66 Claim payments
in workers compensation insurance can extend for 70 years or
more from the date of accident. Therefore, in the rate filing the
loss flows extend out about 300 quarters.67

Certain complications present in recent rate filings have been
removed to aid in exposition. Enough complications have been
left to illustrate some of the difficulties that arise in practical
situations. However, every application can have its own peculiar
details that require special treatment. Many of those that have
arisen in Massachusetts workers compensation are beyond the
scope of this paper.

66In that case the risk-free and risk-adjusted rates used in the Myers–Cohn formula
should be adjusted to be appropriate for the selected periods of time.
67The detailed behavior in the extreme tail of the loss flow has little impact on the profit
provision. The fact that the loss flow is very long does have a significant impact.
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For completeness, the changes that were made from the filing
for 1/1/98 rates to get the practical application shown here are:

1. Massachusetts imposes a 1% tax on the investment in-
come of domestic insurers. The final tax rate for invest-
ment income was 0.2% higher in the rate filing to re-
flect the pro-rated impact of this tax after federal income
taxes.

2. In the rate filing at the suggestion of the Insurance De-
partment, the risk-adjusted rate increases linearly to the
risk-free rate from Quarter 5 to the end of the loss and
expense flow. Equivalently, the absolute value of beta
decreases linearly to zero. Consistent with the change
in risk-adjusted rate, the surplus/liabilities ratio used in
the rate filing decreases linearly to zero from Quarter 5
to the end of the loss and expense flow. No adjustment
was made in the surplus ratio or the risk-adjustment by
quarter in the practical application presented here.

3. In the rate filing at the suggestion of the Insurance De-
partment, the expected compensation to shareholders68

contained in the investment balance is reduced such that
only 25% of expected shareholder compensation remains
in the investment balance after Quarter 5. No such ad-
justment was made in the practical application presented
here.

4. Massachusetts has had two major reform laws within the
last fifteen years. Chapter 572, effective 10/1/86 intro-
duced escalation of benefits and increased the maximum
durations of benefits, among other changes. This length-
ened the indemnity loss flow considerably. Chapter 398

68This expected compensation to shareholders for the risk of writing insurance can be
calculated by comparing the profit provision with a beta of zero, i.e. with the risk-
adjusted rate equal to the risk-free rate, to that calculated with the selected beta. In
recent Massachusetts workers compensation rate filings, the expected compensation to
shareholders has been about 5% or 6%.
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effective 12/23/91 cuts back on the escalation of bene-
fits and the maximum durations of benefits, among other
changes. Recent rate filings have included these impacts
on the indemnity loss flows. However, for simplicity, nei-
ther impact is presented here. More generally, estimates
of the loss flows in particular applications could include
estimates of the effects of changes in the law or other
changes in payment patterns.

5. Recent rate filings have contained no provisions for pol-
icyholder dividends, due to changes in the law govern-
ing rate filings in Massachusetts. As calculated herein,
we have assumed a policyholder dividend provision has
been included in the proposed rates.69 Dividends have
been included in the calculation of the profit provision
both here and in the rate filing in order to show the im-
pact on the cash flows. It should be noted that as calcu-
lated herein, the profit provision takes into account the
loss of opportunity to earn investment income but not
the money paid out in dividends itself. One could add
the dividend provision to the calculated profit provision
to get a “profit and dividends provision.” However, to the
extent dividend payments have been explicitly allowed
for elsewhere in the ratemaking process, one would only
need to reflect the loss of opportunity to earn investment
income in the calculation of a profit provision, as is done
here.

69The loading for policyholder dividends is assumed to be 3% of net premiums. As
with all inputs, this should be viewed as illustrative only. In those circumstances in
which policyholder dividends should not be considered, the weight to the policyholder
dividend flow can be set equal to zero.



STUDYING POLICY RETENTION RATES USING
MARKOV CHAINS

JOSEPH O. MARKER

Abstract

How does one measure the effect of improved pol-
icy retention on such key variables as market share and
profitability?
This paper will analyze this problem by:

! using the theory of Markov chains to model policy
retention and to determine key values such as steady-
state probabilities;

! using current spreadsheet technology to solve the key
matrix equations from Markov chain theory; and

! applying these results to determine key business vari-
ables such as effects on profitability and market share.

1. INTRODUCTION AND PROBLEM STATEMENT

You run an insurance company. You know that retaining poli-
cies is good business, but you want to quantify its value.1 To
simplify the analysis, you assume that all policies are written
for a fixed policy term, expire at the same time, and have no
mid-term activity. It turns out that the theory of Markov chains
provides help with the analysis.

Markov chains assume discrete time periods and a system
with “states” and “transition probabilities,” the probabilities of
moving from one state to another in one time period. For exam-
ple, a physical system may consist of particles that move from a
state to state in each discrete time period.

1D’Arcy and Doherty [1] discuss the “aging phenomenon.” Their paper looks at this
phenomenon relative to the profitability of insuring a policyholder for several periods.
This paper views the same phenomenon from the aggregate financial viewpoint of an
entire corporation.

775
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The number of successes in a sequence of independent
Bernoulli trials with probability of success p is a Markov chain.
The system is defined to be in state k at time n if there have
been exactly k successes in the first n trials. The transition prob-
ability of going from state k to state k+1 is p and the transition
probability of staying at state k is q= 1"p. In this paper, the
term “Markov chain”2 refers to a system with stationary transi-
tion probabilities. This means that if a particle is in state j at time
t, then the conditional probability of going to state k at time t+1
does not depend on t, nor does it depend on any of the states
that the particle was in prior to time t.

For the policy retention problem of this paper we replace the
term “particle” by the term “customer.” We say that the customer
is in state k for k = 0,1,2 : : : if the customer has been insured with
the company for k consecutive time periods (one time period is
equal to one policy term).

k = 0 refers to a person not currently insured with the company.

k = 1 refers to a policyholder in his/her first policy term.

k = 2 refers to a policyholder who has renewed once.

To study retention we define retention probabilities #rk, k =
0,1,2, : : :$ such that
rk is the probability of renewing a policy that has been with the
company for k time periods (that is, rk is the probability that
a customer currently in state k will pass to state k+1 in the
next time period), and

r0 is the probability of writing a customer who is not currently
insured with the company.

We need an initial distribution #p(0)k , k = 0,1,2 : : :$ where p(0)k
is the proportion of the entire population that has been insured

2For discussion of Markov chains see Feller [2, p. 372] or Resnick [4, p. 60]. The notation
in this paper more closely follows that of Feller.
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with the company for k years. Note that 1"p(0)0 is the company’s
initial “market share.”

With this notation the matrix of transition probabilities3 is:

A=

!"""""""""""""""#

1" r0 r0 0 0 0 % % % 0 0

1" r1 0 r1 0 0 % % % 0 0

1" r2 0 0 r2 0 % % % 0 0

1" r3 0 0 0 r3 % % % 0 0

1" r4 0 0 0 0 % % % 0 0

% % % % % % % % % % % % % % % % % % % % % % % %
1" rN"1 0 0 0 0 % % % 0 rN"1
1" rN 0 0 0 0 % % % 0 rN

$%%%%%%%%%%%%%%%&
:

Here aij is the conditional probability of going from state i to
state j in one time period. The indices i and j range from 0 to
N. (See Appendix C for a discussion of chains with an infinite
number of states.) The maximum value N may be set at a number
of policy periods after which the retention is essentially constant.

For this retention problem only the first column (more cor-
rectly called the zeroth column) and the superdiagonal are non-
zero, along with aNN . This is because a customer in state j either
moves to state j+1 (if the policy renews) or to state 0 (if the
customer takes his/her business elsewhere). The retention rate
is simply the probability that the policy will renew at its next
expiration.

Notation Conventions

Superscripts within parentheses, such as (n), refer to time pe-
riods, or in the case of matrix elements, refer to n-step transi-

3Feller [2] contains an example that is mathematically equivalent to this Markov chain,
except that, in his example, the number of states is infinite. He refers to state k as the
“age,” and says that at the next time period the system will either pass to age k+1 or
will go back to age 0 and start afresh. See [2, pp. 382, 390, 398, 403].
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tion probabilities. The n-step transition probability of going from
state i to state j is the conditional probability that a customer in
state i will, in n periods, be in state j.

Plain superscripts refer to exponents, except t refers to matrix
transpose.

Subscripts refer to states of the system.

Vectors and matrices are in boldface.

2. GENERAL RESULTS ABOUT MARKOV CHAINS AND THE
STEADY-STATE DISTRIBUTION

Given an initial distribution of states p(0), the distribution of
states in the next period is given by p(1) =Atp(0), where At is the
transpose of A. This follows immediately, since p(1)k =

'
j ajkp

(0)
j .

Each term on the right represents the probability that the system
is in state j at time 0 and passes to state k at time 1. The summa-
tion over j then is the total probability of being in state k at time
1. The kth element of p(1) is thus the inner product of the vector
p(0) and the kth column of matrix A, which is the definition of
multiplication on the left by the transpose.

Similarly, the conditional probability a(2)jk of moving to state
k in two steps given initial state j is given by

a(2)jk =
(
m

ajmamk,

which means that the two-step transition matrix is given by
A(2) =A2. This is intuitively obvious by observing that, in or-
der to get from j to k in two steps, one must stop at some state
m at the first step. By induction, the n-step transition matrix4 is
given by An. By definition, the element a(n)jk is the probability,
given state j, of being in state k n-periods later.

4Feller [2, pp. 382, 383].
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Let B= transpose of A=At. Then the distribution at time n
is given by

p(n) = (At)p(n"1) = Bp(n"1) = (Bn)p(0) for any n& 1:
The steady-state (or invariant) probability distribution is defined
as that solution of the equation p' = Bp' for which

'
p'j = 1. It

turns out that the steady-state probabilities are very important
to our original business retention problem. We will discuss later
how to calculate p'.

A key result is that

Bnp(0)( p' as n() for any initial distribution p(0):

The proof is in Appendix B. This limiting result says that the
ultimate distribution of customers by state (remember: “state” is
the number of consecutive renewals) is independent of the initial
distribution but depends only on the steady state probabilities
associated with the retentions.

3. CALCULATING THE STEADY-STATE (INVARIANT)
DISTRIBUTION

There are several approaches to calculating the invariant dis-
tribution for our retention problem.

3.1. Use the Definition Directly

Recall that the matrix B for the retention problem is given by

B=At =

!""""""""""""""#

1" r0 1" r1 1" r2 1" r3 1" r4 % % % 1" rN"1 1" rN
r0 0 0 0 0 % % % 0 0

0 r1 0 0 0 % % % 0 0

0 0 r2 0 0 % % % 0 0

0 0 0 r3 0 % % % 0 0

% % % % % % % % % % % % % % % % % % % % % % % %
0 0 0 0 0 % % % 0 0

0 0 0 0 0 % % % rN"1 rN

$%%%%%%%%%%%%%%&
,
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where all the rk are strictly between 0 and 1.

The defining equations for invariance are:

pk = rk"1pk"1 for k = 1,2,3 % % %N " 1, (3.1)

pN = rN"1pN"1 + rNpN , and (3.2)

p0 = (1" r0)p0 + (1" r1)p1 + % % %+(1" rN)pN: (3.3)

From Equation 3.1 we obtain

pk = r0r1r2 % % %rk"1p0 for k = 1,2,3, : : :N " 1: (3.4)

From Equation 3.4 we can see that the terms 0 through N "1 on
the right-hand side of Equation 3.3 add to p0" rN"1pN"1. From
Equation 3.2 the last term on the right-hand side of Equation
3.3 equals rN"1pN"1. Thus, we can choose an arbitrary value
for p0, define the remaining pk by Equations 3.1 and 3.2, and
Equation 3.3 will be automatically satisfied. Once all the pk are
calculated, just rescale them so they add to 1 and these values
are the invariant probabilities.

Thus the retention problem has a particularly simple form of
transition matrix that allows the steady-state probabilities to be
calculated directly from the definition.

3.2. A Simple Machine-Oriented Approach5

The vector p', whose transpose is defined by

(p')t = (1,1, : : :1,1)(I"A+ONE)"1,
defines an invariant distribution. Here I is the identity matrix and
ONE is the square matrix all of whose entries are 1. Resnick
[4] proves this handy proposition. This result requires that A be
irreducible, which we prove in Appendix C.

5Resnick [4, p. 138].
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3.3. Use a Spreadsheet “Solver”

A spreadsheet “solver”6 can solve for the steady-state proba-
bilities. A typical spreadsheet solver

(a) maximizes, minimizes, or sets a target cell to a specific
value

(b) subject to constraint equations or inequalities

(c) by changing a set of “decision cells.”

The use of the target cell is optional. The solver can be used to
simply produce values of the decision cells that satisfy the given
constraints.

Recall that steady state probability vector is simply the so-
lution p' of the matrix equation Bx= x, for which

'
xj = 1,

where B=At. This equation can be rewritten as Cx= 0, where
C= B" I and I is the identity matrix.
Now setting up the solver is simple:

1. Set up the matrix C, which is a function of the transition
probabilities A.

2. Set up a vector x, the vector of decision variables that
are allowed to change when the solver is run.

3. Set up a vector z as the matrix product Cx.

4. Run the solver with the following constraints:

z= 0 and
(
xj = 1:

The resultant vector x is the steady-state probability vector p'.

We present this solution using the solver because solvers are
being commonly used to handle problems involving maximiz-
ing, minimizing, and satisfying constraints, and a solver for our

6The particular solver used in this paper is that from the Microsoft Excel spreadsheet.
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retention problem does not require the same linear algebra skills
that other solutions entail.

4. SPREADSHEET EXAMPLE TO MODEL THE RETENTION
PROBLEM

Recall that we have translated the retention problem into
Markov chain terms and have reviewed some characteristics of
Markov chains. Appendix A displays printouts from a spread-
sheet set up to analyze retentions. The spreadsheet is docu-
mented, but here are some of the highlights.

The Basic Data section asks us to input the retention prob-
abilities #rk, k = 0,1,2, : : :N$ and initial probability distribution
#p(0)k , k = 0,1,2 : : :N$. Recall that rk is the probability that a pol-
icyholder that has been insured for k policy periods will renew
when his/her policy expires, and r0 is the probability that the
company will capture as new business a customer not currently
insured with the company. The end of the Basic Data section
translates these retention probabilities into the matrix A of one-
step transition probabilities.

For example, in Appendix A the company’s initial market
share is 10%, since the proportion p(0)0 of the market not insured
by the company is 90%. Since N = 9 and p(0)N = :043, 4.3% of the
market has been insured with the company nine or more policy
periods. At the next renewal cycle r0 = 1:0% of the population
not insured by the company will be captured as new business.

The section labeled “Distribution At Time n” shows how the
distribution p(n) changes after n time periods. Recall that p(n) =
Bp(n"1), and that p(n) = Bnp(0), where B=At. We have shown
that p(n)( p' (the steady-state probability) as n().
The value of these calculations is that they allow us to get

a feel for how fast the limit is approached. In the real world, a
company does not have an infinite time horizon to wait for the
limiting behavior to be realized. The “Distribution At Time n”
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explanation also allows us to restrict the model to a finite plan-
ning horizon. Too many managerial changes during the conver-
gence period could invalidate the Markov chain assumption that
the transition matrix is stationary over time. The n-step transi-
tion matrices in Appendix A converge to a matrix which has the
steady-state distribution vector in each of its columns.

5. RETURN TO THE ORIGINAL RETENTION PROBLEM

When any action affects retention, it changes the transition
matrix A. Improved retention means larger superdiagonal ele-
ments (probabilities of renewal) and smaller elements in the first
column (probabilities of non-renewal). In this section, we will
study our original set of retention assumptions and their effect
on key business variables. The spreadsheet with those results is
shown as Appendix A. Then we will see how a shift in retention
(Appendix B) may change the results.

We have used the theory of Markov chains, along with spread-
sheet tools, to compute steady-state probabilities for a given set
of retention rates. We have shown that the distribution of states
of the system (recall that the “state” of an individual customer
is the number of consecutive policy renewals for that customer)
approaches the steady-state probabilities, as time goes on, re-
gardless of the initial distribution.

The spreadsheet in Appendix A gives us a sense for how
quickly this convergence takes place. It is easy to calculate the
distribution at time n, because the n-step transition matrix is just
the nth power of the one-step transition matrix. Mahler’s paper,
“A Markov Chain Model of Shifting Risk Parameters,” provides
a mathematical treatment of the rate of convergence [3].

Thus we have a wealth of tools that give us information about
the probability distribution of states throughout time. These prob-
abilities are not in themselves of much interest to management.
However, there are functions of these probabilities that are of
great interest. For example, the projected market share is of keen
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interest. Because we have included state 0 in our definition of
states (the customer is in state 0 if he/she is not currently in-
sured with the company), the market share at time n is given by
1"p(n)0 .
Loss ratios, expense ratios, and combined ratios greatly in-

terest management. Most observers would agree that renewing
an existing policy is much less expensive than writing a new
policy. It follows that increasing the retention rate will improve
the expense ratio. Most would also agree that the loss ratio for a
customer who has been on the company books for a long period
of time will be lower than for a new or recent customer. Actions
that improve retention should improve the loss ratio.

The last page of Appendix B, Combined Ratio Differential,
illustrates how to estimate this effect. To estimate the effect of re-
tention on combined ratio one needs a sense of how loss/expense
ratios vary by state (the number of consecutive policy renewals).
The phrase “needs a sense of” is intentionally vague. It could
mean that we have data on loss or expense ratios by state. More
likely it means that we have some information that would enable
us to make an assumption about how the loss or expense ratio
varies by state. For instance we may be able to say that a new
policyholder has a 10% worse loss ratio than a long-standing
policyholder. Or it could mean that we accept a management es-
timate of this differential and use the model to check the effect
of retention under different estimates.

Once we have made a reasonable assumption about these dif-
ferentials by state, we are ready to estimate the effect of improved
retention. This is simply a matter of:

1. entering the initial distribution and retention probabilities
in to the spreadsheet;

2. running the spreadsheet to determine the steady-state
probabilities and how quickly the system approaches
those limiting probabilities; and
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TABLE 1

ORIGINAL RETENTION ASSUMPTIONS

State k
0 1 2 3 4 5 6 7 8 9

Retention .0100 .8500 .9000 .9000 .9000 .9000 .9000 .9000 .9000 .9000

Steady-State
Probability .9132 .0091 .0077 .0069 .0063 .0057 .0051 .0046 .0041 .0371

Combined Ratio
Differential .2000 .1000 .0800 .0600 .0400 .0200 0 0 0 0

3. applying the differentials in loss/expense ratios to the
various probabilities to arrive at an “average differential”
or “average loss/expense ratio.”

Then we make the same calculation using the “improved reten-
tions” in Appendix B and compare the results to estimate the
effect of the change in retention.

The “Combined Ratio Differential” section in Appendix A
shows a calculation of this nature for the original retention prob-
abilities. Here we externally determined (or hypothesized) var-
ious combined ratio differentials by state relative to the com-
bined ratio for a long-standing (i.e., seven term or longer) pol-
icyholder. The results are summarized in Table 1. The retention
and combined ratio differentials are inputs to the calculation. The
steady-state probabilities and the average differential are calcu-
lated. From Appendix A the average differential is +:0446 us-
ing the steady-state probabilities as weights. That is, on aver-
age the book of business will have a 4.5% higher average com-
bined ratio than if the book consisted entirely of long-term cus-
tomers.

Now suppose that the company takes some action that im-
proves retention. Such an action might be a new billing option,
more advertising, etc. The number of such actions is limited only
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TABLE 2

IMPROVED RETENTION ASSUMPTIONS

State k
0 1 2 3 4 5 6 7 8 9

Retention .0120 .8700 .9200 .9200 .9200 .9200 .9200 .9200 .9200 .9200

Steady-State
Probability .8753 .0105 .0091 .0084 .0077 .0071 0066 .0060 .0055 .0637

Combined Ratio
Differential .2000 .1000 .0800 .0600 .0400 .0200 0 0 0 0

by the creativity of the sales or marketing manager. In the exam-
ple in Appendix B, our improved retention assumption is that rk
increases by .02 for k >= 1 and r0 increases by .002 (recall r0 is
the probability that the company writes a new customer). We can
use the same spreadsheet with the revised retention and obtain
the results shown in Table 2, assuming that the differentials have
not changed.

Now what has been the effect of the management action to
improve the retention? The ultimate market share increases from
8.7% to 12.5%. The ultimate loss ratio decreases by 0.8% (i.e.,
the combined ratio differential drops from 4.4% to 3.6%). Now
remember that these are “ultimate” results and we know that,
for Markov chains, it may take quite a few renewal cycles to
approach these limiting results!

The insurer must weigh these benefits against the costs. For
example, if an improved billing system produces the increased
retention, then the improved market share and loss ratio must
overcome the cost of maintaining and building the billing sys-
tem. If instead, a rate decrease is used to improve retention then
it is likely that the overall combined ratio itself will increase and
wipe out the benefits from the retention improvement. The ex-
act effect will depend on the price elasticity of demand for the
product.
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5. COMPARISON TO SINGLE POLICYHOLDER APPROACH

The approach used in this paper examines the financial effects
of retaining policies on the entire company’s book of business.
Starting with an initial distribution of business by policy age
and a set of transition probabilities, we use Markov chain theory
to model the distribution over time. Because one of the states
of the system (i.e., state 0) consists of potential customers not
insured by the company, the model produces estimates of total
growth as well as distribution by policy age. We then hypothesize
differences in loss ratio by policy age to examine changes in
profitability over time. The Markov chain approach enables us
to examine the effects on growth and profitability of changes in
the transition probabilities.

This entire approach is an aggregate approach in that it looks
at the growth and profitability of a company’s entire book of
business over time. In contrast, D’Arcy and Doherty [1] approach
the “aging phenomenon” by tracing the profitability of a single
insured over time. They start with a new customer (correspond-
ing to state 1 in this paper) and calculate the profitability of
that customer’s policies from the initial date through the last re-
newal, discounting all calculations to the initial policy inception
date. D’Arcy and Doherty hypothesize differing levels of prof-
itability by policy age. In their model the probability of renewal
is constant over time.

D’Arcy and Doherty study the price that will optimize present
and future profits from a customer added to the books. How do
the approach of this paper and D’Arcy-Doherty relate? We can
express the D’Arcy-Doherty models in Markov chain terms as
follows:

The initial distribution p0 consists of a probability of 1.0 of
being a new policyholder.

The retention probabilities rk are constant (called W in [1]).
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The state 0 becomes an “absorbing state.” That is, there is
no more action for the individual policyholder once he/she non-
renews.

Using Markov chains to study the aging phenomenon in [1]
is not useful because the transition probabilities are so simple
that Markov chain theory is not needed. D’Arcy and Doherty
concentrate on a single policyholder and the transition matrix
does not satisfy the criteria for using the theorems about invariant
distributions.

D’Arcy and Doherty concentrate on the single policyholder
and are sophisticated in treating differing loss ratios and the time
value of money in arriving at proper prices. Their analysis could
be used as an input to this paper’s aggregate model. We could use
the models in [1] to enable us to calculate the expected present
value of profit for each policy renewal (i.e. for each state k). This
gives us a set of expected profits corresponding to the various
states in the retention model. There is no need to sum these dis-
counted present values for all the renewals of a single customer
as is done in [1]. We can then hypothesize an initial distribu-
tion and use the transition matrix as was done in this paper. Our
Markov chain model determines the distribution of states of the
system over time. With this information and the expected profits
by state, we can determine the company’s expected profit over
time. The Markov chain model allows us to easily vary the re-
tention rate by state of the system.7

Both papers refer to optimizing profitability over time. In [1]
this is done by calculating the present value of expected profits
over the life of an individual policyholder as a function of price.
The renewal rate W is adversely affected by increasing price,
so that there is an optimum price above which the profits begin
decreasing.

7The possibility of renewal rates changing by policy age is mentioned briefly in [1,
p. 38].
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In this paper, the expected profits for the entire corporation are
calculated using Markov chains. Increasing the price for policies
increases the profit at each renewal. However, price increases
lower the renewal probabilities rk. This decreases both the market
share and the number of customers in the higher states (i.e., long-
term policyholders). At some point raising the price adversely
affects renewal probabilities so much that total profit is adversely
affected.

Both papers mention elasticity of demand (with respect to
price) as critical values. Basically, the more elastic the demand,
the more difficult it is to increase overall profit through price
increases.

In general, we could use D’Arcy and Doherty [1] to establish
the expected profit by age of policy. Then we could plug this
information into the Markov chain model to determine aggregate
profitability over time and growth for the company.

6. OBSERVATIONS AND CAVEATS

Many companies have neither very good retention informa-
tion nor very good ideas of loss ratio differentials by retention.
The Markov chain model is useful even in these circumstances.
To illustrate, some company managements have wildly inflated
ideas of the benefits of improved retention on market share and
profitability. Let’s assume that the actuary can persuade manage-
ment to “guess” the improvement both in retention rate and in
combined ratio differentials by state. The company can then use
the model to produce profitability and market share change esti-
mates that are more realistic than management’s original “feel-
ing.” As the company obtains better data, some of the hypothe-
sizing can be replaced with observations. There is a high proba-
bility that retention data will improve because it is of universal
interest among top management.

In using this type of modeling one must be careful not to com-
pound too many assumed improvements. For example, suppose
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the retention on long-standing business is 95%. A new billing
plan claims to increase this by 2% (additively). A few months
later the ability to “account sell” increases the number again by
2%. Then a fancy new endorsement produces another 2% in-
crease. Now the implied retention rate is 101%, which is absurd.
This sounds ridiculous, but companies do act this way when the
actions are separated in time and the company loses its memory
due to management changes.

A better way to view this is to express these increases as
reductions in the non-renewal or lapse rate and then compound
them properly. For example, we might say that each of the three
actions above reduces the lapse rate by 40% (i.e., reduces it from
.05 to .03), so that the resultant retention from this series of
actions becomes:

1" (:05* :60* :60* :60) = :989:
The assumption that the policy renewal process is a Markov

chain is a simplification of the real world. Recall that the Markov
property says that the probability of passing to a given future
state depends on the current state but does not depend on any
prior history. This implies, for example, that the probability r0
of capturing a new customer is the same whether or not that
customer has ever been previously insured with the company.
This is probably not an accurate assumption.

We can attempt to get around this assumption by defining two
“0” states: state “0a” for potential customers who have never
been with the company, and state “0b” for potential policyhold-
ers who had been previously insured. With this formulation the
transition matrix is such that current policyholders (state 1 or
higher) can never get to state 0a. It turns out that the invariant
distribution assigns probability 0 to state 0a (that is, everyone
eventually becomes a policyholder or former policyholder of the
company).

In this situation the distribution of states approaches the
invariant distribution very slowly. In one reasonable example
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(where the probability of capturing a new customer is a high 5%)
the limiting distribution was not approached even after sixty-four
time periods. Thus, in this situation the Markov chain model
is useful for finite time periods, but the study of the invariant
distribution is somewhat academic.

The model in this paper assumes that time is discrete, that
all customers have policies with inception dates at these discrete
time periods, and that the only possible actions are renewal or
non-renewal. Of course, we know that customers can cancel or
purchase policies at any time, and that endorsement activity is
probably more frequent than renewal activity. This would require
a continuous time Markov process with a richer set of options.

In selecting actions that improve financial results through “im-
proved retention,” we must verify that the action itself does not
adversely affect the profitability for each state. A classic action
that violates this condition is a rate decrease. Obviously, this ac-
tion would decrease the profitability of each state, even though
it improves retention.

7. CONCLUSION

This paper uses the theory of Markov chains to analyze re-
tention rates and how they affect key insurance variables. In the
paper, the Markov chain state for a customer is the number of
consecutive policy periods the customer has been insured with
the company. Determining the ultimate, or limiting, distribution
for Markov chains involves solving matrix equations of the form
Bx= x.

The paper shows how to do this using spreadsheets. Finally,
the paper illustrates how changing the retention rates (i.e. the
transition probabilities in the Markov chain) might change key
business variables such as profitability and market share. There
is also a discussion of how the model interrelates with an earlier
“policy age” model by D’Arcy and Doherty.
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APPENDIX A

INITIAL RETENTION ASSUMPTIONS

INTRODUCTION

This spreadsheet carries out the calculations for the insurance
retention problem. The retention problem is set up as as a Markov
Chain, where a customer is in state k if he/she has been insured
with the company for k consecutive periods. State 0 refers to a
potential customer not currently insured with the company. Each
state k has an associated “retention probability” rk, where rk is
the probability that a customer in state k renews his/her policy.
The customer non-renews, i.e. moves to state 0, with probability
1" rk.
The retention problem translates to a Markov chain as follows:

The states of the Markov chain are defined as in the retention
problem.

The matrix of transition probabilities A= (ai,j) is defined as
follows:

ak,k+1 = rk,

ak,0 = 1" rk, and

ak,j = 0 for all other j:

William Feller [2, p. 382] discusses this Markov chain prob-
lem. Sidney Resnick [4] describes this Markov chain as the “Suc-
cess Run Chain.”

The retention problem also requires a vector p(0), the initial
probability distribution of states.

With the transition probabilities A and the initial distribution
p(0) specified, the spreadsheet calculates the “steady-state,” or
invariant, distribution of states, to which the system converges;
the probability distributions at various points in time, to check
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for rate of convergence; and changes in market share and prof-
itability over time.

BASIC DATA

Section 1: Calculate the distribution given the matrix of tran-
sition probabilitiesA, where ai,j is probability of going from state
i to state j in one step. The initial distribution is p(0). This par-
ticular example is an effort to model insurance retention. State
i is the number of years the customer has been insured with
the company. The first state (zero) refers to a potential customer
not currently insured. The next state (one) refers to a first-year
insured, etc.

Input Section

Input the retention probabilities of going from state i to state
i+1. That is, the input for state 0 is the probability that someone
currently insured elsewhere will be written as new business. The
input for state i > 0 is the probability of renewing a policy of
someone that the company has insured for i years.

Then input the initial distribution p(0) of insureds. For i= 0,
this is the proportion of the population not currently insured with
the company. For i > 0, this is the proportion of the population
insured with the company for i consectutive policy terms. The
last column is the proportion insured with the company for 9 or
more consecutive terms.

State i
0 1 2 3 4 5 6 7 8 9

Retention
Probabilities 0.01 0.85 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Initial
Distribution p(0) 0.9 0.01 0.009 0.008 0.007 0.007 0.006 0.005 0.005 0.043
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Following is the resultant matrix A of one-step transition
probabilities:

0.99 0.01 0 0 0 0 0 0 0 0
0.15 0 0.85 0 0 0 0 0 0 0
0.10 0 0 0.90 0 0 0 0 0 0
0.10 0 0 0 0.90 0 0 0 0 0
0.10 0 0 0 0 0.90 0 0 0 0
0.10 0 0 0 0 0 0.90 0 0 0
0.10 0 0 0 0 0 0 0.90 0 0
0.10 0 0 0 0 0 0 0 0.90 0
0.10 0 0 0 0 0 0 0 0 0.90
0.10 0 0 0 0 0 0 0 0 0.90

DISTRIBUTION AT TIME n

This section shows how to calculate the distribution at time
n, given the initial distribution p(0) and the matrix A.

Note that if p is the distribution of states at any time, then At

(the transpose of A) times p is the distribution in the next time
period. That is, the probability that the system is in state m in
the next time period is the mth column of matrix A times the
distribution p.

Matrix At

0.99 0.15 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
0.01 0 0 0 0 0 0 0 0 0
0 0.85 0 0 0 0 0 0 0 0
0 0 0.90 0 0 0 0 0 0 0
0 0 0 0.90 0 0 0 0 0 0
0 0 0 0 0.90 0 0 0 0 0
0 0 0 0 0 0.90 0 0 0 0
0 0 0 0 0 0 0.90 0 0 0
0 0 0 0 0 0 0 0.90 0 0
0 0 0 0 0 0 0 0 0.90 0.90
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Probability Distributions p(n) at time period n, for n= 1,2,3 : : :

p(0) State 1 2 3 4 5 6 7 8 9

0.900 0 0.9015 0.9028 0.9039 0.9049 0.9059 0.9067 0.9074 0.9080 0.9086
0.010 1 0.0090 0.0090 0.0090 0.0090 0.0090 0.0091 0.0091 0.0091 0.0091
0.009 2 0.0085 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077
0.008 3 0.0081 0.0077 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069
0.007 4 0.0072 0.0073 0.0069 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062
0.007 5 0.0063 0.0065 0.0066 0.0062 0.0056 0.0056 0.0056 0.0056 0.0056
0.006 6 0.0063 0.0057 0.0058 0.0059 0.0056 0.0050 0.0050 0.0050 0.0050
0.005 7 0.0054 0.0057 0.0051 0.0052 0.0053 0.0050 0.0045 0.0045 0.0045
0.005 8 0.0045 0.0049 0.0051 0.0046 0.0047 0.0048 0.0045 0.0041 0.0041
0.043 9 0.0432 0.0429 0.0430 0.0433 0.0431 0.0430 0.0430 0.0428 0.0422

Note that the n-step transition probability is given by raising
matrix A to the nth power. The distribution at time n is given by
(At)n times p(0).

Shown below are the transposes of some n-step transition ma-
trices:

Two-step

0.9816 0.2335 0.1890 0.1890 0.1890 0.1890 0.1890 0.1890 0.1890 0.1890
0.0099 0.0015 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
0.0085 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.7650 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.8100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.8100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.8100 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.8100 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8100 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8100 0.8100 0.8100
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Four-step

0.9675 0.3741 0.3388 0.3388 0.3388 0.3388 0.3388 0.3388 0.3388 0.3388
0.0097 0.0031 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027
0.0083 0.0020 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016
0.0076 0.0011 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008
0.0069 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.6197 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.6561 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.6561 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.6561 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.6561 0.6561 0.6561 0.6561 0.6561

STEADY-STATE PROBABILITIES

This section shows the steady-state probabilities found using
the solver.

The steady-state probability p' is characterized by At*p' =
p', or (At" I)*p' = 0, where I is the identity matrix.
Use the solver to find the solution. Let C=At" I. The steady-

state probability p' is the solution of the linear system Cx= 0
for which the elements of x sum to 1.0. After using the solver,
the vector x contains the steady-state probabilities, and the vector
z=Cx contains all zeros.

Matrix C=At" I x z=Cx

"0:01 0.15 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.91324 0
0.01 "1:00 0 0 0 0 0 0 0 0 0.00913 0
0 0.85 "1:00 0 0 0 0 0 0 0 0.00776 0
0 0 0.90 "1:00 0 0 0 0 0 0 0.00699 0
0 0 0 0.90 "1:00 0 0 0 0 0 0.00629 0
0 0 0 0 0.90 "1:00 0 0 0 0 0.00566 0
0 0 0 0 0 0.90 "1:00 0 0 0 0.00509 0
0 0 0 0 0 0 0.90 "1:00 0 0 0.00458 0
0 0 0 0 0 0 0 0.90 "1:00 0 0.00413 0
0 0 0 0 0 0 0 0 0.90 "0:10 0.03713 0

1.00000
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In this application of the solver, the “target cell” for the solver
is undefined, since there is no objective function to maximize or
minimize.

COMBINED RATIO DIFFERENTIAL

This section illustrates how studying the retention problem
helps businesses evaluate profitability and market share. Gener-
ally combined ratios are better for customers who have been re-
tained longer, due to lower expenses and/or better loss ratios. By
comparing the average combined ratios before and after improv-
ing retention, one can measure the financial effects of changing
policy retention.

Steady State Assumed Assumed Base
Probability Combined Ratio Combined Combined

State i x Differential Ratio Ratio

0 0.913242 N/A
1 0.009132 20.00% 115.54%
2 0.007763 10.00% 105.54%
3 0.006986 8.00% 103.54%
4 0.006288 6.00% 101.54%
5 0.005659 4.00% 99.54%
6 0.005093 2.00% 97.54%
7 0.004584 0.00% 95.54%
8 0.004125 0.00% 95.54%
9 0.037128 0.00% 95.54% 95.54%

Market share 8.68%
Average combined ratio differential 4.46%

Average combined ratio 100.00%
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APPENDIX B

IMPROVED RETENTION ASSUMPTIONS

BASIC DATA

Section 1: Calculate the distribution given the matrix of tran-
sition probabilities A, where ai,j is the probability of going from
state i to state j in one step. The initial distribution is p(0). This
particular example is an effort to model insurance retention. State
i is the number of years a customer has been insured with the
company. The first state (zero) refers to a potential customer not
currently insured. The next state (one) refers to a first-year in-
sured, etc.

Input Section

Input the retention probabilities of going from state i to state
i+1. That is, the input for state 0 is the probability that someone
currently insured elsewhere will be written as new business. The
input for state i > 0 is the probability of renewing a policy of
someone that the company has insured for i years.

Then input the initial distribution p(0) of insureds. For i= 0,
this is the proportion of the population not currently insured with
the company. For i > 0, this is the proportion of the population
insured with the company for i consectutive policy terms. The
last column is the proportion insured with the company for nine
or more consecutive terms.

State i
0 1 2 3 4 5 6 7 8 9

Retention
Probabilities 0.012 0.87 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

Initial
Distribution p(0) 0.90 0.01 0.009 0.008 0.007 0.007 0.006 0.005 0.005 0.043
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Following is the resultant matrix A of one-step transition
probabilities:

0.988 0.012 0 0 0 0 0 0 0 0
0.130 0 0.87 0 0 0 0 0 0 0
0.080 0 0 0.92 0 0 0 0 0 0
0.080 0 0 0 0.92 0 0 0 0 0
0.080 0 0 0 0 0.92 0 0 0 0
0.080 0 0 0 0 0 0.92 0 0 0
0.080 0 0 0 0 0 0 0.92 0 0
0.080 0 0 0 0 0 0 0 0.92 0
0.080 0 0 0 0 0 0 0 0 0.92
0.080 0 0 0 0 0 0 0 0 0.92

DISTRIBUTION AT TIME n

This section shows how to calculate the distribution at time
n, given the initial distribution p(0) and the matrix A.

Note that if p is the distribution of states at any time, then At

(the transpose of A) times p is the distribution in the next time
period. That is, the probability that the system is in state m in
the next time period is the mth column of matrix A times the
distribution p.

Matrix At

0.988 0.13 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
0.012 0 0 0 0 0 0 0 0 0

0 0.87 0 0 0 0 0 0 0 0
0 0 0.92 0 0 0 0 0 0 0
0 0 0 0.92 0 0 0 0 0 0
0 0 0 0 0.92 0 0 0 0 0
0 0 0 0 0 0.92 0 0 0 0
0 0 0 0 0 0 0.92 0 0 0
0 0 0 0 0 0 0 0.92 0 0
0 0 0 0 0 0 0 0 0.92 0.92
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Probability Distributions p(n) at time period n, for n= 1,2,3 : : :

p(0) State 1 2 3 4 5 6 7 8 9

0.900 0 0.8977 0.8957 0.8938 0.8921 0.8906 0.8892 0.8879 0.8867 0.8857
0.010 1 0.0108 0.0108 0.0107 0.0107 0.0107 0.0107 0.0107 0.0107 0.0106
0.009 2 0.0087 0.0094 0.0094 0.0094 0.0093 0.0093 0.0093 0.0093 0.0093
0.008 3 0.0083 0.0080 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0085
0.007 4 0.0074 0.0076 0.0074 0.0080 0.0079 0.0079 0.0079 0.0079 0.0079
0.007 5 0.0064 0.0068 0.0070 0.0068 0.0073 0.0073 0.0073 0.0073 0.0073
0.006 6 0.0064 0.0059 0.0062 0.0064 0.0062 0.0067 0.0067 0.0067 0.0067
0.005 7 0.0055 0.0059 0.0055 0.0057 0.0059 0.0057 0.0062 0.0062 0.0062
0.005 8 0.0046 0.0051 0.0055 0.0050 0.0053 0.0055 0.0053 0.0057 0.0057
0.043 9 0.0442 0.0449 0.0459 0.0473 0.0481 0.0491 0.0502 0.0510 0.0522

Note that the n-step transition probability is given by raising
matrix A to the nth power. The distribution at time n is given by
(At)n times p(0).

Shown below are the transposes of some n-step transition ma-
trices:

Two-step

0.9777 0.1980 0.1526 0.1526 0.1526 0.1526 0.1526 0.1526 0.1526 0.1526
0.0119 0.0016 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
0.0104 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.8004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.8464 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.8464 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.8464 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.8464 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8464 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8464 0.8464 0.8464
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Four-step

0.9598 0.3161 0.2786 0.2786 0.2786 0.2786 0.2786 0.2786 0.2786 0.2786
0.0116 0.0031 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026
0.0102 0.0021 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016
0.0095 0.0012 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008
0.0088 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.6775 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.7164 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.7164 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.7164 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.7164 0.7164 0.7164 0.7164 0.7164

STEADY-STATE PROBABILITIES

This section shows the steady-state probabilities found using
the solver.

The steady-state probability p' is characterized by At*p' =
p', or (At" I)*p' = 0, where I is the identity matrix.
Use the solver to find the solution. Let C=At" I. The steady-

state probability p' is the solution of the linear system Cx= 0
for which the elements of x sum to 1.0. After using the solver,
the vector x contains the steady-state probabilities, and the vector
z=Cx contains all zeros.

Matrix C=At" I x z=Cx

"0:012 0.13 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.87527 0
0.012 "1:00 0 0 0 0 0 0 0 0 0.01050 0

0 0.87 "1:00 0 0 0 0 0 0 0 0.00914 0
0 0 0.92 "1:00 0 0 0 0 0 0 0.00841 0
0 0 0 0.92 "1:00 0 0 0 0 0 0.00773 0
0 0 0 0 0.92 "1:00 0 0 0 0 0.00712 0
0 0 0 0 0 0.92 "1:00 0 0 0 0.00655 0
0 0 0 0 0 0 0.92 "1:00 0 0 0.00602 0
0 0 0 0 0 0 0 0.92 "1:00 0 0.00554 0
0 0 0 0 0 0 0 0 0.92 "0:08 0.06372 0

1.00000
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In this application of the solver, the “target cell” for the solver
is undefined, since there is no objective function to maximize or
minimize.

COMBINED RATIO DIFFERENTIAL

This section illustrates how changing the retention assump-
tions affects profitability. Generally combined ratios are better for
customers who have been retained longer, due to lower expenses
and/or better loss ratios. By comparing the average combined ra-
tios before (100.0%) and after improving retention (99.2%), one
can measure the financial effects of changing policy retention.

Steady State Assumed Assumed Base
Probability Combined Ratio Combined Combined

State i x Differential Ratio Ratio

0 0.875274 N/A
1 0.010503 20.00% 115.54%
2 0.009138 10.00% 105.54%
3 0.008407 8.00% 103.54%
4 0.007734 6.00% 101.54%
5 0.007116 4.00% 99.54%
6 0.006546 2.00% 97.54%
7 0.006023 0.00% 95.54%
8 0.005541 0.00% 95.54%
9 0.063719 0.00% 95.54% 95.54%

Market share 12.47%
Average combined ratio differential 3.66%

Average combined ratio 99.20%
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APPENDIX C

PROOF THAT A IS IRREDUCIBLE

In this appendix we prove that an invariant distribution ex-
ists for the Markov chain formulation of the retention problem.
Recall that the transition matrix for this problem is given by:

A=

!"""""""""""""""#

1" r0 r0 0 0 0 % % % 0 0

1" r1 0 r1 0 0 % % % 0 0

1" r2 0 0 r2 0 % % % 0 0

1" r3 0 0 0 r3 % % % 0 0

1" r4 0 0 0 0 % % % 0 0

% % % % % % % % % % % % % % % % % % % % % % % %
1" rN"1 0 0 0 0 % % % 0 rN"1
1" rN 0 0 0 0 % % % 0 rN

$%%%%%%%%%%%%%%%&
,

where all the rk are strictly between 0 and 1.

To prove the result we need to define the terms “aperiodic”
and “irreducible.”

State j is defined to be “periodic” if there exists an integer
t > 1 such that a(n)jj = 0 unless n is an integer multiple of t. Here
a(n)jj is the n-step probability of returning to state j. The matrix
A is aperiodic if no states are periodic.

We show that this system is aperiodic. Consider any state j.
For any k > 0, with 0< k +N " j the system can return to state
j in j+ k+1 steps through the sequence

j( j+1( j+2( %% % ( j+ k( 0( 1( %% % ( j

for k +N " j: (C.1)

For k > N " j, the system can return to state j in j+ k+1 steps
through the same sequence except that it “parks” at state N for



STUDYING POLICY RETENTION RATES USING MARKOV CHAINS 805

k" (N " j) steps before going to state 0. For example, if j = 1,
N = 4, and k = 6, then the system returns to state j in k+ j+1
(= 8) steps through the sequence of states:

1( 2( 3( 4( 4( 4( 4( 0( 1:

This last complication only comes about because we set N as
the highest state. If we had allowed an infinite number of states
then Equation C.1 holds for all k > 0.

Thus we have shown that a system in state j can return to
state j in n steps for all n= #j+2,j+3,j+4, : : :$.8 This means
A has no period; i.e., A is aperiodic.

A chain is defined to be “irreducible” if and only if every state
can be reached from every other state. This means that, given any
two states j and k, there exists an integer n such that the system
can move from j to k in n steps.

The chain A is clearly irreducible since the system can move
from state j to state k through the sequence of states:

j( 0( 1( %% % ( k

We have now established that A is aperiodic and irreducible.

We now show directly that an invariant distribution p exists
for A by calculating it.

The defining equations for invariance are

pk = rk"1pk"1 for k = 1,2,3 % % %N " 1, (C.2)

pN = rN"1pN"1 + rNpN , and (C.3)

p0 = (1" r0)p0 + (1" r1)p1 + % % %+(1" rN)pN: (C.4)

From Equation C.2 we get

pk = r0r1r2 % % %rk"1p0 for k = 1,2,3 % % %N "1: (C.5)

8This is true for n= j+1 also, but this is not needed for the proof.
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From Equation C.5 we can see that the terms 0 through N "1 on
the right-hand side of Equation C.4 add to p0" rN"1pN"1. From
Equation C.3 the last term on the right-hand side of Equation
C.4 equals rN"1pN"1. Thus, we can choose an arbitrary value
for p0, define the remaining pk by Equation C.2 and C.3, and
Equation C.4 will be automatically satisfied. Once all the pk are
calculated, just rescale them so they add to 1 and these values of
p are the invariant probabilities.

The following theorem9 will now enable us to say that the n-
step distributions converge to the invariant distribution, regard-
less of the initial distribution.

Suppose a chain is irreducible and aperiodic and that there
exist probabilities #pk, k = 0,1,2, : : :$ with all pk & 0 that satisfy
the invariant distribution conditions:

p=Atp:

Then
a(n)jk ( pk as n()

independently of the initial state j, and the chain is ergodic.

We have already shown that A satisfies all the conditions
of the theorem. (Note the term “ergodic” means that the mean
recurrence time to revisit any state j is finite). What the con-
clusion means is that the n-step transition matrix An ultimately
approaches the matrix for which every column is the invariant
distribution.

9Feller, [2, p. 393]. Actually, the theorem in Feller is more powerful in that it provides
a converse which states that if the limits exist, then they form the invariant distribution.



TESTING THE ASSUMPTIONS OF
AGE-TO-AGE FACTORS

GARY G. VENTER

Abstract

The use of age-to-age factors applied to cumulative
losses has been shown to produce least-squares opti-
mal reserve estimates when certain assumptions are met.
Tests of these assumptions are introduced, most of which
derive from regression diagnostic methods. Failures of
various tests lead to specific alternative methods of loss
development.
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INTRODUCTION

In his paper “Measuring the Variability of Chain Ladder
Reserve Estimates” Thomas Mack presented the assumptions
needed for least-squares optimality to be achieved by the typ-
ical age-to-age factor method of loss development (often called
“chain ladder”). Mack also introduced several tests of those as-
sumptions. His results are summarized below, and then other
tests of the assumptions are introduced. Also addressed is what
to do when the assumptions fail. Most of the assumptions, if they
fail in a particular way, imply least-squares optimality for some
alternative method.

The organization of the paper is to first show Mack’s three
assumptions and their result, then to introduce six testable im-

807
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plications of those assumptions, and finally to go through the
testing of each implication in detail.

PRELIMINARIES

Losses for accident year w evaluated at the end of that year
will be denoted as being as of age 0, and the first accident year in
the triangle is year 0. The notation below will be used to spec-
ify the models. Losses could be either paid or incurred. Only
development that fills out the triangle is considered. Loss devel-
opment beyond the observed data is often significant but is not
addressed here. Thus age ! will denote the oldest possible age
in the data triangle.

Notation

c(w,d): cumulative loss from accident year w as of age d
c(w,!): total loss from accident year w when end of triangle

reached
q(w,d): incremental loss for accident year w from d"1 to d
f(d): factor applied to c(w,d) to estimate q(w,d+1)
F(d): factor applied to c(w,d) to estimate c(w,!)

Assumptions

Mack showed that some specific assumptions on the process
of loss generation are needed for the chain ladder method to
be optimal. Thus if actuaries find themselves in disagreement
with one or another of these assumptions, they should look for
some other method of development that is more in harmony with
their intuition about the loss generation process. Reserving meth-
ods more consistent with other loss generation processes will be
discussed below. Mack’s three original assumptions are slightly
restated here to emphasize the task as one of predicting future in-
cremental losses. Note that the losses c(w,d) have an evaluation
date of w+d.
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1. E[q(w,d+1) # data to w+d] = f(d)c(w,d).
In words, the expected value of the incremental losses

to emerge in the next period is proportional to the to-
tal losses emerged to date, by accident year. Note that
in Mack’s definition of the chain ladder, f(d) does not
depend on w, so the factor for a given age is constant
across accident years. Note also that this formula is a
linear relationship with no constant term. As opposed to
other models discussed below, the factor applies directly
to the cumulative data, not to an estimated parameter, like
ultimate losses. For instance, the Bornhuetter-Ferguson
method assumes that the expected incremental losses are
proportional to the ultimate for the accident year, not the
emerged to date.

2. Unless v = w, c(w,d) and c(v,g) are independent for all
v, w, d and g.
This would be violated, for instance, if there were a

strong diagonal, when all years’ reserves were revised
upwards. In this case, instead of just using the chain
ladder method, most actuaries would recommend elimi-
nating these diagonals or adjusting them. Some model-
based methods for formally recognizing diagonal effects
are discussed below.

3. Var[q(w,d+1) # data to w+ d] = a[d,c(w,d)].
That is, the variance of the next increment observa-

tion is a function of the age and the cumulative losses
to date. Note that a($, $) can be any function but does not
vary by accident year. An assumption on the variance
of the next incremental losses is needed to find a least-
squares optimal method of estimating the development
factors. Different assumptions, e.g., different functions
a($, $) will lead to optimality for different methods of es-
timating the factor f. The form of a($, $) can be tested
by trying different forms, estimating the f’s, and seeing
if the variance formula holds. There will almost always
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be some function a($, $) that reasonably accords with the
observations, so the issue with this assumption is not
its validity but its implications for the estimation proce-
dure.

Results (Mack)

In essence what Mack showed is that under the above as-
sumptions the chain ladder method gives the minimum variance
unbiased linear estimator of future emergence. This gives a good
justification for using the chain ladder in that case, but the as-
sumptions need to be tested. Mack assumed that a[d,c(w,d)] =
k(d)c(w,d), that is, he assumed that the variance is proportional
to the previous cumulative loss, with possibly a different pro-
portionality factor for each age. In this case, the minimum vari-
ance unbiased estimator of c(w,!) from the triangle of data
to date w+d is F(d)c(w,d), where the age-to-ultimate factor
F(d) = [1+f(d)][1+f(d+1)] $ $ $ , and f(d) is calculated as:

f(d) =
!
w

q(w,d+1)
"!

w

c(w,d),

where the sum is over the w’s mutually available in both columns
(assuming accident years are on separate rows and ages are in
separate columns). Actuaries often use a modified chain ladder
that uses only the last n diagonals. This will be one of the al-
ternative methods to test if Mack’s assumptions fail. Using only
part of the data when all the assumptions hold will reduce the
accuracy of the estimation, however.

Extension

In general, the minimum variance unbiased f(d) is found by
minimizing!

w

[f(d)c(w,d)"q(w,d+1)]2k(d)=a[d,c(w,d)]:
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This is the usual weighted least-squares result, where the weights
are inversely proportional to the variance of the quantity be-
ing estimated. Because only proportionality, not equality, to the
variance is required, k(d) can be any convenient function of d—
usually chosen to simplify the minimization.

For example, suppose a[d,c(w,d)] = k(d)c(w,d)2. Then the
f(d) produced by the weighted least-squares procedure is the av-
erage of the individual accident year d to d+1 ratios, q(w,d+1)
=c(w,d). For a[d,c(w,d)] = k(d), each f(d) regression above is
then just standard unweighted least squares, so f(d) is the regres-
sion coefficient

#
w c(w,d)q(w,d+1)=

#
w c(w,d)

2. (See Murphy
[8].) In all these cases, f(d) is fit by a weighted regression, and
so regression diagnostics can be used to evaluate the estimation.
In the tests below just standard least-squares will be used, but in
application the variance assumption should be reviewed.

Discussion

Without going into Mack’s derivation, the optimality of the
chain ladder method is fairly intuitive from the assumptions. In
particular, the first assumption is that the expected emergence in
the next period is proportional to the losses emerged to date. If
that were so, then a development factor applied to the emerged
to date would seem highly appropriate. Testing this assump-
tion will be critical to exploring the optimality of the chain lad-
der. For instance, if the emergence were found to be a constant
plus a percent of emergence to date, then a different method
would be indicated—namely, a factor plus constant development
method. On the other hand, if the next incremental emergence
were proportional to ultimate rather than to emerged to date, a
Bornhuetter-Ferguson type approach would be more appropriate.

To test this assumption against its alternatives, the develop-
ment method that leads from each alternative needs to be fit, and
then a goodness-of-fit measure applied. This is similar to trying
a lot of methods and seeing which one you like best, but it is



812 TESTING THE ASSUMPTIONS OF AGE-TO-AGE FACTORS

different in two respects: (1) each method tested derives from
an alternative assumption on the process of loss emergence; (2)
there is a specific goodness-of-fit test applied. Thus the fitting
is a test of the emergence patterns that the losses are subject to,
and not just a test of estimation methods.

TESTABLE IMPLICATIONS OF ASSUMPTIONS

Verifying a hypothesis involves finding as many testable im-
plications of that hypothesis as possible, and verifying that the
tests are passed. In fact a hypothesis can never be fully verified,
as there could always be some other test you haven’t thought
of. Thus the process of verification is sometimes conceived as
being really a process of attempted falsification, with the current
tentatively-accepted hypothesis being the strongest (i.e., most
easily testable) one not yet falsified. (See Popper [9].) The as-
sumptions (1)–(3) are not directly testable, but they have testable
implications. Thus they can be falsified if any of the implications
are found not to hold, which would mean that the optimality
of the chain ladder method could not be shown for the data in
question. Holding up under all of these tests would increase the
actuary’s confidence in the hypothesis, still recognizing that no
hypothesis can ever be fully verified. Some of the testable im-
plications are:

1. Significance of factor f(d).

2. Superiority of factor assumption to alternative emer-
gence patterns such as:

(a) linear with constant: E[q(w,d+1) # data to w+d] =
f(d)c(w,d) +g(d);

(b) factor times parameter: E[q(w,d+1) # data to w+d]
= f(d)h(w);

(c) including calendar year effect: E[q(w,d+1) # data to
w+d] = f(d)h(w)g(w+ d).
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Note that in these examples the notation has changed
slightly so that f(d) is a factor used to estimate q(w,
d+1), but not necessarily applied to c(w,d). These al-
ternative emergence models can be tested by goodness
of fit, controlling for number of parameters.

3. Linearity of model: look at residuals as a function of
c(w,d).

4. Stability of factor: look at residuals as a function of time.

5. No correlation among columns.

6. No particularly high or low diagonals.

The remainder of this paper consists of tests of these implica-
tions.

TESTING LOSS EMERGENCE—IMPLICATIONS 1 & 2

The first four of these implications are tests of assumption (1).
Standard diagnostic tests for weighted least-squares regression
can be used as measures.

Implication 1: Significance of Factors

Regression analysis produces estimates for the standard de-
viation of each parameter estimated. Usually the absolute value
of a factor is required to be at least twice its standard deviation
for the factor to be regarded as significantly different from zero.
This is a test failed by many development triangles, which means
that the chain ladder method is not optimal for those triangles.

The requirement that the factor be twice the standard devia-
tion is not a strict statistical test, but more like a level of comfort.
For the normal distribution this requirement provides that there is
only a probability of about 4.5% of getting a factor of this abso-
lute value or greater when the true factor is zero. Many analysts
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are comfortable with a factor with absolute value 1.65 times its
standard deviation, which could happen about 10% of the time by
chance alone. For heavier-tailed distributions, the same ratio of
factor to standard deviation will usually be more likely to occur
by chance. Thus, if a factor were to be considered not signifi-
cant for the normal distribution, it would probably be even less
significant for other distributions. This approach could be made
into a formal statistical test by finding the distribution that the
factors follow. The normal distribution is often satisfactory, but
it is not unusual to see some degree of positive skewness, which
would suggest the lognormal. Some of the alternative models
discussed below are easier to estimate in log form, so that is not
an unhappy finding.

It may be tempting to do the regression of cumulative on
previous cumulative and test the significance of that factor in
order to justify the use of the chain ladder. However it is only
the incrementals that are being predicted, so this would have to
be carefully interpreted. In a cumulative-to-cumulative regres-
sion, the significance of the difference of the factor from unity
is what needs to be tested. This can be done by comparing that
difference to the standard deviation of the factor, which is equiv-
alent to testing the significance of the factor in the incremental-
to-cumulative regression. Some alternative methods to try when
this assumption fails are discussed below.

Implication 2: Superiority to Alternative Emergence Patterns

If alternative emergence patterns give a better explanation of
the data triangle observed to date, then assumption (1) of the
chain ladder model is also suspect. In these cases development
based on the best-fitting emergence pattern would be a natural
option to consider. The sum of the squared errors (SSE) would be
a way to compare models (the lower the better) but this should be
adjusted to take into account the number of parameters used. Un-
fortunately it appears that there is no generally accepted method
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to make this adjustment. One possible adjustment is to compare
fits by using the SSE divided by (n"p)2, where n is the number
of observations and p is the number of parameters. More param-
eters give an advantage in fitting but a disadvantage in prediction,
so such a penalty in adjusting the residuals may be appropriate.
A more popular adjustment in recent years is to base goodness of
fit on the Akaike Information Criterion, or AIC (see Lütkepohl
[5]). For a fixed set of observations, multiplying the SSE by e2p=n

can approximate the effect of the AIC. The AIC has been criti-
cized as being too permissive of over-parameterization for large
data sets, and the Bayesian Information Criterion, or BIC, has
been suggested as an alternative. Multiplying the SSE by np=n

would rank models the same as the BIC. As a comparison, if
you have 45 observations, the improvement in SSE needed to
justify adding a 5th parameter to a 4 parameter model is about
5%, 412%, and almost 9%, respectively, for these three adjust-
ments. In the model testing below the sum of squared residuals
divided by (n"p)2 will be the test statistic, but in general the
AIC and BIC should be regarded as good alternatives.

Note again that this is not just a test of development methods
but is also a test to see what hypothetical loss generation process
is most consistent with the data in the triangle.

The chain ladder has one parameter for each age, which is
less than for the other emergence patterns listed in implication
2. This gives it an initial advantage, but if the other parameters
improve the fit enough, they overcome this advantage. In testing
the various patterns below, parameters will be fit by minimizing
the sum of squared residuals. In some cases this will require an
iterative procedure.

Alternative Emergence Pattern 1: Linear with Constant

The first alternative mentioned is just to add a constant term
to the model. This is often significant in the age 0 to age 1 stage,
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especially for highly variable and slowly reporting lines, such
as excess reinsurance. In fact, in the experience of myself and
other actuaries who have reported informally, the constant term
has often been found to be more statistically significant than the
factor itself. If the constant is significant and the factor is not, a
different development process is indicated. For instance in some
triangles earning of additional exposure could influence the 0-
to-1 development. It is important in such cases to normalize the
triangle as much as possible, e.g., by adjusting for differences
among accident years in exposure and cost levels (trend). With
these adjustments a purely additive rather than a purely multi-
plicative method could be more appropriate.

Again, the emergence assumption underlying the linear with
constant method is:

E[q(w,d+1) # data to w+ d] = f(d)c(w,d)+g(d):
If the constant is statistically significant, this emergence pattern
is more strongly supported than that underlying the chain ladder.

Alternative Emergence Pattern 2: Factor Times Parameter

The chain ladder model expresses the next period’s loss emer-
gence as a factor times losses emerged so far. An important al-
ternative, suggested by Bornhuetter and Ferguson (BF) in 1972,
is to forecast the future emergence as a factor times estimated
ultimate losses. While BF use some external measure of ultimate
losses in this process, others have tried to use the data triangle it-
self to estimate the ultimate (e.g., see Verrall [13]). In this paper,
models that estimate emerging losses as a percent of ultimate
will be called parameterized BF models, even if they differ from
the original BF method in how they estimate the ultimate losses.

The emergence pattern assumed by the parameterized BF
model is:

E[q(w,d+1) # data to w+d] = f(d)h(w):
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That is, the next period expected emerged loss is a lag factor
f(d) times an accident year parameter h(w). The latter could be
interpreted as expected ultimate for the year, or at least propor-
tional to that. This model thus has a parameter for each accident
year as well as for each age (one less actually, as you can assume
the f(d)’s sum to one—which makes h(w) an estimate of ulti-
mate losses; thus multiplying all the f(d)’s, d > 0, by a constant
and dividing all the h’s by the same constant will not change
the forecasts). For reserving purposes there is even one fewer
parameter, as the age 0 losses are already in the data triangle, so
f(0) is not needed. Thus, for a complete triangle with n accident
years the BF has 2n"2 parameters, or twice the number as the
chain ladder. This will result in a penalty to goodness of fit, so
the BF has to produce much lower fit errors than the chain ladder
to give a better test statistic.

Testing the parameterized BF emergence pattern against that
of the chain ladder cannot be done just by looking at the statis-
tical significance of the parameters, as it could with the linear
plus constant method, as one is not a special case of the other.
This testing is the role of the test statistic, the sum of squared
residuals divided by the square of the degrees of freedom. If this
statistic is better for the BF model, that is evidence that the emer-
gence pattern of the BF is more applicable to the triangle being
studied. That would suggest that loss emergence for that book
can be more accurately represented as fluctuating around a pro-
portion of ultimate losses rather than a percentage of previously
emerged losses.

Stanard [10] assumed a loss generation scheme that resulted
in the expected loss emergence for each period being propor-
tional to the ultimate losses for the period. This now can be seen
to be the BF emergence pattern. Then by generating actual loss
emergence stochastically, he tested some loss development meth-
ods. The chain ladder method gave substantially larger estimation
errors for ultimate losses than his other methods, which were ba-
sically different versions of BF estimation. This illustrates how
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far off reserves can be when one reserving technique is applied
to losses that have an emergence process different from the one
underlying the technique.

A simulation in accord with the chain ladder emergence as-
sumption would generate losses at age j by multiplying the sim-
ulated emerged losses at age j"1 by a factor and then adding
a random component. In this manner the random components
influence the expected emergence at all future ages. This may
seem an unlikely way for losses to emerge, but it is for the trian-
gles that follow this emergence pattern that the chain ladder will
be optimal. The fact that Stanard used the simulation method
consistent with the BF emergence pattern, and this was not chal-
lenged by the reviewer, John Robertson, suggests that actuaries
may be more comfortable with the BF emergence assumptions
than with those of the chain ladder. Or perhaps it just means that
no one would be likely to think of simulating losses by the chain
ladder method.

An important special case of the parameterized BF was de-
veloped by some Swiss and American reinsurance actuaries at
a meeting in Cape Cod, and is sometimes called the Cape Cod
method (CC). It is given by setting h(w) to just a single h for
all accident years. CC seems to have one more parameter than
the chain ladder, namely h. However, any change in h can be
offset by inverse changes in all the f’s. CC thus has the same
number of parameters as the chain ladder, and so its fit mea-
sure is not as heavily penalized as that of BF. However a single
h requires a relatively stable level of loss exposure across ac-
cident years. Again it would be necessary to adjust for known
exposure and price level differences among accident years, if us-
ing this method. The chain ladder and BF can handle changes
in level from year to year as long as the development pattern
remains consistent.

The BF model often has too many parameters. The last few
accident years especially are left to find their own levels based
on sparse information. Reducing the number of parameters, and
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thus using more of the information in the triangle, can often yield
better predictions, especially in predicting the last few years. It
could be that losses follow the BF emergence pattern, but this is
disguised in the test statistic due to too many parameters. Thus,
testing for the alternate emergence pattern should also include
testing reduced parameter BF models.

The full BF not only assumes that losses emerge as a percent-
age of ultimate, but also that the accident years are all at different
mean levels and that each age has a different percentage of ulti-
mate losses. It could be, however, that several years in a row, or
all of them, have the same mean level. If the mean changes, there
could be a gradual transition from one level to another over a few
years. This could be modeled as a linear progression of accident
year parameters, rather than separate parameters for each year.
A similar process could govern loss emergence. For instance,
the 9th through 15th periods could all have the same expected
percentage development. Finding these relationships and incor-
porating them in the fitting process will help determine what
emergence process is generating the development.

The CC model can be considered a reduced parameter BF
model. The CC has a single ultimate value for all accident years,
while the BF has a separate value for each year. There are nu-
merous other ways to reduce the number of parameters in BF
models. Simply using a trend line through the BF ultimate loss
parameters would use just two accident year parameters in total
instead of one for each year. Another method might be to group
years using apparent jumps in loss levels and fit an h parameter
separately to each group. Within such groupings it is also possi-
ble to let each accident year’s h parameter vary somewhat from
the group average, e.g., via credibility, or to let it evolve over
time, e.g., by exponential smoothing.

Alternative Emergence Patterns Example

Table 1 shows incremental incurred losses by age for some
excess casualty reinsurance. As an initial test, the statistical sig-
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TABLE 1

INCREMENTAL INCURRED LOSSES

Age

Year 0 1 2 3 4 5 6 7 8 9
0 5,012 3,257 2,638 898 1,734 2,642 1,828 599 54 172
1 106 4,179 1,111 5,270 3,116 1,817 "103 673 535
2 3,410 5,582 4,881 2,268 2,594 3,479 649 603
3 5,655 5,900 4,211 5,500 2,159 2,658 984
4 1,092 8,473 6,271 6,333 3,786 225
5 1,513 4,932 5,257 1,233 2,917
6 557 3,463 6,926 1,368
7 1,351 5,596 6,165
8 3,133 2,262
9 2,063

TABLE 2

STATISTICAL SIGNIFICANCE OF FACTORS

0 to 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8
a 5,113 4,311 1,687 2,061 4,064 620 777 3,724
Std. Dev. a 1,066 2,440 3,543 1,165 2,242 2,301 145 0:000
b "0:109 0.049 0.131 0.041 "0:100 0.011 "0:008 "0:197
Std. Dev. b 0:349 0.309 0.283 0.071 0:114 0.112 0:008 0:000

nificance of the factors was tested by regression of incremental
losses against the previous cumulative losses. In the regression
the constant is denoted by a and the factor by b. This provides a
test of implication 1—significance of the factor, and also one test
of implication 2—alternative emergence patterns. In this case the
alternative emergence patterns tested are factor plus constant and
constant with no factor. Here they are being tested by looking
at whether or not the factors and the constants are significantly
different from zero, rather than by any goodness-of-fit measure.

Table 2 shows the estimated parameters and their standard
deviations. As can be seen, the constants are usually statistically
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FIGURE 1

AGE 1 VS. AGE 0 LOSSES

significant (parameter nearly double its standard deviation, or
more), but the factors never are. The chain ladder assumes the
incremental losses are proportional to the previous cumulative,
which implies that the factor is significant and the constant is
not. The lack of significance of the factors and the significance
of many of the constants both suggest that the losses to emerge
at any age d+1 are not proportional to the cumulative losses
through age d. The assumptions underlying the chain ladder
model are thus not supported by this data. A constant amount
emerging for each age usually appears to be a reasonable esti-
mator, however.

Figure 1 illustrates this. A factor by itself would be a straight
line through the origin with slope equal to the development fac-
tor, whereas a constant would give a horizontal line at the height
of the constant. As an alternative, the parameterized BF model
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was fit to the triangle. As this is a non-linear model, fitting is a
little more involved. A statistical package that includes non-linear
regression could ease the estimation. A method of fitting the
parameters without such a package will be discussed, followed
by an analysis of the resulting fit.

To do the fitting, an iterative method can be used to minimize
the sum of the squared residuals, where the (w,d) residual is
[q(w,d)"f(d)h(w)]. Weighted least squares could also be used
if the variances of the residuals are not constant over the triangle.
For instance, the variances could be proportional to f(d)ph(w)q

for some values of p and q, usually 0, 1, or 2, in which case the
regression weights would be 1=f(d)ph(w)q.

A starting point for the f’s or the h’s is needed to begin the
iteration. While almost any reasonable values could be used, such
as all f’s equal to 1=n, convergence will be faster with values
likely to be in the ballpark of the final factors. A natural starting
point thus might be the implied f(d)’s from the chain ladder
method. For ages greater than 0, these are the incremental age-
to-age factors divided by the cumulative-to-ultimate factors. To
get a starting value for age 0, subtract the sum of the other factors
from unity. Starting with these values for f(d), regressions were
performed to find the h(w)’s that minimize the sum of squared
residuals (one regression for each w). These give the best h’s for
that initial set of f’s. The standard linear regression formula for
these h’s simplifies to:

h(w) =
!
d

f(d)q(w,d)
"!

d

f(d)2:

Even though that gives the best h’s for those f’s, another regres-
sion is needed to find the best f’s for those h’s. For this step the
usual regression formula gives:

f(d) =
!
w

h(w)q(w,d)
"!

w

h(w)2:
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TABLE 3

BF PARAMETERS

Age d 0 1 2 3 4 5 6 7 8 9
f(d) 1st 0.106 0.231 0.209 0.155 0.117 0.083 0.038 0.032 0.018 0.011
f(d) ult. 0.162 0.197 0.204 0.147 0.115 0.082 0.037 0.030 0.015 0.009
Year w 0 1 2 3 4 5 6 7 8 9
h(w) 1st 17,401 15,729 23,942 26,365 30,390 19,813 18,592 24,154 14,639 12,733
h(w) ult. 15,982 16,501 23,562 27,269 31,587 20,081 19,032 25,155 13,219 19,413

Now the h regression can be repeated with the new f’s, etc.
This process continues until convergence occurs, i.e., until the
f’s and h’s no longer change with subsequent iterations. It may
be possible that this procedure would converge to a local rather
than the global minimum, which can be tested by using other
starting values.

Ten iterations were used in this case, but substantial conver-
gence occurred earlier. The first round of f’s and h’s and those
at convergence are in Table 3. Note that the h’s are not the final
estimates of the ultimate losses, but are used with the estimated
factors to estimate future emergence. In this case, in fact, h(0) is
less than the emerged to date. As the h’s are unique only up to a
constant of proportionality, which can be absorbed by the f’s, it
may improve presentations to set h(0) to the estimated ultimate
losses for year 0.

Standard regression assumes each observation q has the
same variance, which is to say the variance is proportional to
f(d)ph(w)q, with p= q= 0. If p= q= 1 the weighted regression
formulas become:

h(w)2 =
!
d

[q(w,d)2=f(d)]
"!

d

f(d) and

f(d)2 =
!
w

[q(w,d)2=h(w)]
"!

w

h(w):
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TABLE 4

DEVELOPMENT FACTORS

Incremental
Prior 0 to 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9

1.22 0.57 0.26 0.16 0.10 0.04 0.03 0.02 0.01
Ultimate

0 to 9 1 to 9 2 to 9 3 to 9 4 to 9 5 to 9 6 to 9 7 to 9 8 to 9
6.17 2.78 1.77 1.41 1.21 1.10 1.06 1.03 1.01

Incremental/Ultimate
0.162 0.197 0.204 0.147 0.115 0.082 0.037 0.030 0.015 0.009

For comparison, the development factors from the chain lad-
der are shown in Table 4. The incremental factors are the ratios
of incremental to previous cumulative. The ultimate ratios are
cumulative to ultimate. Below them are the ratios of these ratios,
which represent the portion of ultimate losses to emerge in each
period. The zeroth period shown is unity less the sum of the
other ratios. These factors were the initial iteration for the f(d)s
shown above.

Having now estimated the BF parameters, how can they be
used to test what the emergence pattern of the losses is?

A comparison of this fit to that from the chain ladder can
be made by looking at how well each method predicts the incre-
mental losses for each age after the initial one. The SSE adjusted
for number of parameters will be used as the comparison mea-
sure, where the parameter adjustment will be made by dividing
the SSE by the square of the difference between the number of
observations and the number of parameters, as discussed ear-
lier. Here there are 45 observations, as only the predicted points
count as observations. The adjusted SSE was 81,169 for the BF,
and 157,902 for the chain ladder. This shows that the emergence
pattern for the BF (emergence proportional to ultimate) is much
more consistent with this data than is the chain ladder emergence
pattern (emergence proportional to previous emerged).
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TABLE 5

FACTORS IN CC METHOD

Age d 0 1 2 3 4 5 6 7 8 9
f(d) 0.109 0.220 0.213 0.148 0.124 0.098 0.038 0.028 0.013 0.008

The CC method was also tried for this data. The iteration pro-
ceeded similarly to that for the BF, but only a single h parameter
was fit for all accident years. Now:

h=
!
w,d

f(d)q(w,d)
"!

w,d

f(d)2:

This formula for h is the same as the formula for h(w) except
the sum is taken over all w. The estimated h is 22,001, and
the final factors f are shown in Table 5. The adjusted SSE for
this fit is 75,409. Since the CC is a special case of the BF, the
unadjusted SSE is necessarily worse than that of the BF method
(in this case 59M vs. 98M), but with fewer parameters in the
CC, the adjustment makes them similar. These are close enough
that which is better depends on the adjustment chosen for extra
parameters. The BIC also favors the CC, but the AIC is better for
the BF. As is often the case, the statistics can inform decision-
making but not determine the decision.

Intermediate special cases could be fit similarly. If, for in-
stance, a single factor were sought to apply to just two accident
years, the sum would be taken over those years to estimate that
factor, etc.

This is a case where the BF has too many parameters for
prediction purposes. More parameters fit the data better but use
up information. The penalty in the fit measure adjusts for this
problem, and the penalty used finds the CC to be a somewhat
better model. Thus the data is consistent with random emergence
around an expected value that is constant over the accident years.
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TABLE 6

TERMS IN ADDITIVE CHAIN LADDER

Age d 1 2 3 4 5 6 7 8 9
g(d) 4,849.3 4,682.5 3,267.1 2,717.7 2,164.2 839.5 625.0 294.5 172.0

Again, the CC method would probably work even better for
loss ratio triangles than for loss triangles, as then a single target
ultimate value makes more sense. Adjusting loss ratios for trend
and rate level could increase this homogeneity.

In addition, an additive development was tried, as suggested
by the fact that the constant terms were significant in the origi-
nal chain ladder, even though the factors were not. The develop-
ment terms are shown in Table 6. These are just the average loss
emerged at each age. The adjusted sum of squared residuals is
75,409. This is much better than the chain ladder, which might
be expected, as the constant terms were significant in the origi-
nal significance-test regressions while the factors were not. The
additive factors in Table 6 differ from those in Table 2 because
there is no multiplicative factor in Table 6.

Is it a coincidence that the additive chain ladder gives the same
fit accuracy as the CC? Not really, in that they both estimate each
age’s loss levels with a single value. Let g(d) denote the additive
development amount for age d. As the notation suggests, this
does not vary by accident year. The CC method fits an overall h
and a factor f(d) for each age such that the estimated emergence
for age d is f(d)h. Here too the predicted development varies
by age but is a constant for each accident year. If you have
estimated the CC parameters you can just define g(d) = f(d)h.
Alternatively, if the additive method has been fit, no matter what
h is estimated, the f’s can be defined as f(d)h= g(d). As long as
the parameters are fit by least-squares they have to come out the
same: if one came out lower, you could have used the equations
in the two previous sentences to get this same lower value for
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TABLE 7

BF-CC PARAMETERS

Age d 0 1 2 3 4 5 6 7 8 9
f(d) % 0.230 0.230 0.160 0.123 0.086 0.040 0.040 0.017 0.017
Year w 0 1 2 3 4 5 6 7 8 9
h(w) 14,829 14,829 20,962 25,895 30,828 20,000 20,000 20,000 20,000 20,000

the other. The two models have the same age and accident year
relationships and so will always come out the same when fit
by least-squares. They are defined differently, however, and so
other methods of estimating the parameters may come up with
separate estimates, as in Stanard [10]. In the remainder of this
paper, the models will be used interchangeably.

Finally, an intermediate BF-CC pattern was fit as an example
of the possible approaches of this type. In this case ages 1 and 2
are assumed to have the same factor, as are ages 6 and 7 and ages
8 and 9. This reduces the number of f parameters from 9 to 6.
The number of accident year parameters was also reduced: years
0 and 1 have a single parameter, as do years 5 through 9. Year 2
has its own parameter, as does year 4, but year 3 is the average
of those two. Thus there are 4 accident year parameters, and so
10 parameters in total. Any one of these can be set arbitrarily,
with the remainder adjusted by a factor, so there are really just 9.
The selections were based on consideration of which parameters
were likely not to be significantly different from each other.

The estimated factors are shown in Table 7. The factor to be
set arbitrarily was the accident year factor for the last 5 years,
which was set to 20,000. The other factors were estimated by
the same iterative regression procedure as for the BF, but the
factor constraints change the simplified regression formula. The
adjusted sum of squared residuals is 52,360, which makes it the
best approach tried. This further supports the idea that claims
emerge as a percent of ultimate for this data. It also indicates
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that the various accident years and ages are not all at different
levels. The actual and fitted values from this, the chain ladder,
and CC are in Exhibit 1. The fitted values in Exhibit 1 were
calculated as follows. For the chain ladder, the factors from Table
4 were applied to the cumulative losses implied from Table 1.
For the CC the fitted values are just the terms in Table 6. For the
BF-CC they are the products of the appropriate f and h factors
from Table 7. The parameters for all the models to this point are
summarized in Exhibit 2.

Alternative Emergence Patterns-Summary

The chain ladder assumes that future emergence for an ac-
cident year will be proportional to losses emerged to date. The
BF methods take expected emergence in each period to be a per-
centage of ultimate losses. This could be interpreted as regarding
the emerged to date to have a random component that will not
influence future development. If this is the actual emergence pat-
tern, the chain ladder method will apply factors to the random
component, and thus increase the estimation error.

The CC and additive chain ladder methods assume in effect
that years showing low losses or high losses to date will have
the same expected future dollar development. Thus a bad loss
year may differ from a good one in just a couple of emergence
periods, and have quite comparable loss emergence in all other
periods. The chain ladder and the most general form of the BF,
on the other hand, assume that a bad year will have higher emer-
gence than a good year in most periods.

The BF and chain ladder emergence patterns are not the only
ones that make sense. Some others will be reviewed when dis-
cussing diagonal effects below.

Which emergence pattern holds for a given triangle is an em-
pirical issue. Fitting parameters to the various methods and look-
ing at the significance of the parameters and the adjusted sum of
squared residuals can test this.
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FIGURE 2

RESIDUAL ANALYSIS—TESTING IMPLICATIONS 3 & 4

So far the first two of the six testable implications of the
chain ladder assumptions have been addressed. Looking at the
residuals from the fitting process can test the next two impli-
cations.

Implication 3: Test of Linearity—Residuals as Function of
Previous

Figure 2 shows a straight line fit to a curve. The residuals
can be seen to be first positive, then negative then all positive.
This pattern of residuals is indicative of a non-linear process
with a linear fit. The chain ladder model assumes the incremental
losses at each age are a linear function of the previous cumulative
losses.

A scatter plot of the incremental against the previous cumu-
lative, as in Figure 3, can be used to check linearity; looking for
this characteristic non-linear pattern (i.e., strings of positive and
negative residuals) in the residuals plotted against the previous
cumulative is equivalent. This can be tested for each age to see if
a non-linear process may be indicated. Finding this would sug-
gest that emergence is a non-linear function of losses to date. In
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FIGURE 3

Figure 3 there are no apparent strings of consecutive positive or
negative residuals, so non-linearity is not indicated.

Implication 4: Test of Stability—Residuals Over Time

If a similar pattern of sequences of high and low residuals is
found when plotted against time, instability of the factors may be
indicated. If the factors appear to be stable over time, all the acci-
dent years available should be used to calculate the development
factors, in order to reduce the effects of random fluctuations.
When the development process is unstable, the assumptions for
optimality of the chain ladder are no longer satisfied. A response
to unstable factors over time might be to use a weighted aver-
age of the available factors, with more weight going to the more
recent years, e.g., just use the last 5 diagonals. A weighted av-
erage should be used when there is a good reason for it, e.g.,
when residual analysis shows that the factors are changing, but
otherwise it will increase estimation errors by over-emphasizing
some observations and under-emphasizing others.
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FIGURE 4

2ND TO 3RD FIVE-TERM MOVING AVERAGE

Another approach to unstable development would be to ad-
just the triangle for measurable instability. For instance, Berquist
and Sherman [1] suggest testing for instability by looking for
changes in the settlement rate of claims. They measured this by
looking at the changes in the percentage of claims closed by age.
If instability is found, the triangle is adjusted to the latest pattern.
The adjusted triangle, however, should still be tested for stabil-
ity of development factors by residual analysis and as illustrated
below.

Figure 4 shows the 2nd to 3rd factor by accident year from a
large development triangle (data in Exhibit 3) along with its five-
term moving average. The moving average is the more stable of
the two lines, and is sometimes in practice called “the average of
the last five diagonals.” There is apparent movement of the factor
over time as well as a good deal of random fluctuation. There is
a period of time in which the moving average is as low as 1.1 and
other times it is as high as 1.8. This is the kind of variability that
would suggest using the average of recent diagonals instead of
the entire triangle when estimating factors. This is not suggested
due to the large fluctuations in factors, but rather because of the
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changes over time in the level around which the factors are fluc-
tuating. A lot of variability around a fixed level would in fact
suggest using all the data.

It is not clear from the data what is causing the moving av-
erage factors to drift over time. Faced with data like this, the
average of all the data would not normally be used. Grouping
accident years or taking weighted averages would be useful al-
ternatives.

The state-space model in the Verall and Zehnwirth references
provides a formal statistical treatment of the types of instability in
a data triangle. This model can be used to help analyze whether to
use all the data, or to adopt some form of weighted average that
de-emphasizes older data. It is based on comparing the degree of
instability of observations around the current mean to the degree
of instability in the mean itself over time. While this is the main
statistical model available to determine weights to apply to the
various accident years of data, a detailed discussion is beyond
the scope of this paper.

INDEPENDENCE—TESTING IMPLICATIONS 5 & 6

Implications 5 and 6 have to do with independence within the
triangle. Mack’s second assumption above is that, except for ob-
servations in the same accident year, the columns of incremental
losses need to be independent. He developed a correlation test
and a high-low diagonal test to check for dependencies. The data
may have already been adjusted for known changes in the case
reserving process. For instance, Berquist and Sherman recom-
mend looking at the difference between paid and incurred case
severity trends to determine if there has been a change in case
reserve adequacy, and if there has, adjusting the data accord-
ingly. Even after such adjustments, however, correlations may
exist within the triangle.
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TABLE 8

SAMPLE CORRELATION="1:35=(146:37&0:20)1=2 =":25
Year X = 0 to 1 Y = 1 to 2 (X"E[X])2 (Y"E[Y])2 (X"E[X])(Y"E[Y])
1 0.65 0.32 54.27 0.14 2:78
2 39.42 0.26 986.46 0.19 "13:71
3 1.64 0.54 40.70 0.02 0:98
4 1.04 0.36 48.63 0.11 2:31
5 7.76 0.66 0.07 0.00 0:01
6 3.26 0.82 22.63 0.01 "0:57
7 6.22 1.72 3.24 1.05 "1:85
8 4.14 0.89 15.01 0.04 "0:74

Average 8.02 0.70 146.37 0.20 "1:35

Implication 5: Correlation of Development Factors

Mack developed a correlation test for adjacent columns of a
development factor triangle. If a year of high emergence tends to
follow one with low emergence, then the development method
should take this into account. Another correlation test would be
to calculate the sample correlation coefficients for all pairs of
columns in the triangle, and then see how many of these are
statistically significant, say at the 10% level. The sample cor-
relation for two columns is just the sample covariance divided
by the product of the sample standard deviations for the first n
elements of both columns, where n is the length of the shorter
column. The sample correlation calculation in Table 8 shows that
for the triangle in Table 1 above, the correlation of the first two
development factors is "25%.

Letting r denote the sample correlation coefficient, define
T = r[(n"2)=(1" r2)]1=2. A significance test for the correlation
coefficient can be made by considering T to be t-distributed with
n"2 degrees of freedom. If T is greater than the t-statistic for
0.9 at n"2 degrees of freedom, for instance, then r can be con-
sidered significant at the 10% level. (See Miller and Wichern [7,
p. 214].)
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In this example, T ="0:63, which is not significant even at
the 10% level. This level of significance means that 10% of the
pairs of columns could show up as significant just by random
happenstance. A single correlation at this level would thus not
be a strong indicator of correlation within the triangle. If several
columns are correlated at the 10% level, however, there may be
a correlation problem.

To test this further, if m is the number of pairs of columns in
the triangle, the number that display significant correlation could
be considered a binomial variate in m and 0.1, which has stan-
dard deviation 0:3m1=2. Thus more than 0:1m+m1=2 significant
correlations (mean plus 3.33 standard deviations) would strongly
suggest there is actual correlation within the triangle. Here the
10% level and 3.33 standard deviations were chosen for illus-
tration. A single correlation that is significant at the 0.1% level
would also be indicative of a correlation problem, for example.

If there is such correlation, the product of development fac-
tors is not unbiased, but the relationship E[XY] = (E[X])(E[Y])+
Cov(X,Y) could be used to correct the product, where here X and
Y are development factors.

Implication 6: Significantly High or Low Diagonals

Mack’s high-low diagonal test counts the number of high and
low factors on each diagonal, and tests whether or not that is
likely to be due to chance. Here another high-low test is pro-
posed: use regression to see if any diagonal dummy variables are
significant. This test also provides alternatives in case the pure
chain ladder is rejected. An actuary will often have information
about changes in company operations that may have created a
diagonal effect. If so, this information could lead to choices of
modeling methods—e.g., whether to assume the effect is perma-
nent or temporary. The diagonal dummies can be used to measure
the effect in any case, but knowledge of company operations will
help determine how to use this effect. This is particularly so if
the effect occurs in the last few diagonals.
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A diagonal in the loss development triangle is defined by w+
d = constant. Suppose for some given data triangle, the diagonal
w+d = 7 has been estimated to be 10% higher than normal.
Then an adjusted BF estimate of a cell might be:

q(w,d) = 1:1f(d)h(w) if w+d = 7, and

q(w,d) = f(d)h(w) otherwise:

This is an example of a multiplicative diagonal effect. Additive
diagonal effects can also be estimated, using regression with di-
agonal dummies.

Age

Year 0 1 2 3

1 2 5 4
3 8 9
7 10
7

Incr. Cum. Cum. Cum. Dummy Dummy
Ages 1–3 Age 0 Age 1 Age 2 1 2

2 1 0 0 0 0
8 3 0 0 1 0
10 7 0 0 0 1
5 0 3 0 1 0
9 0 11 0 0 1
4 0 0 8 0 1

The small sample triangle of incremental losses here will be
used as an example of how to set up diagonal dummies in a chain
ladder model. The goal is to get a matrix of data in the form
needed to do a multiple regression. First the triangle (except the
first column) is strung out into a column vector. This is the de-
pendent variable, and forms the first column of the matrix above.
Then columns for the independent variables are added. The sec-
ond column is the cumulative losses at age 0 corresponding to
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the loss entries that are at age 1, and zero for the other loss en-
tries. The regression coefficient for this column would be the 0
to 1 cumulative-to-incremental factor. The next two columns are
cumulative losses at age 1 and age 2 corresponding to the age 2
and age 3 data in the first column. The last two columns are the
diagonal dummies. They pick out the elements of the last two
diagonals. The coefficients for these columns would be additive
adjustments for those diagonals, if significant.

This method of testing for diagonal effects is applicable to
many of the emergence models. In fact, if diagonal effects are
found to be significant in chain ladder models, they probably
are needed in the BF models of the same data. Thus tests of the
chain ladder vs. BF should be done with the diagonal elements
included. Some examples are given in the Appendix. Another
popular modeling approach is to consider diagonal effects to be a
measure of inflation (e.g., see Taylor [11]). In a payment triangle
this would be a natural interpretation, but a similar phenomenon
could occur in an incurred triangle. In this case the latest diagonal
effects might be projected ahead as estimates of future inflation.
An understanding of the aspects of company operations that drive
the diagonal effects would help address these issues.

This approach incorporates diagonal effects right into the
emergence model. For instance, an emergence model might be:

E[q(w,d+1) # data to w+d] = f(d)g(w+ d):
Here g(w+d) is a diagonal effect, but every diagonal has such a
factor. The usual interpretation is that g measures the cumulative
claims inflation applicable to that diagonal since the first accident
year. It would even be possible to add accident year effects h(w)
as well, e.g.,

E[q(w,d+1) # data to w+d] = f(d)h(w)g(w+d):
There are clearly too many parameters here, but a lot of them
might reasonably be set equal. For instance, the inflation might
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be the same for several years, or several accident years might
be at the same level. Note that since g is cumulative inflation, a
constant inflation level could be achieved by setting g(w+d) =
(1+ j)w+d. Then j is the only inflation parameter to be estimated.

The age and accident year parameters might also be able to be
written as trends rather than individual factors. If f(d) = (1+ i)d

and h(w) = h& (1+ k)w, then the model reduces to four parame-
ters h, i, j, and k. However it would be more usual to need more
parameters than this, possibly written as changing trends. That
is, i, j, and k might be constant for some periods, then change for
others. Note that if they are constant for all periods, the estimator
h(1+ i)d(1+ j)w+d(1+ k)w is h(1+ i+ j+ ij)d(1+ k+ j+ jk)w,
which eliminates the parameter j, as i becomes i+ j+ ij and
k becomes k+ j+ jk.

It might be better to start without the accident year trend and
keep the calendar year trend, especially if the triangle has been
normalized for accident year changes. The model for the (w,d)
cell would then be h(1+ i)d(i+ j)w+d, which has just three pa-
rameters.

As with the BF model, the parameters of models with diag-
onal trends can be estimated iteratively. With reasonable start-
ing values, fix two of the three sets of parameters, and fit the
third by least squares, and rotate until convergence is reached.
Alternatively, a non-linear search procedure could be utilized.
As an example of the simplest of these approaches, modeling
E[q(w,d+1) # data to w+d] as just 6,756(0:7785)d gives an ad-
justed sum of squares of 57,527 for the reinsurance triangle
above. This is not the best fitting model, but it is better than
some and has only two parameters h= 6,756 and i="0:2215.
Calendar year trend accounts for inflation in the time between

loss occurrence and loss settlement, which many actuaries be-
lieve has an impact on ultimate losses. Whether it is influencing
a given loss triangle can be investigated by testing for diagonal
effects.
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CONCLUSION

The first test that will quickly indicate the general type
of emergence pattern faced is the test of significance of the
cumulative-to-incremental factors at each age. This is equivalent
to testing if the cumulative-to-cumulative factors are significantly
different from unity. When this test fails, the future emergence is
not proportional to past emergence. It may be a constant amount,
or it may be proportional to ultimate losses, as in the BF pattern.

When this test is passed, the addition of an additive compo-
nent may give an even better fit. Even when the test is failed,
including an additive term may make the factor significant. In
either case the BF emergence pattern may still produce a better
fit. Reduced parameter BF models could also give better perfor-
mance, as they will be less responsive to random variation. If an
additive component is significant, then converting the triangle to
on-level loss ratios may improve the forecasts.

Tests of stability and for diagonal effects may lead to further
improvements in the model. However, if the emergence is stable,
excluding data by using only the last n diagonals will lead to
higher estimation errors on average.

An actuary might advise: “If the chain ladder doesn’t work,
try Bornhuetter-Ferguson.” This is a reasonable conclusion, with
the interpretation of “doesn’t work” to mean “fails the assump-
tions of least-squares optimality,” and “try” to mean “test the
underlying assumptions of.”
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EXHIBIT 1

COMPARATIVE FITS

Chain Ladder
1 2 3 4 5 6 7 8 9

Actual 3,257 2,638 898 1,734 2,642 1,828 599 54 172
Fit 6,101 4,705 2,846 1,912 1,350 656 580 296 172
% Error 87% 78% 217% 10% "49% "64% "3% 448% 0%
Actual 4,179 1,111 5,270 3,116 1,817 "103 673 535
Fit 129 2,438 1,408 1,728 1,374 632 499 257
% Error "97% 119% "73% "45% "24% "714% "26% "52%
Actual 5,582 4,881 2,268 2,594 3,479 649 603
Fit 4,151 5,116 3,619 2,614 1,868 900 736
% Error "26% 5% 60% 1% "46% 39% 22%
Actual 5,900 4,211 5,500 2,159 2,658 984
Fit 6,883 6,574 4,113 3,444 2,336 1,057
% Error 17% 56% "25% 60% "12% 7%
Actual 8,473 6,271 6,333 3,786 225
Fit 1,329 5,442 4,131 3,591 2,588
% Error "84% "13% "35% "5% 1,050%
Actual 4,932 5,257 1,233 2,917
Fit 1,842 3,667 3,053 2,095
% Error "63% "30% 148% "28%
Actual 3,463 6,926 1,368
Fit 678 2,287 2,856
% Error "80% "67% 109%
Actual 5,596 6,165
Fit 1,644 3,953
% Error "71% "36%
Actual 2,262
Fit 3,814
% Error 69%

CC
1 2 3 4 5 6 7 8 9

Actual 3,257 2,638 898 1,734 2,642 1,828 599 54 172
Fit 4,364 3,746 2,287 1,631 1,082 336 188 59 17
% Error 34% 42% 155% "6% "59% "82% "69% 9% "90%
Actual 4,179 1,111 5,270 3,116 1,817 "103 673 535
Fit 4,364 3,746 2,287 1,631 1,082 336 188 59
% Error 4% 237% "57% "48% "40% "426% "72% "89%
Actual 5,582 4,881 2,268 2,594 3,479 649 603
Fit 4,364 3,746 2,287 1,631 1,082 336 188
% Error "22% "23% 1% "37% "69% "48% "69%
Actual 5,900 4,211 5,500 2,159 2,658 984
Fit 4,364 3,746 2,287 1,631 1,082 336
% Error "26% "11% "58% "24% "59% "66%
Actual 8,473 6,271 6,333 3,786 225
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EXHIBIT 1

(CONTINUED)

Fit 4,364 3,746 2,287 1,631 1,082
% Error "48% "40% "64% "57% 381%
Actual 4,932 5,257 1,233 2,917
Fit 4,364 3,746 2,287 1,631
% Error "12% "29% 85% "44%
Actual 3,463 6,926 1,368
Fit 4,364 3,746 2,287
% Error 26% "46% 67%
Actual 5,596 6,165
Fit 4,364 3,746
% Error "22% "39%
Actual 2,262
Fit 4,364
% Error 93%

BF-CC
1 2 3 4 5 6 7 8 9

Actual 3,257 2,638 898 1,734 2,642 1,828 599 54 172
Fit 3,411 3,411 2,373 1,824 1,275 593 593 252 252
% Error 5% 29% 164% 5% "52% "68% "1% 367% 47%
Actual 4,179 1,111 5,270 3,116 1,817 "103 673 535
Fit 3,411 3,411 2,373 1,824 1,275 593 593 252
% Error "18% 207% "55% "41% "30% "676% "12% "53%
Actual 5,582 4,881 2,268 2,594 3,479 649 603
Fit 4,821 4,821 3,354 2,578 1,803 838 838
% Error "14% "1% 48% "1% "48% 29% 39%
Actual 5,900 4,211 5,500 2,159 2,658 984
Fit 5,956 5,956 4,143 3,185 2,227 1,036
% Error 1% 41% "25% 48% "16% 5%
Actual 8,473 6,271 6,333 3,786 225
Fit 7,090 7,090 4,932 3,792 2,651
% Error "16% 13% "22% 0% 1,078%
Actual 4,932 5,257 1,233 2,917
Fit 4,600 4,600 3,200 2,460
% Error "7% "12% 160% "16%
Actual 3,463 6,926 1,368
Fit 4,600 4,600 3,200
% Error 33% "34% 134%
Actual 5,596 6,165
Fit 4,600 4,600
% Error "18% "25%
Actual 2,262
Fit 4,600
% Error 103%
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EXHIBIT 1

(CONTINUED)

Additive with Multiplicative Diagonals and Accident Years
1 2 3 4 5 6 7 8 9

Actual 3,257 2,638 898 1,734 2,642 1,828 599 54 172
Fit 3,185 3,185 2,148 2,730 1,995 660 660 660 477
% Error "2% 21% 139% 57% "24% "64% 10% 1,122% 177%
Actual 4,179 1,111 5,270 3,116 1,817 "103 673 535
Fit 3,185 3,185 3,465 2,730 1,995 660 660 477
% Error "24% 187% "34% "12% 10% "741% "2% "11%
Actual 5,582 4,881 2,268 2,594 3,479 649 603
Fit 4,036 6,508 4,390 3,460 2,529 836 604
% Error "28% 33% 94% 33% "27% 29% 0%
Actual 5,900 4,211 5,500 2,159 2,658 984
Fit 6,508 6,508 4,390 3,460 2,529 604
% Error 10% 55% "20% 60% "5% "39%
Actual 8,473 6,271 6,333 3,786 225
Fit 5,136 5,136 3,465 2,730 1,442
% Error "39% "18% "45% "28% 541%
Actual 4,932 5,257 1,233 2,917
Fit 5,136 5,136 3,465 1,972
% Error 4% "2% 181% "32%
Actual 3,463 6,926 1,368
Fit 5,136 5,136 2,503
% Error 48% "26% 83%
Actual 5,596 6,165
Fit 5,136 3,710
% Error "8% "40%
Actual 2,262
Fit 3,710
% Error 64%
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EXHIBIT 2

SUMMARY OF PARAMETERS

0 1 2 3 4 5 6 7 8 9
BF f(d) 0.162 0.197 0.204 0.147 0.115 0.082 0.037 0.030 0.015 0.009
BF h(w) 15,982 16,501 23,562 27,269 31,587 20,081 19,032 25,155 13,219 19,413
CC f(d) 0.109 0.220 0.213 0.148 0.124 0.098 0.038 0.028 0.013 0.008
Additive
Chain

— 4,849.3 4,682.5 3,267.1 2,717.7 2,164.2 839.5 625.0 294.5 172.0

BF-CC
f(d)

— 0.230 0.230 0.160 0.123 0.086 0.040 0.040 0.017 0.017

BF-CC
h(w)

14,829 14,829 20,962 25,895 30,828 20,000 20,000 20,000 20,000 20,000

EXHIBIT 3

2ND TO 3RD FACTORS FROM LARGE TRIANGLE

2nd to 3rd' 1.81 1.60 1.41 2.29 2.25 1.38
1.36 1.07 1.60 0.89 1.42 0.99 1.01
1.03 1.02 1.35 1.21 1.28 1.51 1.17
2.00 0.98 1.21 1.24 1.79 1.32 1.48
1.51 1.01 1.51 1.06 1.60 1.10 1.11
2.20 2.00 1.50 2.20 1.19 1.28 1.52
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APPENDIX

DIAGONAL EFFECTS IN BF MODELS

As an example, a test for diagonal effects in the CCmodel was
made in the reinsurance triangle as follows. The CC is the same
as the additive chain ladder, so it can be expressed as a linear
model. This can be estimated via a single multiple regression
in which the dependent variable is the entire list of incremental
losses for ages 1 to 9 and all accident years—45 items in all.
That is, the triangle beyond age 0 is strung out into a single
vector. Age and diagonal dummy independent variables can be
established in a design matrix to pick out the right elements of
the parameter vector of age and diagonal terms to estimate each
incremental loss cell. For the additive chain ladder, the column
dummy variables will be 1 or 0, as opposed to cumulative losses
or 0 in the chain ladder example. Then the coefficient of that
column will be the additive element for the given age.

The later columns of the design matrix would be diagonal
dummies, as in the chain ladder example. By doing a multiple
linear regression for the incremental loss column in terms of
the age and diagonal dummies, additive terms by age and by
diagonal will be estimated. The regression can tell which terms
are statistically significant, and the others can be dropped from
the specification.

With the reinsurance triangle tested above, the first three di-
agonals turned out to be lower than the others, as was the last
diagonal. Also, the first two ages were not significantly different
from each other, nor were the last four. This produced a model
with five age parameters and two diagonal parameters—one for
the first three diagonals combined, and one for the last diagonal.
The parameters are shown in Table 9.

The sum of squared residuals for this model is 49,673.4 when
adjusted for seven parameters used. This is considerably better
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TABLE 9

TERMS IN ADDITIVE CHAIN LADDER WITH DIAGONAL EFFECTS

Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Diag 1–3 Diag 9
5,569.0 5,569.0 3,739.2 2,881.8 2,361.1 993.3 993.3 993.3 993.3 "2,319:9 "984:7

than the model without diagonal effects. The multiple regression
found the diagonals to be statistically significant and adding them
to the model improved the fit.

A problem with the diagonal analysis is how to use them
in forecasting. One reason for diagonal effects is a change in
company practice, particularly in the claims handling process.
If the age effects are considered the dominant influence with
occasional distortion by diagonal effects, then including diagonal
dummy variables will give better estimates for the underlying age
terms. Then these, but not the diagonal effects, would be used in
forecasting.

Having identified the significant diagonal effects through lin-
ear regression, it may be more reasonable to convert them to
multiplicative effects through non-linear regression. The model
could be of the form:

q(w,d) = f(d)g(w+d),

where f(d) is the additive age term for age d, and g(w+ d) is
the factor for the w+dth diagonal. Again this can be estimated
iteratively by fixing the f’s to estimate the g’s by linear regres-
sion, then fixing those g’s to estimate the next iteration of f’s,
until convergence is reached. The previous model was refit with
the diagonals as factors with the result in Table 10. This had a
slightly better adjusted sum of squared residuals of 49,034.8.

Diagonal factors can be used in conjunction with accident
year factors as in:

q(w,d) = f(d)g(w+d)h(w):



TESTING THE ASSUMPTIONS OF AGE-TO-AGE FACTORS 847

TABLE 10

ADDITIVE CHAIN LADDER WITH MULTIPLICATIVE DIAGONAL
EFFECTS

Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Diag 1–3 Diag 9
5,692.3 5,692.3 3,823.0 2,816.1 2,416.7 672.1 672.1 672.1 672.1 .5598 .6684

TABLE 11

ADDITIVE CHAIN LADDER WITH MULTIPLICATIVE DIAGONAL
& AY EFFECTS

Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Diag 1-3 Diag 9 AY 3-4
5,135.6 5,135.6 3,464.7 2,730.1 1,995.4 660.1 660.1 660.1 660.1 .6201 .7225 1.2672

As an example, a factor was added to the above model to repre-
sent accident years 3 and 4, and the 4th age term was forced to
be the average of the 3rd and 5th. The result is in Table 11.

The adjusted sum of squared residuals came down to
44,700.9, which is considerably better than the previous best-
fitting model, and almost twice as good as in the original BF
model, which in turn was almost twice as good as the chain lad-
der. It appears that accident year effects and diagonal effects are
significant in this data. The fit is shown as the last section of
Exhibit 1. The numerous examples fit to this data were for the
sake of illustration. Some models of the types discussed may still
fit better than the particular ones shown here.
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Abstract

This paper presents a set of tools for modeling and
combining correlated risks. Various correlation struc-
tures are generated using copula, common mixture, com-
ponent, and distortion models. These correlation struc-
tures are specified in terms of (i) the joint cumulative
distribution function or (ii) the joint characteristic func-
tion and lend themselves to efficient methods of aggre-
gation by using Monte Carlo simulation or fast Fourier
transform.
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1. INTRODUCTION

A good introduction for this research paper is the original
Request For Proposal (RFP) drafted by the CAS Committee on
Theory of Risk. In the following paragraph, the original RFP is
restated with minor modification.

Aggregate loss distributions are probability distribu-
tions of the total dollar amount of loss under one or
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a block of insurance policies. They combine the sep-
arate effects of the underlying frequency and severity
distributions. In the actuarial literature, a number of
methods have been developed for modeling and com-
puting the aggregate loss distributions (see Heckman
and Meyers [8], Panjer [21], and Robertson [23]). The
main issue underlying this research project is how to
combine aggregate loss distributions for separate but
correlated classes of business.

Assume a book of business is the union of dis-
joint classes of business each of which has an ag-
gregate distribution. These distributions may be given
in many different ways. Among other ways, they
may be specified parametrically, e.g., lognormal or
transformed beta with given parameters; they may be
given by specifying separate frequency and severity
distributions; e.g., negative binomial frequency and
Pareto severity with given parameters. The classes
of business are not independent. For this project, as-
sume that we are given a correlation matrix (or some
other easily obtainable measure of dependency) and
that the correlation coefficients vary among differ-
ent pairs of classes. The problem is how to cal-
culate the aggregate loss distribution for the whole
book.

In traditional actuarial theory, individual risks are usually as-
sumed to be independent, mainly because the mathematics for
correlated risks is less tractable. The CAS recognizes the impor-
tance of modeling and combining correlated risks and wishes
to enhance the development of tools and models that improve
the accuracy of the estimation of aggregate loss distributions for
blocks of insurance risks. The modeling of dependent risks has
special relevance to the current on-going project of Dynamic Fi-
nancial Analysis (DFA).
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In general, combining correlated loss variables requires
knowledge of their joint (multivariate) probability distribution.
However, the available data regarding the association between
loss variables is often limited to some summary statistics (e.g.,
correlation matrix). In the special case of a multivariate normal
distribution, the covariance matrix and the mean vector, as sum-
mary statistics, completely specify the joint distribution. For gen-
eral loss frequency or severity distributions, specific dependency
models have to be used in conjunction with summary statistics.
Given fixed marginal distributions and a correlation matrix, one
can construct infinitely many joint distributions. Ideally, models
for dependency structure should be easy to implement and re-
quire relatively few input parameters. As well, the choice of the
dependency model and its parameter values should reflect the
underlying correlation-generating mechanism.

In developing dependency models, we are aiming at simple
implementation by Monte Carlo simulation or by fast Fourier
transform. To this end, we will take the following approaches to
modeling and combining correlated risks:

Sections 2 to 5 serve as a background before major correlation
models are discussed in later parts of this paper. Section 2 re-
views some basic concepts for a discrete probability distribution,
including probability generating function and fast Fourier trans-
form (FFT). Section 3 reviews the aggregate loss model and the
FFT method of calculating aggregate loss distributions. Section 4
introduces some basic concepts and tools for multivariate vari-
ables, including the joint cumulative distribution function and the
joint probability generating function, which will form the basis
of the whole paper. Section 5 reviews some basic measures of de-
pendency, including (Pearson) correlation coefficients, Kendall’s
tau, and Spearman’s rank correlation coefficient.

Sections 6, 7, and 8 investigate various correlation structures
by using the concept of copulas (i.e., multivariate uniform dis-
tributions) as well as the associated simulation techniques. In
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particular, the Cook-Johnson copula and the normal copula lead
to efficient simulation techniques.

Sections 9, 10, and 11, with due consideration to the un-
derlying correlation-generating mechanism, present a variety of
dependency models by using common mixtures and common
shocks. These dependency models allow simple methods of ag-
gregation by Monte Carlo simulation or by fast Fourier trans-
form.

Section 12 presents a multivariate negative binomial model
which lends itself to an efficient FFT method of combining the
correlated risk portfolios. Section 13 gives an example of this
method.

For the reader’s convenience, an inventory of commonly used
univariate distributions is given in Appendix A, including both
discrete and continuous distributions. As a convention, X, Y,
and Z represent any random variables (discrete, continuous, or
mixed), while N and K represent only discrete variables defined
on non-negative integers.

2. PROBABILITY GENERATING FUNCTION AND FFT

This section introduces some basic concepts for discrete prob-
ability distributions.

2.1. Discrete Probability Distributions

Let X be a discrete random variable defined on non-negative
integers, 0,1,2, : : : . It may represent

! the number of claims arising from a specified block of insur-
ance contracts within a pre-specified time period (such as one
year); or

! the claim amount from a single claim count, with a pre-
specified convenient monetary unit (such as $1,000).
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The random variable X can be fully described by a probability
vector

fX = [fX(0),fX(1),fX(2), : : : ,fX(R)],

or simply
fX = [f0,f1,f2, : : : ,fR],

with fX(i) = fi = Pr"X = i#. In this representation, the maximal
possible value of X cannot exceed R. When R is finite, X has
infinitely many vector representations of the form

[f0,f1,f2, : : : ,fR,0,0, : : : ,0],

where a number of zeros are added to the right.

For a discrete variable X with a probability vector fX =
[f0,f1,f2, : : : ,fR], the probability generating function (p.g.f.) is de-
fined by a symbolic series:

PX(t) = f0 +f1t
1 +f2t

2 +f3t
3 + $ $ $+fRtR,

which is also the expected value of tX; i.e., E[tX].

EXAMPLE 2.1 If a discrete variable N has the following proba-
bilities

Pr"N = 0#= 0:5, Pr"N = 2#= 0:4, Pr"N = 5#= 0:1,
(2.1)

then it can be represented by a vector

fN = [0:5,0,0:4,0,0,0:1,0, : : : ,0],

and it has a probability generating function

PN(t) = 0:5+0:4t
2 +0:1t5:

EXAMPLE 2.2 If a discrete variable K has the following proba-
bilities

Pr"K = 1#= 0:4, Pr"K = 2#= 0:3, Pr"K = 3#= 0:3,
(2.2)
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then it can be represented by a vector

fK = [0,0:4,0:3,0:3,0, : : : ,0],

and it has a probability generating function

PK(t) = 0:4t+0:3t
2 +0:3t3:

2.2. Fast Fourier Transforms

First we need to review some basics of complex numbers. Let
i =
%&1 represent a symbol with the property that i2 =&1. The

complex multiplication is defined as

(a+bi)(c+di) = (ac&bd)+ (ad+ bc)i:
An important formula for complex numbers is the Euler formula

eiz = cos(z)+ isin(z):

Now we are ready to define the fast Fourier transform. The
following description of the FFT method draws on Klugman,
Panjer, and Willmot [18] and Brigham [1].

The fast Fourier transform is a one-to-one mapping of n points
into n points. For any n-point vector (f0,f1, : : : ,fn&1), the fast
Fourier transform is the mapping

FFT : f= [f0,f1, : : : ,fn&1] '( f̃= [f̃0, f̃1, : : : , f̃n&1]

defined by

f̃k =
n&1!
j=0

fj exp
"
2¼i
n
jk

#
, k = 0,1, : : : ,n&1: (2.3)

This one-to-one mapping has an inverse mapping:

fj =
1
n

n&1!
k=0

f̃k exp
"
&2¼i
n
kj

#
, j = 0,1, : : : ,n&1: (2.4)
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Note that the inverse fast Fourier transform (IFFT) is almost
identical to the FFT except for a sign change and a division by
n. In general, the FFT depends on the vector length n.

The fast Fourier transform in Equation 2.3 can also be viewed
as a simple matrix multiplication:

f̃=Wf=

$%%%%%%%%%%&

1 1 1 $ $ $ 1

1 ! !2
... !n&1

1 !2 !4
... !2(n&1)

...
...

...
...

...

1 !n&1 !2(n&1) $ $ $ !(n&1)2

'(((((((((()
f,

where ! = exp(2¼i=n).

The inverse FFT in Equation 2.4 is just W&1f̃, where

W&1 =
1
n

$%%%%%%%%%%&

1 1 1 $ $ $ 1

1 !&1 !&2
... !&(n&1)

1 !&2 !&4
... !&2(n&1)

...
...

...
...

...

1 !&(n&1) !&2(n&1) $ $ $ !&(n&1)2

'(((((((((()
:

EXAMPLE 2.3 Reconsider the vector associated with the proba-
bility distribution in Equation 2.1. If we use the 5-point vector
representation

f= [0:5,0,0:4,0,0,0:1],

the fast Fourier transform yields

f̃= [1,0:35&0:2598i,0:25+0:433i,
0:8,0:25&0:433i,0:35+0:2598i]:
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If we use the 6-point vector representation by (p)adding an ad-
ditional zero

f= [0:5,0,0:4,0,0,0:1,0],

the fast Fourier transform yields a different vector f̃ as

[1,0:3887&0:2925i,0:0495+0:1302i,0:8117+0:2345i,
0:8117&0:2345i,0:0495&0:1302i,0:3887+0:2925i]:

The fast Fourier transform is a “fast” computing algorithm
because of the following properties: a fast Fourier transform of
length n= 2r can be rewritten as the sum of two fast Fourier
transforms, each of length n=2 = 2r&1, the first consisting of the
even numbered points and the second the odd numbered points.

f̃k =
n&1!
j=0

fj exp
"
2¼i
n
jk

#

=
n=2&1!
j=0

f2j exp
"
2¼i
n
2jk

#
+
n=2&1!
j=0

f2j+1 exp
"
2¼i
n
(2j+1)k

#

=
m&1!
j=0

f2j exp
"
2¼i
m
jk

#
+exp

"
2¼i
n
k

#m&1!
j=0

f2j+1 exp
"
2¼i
m
jk

#
,

where m= n=2 = 2r&1. Hence

f̃k = f̃
a
k +exp

"
2¼i
n
k

#
f̃bk : (2.5)

Each of f̃ak and f̃
b
k can, in turn, be written as the sum of two

transforms of length m=2 = 2r&2. This can be continued succes-
sively.

The successive splitting of transforms into transforms of half
the length will result, after r times, in transforms of length 1.
Knowing the transform of length 1 will allow one to succes-
sively compose the transforms of length 2, 22, 23, : : : ,2r by using
Equation 2.5.
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Based on the above observations, the following comments are
in order:

! To fully utilize the FFT speed, it is better to use a probability
vector of length n= 2r. This can be easily done by adding a
number of zeros to the right.

! Thanks to the fact that many computer packages have already
programmed FFT as a built-in function, we don’t have to carry
out the above steps by ourselves. The main purpose of the
above paragraph is to illustrate why FFT is a fast algorithm.

It should be pointed out that many authors define the trans-
form in Equation 2.3 as a discrete Fourier transform. The fast
Fourier transform is simply a method for computing the discrete
Fourier transform. On the other hand, in some applications such
as Microsoft Excel, the term FFT is used to refer to the more
general discrete Fourier transform. To simplify the terminology,
this paper uses the term FFT for both the transform in Equation
2.3 and the special evaluation technique when n= 2r.

As a theoretical note, the FFT should be viewed as a dis-
cretized version of the Fourier transform or characteristic func-
tion:

Á(z) =
* )

&)
f(x)eizx dx:

The characteristic function maps a continuous probability density
function to a complex-valued continuous function, while the FFT
maps a vector of n values to a vector of n values of complex
numbers. This analog to characteristic functions is crucial to the
understanding of various FFT algorithms presented in this paper.

2.3. Convolution

Suppose that N and K are independent discrete random vari-
ables defined on non-negative integers. Let J =N+K represent
the sum of N and K. The probability distribution of J represents
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the convolution of the probability distributions of N and K and
is defined by

Pr"J = j#=
j!
n=0

Pr"N = n#Pr"K = j&n#, j = 0,1,2, : : : :

EXAMPLE 2.4 For the random variables defined in Equations 2.1
and 2.2, we have

Pr"J = 5#= Pr"N +K = 5#=
5!
n=0

Pr"N = n#Pr"K = 5& n#:

Since many of the terms are zero, we have

Pr"J = 5#= 0+0+Pr"N = 2#Pr"K = 3#+0+0+0 = 0:12:
Now let X represent a discrete claim severity distribution de-

fined on non-negative integers. For a fixed number of k claims,
the total claim amount has a distribution that can be evaluated
through repeated convolutions

f*kX (x) =
x!
y=0

f*(k&1)X (x& y)fX(y), x= 1,2, : : : , (2.6)

with the convention that

f*0(0) = 1:

We call f*k the kth fold convolution of f.

2.3.1. Convolution by probability generating function

Note that

PN+K(t) = E[t
N+K] = E[tN $ tK] = E[tN]E[tK] = PN(t) $PK(t)

due to the independence of N and K. In other words, the prob-
ability generating function of the sum N +K is the product of
PN(t) and PK(t).
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EXAMPLE 2.5 For the random variables defined in Equations
2.1 and 2.2, in terms of probability generating function we
have

PJ (t) = PN(t) $PK(t) = (0:5+0:4t2 +0:1t5)(0:4t+0:3t2 +0:3t3):
After expansion we get

PJ (t) = 0:20t+0:15t
2 +0:31t3 +0:12t4

+0:12t5 +0:04t6 +0:03t7 +0:02t8:

The coefficients of tj give the probability that J = j; e.g.,
Pr"J = 5#= 0:12.

2.3.2. Convolution by FFT

In terms of a characteristic function we have

ÁN+K(t) = E[e
it(N+K)] = E[eitN $ titK]

= E[titN]E[titK] = ÁN(t) $ÁK(t)
due to the independence of N and K. In other words, the
characteristic function of the sum N +K is the product of N
and K.

Because of this relation in terms of characteristic func-
tion, FFT can also be used to perform convolutions. The
FFT for the sum of two independent discrete random vari-
ables is the product of the FFTs of two individual vari-
ables, provided that enough zeros are added (or padded) to
each individual probability vector. Note that FFT is a one-
to-one mapping from n points to n points, which requires
that input and output vectors be the same length. On the
other hand, a longer vector is generally required for a dis-
crete representation of the sum variable than for each compo-
nent, since the sum variable will take on larger values with
non-zero probability. If there is not enough room in the dis-
crete vector, then the tail probabilities for the sum will wrap
around and reappear at the beginning. Therefore, it is crucial
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to add enough zeros to the right of each individual probability
vector.

2.3.3. FFT Algorithm of convolution

If f= [f0,f1, : : : ,fm&1] and g= [g0,g1, : : : ,gk&1] represent two
probability vectors, then the following process can be used to
evaluate their convolution:

! Pad zeros to the given vectors f and g such that each is of
length n+m+ k.

! Apply FFT to each of the vectors: f̃= FFT(f) and g̃= FFT(g).
! Take the product (complex number multiplication), element by
element, of the two vectors: h̃= f̃ $ g̃.

! Apply IFFT to h̃ to recover a probability vector, as the convo-
lution of f and g.

3. AGGREGATE LOSS MODELS AND THE FFT METHOD

In evaluating insurance losses for a book of business, the fre-
quency/severity approach is the most flexible method, where the
estimated mean frequency and mean severity are used to esti-
mate the average aggregate loss. In order to facilitate a dynamic
analysis of the underlying risk, the aggregate loss distribution is
needed to quantify the inherent variability in the aggregate loss
cost. In such situations, in addition to an estimate of the mean
frequency and mean severity, probability distributions are needed
to describe the possible variations in the number of claims and
in the dollar amount of each individual claim. The aggregate loss
distribution combines the effects of both the claim frequency and
claim severity distributions.

This section introduces the basics of aggregate loss models
and how FFT can be used to calculate the aggregate loss distri-
bution.
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3.1. Claim Frequency Distributions

In modeling the frequency of random processes in many fields
of applications, the Poisson distribution is usually the starting
point, although the parameter uncertainty regarding the Poisson
mean often leads to a negative binomial frequency distribution
(see Appendix A.3). Actuaries have found that in most cases
the claim frequency can be modeled by the Poisson or negative
binomial distributions.

! A Poisson distribution with mean ¸ > 0 is defined by a prob-
ability function:

Pr"N = n#= e&¸ ¸
n

n!
, n= 0,1,2, : : : :

The Poisson (¸) distribution has a probability generating func-
tion

PN(t) = E[t
N] = e¸(t&1),

with mean and variance both equal to ¸; i.e., E[N] = Var[N]
= ¸.

! A negative binomial distribution, with parameters ®,¯ > 0, has
a probability function:

pn = Pr"N = n#=
¡ (®+n)
¡ (®)n!

"
1

1+¯

#®" ¯

1+¯

#n
,

n= 0,1,2, : : : :

It has a probability generating function

PN(t) = [1&¯(t&1)]&®,
with E[N] = ®¯ and Var[N] = ®¯(1+¯). In general, for a neg-
ative binomial distribution, the variance exceeds the mean. The
variance to mean ratio is

Var[N]
E[N]

= 1+¯:
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Some actuaries consistently use the variance to mean ratio to
specify a negative binomial distribution. Heckman and Mey-
ers [8] used the contagion parameter, c, to specify a negative
binomial distribution, where

Var[N] = E[N](1+ c $E[N]):

3.2. Claim Severity Distributions

Models for claim severity are very diverse. In many cases, a
theoretical loss distribution is used. A list of the most commonly
used theoretical distributions is given in Appendix A, includ-
ing Pareto, gamma, Weibull and lognormal distributions. Among
the commonly used two-parameter distributions, the ordering of
heaviness (from most heavy to least heavy) of tails is as follows
(see Wang [25]):

Distribution Ranking

Pareto 1
lognormal 2

exponential inverse Gaussian 3
inverse Gaussian 4

Weibull 5
gamma 6

If a large data set is available, an empirical loss distribution
can be used.

Once a severity distribution is selected, in order for fast com-
puter implementation, it is necessary to construct a discrete sever-
ity distribution on multiples of a convenient monetary unit h, the
span. If a theoretical continuous distribution is employed, the fol-
lowing methodology can be used to approximate it by a discrete
distribution.
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3.2.1. The rounding method

Suppose that we are given a continuous distribution with cu-
mulative distribution FX(t) = Pr"X , t#. Choose a span h as ap-
propriate (such that the number of points are sufficient but not ex-
cessive). Let fj denote the probability placed at jh, j = 0,1,2, : : : .
Then set

f0 = FX

"
h

2

#
,

fj = FX

"
jh+

h

2

#
&FX

"
jh& h

2

#
, j = 1,2, : : : :

(3.1)

This method splits the probability between (j+1)h and jh and
assigns it to j+1 and j. This, in effect, rounds all amounts to the
nearest convenient monetary unit, h, the span of the distribution.
For example, the span h can be chosen as every $1000, $5000, or
$10,000. As the monetary unit of measurement becomes small,
the discrete distribution function needs to approach the true dis-
tribution function.

While the main advantage of this rounding method is its sim-
plicity, it has a drawback of not preserving the mean severity of
the continuous distribution.

3.2.2. The matching-mean method

To avoid the drawback of mismatch of mean severity, one can
use a method that forces the matching of the mean.

For a severity distribution with cumulative distribution func-
tion FX , we first evaluate the limited expected values at multiples
of h:

E[X;j $h] =
* j$h

0
[1&FX(u)]du, for j = 1,2, : : : :
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Then we calculate the probability vector by:

f0 = Pr"X = 0 $h#= 1&E[X;h]=h, (3.2)

fj = Pr"X = j $ h#
= (2E[X;j $ h]&E[X; (j&1) $h]&E[X; (j+1) $ h])=h,

j = 1,2, : : : , (3.3)

By doing so, the mean severity of the continuous distribution
is preserved in the discrete distribution. One can verify this by
taking the sum of fi, i= 0,1,2, : : : .

Recall that by taking the second-order derivative of the limited
expected value function we get a probability density function. In
the above method, we first obtain a discrete vector of limited
expected values; by taking the second-order finite difference, we
get a discrete probability function.

3.3. The Aggregation of Frequency and Severity

The aggregate losses are represented as a sum, Z, of a random
number, N, of individual payment amounts (X1,X2, : : : ,XN).

The random sum

Z = X1 +X2 + $ $ $+XN (3.4)

has a probability distribution

fZ(x) = Pr(Z = x)

=
)!
n=0

Pr(N = n)Pr(Z = x -N = n)

=
)!
n=0

Pr(N = n)f*nX (x), (3.5)

where fX(x) = Pr(X = x) is the common probability distribution
of the Xjs.
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A direct evaluation by Equation 3.5 of the aggregate loss dis-
tribution is usually very complicated and time consuming, even
with today’s fast-speed computers. The next subsection intro-
duces the FFT technique for computing the aggregate loss dis-
tribution.

3.3.1. Computing aggregate loss distribution by FFT

In the aggregate loss model in Equation 3.4, we have in terms
of characteristic function:

ÁZ(t) = E[e
it(Z)] = EN[E[e

it(X1+$$$+XN ) -N]]
= EN[ÁX(t)

N] = PN(ÁX(t)),

where PN is the probability generating function of N. This re-
lation in terms of characteristic function suggests the following
FFT algorithm for calculating the aggregate loss distribution:

1. Choose n= 2r for some integer r; n is the number of
points desired in the distribution fZ(x) of aggregate
losses. In other words, the aggregate loss distribution
has negligible probability outside the range [0,n]. This
range should be determined before one knows the exact
aggregate loss distribution. Knowledge of the mean and
standard deviation of the aggregate loss amount should
be helpful.

2. Transform the severity probability distribution from a
continuous one to a discrete one. The selection of
the span h should depend upon the probable range of
the severity distribution, as well as the intended ap-
plication (central range or the extreme right tail). Let
(f0,f1, : : : ,fm&1) represent the discrete claim severity dis-
tribution.

Add zeros to the given severity probability vector so
that it is of length n. We denote the padded discrete sever-
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ity distribution by

fX = [fX(0),fX(1), : : : ,fX(n&1)]:

3. Apply FFT to the severity probability vector: f̃X =
FFT(fX).

4. Apply the probability generating function of the fre-
quency, element by element, to the FFT of the severity
vector: f̃Z = PN(f̃X).

5. Apply IFFT to recover the aggregate loss distribution:
fZ = IFFT(f̃X).

As a simple example of the above algorithm, let severity be
the degenerate distribution $1 with certainty, and let frequency
be negative binomial. Thus the aggregate distribution is the neg-
ative binomial. By choosing the number of points, n, the discrete
severity distribution is an n-point vector (0,1,0, : : : ,0). The FFT
of the severity vector gives a vector of roots of unity. One can
check that the FFT algorithm closely reproduces the negative bi-
nomial distribution if the number of points used is sufficiently
large.

The FFT and IFFT algorithms are available in many computer
software packages including Microsoft Excel. This makes the
implementation of the FFT method widely accessible.

3.4. Techniques for Combining Multiple Lines of Business

3.4.1. Combining two lines of business by convolution

Suppose that we are combining two lines of business:

! Line 1 has a claim frequency N and a discrete claim severity X.
! Line 2 has a claim frequency K and a discrete claim severity Y.
! Assume that N, X, K, and Y are mutually independent.
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! We are interested in the probability distribution of the aggre-
gate losses for the combined portfolio:

Z = (X1 + $ $ $+XN)+ (Y1 + $ $ $+YK):

Under the above assumptions, we have

ÁZ(t) = PN(ÁX(t)) $PK(ÁY(t)):
This relation in terms of characteristic function suggests the fol-
lowing FFT procedure:

Let g̃ and h̃ represent the FFT of the aggregate loss distribu-
tions for Line 1 and Line 2, respectively:

g̃= PN(f̃X), h̃= PK(f̃Y):

Before applying IFFT to each of g̃ and h̃, we take the complex
product (element by element) of g̃ and h̃. Then apply the IFFT
to the product g̃ $ h̃ to recover the aggregate loss distribution for
Line 1 and Line 2 combined:

fZ = IFFT(g̃ $ h̃):
Under this approach, the aggregate claim frequency is the

convolution of individual claim frequency distributions. If each
individual line has a negative binomial frequency distribution, the
aggregate frequency distribution obtained by convolution may no
longer be a negative binomial distribution.

3.4.2. The Poisson model

Here is a basic Poisson model for combining different lines
of business:

Assume that we are combining k lines of business. For j =
1,2, : : : ,k, assume that Line j has a Poisson frequency with mean
¸j and a severity distribution Fj . We assume that losses from
different lines of business are independent.
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In terms of characteristic function we have

ÁZ(t) =
k+
j=1

PNj
(ÁXj (t))

=
k+
j=1

e
¸j (ÁXj

(t)&1)

= e¸(ÁX(t)&1),

where ¸= ¸1 + $ $ $+¸k, and

ÁX(t) =
¸1
¸
ÁX1(t) + $ $ $+

¸k
¸
ÁXk
(t):

Therefore, the aggregate losses for the k lines of business
combined have a Poisson frequency with mean

¸= ¸1 +¸2 + $ $ $+¸k (3.6)

and a severity distribution that is a weighted average of each
individual severity distribution:

F(x) =
¸1
¸
F1(x)+

¸2
¸
F2(x)+ $ $ $+

¸k
¸
Fk(x): (3.7)

In summary, under the assumption of mutual independence
between lines and a Poisson frequency model for each line, the
aggregate loss distribution fork lines can be calculated as if you
had a single line, provided that the frequency and severity are
adjusted using Equations 3.6 and 3.7.

Next, we must consider the following complications: (i) the
presence of parameter risk and (ii) possible correlation between
lines. These two factors are often interrelated.

As an alternative to the Poisson model, the negative binomial
distribution is commonly used to adjust for parameter uncer-
tainty. Recall that a negative binomial distribution can be ob-
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TABLE 1

FREQUENCY/SEVERITY DISTRIBUTIONS

Mean Frequency Var/Mean Severity
Line Frequency Ratio Distribution

1 E(N1) 1+¯1 F1
2 E(N2) 1+¯2 F2
...

...
...

...

k E(Nk) 1+¯k Fk

tained by assuming a gamma distribution for the unknown Pois-
son mean (see Appendix A.3).

With the presence of parameter uncertainty, we have to re-
evaluate the independence assumption between lines. The com-
mon parameter uncertainty may have a similar effect (i.e., over-
or under-estimate) on our estimates of individual line mean fre-
quencies. In such cases, the individual claim frequencies may
be correlated as a result of the common estimation error (due
to the same underlying data quality, variations of the under-
writing and claim handling practices of an insurer from the
industry average, or bias in the trend and development factors
used).

3.4.3. Negative binomial model

In general, consider k lines of business with the frequency/
severity distributions shown in Table 1.

Regardless of which specific frequency model is used, the
following general relationships hold:

! The mean of the aggregate frequency is the sum of each indi-
vidual line mean frequency:

E[Nagg] = E[N1]+E[N2]+ $ $ $+E[Nk]: (3.8)
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! The total variance of the aggregate frequency can be calculated
by:

Var[Nagg] = Var

,- k!
i=1

Ni

./= k!
i=1

Var[Ni]+ 2
!
i<j

Cov[Ni,Nj]:

(3.9)

A simple and direct approach to incorporating claim count
parameter uncertainty is to assume a negative binomial distri-
bution for the aggregate frequency for all lines combined. With
this aggregate approach, the negative binomial parameters can be
readily estimated from E[Nagg] and Var[Nagg] in Equations 3.8
and 3.9. The severity distribution for all lines combined can be
calculated as the weighted average of individual severity distri-
butions:

F(x) =
E[N1]
E[Nagg]

F1(x)+
E[N1]
E[Nagg]

F2(x) + $ $ $+
E[Nk]
E[Nagg]

Fk(x):

(3.10)

Here is the rationale for this approach: Suppose that after ap-
plying trend factors and development factors to losses by line of
business, we blend all the trended ultimate losses (or in a reinsur-
ance application, losses in an excess layer) from all lines com-
bined. By considering these consolidated losses from all lines
of business, the empirical aggregate frequency has a mean as
given in Equation 3.8, and the empirical aggregate severity has
a severity distribution as in Equation 3.10. The only difference
between the aggregate and individual approaches is the follow-
ing: The individual approach assumes that each line of business
has a negative binomial frequency, while the aggregate approach
assumes that the aggregate frequency for all lines combined has
a negative binomial distribution.

One major advantage of this approach is its simplicity. By
simply adjusting the variance to mean ratio in the aggregate neg-
ative binomial frequency, one can easily take account of the pa-
rameter uncertainty for each line, as well as correlations between
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lines. Suppose that we have the following correlation matrix be-
tween Njs: $%%%%%&

½11 ½12 $ $ $ ½1k

½21 ½22 $ $ $ ½2k
...

...
...

...

½k1 ½k2 $ $ $ ½kk

'((((() ,

then we can calculate the overall variance to mean ratio using
Equation 3.9 and the relation

Cov[Ni,Nj] = ½ij
0
Var[Ni]

0
Var[Nj]:

The above method may not be theoretically exact if each in-
dividual line (instead of the aggregate of all lines) has a negative
binomial frequency, as assumed in the Request for Proposal by
the CAS Committee on Theory of Risk. Sections 11 and 12 dis-
cuss some exact methods for combining individual lines, each
having a negative binomial frequency.

3.5. Other Methods for Calculating the Aggregate Loss
Distributions

Over the past two decades there have developed a number of
methods for calculation of the aggregate loss distribution from
given frequency and severity distributions.

1. Panjer’s [21] recursive algorithm is easy to explain and
implement. In Appendix C we give a brief introduction
of this method.

2. The Heckman–Meyers [8] method utilizes direct inver-
sion of characteristic functions.

3. Robertson [23] presented a FFT method using piecewise
uniform severity distributions, instead of a discrete sever-
ity distribution.
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4. The proposed FFT method in this paper uses a discrete
severity distribution that has, after padding zeros, n= 2r

points. This is to exploit the fast speed of the FFT algo-
rithm and to facilitate spreadsheet calculations. Another
advantage of the FFT method is that it allows a direct
extension to multivariate variables, as we will see later
in this paper.

5. The recursive method may encounter some numerical
problems such as overflow/underflow with a large ex-
pected claim count. On the other hand, the Heckman–
Meyers method performs well with large claim frequen-
cies. Panjer and Willmot [22] discuss ways of dealing
with large frequency problems for the recursive meth-
od. For the FFT method, the problem with a large
claim count is setting the span small enough to cap-
ture features of the severity distribution, but large
enough that n times span gives enough room for the
aggregate distribution. For divisible frequency distri-
butions like the Poisson and negative binomial, one
can get around the problem by building the aggregate
distribution in pieces (say a small number of claims at
a time) and adding the resulting distributions by con-
volution.

4. SOME TOOLS FOR MULTIVARIATE DISTRIBUTIONS

4.1. Review of Univariate Case

Let X be a non-negative random variable of discrete, con-
tinuous, or mixed type. Let fX(x) be the probability (density)
function of X; i.e.,

fX(x) =

123
Pr"X = x#, if X is discrete
d

dx
FX(x), if X is continuous.
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! The probability generating function (p.g.f.) of X is defined by

PX(t) = E[t
X] =

45
fX(x)t

x if X is discrete6
fX(x)t

x dx if X is continuous.

! The moment generating function (m.g.f.) of X is defined by
MX(t) = E[e

tX] = PX(e
t):

! The characteristic function (ch.f.), also called Fourier trans-
form, is defined by

ÁX(t) = E[e
itX] = PX(e

it) =MX(it),

where i =
%&1 is the imaginary unit.

! It holds that PX(1) =MX(0) = ÁX(0) = 1, and

E[X] =
7
d

dt
PX(t)

8
t=1
=
7
d

dt
MX(t)

8
t=0
=&i

7
d

dt
ÁX(t)

8
t=0
:

4.2. Multivariate Framework

For a set of random variables (X1, : : : ,Xk), let fX1,:::,Xk be their
joint probability (density) function; i.e.,

fX1,:::,Xk
(x1, : : : ,xk) =19293

Pr"X1 = x1, : : : ,Xk = xk#, if the Xj are discrete

@k

@x1 $ $ $@xk
FX1,:::,Xk

(x1, : : : ,xk), if the Xj are continuous.

For any subset of "X1,X2, : : : ,Xk#, their (joint) probabil-
ity distribution is called a marginal probability distribution of
fX1,X2,:::,Xk

. As special cases, fX1 is a univariate marginal distribu-
tion of fX1,X2,:::,Xk , and fX1,X2 is a bivariate marginal distribution
of fX1,X2,:::,Xk .

As standard tools for multivariate random variables (X1, : : : ,
Xk), the joint probability generating function, joint moment gen-
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erating function, and joint characteristic function are defined as
follows (see Johnson et al., [16, pp. 2–12]):

PX1,:::,Xk
(t1, : : : , tk) = E[t

X1
1 $ $ $ t

Xk
k ];

MX1,:::,Xk (t1, : : : , tk) = E[e
t1X1+$$$+tkXk ] = PX1,:::,Xk (e

t1 , : : : ,etk );

ÁX1,:::,Xk (t1, : : : , tk) = E[e
i(t1X1+$$$+tkXk)] = PX1,:::,Xk (e

it1 , : : : ,eitk ):

Note that in terms of the probability (density) function we have

PX1,:::,Xk (t1, : : : , tk) =:5
(x1,:::,xk)

fX1,:::,Xk (x1, : : : ,xk)t
x1
1 $ $ $ txkk , discrete case6)

&) $ $ $
6)
&)fX1,:::,Xk (u1, : : : ,uk)t

u1
1 $ $ $ tukk du1 $ $ $duk, continuous case.

The joint probability generating function PX1,:::,Xk or the joint
characteristic function ÁX1,:::,Xk completely specifies a multivari-
ate distribution. Equivalent results are obtained either in terms
of probability generating function or in terms of characteristic
function.

! The probability generating function or characteristic function
for the univariate marginal distribution FXj can be obtained by

PXj
(tj) = PX1,:::,Xj ,:::,Xk (1, : : : ,1, tj ,1, : : : ,1),

ÁXj
(tj) = ÁX1,:::,Xj ,:::,Xk (0, : : : ,0, tj,0, : : : ,0):

! If the variables X1, : : : ,Xk are mutually independent, then

PX1,:::,Xk (t1, : : : , tk) =
k+
j=1

PXj (tj):

! If two sets of variables "X1, : : : ,Xm# and "Y1, : : : ,Yn# are inde-
pendent, then

PX1,:::,Xm,Y1,:::,Yn(t1, : : : , tm,s1, : : : ,sn)

= PX1,:::,Xm(t1, : : : , tm)PY1,:::,Yn(s1, : : : ,sn):
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! The covariances can be evaluated by Cov[Xi,Xj] = E[XiXj]&
E[Xi]E[Xj] with

E[XiXj] =
@2

@ti @tj
PX1,:::,Xm

(1, : : : ,1)

=& @2

@ti @tj
ÁX1,:::,Xm

(0, : : : ,0):

This can be seen from the expression

@2

@ti @tj
PX1,:::,Xk

(t1, : : : , tk)

=
!
xixjfX1,:::,Xk (x1, : : : ,xk)t

x1
1 $ $ $ t

xi&1
i $ $ $ txj&1j $ $ $ txkk :

! For a discrete multivariate distribution, the joint probability
function is

fX1,:::,Xk
(x1, : : : ,xk) =

@x1+$$$+xk
(@t1)

x1 $ $ $(@tk)xk
PX1,:::,Xk

(0, : : : ,0)
k+
i=1

1
xi!
:

4.3. Aggregation of Correlated Variables

THEOREM 1 For any k correlated variables X1, : : : ,Xk with joint
probability generating function PX1,:::,Xk and joint characteristic
function ÁX1,:::,Xk , the sum Z = X1 + $ $ $+Xk has a probability gen-
erating function and a characteristic function:

PZ(t) = PX1,:::,Xk (t, : : : , t), ÁZ(t) = ÁX1,:::,Xk (t, : : : , t):

Proof PZ(t) = E[t
X1+$$$+Xk ] = E[tX1 $ $ $ tXK ] = PX1,:::,Xk (t, : : : , t).

If we know the joint characteristic function of the k corre-
lated variables X1, : : : ,Xk, it is straightforward to get the char-
acteristic function for their sum ÁZ(t) = ÁX1,:::,Xk (t, : : : , t). Then
the probability distribution of Z can be obtained by inverse
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Fourier transform. In actual computer implementation, a discrete
version (FFT method) can be used. The relation ÁX1+$$$+Xk (t) =
ÁX1,:::,Xk

(t, : : : , t), along with its associated FFT algorithm, can be
used to

! combine correlated risk portfolios if we let Xi represent the
aggregate loss distributions for each individual risk portfo-
lio,

! evaluate the total claim number distribution if we let Xi rep-
resent the claim frequency for each individual risk portfolio,
or

! combine individual claims if we let Xi represent the claim size
for each individual risk.

4.4. Aggregation of Risk Portfolios with Correlated Frequencies

Consider the aggregation of two correlated risk portfolios:

Z = (X1 + $ $ $+XN)+ (Y1 + $ $ $+YK),
where N and K are correlated, while the pair (N,K) is indepen-
dent of the claim sizes X and Y, and the Xis and Yjs are mutually
independent. We have

PZ(t) = E[t
Z] = E[t(X1+$$$+XN )+(Y1+$$$+YK )]

= EN,KE[t
(X1+$$$+Xn)+(Y1+$$$+Ym) -N = n, K =m]

= EN,K[PX(t)
NPY(t)

K]

= PN,K(PX(t),PY(t)):

In terms of characteristic function we have

ÁZ(t) = PN,K(ÁX(t),ÁY(t)): (4.1)
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5. MEASURES OF CORRELATION

5.1. Pearson Correlation Coefficients

For random variables X and Y, the (Pearson) correlation co-
efficient, defined by

½(X,Y) =
Cov[X,Y]
¾[X]¾[Y]

,

always lies in the range [&1,1]. The Pearson correlation coef-
ficient is also called a linear correlation coefficient. Note that
½(X,Y) = 1 if and only if X = aY+b for some constants a > 0
and b. If there is no linear relationship between X and Y, the
permissible range of ½(X,Y) is further restricted.

EXAMPLE 5.1 Consider the case that logX .N(¹,1) and logY .
N(¹¾,¾2). The maximum correlation between X and Y is ob-
tained when the deterministic relation Y = X¾ holds. Thus, for
random variables with these fixed marginal distributions we have
[see Appendix A.4.2]

max"½(X,Y)#= exp(¾)& 10
exp(¾2)&1%e&1

:

Observe that

! max"½(X,Y)#= 1 when ¾ = 1 (i.e., X = Y),
! max"½(X,Y)# decreases to zero as ¾ increases to ), and
! max"½(X,Y)# decreases to 1=%e&1 as ¾ decreases to 0.
For a set of k random variables X1, : : : ,Xk, the correlation ma-

trix $%%&
½(X1,X1) $ $ $ ½(X1,Xk)

...
...

...

½(Xk,X1) $ $ $ ½(Xk,Xk)

'(() , &1, ½(Xi,Xj), 1,
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is always positive definite, as it is symmetric and diagonally dom-
inant.

5.2. Covariance Coefficients

For non-negative random variables X and Y, we define the
covariance coefficient as

!(X,Y) =
Cov[X,Y]
E[X]E[Y]

= ½(X,Y)
¾[X]
E[X]

¾[Y]
E[Y]

= ½(X,Y)CV(X)CV(Y),

where CV refers to the coefficient of variation. Note that the per-
missible range of !(X,Y) depends on the shape of the marginal
distributions.

EXAMPLE 5.2 Reconsider the variables X and Y in Example 5.1.
It can be shown that

max"!(X,Y)#= e¾&1:
Observe that

! max"!(X,Y)#= e&1 when ¾ = 1 (i.e., X = Y),
! max"!(X,Y)# increases to infinity as ¾ increases to infinity,
and

! max"!(X,Y)# decreases to zero as ¾ decreases to zero.
For k non-negative random variables, X1, : : : ,XK , we define

the matrix of covariance coefficients as$%%&
!(X1,X1) $ $ $ !(X1,Xk)

...
...

...

!(Xk,X1) $ $ $ !(Xk,Xk)

'(() :
One should exercise caution when choosing a parameter value

for !(X,Y), as its permissible range is sensitive to the marginal
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distributions. A practical method for obtaining the maximal pos-
itive and negative covariances between risks X and Y is given in
Equations 5.1 and 5.2.

5.3. Frechet Bounds, Comonotonicity, and Maximal Correlation

Now consider the bivariate random variables (X,Y). Let

FX,Y(x,y) = Pr"X , x,Y , y#, SX,Y(x,y) = Pr"X > x, Y > y#
be the joint cumulative distribution function and the joint sur-
vivor function of (X,Y), respectively. Note that

FX,Y(x,)) = FX(x),
FX,Y(),y) = FY(y), for &)< x,y <)
SX,Y(x,y) = 1&FX(x)&FY(y)+FX,Y(x,y) /= 1&FX,Y(x,y):

If X and Y are independent, then FX,Y(x,y) = FX(x) $FY(y) and
SX,Y(x,y) = SX(x) $ SY(y). In general, the joint cumulative distri-
bution function F(x,y) is constrained from above and below.

LEMMA 1 For any bivariate cumulative distribution function FX,Y
with given marginal distributions FX and FY, we have

max[FX(x)+FY(y)&1,0], FX,Y(x,y),min[FX(x),FY(y)]:

Proof The first inequality results from the fact that S(x,y)+
0, and the second inequality can be proven using P(A0B),
min[P(A),P(B)].

The upper bound

Fu(x,y) = min[FX(x),FY(y)]

and the lower bound

Fl(x,y) = max[FX(x)+FY(y)&1,0]
are called Frechet bounds.



AGGREGATION OF CORRELATED RISK PORTFOLIOS 879

Closely associated with Frechet bounds is the concept of co-
monotonicity. The upper Frechet bound is reached if X and Y
are comonotonic. The lower Frechet bound is reached if X and
&Y are comonotonic.

DEFINITION 1 Two random variables X and Y are comonotonic if
there exists a random variable Z such that

X = u(Z), Y = v(Z), with probability one,

where the functions u and v are non-decreasing.

Recall that X and Y are positively perfectly correlated if and
only if Y = aX +b, a > 0. This linear condition is quite restric-
tive. Comonotonicity is an extension of the concept of perfect
correlation to random variables with non-linear relations. Con-
sider the following excess reinsurance arrangement of risk Z:
the ceding company retains the first portion of any loss, and the
reinsurer pays the excess portion. Putting it mathematically, the
payments of the ceding company and the reinsurer will be

X =

4
Z, Z , d
d, Z > d,

Y =

4
0, Z , d
Z& d, Z > d

respectively. Note that X and Y are not perfectly correlated since
one cannot be written as a function of the other. However, since
X and Y are always non-decreasing functions of the original risk
Z, they are comonotonic. They are bets on the same event, and
neither of them is a hedge against the other.

5.4. Comonotonicity and Monte Carlo Simulation

The concept of comonotonicity can also be explained in terms
of Monte Carlo simulation by inversion of random uniform num-
bers.

Assume that X has a cumulative distribution function FX and
a survivor function SX(x) = 1&FX(x). We define F&1X and S&1X as
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follows:

F&1X (q) = min"x : FX(x)+ q#, 0< q < 1

S&1X (q) = min"x : SX(x), q#, 0< q < 1:

Note that F&1X is non-decreasing, S&1X is non-increasing, and
S&1X (q) = F

&1
X (1& q):

The traditional Monte Carlo simulation method is based on
the following result.

LEMMA 2 For any random variable X and any random variable
U which is uniformly distributed on (0,1), X and F&1X (U) have the
same cumulative distribution function.

Proof P"F&1X (U), x#= P"U , FX(x)#= FX(x).

A Monte Carlo simulation of a random variable X can be
achieved by first drawing a random uniform number u from U.
Uniform(0,1) and then inverting u by x= F&1X (u).

In order to simulate comonotonic risks X and Y, the same
sample of random uniform numbers can be used in an inversion
by FX and FY, respectively. By contrast, if X and Y are indepen-
dent, two independent samples of random uniform numbers have
to be used in an inversion by FX and FY, respectively.

For given marginal distributions FX and FY, the maximal pos-
sible correlation exists when X and Y are comonotonic. Based
on the Monte Carlo method of generating comonotonic risks, we
can calculate the maximal possible covariance between two risks
with given marginal probability distributions by:

1
n

n!
j=1

F&1X

"
j

n+1

#
F&1Y

"
j

n+1

#

&
$&1
n

n!
j=1

F&1X
"

j

n+1

#')$&1
n

n!
j=1

F&1Y
"

j

n+1

#') (5.1)
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for some large number n. The maximal negative correlation exists
when X and &Y are comonotonic, in which case an approxima-
tion of the covariance can be obtained from

1
n

n!
j=1

F&1X

"
j

n+1

#
F&1Y

"
n+1& j
n+1

#

&
$&1
n

n!
j=1

F&1X

"
j

n+1

#')$&1
n

n!
j=1

F&1Y

"
n+1& j
n+1

#')
(5.2)

for some large number n.

As we have seen, the permissible range for the Pearson cor-
relation coefficient can be quite limited and subject to change
under a transformation of the random variable. To overcome the
shortcomings of the (linear) correlation coefficient, we can use
distribution-free measures of correlation such as Kendall’s tau
and Spearman’s rank correlation coefficient.

5.5. Kendall’s Tau and Spearman’s Rank Correlation
Coefficient

Kendall’s tau is a nonparametric correlation measure defined
as

¿ = ¿(X,Y)

= Pr"(X2&X1)(Y2&Y1)+ 0#&Pr"(X2&X1)(Y2&Y1)< 0#,
in which (X1,Y1) and (X2,Y2) are two independent realizations of
a joint distribution.

Another nonparametric correlation measure is Spearman’s
rank correlation coefficient:

RankCorr(X,Y) = 12E
;
(FX(X)&0:5)(FY(Y)&0:5)

<
:
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Both Kendall’s tau and Spearman’s rank correlation coeffi-
cient satisfy the following properties (see for example, Genest
and Mackay [7]):

! &1, ¿ , 1; &1,RankCorr, 1,
! if X and Y are comonotonic, then ¿ = 1 and RankCorr = 1,
! if X and &Y are comonotonic, then ¿ =&1 and RankCorr =
&1,

! if X and Y are independent, then ¿ = 0 and RankCorr = 0,
! ¿ is invariant under strictly monotone transforms, that is, if
f and g are strictly increasing (or decreasing) functions, then
¿(f(X),g(Y)) = ¿(X,Y) and

RankCorr(f(X),g(Y)) = RankCorr(X,Y),

! if FX and FY are the cumulative distribution functions of
two continuous random variables, we have ¿(FX(X),FY(Y)) =
¿(X,Y) and RankCorr(FX(X),FY(Y)) = RankCorr(X,Y). Thus,
Kendall’s tau and rank correlation coefficient are often mea-
sured in terms of uniform random variables over [0,1]1 [0,1].
Kendall’s tau can be calculated, with due attention to singu-

larity, as

¿(X,Y) = 4
* 1

0

* 1

0
FX,Y(x,y)d

2FX,Y(x,y)&1:

Assume that we have available a random sample of bivariate
observations, (Xi,Yi), i= 1, : : : ,k. A non-parametric estimate of
Kendall’s tau is

¿̂(X,Y) =
2

k(k&1)
!
i<j

sign[(Xi&Xj)(Yi&Yj)],

where sign[z] equals 1, 0, or &1 when z is positive, zero, or
negative, respectively.
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TABLE 2

A SAMPLE OF INCURRED LOSSES AND ALAE

Claimant # Amount of Incurred Losses Amount of ALAE

98001 50 5.0
98002 65 4.0
98003 28 0.0
98004 75 6.5
98005 38 4.5

Average 51.2 4
Std. Dev. 17.15 2.168

EXAMPLE 5.3 Suppose that we have a set of data for incurred
losses and allocated loss adjusted expense as shown in Table 2.

The Pearson correlation coefficient can be estimated by:

(50&51:2)(5:0&4:0)+ $ $ $+(38&51:2)(4:5&4:0)
5(17:15)(2:168)

= 0:78:

Kendall’s tau can be estimated by

¿̂(X,Y) =
2

k(k&1)
!
i<j

sign[(Xi&Xj)(Yi&Yj)] = 0:6:

To calculate the rank correlation coefficient, we first rank each
claim by the ordering of losses and ALAE as shown in Table 3.

The Spearman rank correlation coefficient can be calculated
as the ordinary Pearson correlation coefficient between the ranks
of the losses and ALAE:

(3&3)(4& 3)+ $ $ $+(2&3)(3& 3)
5
%
2
%
2

= 0:7:

The choice between Kendall’s tau and the rank correlation
coefficient depends on their relative simplicity for the intended
application. Some commonly used random number generators
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TABLE 3

RANK ORDERING OF LOSSES AND ALAE

Claimant # Rank of Incurred Losses Rank of ALAE

98001 3 4
98002 4 2
98003 1 1
98004 5 5
98005 2 3

Median 3 3

Average 3 3
Std. Dev.

%
2

%
2

(e.g., Palisade @Risk, which is a Microsoft Excel add-in) have
implemented a method from Iman and Conver [12] to induce a
given rank correlation structure.

6. THE CONCEPT OF COPULA

Recall that a Monte Carlo simulation of a random variable X
can be achieved by first drawing a random uniform number u
from U .Uniform(0,1) and then inverting u by x= F&1X (u). In a
similar way, a Monte Carlo simulation of k variables, (X1, : : : ,Xk),
usually starts with k uniform random variables, (U1, : : : ,Uk). If
the variables (X1, : : : ,Xk) are independent (or correlated), then
we need k independent (or correlated) uniform random variables
(U1, : : : ,Uk). For a set of given marginal distributions, the corre-
lation structure of the variables (X1, : : : ,Xk) is completely deter-
mined by the correlation structure of the uniform random vari-
ables, (U1, : : : ,Uk).

DEFINITION 2 A copula is defined as the joint cumulative distri-
bution function of k uniform random variables

C(u1, : : : ,uk) = Pr"U1 , u1, : : : ,Uk , uk#:
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For any set of arbitrary marginal distributions, the formula

FX1,:::,Xk
(x1, : : : ,xk) =C(FX1 (x1), : : : ,FXk (xk)) (6.1)

defines a joint cumulative distribution function with marginal
cumulative distributions FX1 , : : : ,FXk . The formula

SX1,:::,Xk
(x1, : : : ,xk) = C(SX1(x1), : : : ,SXk (xk)) (6.2)

defines a joint survivor function with marginal survivor function
SX1 , : : : ,SXk .

The multivariate distributions given by Equations 6.1 and 6.2
are usually different, although they both have the same set of
Kendall’s tau and the same set of rank correlation coefficients.

7. THE COOK–JOHNSON FAMILY OF DISTRIBUTIONS

Let (U1, : : : ,Uk) be a k-dimensional uniform distribution with
support on the hypercube (0,1)k and having the joint cumulative
distribution function

F(®)U1,:::,Uk
(u1, : : : ,uk) =

123
k!
j=1

u
&1=®
j & k+1

=>?
&®

, (7.1)

where uj 2 (0,1), j = 1, : : : ,k, and ® > 0. This multivariate uni-
form distribution has a Kendall’s tau:

¿(Xi,Xj) = ¿(Ui,Uj) =
1

1+2®
:

On the other hand, for this family of multivariate distributions,
there is no simple analytic form for the rank correlation coeffi-
cient.

Cook and Johnson [3] studied the family of multivariate uni-
form distributions given by Equation 7.1. They showed that

lim
®(0

F(®)U1,:::,Uk
(u1, : : : ,uk) = min[u1, : : : ,uk],
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and

lim
®()F

(®)
U1,:::,Uk

(u1, : : : ,uk) =
k+
j=1

uj:

Thus, the correlation approaches its maximum (i.e., comono-
tonicity) when ® decreases to zero, and the correlation ap-
proaches zero when ® increases to infinity.

Cook and Johnson also gave the following simple simula-
tion algorithm for the multivariate uniform distribution given by
Equation 7.1:

STEP 1 Let Y1, : : : ,Yk be independent and each have an exponen-
tial (1) distribution.

STEP 2 Let Z have a gamma(®,1) distribution.

STEP 3 Then the variables

Uj = [1+Yj=Z]
&®, j = 1, : : : ,k, (7.2)

have a joint cumulative distribution function given by Equation
7.1.

For a set of arbitrary marginal distributions, FX1 , : : : ,FXk , we
can define a joint cumulative distribution function by

FX1,:::,Xk (x1, : : : ,xk) =

123
k!
j=1

FXj (xj)
&1=®& k+1

=>?
&®

: (7.3)

Alternatively, we can define a joint survivor function by

SX1,:::,Xk
(x1, : : : ,xk) =

123
k!
j=1

SXj
(xj)

&1=®& k+1
=>?
&®

: (7.4)

Note that Kendall’s tau for this multivariate distribution is also
1=(1+2®), which is determined by the underlying copula and is
invariant under monotone transforms.
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Consider the task of aggregating k risk portfolios, (X1, : : : ,Xk),
where each Xj may represent the aggregate loss amount for the
jth risk portfolio. If we assume that (X1, : : : ,Xk) have a multivari-
ate distribution given by Equation 7.3, a simulation of (X1, : : : ,Xk)
can be easily implemented by:

STEP 4 Invert the (U1, : : : ,Uk) in Equation 7.2 using (F
&1
X1
, : : : ,

F&1Xk ).

Alternatively, if we assume that (X1, : : : ,Xk) have a multivari-
ate distribution given by Equation 7.4, a simulation of (X1, : : : ,Xk)
can be easily implemented by:

STEP 4* Invert the (U1, : : : ,Uk) in Equation 7.2 using (S
&1
X1
, : : : ,

S&1Xk ).

In the multivariate uniform distribution given by Equation 7.1,
all correlations are positive. Negative correlations can be accom-
modated by applying the transforms U*i = 1&Ui to some, but not
all, uniform variables in Equation 7.2.

In this dependency model, no restriction is imposed on the
marginal distributions, FXj or SXj , j = 1, : : : ,k. However, the cor-
relation parameters are quite restricted in the sense that the
Kendall’s taus have to be the same for any pair of risks. To over-
come this restriction in the correlation parameters, the normal
copula permits arbitrary correlation parameters, ¿ij = ¿(Xi,Xj). It
is explained in the next section.

8. THE NORMAL COPULA AND MONTE CARLO SIMULATION

In general, the modeling and combining of correlated risks are
most straight-forward if the correlated risks have a multivariate
normal distribution. In this section, we will use the multivariate
normal distribution to construct the normal copula, and then use
it to generate multivariate distributions with arbitrary marginal
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distributions. The normal copula enjoys much flexibility in the
selection of correlation parameters. As well, it lends itself to
simple Monte Carlo simulation techniques.

Assume that (Z1, : : : ,Zk) have a multivariate normal distribu-
tion with standard normal marginal distribution Zj .N(0,1) and
a positive definite correlation matrix

§ =

$%%%%%&
1 ½12 $ $ $ ½1k

½21 1 $ $ $ ½2k
...

...
...

½k1 ½k2 $ $ $ 1

'((((() ,

where ½ij = ½ji is the correlation coefficient between Zi and Zj.
Then (Z1, : : : ,Zk) have a joint probability density function:

f(z1, : : : ,zk) =
1@

(2¼)n-§- exp
A
&1
2z
3§&1z

B
,

z= (z1, : : : ,zk): (8.1)

From the correlation matrix § we can construct a lower tri-
angular matrix

B=

$%%%%%&
b11 0 $ $ $ 0

b21 b22 $ $ $ 0
...

...
...

bk1 bk2 $ $ $ bkk

'((((() ,

such that § = BB3. In other words, the correlation matrix §
equals the matrix product of B and its transpose B3. The elements
of the matrix B can be calculated from the following Choleski’s
algorithm (see Burden and Faires [2, Section 6.6]; Johnson [17,
Section 4.1]):

bij =
½ij &

5j&1
s=1 bisbjs0

1&5j&1
s=1 b

2
js

, 1, j , i, n, (8.2)
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with the convention that
50
s=1($) = 0. It is noted that:

! For i > j, the denominator of Equation 8.2 equals bjj.
! The elements of B should be calculated from top to bottom
and from left to right.

The following simulation algorithm can be used to gener-
ate multivariate normal variables with a joint probability density
function given by Equation 8.1. See Herzog [9], and Fishman
[5, pp. 223–224].

STEP 1 Construct the lower triangular matrix B= (bij) by Equa-
tion 8.2.

STEP 2 Generate a column vector of independent standard nor-
mal variables Y= (Y1, : : : ,Yk)

3.

STEP 3 Take the matrix product Z= BY of B and Y. Then Z=
(Z1, : : : ,Zk)

3 has the required joint probability density function
given by Equation 8.1.

Let ©($) represent the cumulative distribution function of the
standard normal distribution:

©(z) =
* z

&)
1%
2¼
e&t

2=2dt:

Then ©(Z1), : : : ,©(Zk) have a multivariate uniform distribution
with Kendall’s tau (e.g., Frees and Valdez [6, pp. 25])

¿(©(Zi),©(Zj)) = ¿(Zi,Zj) =
2
¼
arcsin(½ij),

and (Spearman) rank correlation coefficient

RankCorr(©(Zi),©(Zj)) = RankCorr(Zi,Zj) =
6
¼
arcsin

"
½ij
2

#
,

where arcsin(x) is an inverse trigonometric function such that
sin(arcsin(x)) = x.
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Let’s state this result more formally as a theorem due to its
importance.

THEOREM 2 Assume that (Z1, : : : ,Zk) have a multivariate normal
joint probability density function given by Equation 8:1, with cor-
relation coefficient ½ij = ½(Zi,Zj). Let H(z1, : : : ,zk) be their joint
cumulative distribution function. Then

C(u1, : : : ,uk) =H(©
&1(u1), : : : ,©

&1(uk))

defines a multivariate uniform cumulative distribution function—
called the normal copula.

For any set of given marginal cumulative distribution functions
F1, : : : ,Fk, the variables

X1 = F
&1
1 (©(Z1)), : : : ,Xk = F

&1
k (©(Zk))

have a joint cumulative distribution function

FX1,:::,Xk
(x1, : : : ,xk) =H(©

&1(F1(x1)), : : : ,©
&1(Fk(xk)))

with marginal cumulative distribution functions F1, : : : ,Fk. The mul-
tivariate variables (X1, : : : ,Xk) have Kendall’s tau

¿(Xi,Xj) = ¿(Zi,Zj) =
2
¼
arcsin(½ij)

and Spearman’s rank correlation coefficients

RankCorr(Xi,Xj) = RankCorr(Zi,Zj) =
6
¼
arcsin

"
½ij
2

#
:

Although the normal copula does not have a simple analytical
expression, it lends itself to a very simple Monte Carlo simulation
algorithm.

Suppose that we are given a set of correlated risks (X1, : : : ,Xk)
with marginal cumulative distribution functions FX1 , : : : ,FXk and
Kendall’s tau ¿ij = ¿(Xi,Xj) or rank correlation coefficient
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RankCorr(Xi,Xj). If we assume that (X1, : : : ,Xk) can be described
by the normal copula in Theorem 2, then the following Monte
Carlo simulation procedure can be used:

STEP 1 Convert the given Kendall’s tau or rank correlation coef-
ficient to our usual measure of correlation for multivariate normal
variables:

½ij = sin
"
¼

2
¿ij

#
= 2sin

"
¼

6
RankCorr(Xi,Xj)

#
,

and construct the lower triangular matrix B= (bij) by Equation
8.2.

STEP 2 Generate a column vector of independent standard nor-
mal variables Y= (Y1, : : : ,Yk)

3.

STEP 3 Take the matrix product of B and Y: Z= (Z1, : : : ,Zk)
3 =

BY.

STEP 4 Set ui =©(Zi) for i= 1, : : : ,k.

STEP 5 Set Xi = F
&1
Xi
(ui) for i= 1, : : : ,k.

Theorem 2 and the associated simulation algorithm provide
a powerful tool for generating correlated variables. The normal
copula is very flexible as it allows any (symmetric, positive def-
inite) matrix of rank correlation coefficients (or alternatively,
Kendall’s tau). The use of this algorithm implicitly assumes that
the underlying variables can be described by a normal copula.
Of course, there are many correlation structures that differ from
a normal copula, for example, the Cook–Johnson distribution in
Equation 7.1. In many practical situations, we only have some in-
dication of the correlation parameters without knowing the exact
underlying multivariate distribution. In such situations, a normal
copula leads to a simple method of simulating the correlated
variables.
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Appendix B gives an overview of various other families of
copulas and the associated Monte Carlo simulation techniques.

9. COMMON MIXTURE MODELS

In many situations, individual risks are correlated since they
are subject to the same claim generating mechanism or are in-
fluenced by changes in the common underlying economic/legal
environment. For instance, in property insurance, risk portfolios
in the same geographic location are correlated, where individual
claims are contingent on the occurrence and severity of a nat-
ural disaster (hurricane, tornado, earthquake, or severe weather
condition). In liability insurance, new court rulings or social in-
flation may set new trends that affect the settlement of all liability
claims for one line of business.

One way of modeling situations where the individual risks
"X1,X2, : : : ,Xn# are subject to the same external mechanism is to
use a secondary mixing distribution. The uncertainty about the
external mechanism is then described by a structure parameter,
µ, which can be viewed as a realization of a random variable £.
The aggregate losses of the risk portfolio can then be seen as a
two-stage process: First the external parameter £= µ is drawn
from the distribution function, F£, of £. Next, the claim fre-
quency (or severity) of each individual risk Xi (i= 1,2, : : : ,n) is
obtained as a realization from the conditional distribution func-
tion, FXi-£(xi - µ), of Xi -£.

9.1. Common Poisson Mixtures

Consider k discrete random variables N1, : : : ,Nk. Assume that
there exists a random parameter £ such that

(Nj -£= µ). Poisson(µ¸j), j = 1, : : : ,k,

where the variable £ has a probability density function ¼(µ) and
a moment generating functionM£. For any given £ = µ, the vari-
ables (Nj - µ) are independent and Poisson (¸jµ) distributed with
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a conditional joint probability generating function

PN1,:::,Nk -£(t1, : : : , tk - µ) = E[t
N1
1 $ $ $ t

Nk
k -£= µ]

= eµ[¸1(t1&1)+$$$¸k(tk&1)]:

However, unconditionally, N1, : : : ,Nk are correlated as they de-
pend upon the same random parameter £. The unconditional
joint probability generating function for N1, : : : ,Nk is

PN1,:::,Nk (t1, : : : , tk) = E£[E[t
N1
1 $ $ $ t

Nk
k -£]]

=
* )

0
eµ[¸1(t1&1)+$$$+¸k(tk&1)]¼(µ)dµ

=M£(¸1(t1&1)+ $ $ $+¸k(tk &1)):
It has marginal probability generating functions PNj (tj) =
M£(¸j(tj &1)) with E[Nj] = ¸jE[£].
Note that

Cov[Ni,Nj] = E£Cov[Ni -£,Nj -£] +Cov[E[Ni -£],E[Nj-£]]
= Cov[£¸i,£¸j] = ¸i¸jVar[£]:

The covariance coefficient between Ni and Nj (i /= j) is

!(Ni,Nj) =
Cov[Ni,Nj]

E[Ni]E[Nj]
=
Var[£]
"E[£]#2 ,

where ! is the same for all i and j.

EXAMPLE 9.1 If £ has a gamma(®,1) distribution with moment
generating function M£(z) = (1& z)&®, then

PN1,:::,Nk
(t1, : : : , tk) = [1&¸1(t1&1)&$$ $ &¸k(tk& 1)]&®

(9.1)

defines a multivariate negative binomial with marginal distribu-
tions NB(®,¸j) and covariance coefficients !(Ni,Nj) = 1=®.
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EXAMPLE 9.2 If£ has an inverse Gaussian distribution, IG(¯,1),
with a moment generating function M£(z) = e

1=¯[1&
%
1&2¯z], then

PN1,:::,Nk
(t1, : : : , tk)

= exp
:
1
¯
& 1
¯

0
1&2¯[¸1(t1&1)+ $ $ $+¸k(tk& 1)]

C
defines a multivariate Poisson inverse Gaussian with marginal
distributions P-IG(¯¸j ,¸j) and covariance coefficients !(Ni,Nj)
= ¯.

Consider combining k risk portfolios. Assume that the fre-
quencies Nj , j = 1, : : : ,k, are correlated via a common Poisson-
gamma mixture and have a joint probability generating function
given by Equation 9.1. If the severities Xj , j = 1, : : : ,k, are mu-
tually independent and independent of the frequencies, there is
a simple method of combining the aggregate loss distributions.
Given ¸= ¸1 + $ $ $+¸k and

PX(t) =
¸1
¸
PX1(t)+ $ $ $

¸k
¸
PXk
(t),

then

PN1,:::,Nk
(PX1(t), : : : ,PXk (t)) = [1&¸(PX(t)&1)]

&®:

In other words, the total loss amount for the combined risk
portfolios has a compound negative binomial distribution with
the severity distribution being a weighted average of individual
severity distributions. In this case, dependency does not compli-
cate the computation; in fact, it simplifies the calculation. It is
simpler than combining independent compound negative bino-
mial distributions.

In this multivariate Poisson-gamma mixture model, the k
marginal distributions, negative binomial (®,¸j), are required to
have the same parameter ®. This requirement limits its applica-
bility in combining risk portfolios; in many practical cases the
frequencies, negative binomial (®j ,¸j), have different parameter
values, ®j . Section 10 and Section 12 overcome this limitation by
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extending the Poisson-gamma mixture model to allow arbitrary
negative binomial frequencies.

Similar arguments can be made about the Poisson inverse
Gaussian distributions.

9.2. Common Exponential Mixtures

Consider k continuous random variables X1, : : : ,Xk. Assume
that there exists a random parameter £ such that (Xj -£ = µ) is
exponentially distributed with parameter ¸jµ and survivor func-
tion

SXj -£(tj - µ) = Pr"Xj > tj -£ = µ#= e
&µ¸jtj , j = 1, : : : ,k,

where the variable £ has a probability density function ¼(µ) and
a moment generating function M£.

For any given £ = µ, the variables (Xj - µ), j = 1, : : : ,k, are
conditionally independent and have a conditional joint survivor
function

SX1,:::,Xk -£(t1, : : : , tk - µ) = Pr"X1 > t1, : : : ,Xk > tk -£ = µ#
= e&µ[¸1t1+$$$+¸ktk]:

However, unconditionally, X1, : : : ,Xk are correlated as they de-
pend upon the same random parameter £. The unconditional
joint survivor function for X1, : : : ,Xk is

SX1,:::,Xk
(t1, : : : , tk) =

* )

0
e&µ[¸1t1+$$$+¸ktk]¼(µ)dµ

=M£(&¸1t1&$$ $ &¸ktk):

EXAMPLE 9.3 If £ has a gamma(®,1) distribution with moment
generating function M£(z) = (1& z)&®, this defines a family of
multivariate Pareto distributions

SX1,:::,Xk
(t1, : : : , tk) = [1+¸1t1 + $ $ $+¸ktk]&®,

with marginal distributions being Pareto(®,1=¸j).



896 AGGREGATION OF CORRELATED RISK PORTFOLIOS

EXAMPLE 9.4 If£ has an inverse Gaussian distribution with mo-
ment generating function M£(z) = e

1=¯[1&
%
1&2¯z], this defines a

family of multivariate exponential inverse Gaussian distributions

SX1,:::,Xk
(t1, : : : , tk) = exp

7
1
¯
& 1
¯

0
1+2¯(¸1t1 + $ $ $+¸ktk)

8
,

with marginal distributions being exponential inverse Gaussian,
E-IG(¯¸j ,¸j).

Now we consider the aggregation of k individual claim
amounts. Suppose that the k individual claim amounts X1, : : : ,Xk
are identically distributed with Xi . Pareto(®,¯). But they are
correlated by a common exponential-gamma mixture with a joint
survivor function

SX1,:::,Xk
(t1, : : : , tk) =

7
1+

1
¯
(t1 + $ $ $+ tk)

8&®
:

Then the sum X1 + $ $ $+Xk has a Pareto(®,n¯) distribution.
This is because, for any given £ = µ, (X1 + $ $ $+Xk - µ). ex-
ponential(µ=n).

Alternatively, this common exponential mixture model can
be obtained by applying the Cook–Johnson copula to k iden-
tical marginal survivor functions, Pareto(®,¯). In other words,
the Cook–Johnson copula can be viewed as an extension of the
common exponential mixture model.

10. EXTENDED COMMON POISSON MIXTURE MODELS

The common Poisson mixture model in the previous section
has a simple correlation structure and is easy to use. However,
it is quite restricted in the sense that it does not permit arbitrary
parameter values in the marginal distributions. In this section we
extend the common Poisson mixture model so that the marginal
distributions may have arbitrary parameter values. This extended
model permits simple implementation by Monte Carlo simula-
tion.
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Suppose that there exist random variables (£1, : : : ,£k) such
that for a given set of values (£1 = µ1, : : : ,£k = µk), the condi-
tional variables (N1, : : : ,Nk) are independent Poisson(µj) variables
with

PN1,:::,Nk -(£1,:::,£k)(t1, : : : , tk - µ1, : : : ,µk)

=
k+
j=1

PNj (tj - µj) =
k+
j=1

eµj(tj&1),

where M£1,:::,£k (t1, : : : , tk) = E£1,:::,£k [e
t1£1+$$$+tk£k ] is the joint mo-

ment generating function of (£1, : : : ,£k).

The unconditional joint probability generating function is

PN1,:::,Nk (t1, : : : , tk) = E(£1,:::,£k)PN1,:::,Nk (t1, : : : , tk -£1, : : : ,£k)
=M£1,:::,£k ((t1& 1), : : : , (tk& 1)):

By taking the first and second order partial derivatives of this
joint probability generating function at (1, : : : ,1), we obtain

E[Ni] = E[£i] and Cov[Ni,Nj] = Cov[£i,£j]:

We observe a one-to-one correspondence between the correlation
structures of the variables (N1, : : : ,Nk) and the mixing parameters
(£1, : : : ,£k).

Now consider the case that £j . gamma(®j,¯j) and thus
Nj .NB(®j ,¯j), with arbitrary parameter values, ®j,¯j > 0. We
further assume that the variables£j , j = 1, : : : ,k, are comonotonic
and thus can be simulated by using the same set of uniform ran-
dom numbers. For i /= j, the covariance Cov[£i,£j] can be nu-
merically calculated by using Equation 5.1. For this dependency
model, we have a simple Monte Carlo simulation algorithm:

STEP 1 Generate a uniform number, u, from U .Uniform(0,1).

STEP 2 Let µj = F
&1
£j
(u), where£j . gamma(®j,¯j), j = 1, : : : ,k.
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STEP 3 Simulate (N1, : : : ,Nk) from k independent Poisson(µj)
variables, j = 1, : : : ,k.

If the ®js are the same, we get the common Poisson mixture
model in Example 9.1.

11. COMPONENT MODELS

Consider the aggregation of different lines of business. For a
multi-line insurer, the correlation between lines of business may
differ from one region to another. Therefore, it may be more
appropriate to divide each line into components and model the
correlation separately for each component (e.g., by geographic
region). There may exist higher correlations between lines in a
high catastrophe risk region where the presence of the catastro-
phe risk may generate a common shock or a common mixture.

Note that many families of frequency and severity distribu-
tions are infinitely divisible. A family of distributions is infinitely
divisible if any member can be obtained as an independent sum
of other members in the same family. Let X 4Y represent the
sum of two independent random variables and FY4FY represent
the convolution of two probability distributions. We have

! Poisson(¸1)4Poisson(¸2) = Poisson(¸1 +¸2)
! negative binomial: NB(®1,¯)4NB(®2,¯) = NB(®1 +®2,¯)
! Poisson inverse Gaussian:

P-IG(¯,¹1)4P-IG(¯,¹2) = P-IG(¯,¹1 +¹2)
! gamma(®1,¯)4gamma(®2,¯) = gamma(®1 +®2,¯)
! inverse Gaussian: IG(¯,¹1)4 IG(¯,¹2) = IG(¯,¹1 +¹2).

Infinitely divisible distributions are especially useful for di-
viding risks into independent components. Consider k infinitely
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divisible risks Xj(®j), j = 1, : : : ,k, with ®j as the divisible param-
eter.

Consider a decomposition:

X1(®1)=X11(®11)4$$ $4X1n(®1n)
...

...
...

Xk(®k) =Xk1(®k1)4$$ $4Xkn(®kn)
, ®js + 0: (11.1)

Then we can generate correlation structures component by com-
ponent:

PX1,:::,Xk =
n+
s=1

QX1s,:::,Xks ,

where the joint probability generating function QX1s,:::,Xks for the
sth components can be modeled by using a common mixture, a
common shock (described below), or by assuming independence,
as appropriate. It can be verified that for the component model
in Equation 11.1 we have

Cov[Xi,Xj] =
n!
s=1

Cov[Xis,Xjs]:

11.1. Common Shock Models

Let Xj = Xja4Xjb, j = 1, : : : ,k, be a decomposition into two
independent components

PX1,:::,Xk
(t1, : : : , tk) = E[t

X1a
1 $ $ $ tXkak ]E[t

X1b
1 $ $ $ tXkbk ]:

If X1a = $ $ $= Xka = X0, we obtain
PX1,:::,Xk

(t1, : : : , tk) = E[(t1 $ $ $ tk)X0 ]E[tX1b1 $ $ $ tXkbk ]:

In particular, if the Xibs are independent, we have Cov[Xi,Xj] =
Var[X0]. The only source of correlation comes from the common
shock variable X0.
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EXAMPLE 11.1 Consider the aggregation of two correlated com-
pound Poisson distributions:

! Portfolio 1. The claim frequency N1 has a Poisson(¸1) dis-
tribution, and the claim severity X has a probability function
f1(x).

! Portfolio 2. The claim frequency N2 has a Poisson(¸2) dis-
tribution, and the claim severity Y has a probability function
f2(y).

! Assume that X, Y are independent and both are independent
of (N1,N2). However, N1 and N2 are correlated via a common
shock model

N1 =N04N1b, N2 =N04N2b,
where N0 . Poisson(¸0), N1b . Poisson(¸1&¸0), and N2b .
Poisson(¸2&¸0).

In this common shock model (N1,N2) have a joint probability
generating function:

PN1,N2(t1, t2) = E[t
N1
1 t

N2
2 ]

= exp[¸1(t1&1)+¸2(t2& 1)+¸0(t1&1)(t2&1)],
with Cov[N1,N2] = Var[X0] = ¸0. It can be shown that the aggre-
gate losses for the combined risk portfolio,

S = (X1 + $ $ $+XN1) + (Y1 + $ $ $+YN2),
have a compound Poisson(¸1 +¸2&¸0) distribution with a se-
verity probability function

f(z) =
¸1&¸0

¸1 +¸2&¸0
f1(z)+

¸2&¸0
¸1 +¸2&¸0

f2(z)

+
¸0

¸1 +¸2&¸0
f1*2(z),
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where f1*2 represents the convolution of f1 and f2. Thus, existing
methods can be applied.

This common shock model can be easily extended to any
higher dimension (k > 2). For illustrative purposes, we now give
an example involving three frequency variables.

EXAMPLE 11.2 The joint probability generating function

PN1,N2,N3 (t1, t2, t3)

= exp

123
3!
i=1

¸ii(ti&1)+
!
i<j

¸ij(titj &1)+¸123(t1t2t3& 1)
=>?

(11.2)

defines a multivariate Poisson distribution with marginal distri-
butions

Nj . Poisson
$&¸123 + 3!

i=1

¸ij

') , j = 1,2,3,

and for i /= j, Cov[Ni,Nj] = ¸ij +¸123.
We let

! Kii . Poisson(¸ii), for i= 1,2,3,
! Kij . Poisson(¸ij), for 1, i < j , 3,
! Kij =Kji, for 1, i,j , 3,
! K123 . Poisson(¸123),
! Nj = K1j 4K2j 4K3j 4K123, for j = 1,2,3.
Then the resulting (N1,N2,N3) have a joint probability gener-

ating function given by Equation 11.2. In this model, K123 repre-
sents the common shock among all three variables (N1,N2,N3). In
addition, for i /= j, Kij =Kji represents the extra common shock
between Ni and Nj.
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Note that we can easily simulate the correlated frequencies,
(N1,N2,N3), component by component.

Subject to scale transforms, the common shock multivariate
Poisson model can be extended to gamma variables.

EXAMPLE 11.3 Consider two variables X1 . gamma(®1,¯1) and
X2 . gamma(®2,¯2). Suppose there is a decomposition

X1 = ¯1(X04X1b), X2 = ¯2(X04X2b),
where X0 . gamma(®0,1) with ®0 ,min"®1,®2#, X1b . gamma
(®1&®0,1) and X2b . gamma(®2&®0,1). Then Cov[X1,X2] =
¯1¯2Var[X0] = ®0¯1¯2, and

X1 +X2 = (¯1 +¯2)X04¯1X1b4¯2X2b:

11.2. Peeling Method

Recall that the common Poisson-gamma mixture requires that
the marginal distributions Nj .NB(®,¸j) must have the same pa-
rameter value ®. Now we shall illustrate that, by using the com-
ponent method, we can construct correlated multivariate negative
binomials with arbitrary parameters (®j,¸j).

Suppose that we are given k marginal negative binomial dis-
tributions:

N1 .NB(®1,¸1), : : : ,Nk .NB(®k,¸k):

Model 1. Let ®0 ,min"®1, : : : ,®k#, and let each Nj (j = 1, : : : ,k)
have a decomposition:

Nj =Nja4Njb, Nja .NB(®0,¸j), Njb .NB(®j &®0,¸j):
Note that the Njas have the same parameter ®0, and thus can be
modeled by a common Poisson-gamma mixture

PN1a,:::,Nka
(t1, : : : , tk) = "1&¸1(t1&1)&$$ $ &¸k(tk &1)#&®0 :
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If we assume that the Njbs are independent, then (N1, : : : ,Nk) have
a joint probability generating function

PN1,:::,Nk
(t1, : : : , tk) = "1&¸1(t1& 1)& $$ $&¸k(tk &1)#&®0

1
k+
j=1

"1&¸j(tj &1)#®0&®j :

Note that

Cov[Ni,Nj] = ®0¸i¸j =
®0
®i®j

E[Ni]E[Nj]:

Simple methods exist for combining the individual aggregate loss
distributions, provided that the severities are mutually indepen-
dent and independent of (N1, : : : ,Nk).

Model 2. Assume that the ®j are in an ascending order, ®1 ,
$$ $ , ®k. The decomposition

NB(®j,¸j) = NB(®1,¸j)4NB(®2&®1,¸j)
4$$ $ 4NB(®j &®j&1,¸j)

can be used in conjunction with common mixture models to gen-
erate the following joint probability generating function:

PN1,:::,Nk
(t1, : : : , tk) = "1&¸1(t1&1)&$$ $ &¸k(tk &1)#&®1

1"1&¸2(t2&1)&$$ $ &¸k(tk &1)#®1&®2
1$$ $1"1&¸k(tk& 1)#®k&1&®k :

It can be verified that the marginal univariate probability gen-
erating function is PNj (tj) = [1&¸j(tj &1)]

&®j and the marginal
bivariate probability generating function is

PNi,Nj
(ti, tj) = "1&¸i(ti&1)&¸j(tj & 1)#&®i

1"1&¸j(tj &1)#®i&®j , i < j,
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with
Cov[Ni,Nj] = ®i¸i¸j =

1
®j
E[Ni]E[Nj]:

11.3. Mixed Correlation Models

Assume that the joint probability generating functions PX1,:::,Xk
and QX1,:::,Xk have the same set of marginal probability generating
functions PX1 , : : : ,PXk . Then the mixed joint probability generating
function

qPX1,:::,Xk (t1, : : : , tk)+ (1&q)QX1,:::,Xk (t1, : : : , tk), (0< q < 1),

also has marginal probability generating functions PX1 , : : : ,PXk .
For this mixed joint probability generating function, we have

Cov[Xi,Xj] = (1& q)CovP[Xi,Xj]+qCovQ[Xi,Xj],
where CovP and CovQ represent the covariances implied by the
joint probability generating functions P and Q, respectively.

A mixture of joint probability generating functions can be
used to represent a set of possible scenarios. For instance, we
can let P represent the joint probability generating function under
the scenario of major catastrophe occurrence, Q correspond to
zero catastrophe occurrence, and q represent the probability of
the catastrophe occurrence.

12. THE DISTORTION METHOD

Let X1, : : : ,Xk be k random variables (discrete, continuous,
or multivariate variables) with probability generating functions
PX1(t1), : : : ,PXk (tk), respectively. If the Xjs are mutually indepen-
dent, we have

PX1,:::,Xk
(t1, : : : , tk) =

k+
j=1

PXj
(tj):

Let g be a strictly increasing function over [0,1] with g(1) = 1
and whose inverse function is g&1. In a quite loose sense, we
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assume that g 5PX1,:::,Xk specifies a joint probability generating
function with marginal probability generating functions g 5PXj ,
(j = 1, : : : ,k). By assuming that the distorted joint probability
generating function g 5PX1,:::,Xk has non-correlated marginal prob-
ability generating functions, namely,

g 5PX1,:::,Xk (t1, : : : , tk) =
k+
j=1

g 5PXj (tj),

a correlation structure is introduced to the original joint proba-
bility generating function:

PX1,:::,Xk
(t1, : : : , tk) = g

&1
123

k+
j=1

g 5PXj (tj)
=>? :

For mathematical convenience we introduce h(x) = lng(x) which
is a strictly increasing function over [0,1] with h(1) = 0. In terms
of h, the above equation can be expressed as

PX1,:::,Xk (t1, : : : , tk) = h
&1
123

k!
j=1

h 5PXj (tj)
=>? : (12.1)

Note that Equation 12.1 may not define a proper multivari-
ate distribution, as the only constraint on the joint probability
(density) function is that it sums to one. It defines a proper mul-
tivariate distribution if and only if the joint probability (density)
function, fX1,:::,Xk , is non-negative everywhere.

Recall that for a discrete distribution,

fX1,:::,Xk
(x1, : : : ,xk) =

@x1+$$$+xk
(@t1)

x1 $ $ $ (@tk)xk
PX1,:::,Xk

(0, : : : ,0)
k+
i=1

1
xi!
,

which can also be derived using multivariate Taylor series expan-
sion. Thus, PX1,:::,Xk defines a proper joint probability distribution
if and only if its partial derivatives at t1 = $ $ $= tk = 0 are all non-
negative.



906 AGGREGATION OF CORRELATED RISK PORTFOLIOS

THEOREM 3 Suppose that Equation 12:1 defines a joint probabil-
ity generating function; we have

Cov[Xi,Xj] =&
:
h33(1)
h3(1)

+1
C
E[Xi]E[Xj]:

Proof We take the second order partial derivative, @2=@ti @tj,
(i /= j), on both sides of the equation

h 5PX1,:::,Xk (t1, : : : , tk) =
k!
j=1

h 5PXj (tj):

We obtain zero by taking the second order partial derivative,
@2=@ti @tj, (i /= j), on the right-hand side. Thus we should also
get zero for the second order partial derivative on the left-hand
side:

0 =
@2

@ti@tj

A
h 5PX1,:::,Xk

B
=
@

@ti

4
h3(PX1,:::,Xk )

@PX1,:::,Xk
@tj

D
,

which further yields that

h33(PX1,:::,Xk )
@PX1,:::,Xk
@ti

@PX1,:::,Xk
@tj

+h3(PX1,:::,Xk )
@2PX1,:::,Xk
@ti@tj

= 0:

Setting the values ts = 1 for s= 1, : : : ,k, we get

h33(1)E[Xi]E[Xj]+h
3(1)E[XiXj] = 0:

This family of multivariate distributions has a symmetric
structure in the sense that !ij is the same for all i /= j. It would
be suitable for combining risks in the same class, where any two
individual risks share the same covariance coefficient.

Questions remain as to which distortion function to use and
whether the distortion method in Equation 12.1 defines a proper
multivariate distribution. In general, the feasibility of the distor-
tion method depends on the marginal distributions.

The next section shows how the distortion method is inher-
ently connected to the common Poisson-mixture models.
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12.1. Links with the Common Poisson Mixtures

Reconsider the common Poisson mixture model in Section 9:
for any given µ, (Nj -£ = µ), j = 1, : : : ,k, are conditionally inde-
pendent Poisson variables with mean ¸jµ. If the random param-
eter £ has a moment generating function M£, then (N1, : : : ,Nk)
has an unconditional joint probability generating function

PN1,:::,Nk
(t1, : : : , tk) =M£(¸1(t1&1)+ $ $ $+¸k(tk &1)),

with marginal probability generating function

PNj
(tj) =M£(¸j(tj &1)):

LEMMA 3 For a non-negative random variable £, the inverse of
the moment generating function, M&1

£ , is well defined over the
range [0,1] with (d=du)M&1

£ (u)> 0, M&1
£ (0) =&), and M&1

£ (1)
= 0.

If we define h(y) =M&1
£ (y), then the joint probability gener-

ating function for the common Poisson mixture model satisfies

PN1,:::,Nk (t1, : : : , tk) = h
&1
123

k!
j=1

h 5PNj (tj)
=>? :

EXAMPLE 12.1 If £ has a gamma(1=!,1) distribution with mo-
ment generating function M£(z) = (1& z)&1=!, then h(y) = 1&
y&!, and we get the following joint probability generating func-
tion:

P(!)N1,:::,Nk
(t1, : : : , tk) =

A
PN1(t1)

&! + $ $ $+PNk (tk)
&!& k+1

B&1=!
,

! /= 0,
with

Cov[Ni,Nj] = !E[Ni]E[Nj] and

lim
!(0

P(!)N1,:::,Nk
= PN1(t1) $ $ $PNk (tk):
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EXAMPLE 12.2 If £ has an inverse Gaussian distribution,
IG(!,1), with a moment generating function

M£(z) = exp
:
1
!
[1&%1&2!z]

C
,

then h(y) = lny&!=2(lny)2, and we get the following joint
probability generating function:

P(!)N1,:::,Nk
(t1, : : : , tk)

= exp

19293 1! &
EFFFG 1
!2
&

k!
j=1

7
2
!
lnPNj (tj)& (lnPNj (tj))2

8=9>9? ,
with

Cov[Ni,Nj] = !E[Ni]E[Nj] and

lim
!(0

P(!)N1,:::,Nk
= PN1(t1) $ $ $PNk (tk):

12.2. A Family of Multivariate Negative Binomial Distributions

As an example of the distortion method, we now discuss a
family of multivariate distributions with arbitrary negative bino-
mial marginal distributions, NB(®j,¯j), j = 1, : : : ,k.

THEOREM 4 The joint probability generating function

PN1,:::,Nk
(t1, : : : , tk) =

123
k!
j=1

[1&¯j(tj &1)]®j!& k+1
=>?
&1=!

,

! /= 0, (12.2)

defines a multivariate negative binomial distribution with marginal
distributions NB(®j ,¯j) when either of the following conditions
holds:

! 0< ! <min"1=®j, j = 1, : : : ,k#,
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! ! < 0 such that PN1,:::,Nk (0, : : : ,0)> 0 and 1=! is a negative in-
teger.

Proof Equation 12.2 can be rewritten as

PN1,:::,Nk (t1, : : : , tk) =Q(t1, : : : , tk)
&1=!,

where

Q(t1, : : : , tk) =
k!
j=1

[1+¯j &¯jtj]®j!& k+1:

(i) For 0< ! <min"1=®j , j = 1, : : : ,k#, we have ®j! , 1; and
the partial derivatives (@x1+$$$+xk=(@t1)x1 $ $ $ (@tk)xk )PN1,:::,Nk
are the sum of terms of the following form:

aQ(t1, : : : , tk)
&b

k+
j=1

[1+¯j &¯jtj]&cj , a,b,cj + 0:

Thus, the joint probability function

fN1,:::,Nk (x1, : : : ,xk) =
@x1+$$$+xk

(@t1)
x1 $ $ $ (@tk)xk

PN1,:::,Nk (0, : : : ,0)
k+
i=1

1
xi!

is always non-negative. Therefore Equation 12.2 does de-
fine a proper joint distribution.

(ii) When ! < 0 such that PN1,:::,Nk (0, : : : ,0)> 0 and 1=! is a
negative integer, we have

P(t1, : : : , tk) =Q(t1, : : : , tk)
n,

where n=&1=! is a positive integer,
which can be viewed as the n-fold convolutions of
Q(t1, : : : , tk). Note that [1+¯j &¯jtj]®j! represents the
probability generating function of NB(&®j!,¯j). Thus,
Q(t1, : : : , tk) defines a proper multivariate distribution as
long as PN1,:::,Nk (0, : : : ,0)> 0.
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Note that the joint probability generating function in Equation
12.2 requires that !ij be the same for all i and j, but it allows
arbitrary marginal negative binomial distributions, NB(®j ,¸j).
In the special case that all ®j are the same, ®j = ®, the fam-
ily of joint distributions in Equation 12.2 returns to the common
Poisson-Gamma mixture model with ! = 1=®. This special case
corresponds to the usual definition of multivariate negative bino-
mial distributions in Johnson, Kotz and Balakrishnan [16, p. 93].
Thus, Equation 12.2 extends the usual class of multivariate neg-
ative binomial distributions.

Remark Consider k individual risk portfolios that are speci-
fied by their frequencies and severities: (Nj ,Xj), j = 1, : : : ,k. As-
sume that (N1, : : : ,Nk) has a joint probability generating function
as in Equation 12.2, and the only correlation exists between the
frequencies. Based on Equation 4.1, the aggregate loss, Z, for
the combined risk portfolios has a characteristic function

ÁZ(t) =

123
k!
j=1

[1&¯j(ÁXj (t)&1)]
®j!& k+1

=>?
&1=!

, ! /= 0:

Thus FFT can be used to evaluate the aggregate loss distribution.

13. AN EXAMPLE OF CORRELATED FREQUENCIES

Consider two correlated risk portfolios with frequency/sever-
ity distributions specified as follows:

! Portfolio 1 has a negative binomial frequency with mean = 10
and variance = 20. It has a probability generating function:
PN1(t) = [1& (t&1)]&10: Portfolio 1 has a Pareto(®= 2, ¯ =
50,000) severity subject to a policy limit of $200,000. Its av-
erage severity is $39,960.

! Portfolio 2 has a negative binomial frequency with mean = 6
and variance = 15. It has a probability generating function:
PN2(t) = [1&2(t& 1)]&4: Portfolio 2 has a Pareto(®= 1:5, ¯ =
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40,000) severity subject to a policy limit of $300,000. Its av-
erage severity is $52,560.

! The two claim frequencies are correlated with a covariance
coefficient !12 = 0:2; i.e., Cov[N1,N2] = 0:2 $E[N1] $E[N2].

! The claim severities X1 and X2 for the two risk portfolios are
mutually independent; they are also independent of the fre-
quencies (N1,N2).

Method I. We approximate the combined frequency N by a
negative binomial distribution with

E[N] = E[N1] +E[N2] = 16,

and

Var[N] = Var[N1]+Var[N2]+2Cov[N1,N2] = 59:

This negative binomial distribution has a probability generating
function:

PN(t) =
7
1& 256

43
(t&1)

8&43=16
:

The combined severity distribution can be calculated by

fX(x) =
E[N1]
E[N]

fX1(x)+
E[N2]
E[N]

fX2(x),

where fX1 and fX2 are the severity distributions for Portfolios 1
and 2, respectively.

Method II. Assume that N1 and N2 have a bivariate negative
binomial distribution with a joint probability generating function
(see Equation 12.2):

PN1,N2(t1, t2) = "[1& (t1&1)]
2 + [1&2(t2&1)]0:8&1#&5:

Based on the earlier result in Equation 4.1, the aggregate loss,
Z, for the combined risk portfolios has a characteristic function

ÁZ(t) = "[1& (ÁX1(t)&1)]
2 + [1&2(ÁX2(t)&1)]

0:8&1#&5:
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Thus FFT can be used to evaluate the aggregate loss distribu-
tion.

Some details of the calculation steps are as follows:

1. First we approximate the severity distribution by a dis-
crete probability distribution. We choose the number of
points for the FFT computation at 4096 = 212. This is the
maximum number of points for the Microsoft Excel FFT
routine. In some other computer languages such as MAT-
LAB, a higher number of points is allowed. We choose a
span of h= $1,000 and use the “matching-mean” method
to approximate each individual severity distribution by
a discrete one. For a severity distribution with cumula-
tive distribution function FX , we first evaluate the limited
expected values at multiples of h:

E[X;j $ h] =
* j$h

0
[1&FX(u)]du, for j = 1,2, : : : :

Then we apply the following method:

Pr"X = 0 $h#= 1&E[X;h]=h,
Pr"X = j $h#= (2E[X;j $ h]&E[X;(j&1) $h]

&E[X;(j+1) $h])=h, j = 1,2, : : : :

Note that the severity distribution for the two risk
portfolios are subject to policy limits of $200,000 and
$300,000, respectively. Given that the span was chosen
at $1,000, the maximum severity points with non-zero
probabilities are 200 and 300, respectively. It is critical
to pad (i.e., add) enough zeros to the discrete severity vec-
tors so that each severity vector has the same length, 4096
in this case, as the target aggregate loss distribution. Let
fX1 and fX2 represent the discrete severity vectors for the
two risk portfolios, each of which is of length 4,096.
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One should exercise caution in the selection of the
span, h, for the discrete severity distributions. Too large
a span would affect the accuracy of the discrete distri-
bution. Too small a span may produce some “wrapping”
(non-zero probabilities at the high points near 4,096) in
the calculated aggregate loss distributions.

2. Method I: Let

fX(j) =
10
16 fX1(j) +

6
16 fX2(j), j = 0,1, : : : ,4095:

Perform FFT on the severity vector fX . Let f̃X = FFT(fX)
represent the resulting vector (of length 4,096). Apply
the frequency probability generating function, element
by element, to the vector f̃X :

f̃Z(j) = [1& 256
43 (f̃X(j)& 1)]&43=16:

Finally, perform an inverse FFT on f̃Z , and let fZ =
IFFT(f̃Z). Note that fZ is a probability vector with a span
of $1,000, which approximates the aggregate loss distri-
bution for the combined risk portfolios.

3. Method II. Perform FFT on each of the severity vec-
tors, fX1 and fX2 . Let f̃X1 = FFT(fX1 ) and f̃X2 = FFT(fX2)
represent the resulting vectors (each of length 4,096).
Apply the bivariate frequency probability generating
function:

f̃Z(j) = "[1& (f̃X1(j)&1)]
2+[1&2(f̃X2(j)&1)]

0:8&1#&5,
j = 0,1, : : : ,4095: (13.1)

Finally, perform an inverse FFT on f̃Z , and let fZ =
IFFT(f̃Z). Note that fZ is a probability vector with a span
of $1,000, which approximates the aggregate loss distri-
bution for the combined risk portfolios.
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4. Independence Case: For comparison purposes, we can
also calculate the aggregate loss distribution under the
assumption of independence between the frequencies. In
this case, we repeat Method II except that Equation 13.1
is replaced by the following formula:

f̃Z(j) = [1& (f̃X1(j)&1)]
&10 $ [1&2(f̃X2(j)&1)]

&4,

j = 0,1, : : : ,4095:

Table 4 lists some values of the calculated aggregate loss dis-
tributions.

We can draw two conclusions regarding this specific example:

1. Methods I and II result in two very close aggregate loss
distributions.

2. In both methods, correlation has a significant impact on
the tail probabilities (quantiles).

14. CONCLUSIONS

This paper has presented a set of tools for modeling and com-
bining correlated risks. A number of correlation structures have
been generated using copula, common mixture, component, and
distortion models. A good understanding of the claim generat-
ing process should be helpful in choosing a model, as well as
in selecting correlation parameters. These correlation models are
often specified by (i) the joint cumulative distribution function
(i.e., a copula) or (ii) the joint characteristic function. The cop-
ula construction leads to efficient simulation techniques which
can be implemented readily on a spreadsheet. The characteristic
function specification leads to simple methods of aggregation by
using fast Fourier transforms.

In the high-dimension world of multivariate variables, one
may encounter very diverse correlation structures. Regardless of
the complexity of the situation, Monte Carlo simulation can al-
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TABLE 4

COMPARISON OF VARIOUS METHODS

Loss Amount Method I Method II Independence
in Dollars Single NB Bivariate NB Case

x Pr"Z , x# Pr"Z , x# Pr"Z , x#
0 0.00046 0.00032 0.00003

250,000 0.11014 0.11129 0.06888
500,000 0.34756 0.35292 0.30621
750,000 0.59539 0.59897 0.59178

1,000,000 0.77954 0.77937 0.80217
1,250,000 0.89125 0.88894 0.91753
1,500,000 0.95038 0.94777 0.96941
1,750,000 0.97872 0.97672 0.98964
2,000,000 0.99132 0.99006 0.99674
2,250,000 0.99661 0.99590 0.99903
2,500,000 0.99872 0.99836 0.99972
2,750,000 0.99953 0.99936 0.99993
3,000,000 0.99983 0.99976 0.99998
3,250,000 0.99994 0.99991 0.99999
3,500,000 0.99998 0.99997 1.00000
3,750,000 0.99999 0.99999 1.00000
4,000,000 1.00000 1.00000 1.00000

Aggregate Method I Method II Independence
Moments Single NB Bivariate NB Case

E[Z] 715,355 715,349 715,361
CV[Z] 0.584 0.593 0.503

E[(Z&E[Z])3] 6:9481 1012 7:7311 1012 3:83711012

ways be employed in an analysis of the correlation risk. For in-
stance, in some situations, the frequency and severity variables
are correlated. With the assistance of Monte Carlo simulation,
the common mixture model in Section 9 can be adapted to de-
scribe the association between the frequency and severity random
variables, if both depend on the same external parameter. This
external parameter may be chosen to represent the Richter scale
of an earthquake, the velocity of wind speed, or several sce-
narios of legal climate, etc., depending on the underlying claim
environment.
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Dependency has always been a fascinating research subject,
as well as part of reality. A good understanding of the impact of
correlation on the aggregate loss distribution is essential for the
dynamic financial analysis of an insurance company. It is hoped
that the set of tools developed in this paper will be useful to
actuaries in quantifying the aggregate risks of a financial entity.
It is also hoped that this research will stimulate more scientific
investigations on this subject in the future.
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APPENDIX A

AN INVENTORY OF UNIVARIATE DISTRIBUTIONS

A.1. Counting Distributions

! The Poisson distribution, Poisson(¸), ¸ > 0, is defined by a
probability function:

pn = Pr"N = n#= e&¸
¸n

n!
, n= 0,1,2, : : : :

It has a probability generating function

PN(t) = E[t
N] = e¸(t&1),

and E[N] = Var[N] = ¸.

! The negative binomial distribution, NB(®,¯), ®,¯ > 0, has a
probability function:

pn = Pr"N = n#=
¡ (®+n)
¡ (®)n!

"
1

1+¯

#®" ¯

1+¯

#n
,

n= 0,1,2, : : : :

It has a probability generating function

PN(t) = [1&¯(t&1)]&®,
with E[N] = ®¯ and Var[N] = ®¯(1+¯).

When ®= 1, the negative binomial distribution NB(1,¯) is
called the geometric distribution.

! The Poisson inverse Gaussian distribution, P-IG(¯,¹), has a
probability generating function

PN(t) = E[t
N] = exp

:
&¹
¯
[
0
1+2¯(1& t)& 1]

C
:
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It can be verified that E[N] = ¹ and Var[N] = ¹(1+¯). The
probabilities can be calculated via a simple recursion (Willmot,
[26]):

pn =
2¯

1+2¯

"
1& 3

2n

#
pn&1 +

¹2

n(n& 1)(1+2¯)pn&2,

n= 2,3, : : : ,

with starting values

p0 = e
&¹=¯[

%
1+2¯&1], p1 =

¹%
1+2¯

p0:

A.2. Continuous Distributions

! The exponential distribution, exponential(¸), is defined by
S(x) = 1&F(x) = e&¸x, x > 0,

with E[X] = 1=¸ and Var[X] = 1=¸2.

! The gamma distribution, gamma(®,¯), ®,¯ > 0, has a proba-
bility density function

f(x) =
x®&1e&x=¯

¯®¡ (®)
, x > 0:

It has a moment generating function

MX(t) = E[e
tX] = (1&¯t)&®,

and E[X] = ®¯, and Var[X] = ®¯2.

! The Pareto distribution, Pareto(®,¯), ®,¯ > 0, has a survivor
function

S(x) = 1&F(x) =
"

¯

x+¯

#®
= (1+ x=¯)&®:

The mean E[X] = ¯=®&1 exists only if ® > 1.
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! The Weibull distribution, Weibull(¯,¿), ¯,¿ > 0, has a survivor
function

S(x) = 1&F(x) = e&(x=¯)¿ ,
with E[X] = ¯¡ (1+ ¿&1) and E[X2] = ¯2[¡ (1+2¿&1)].

! The inverse Gaussian distribution, IG(¯,¹), has a probability
density function

f(x) = ¹(2¼¯x3)&1=2 exp
4
&(x&¹)

2

2¯x

D
, x > 0:

It has a moment generating function

M(t) = e¹=¯[1&
%
1&2¯t],

and E[X] = ¹, and Var[X] = ¹¯.

! The exponential inverse Gaussian distribution, E-IG(¯,¹), has
a survivor function:

S(x) = 1&F(x) = e¹=¯"1&(1+2¯x)1=2#, x > 0,

with moments (Hesselager/Wang/Willmot, [10]):

E[X] =
¯+¹
¹2

, Var[X] =
5¯2 +4¯¹+¹2

¹4
:

! The lognormal distribution, LN(¹,¾2), has a probability den-
sity function

f(x) =
1%
2¼¾x

exp

H
&1
2

7
log(x)&¹

¾

82I
, x > 0,

with

E[X] = exp[¹+¾2=2] and

Var[X] = exp[2¹+¾2][exp(¾2)&1]:
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A.3. Parameter Uncertainty and Mixture Models

In modeling insurance losses, actuaries are called upon to pick
a frequency distribution and a severity distribution based on past
claim data and their own judgement. Actuaries are fully aware
of the presence of parameter uncertainty in the assumed models.
As a way of incorporating parameter uncertainty, mixture models
are often employed.

! The most popular frequency distributions are the negative
binomial family of distributions. In modeling claim fre-
quency, the negative binomial NB(®,¯) can be interpreted as
a mixed Poisson model, where the Poisson parameter ¸ has a
gamma(®,¯) distribution. This can be seen from the probabil-
ity generating function

PN(t) = E[t
N] = E¸[E(t

N - ¸)] = E¸[e¸(t&1)]
=M¸(t&1) = "1&¯(t& 1)#&®:

! A popular claim severity distribution is the Pareto distribu-
tion which has a thick right tail representing large claims. The
Pareto(®,¯) distribution can be interpreted as a mixed expo-
nential distribution, where the exponential parameter ¸ has a
gamma(®,1=¯) distribution. This can be seen from the survivor
function

S(x) = E¸[e
&¸x] =M¸(&x) = (1+ x=¯)&® =

"
¯

¯+ x

#®
:

! A more flexible family of claim severity distributions are
the Burr distributions (including Pareto as a special case).
The Burr(®,¯,¿) distributions can be expressed as a Weibull-
gamma mixture. This can be seen from the survivor function

S(x) = E¸[e
&¸x¿ ] =M¸(&x¿ ) = (1+ x¿=¯)&® =

"
¯

¯+ x¿

#®
:

The Burr(®,¯,¿) family includes the Pareto(®,¯) as a special
member when ¿ = 1.
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For ¿ > 1, the Burr(®,¯,¿) distribution has a lighter tail than
its Pareto(®,¯) counterpart.
For ¿ < 1, the Burr(®,¯,¿) distribution has a thicker tail than
its Pareto(®,¯) counterpart.

A.4. Lognormal Distributions

A.4.1. Univariate lognormal distributions

The normal distribution, N(¹,¾2), has a probability density
function

fX(x) =
1%
2¼¾

exp

H
&1
2

7
x&¹
¾

82I
, &)< x <):

It has a moment generating function

MX(t) = E[e
tX] = exp[¹t+ 1

2¾
2t2]:

If X .N(¹,¾2), then Y = eX has a lognormal distribution with a
probability density function

fY(y) =
1%
2¼¾y

exp

H
&1
2

7
log(y)&¹

¾

82I
, y > 0:

The moments of Y are

E[Yn] = E[exp(nX)] =MX(n)

= exp

J
n¹+

n2¾2

2

K
, n= 1,2 : : : :

Specifically,

E[Y] = exp

J
¹+

¾2

2

K
,

Var[Y] = exp[2¹+¾2][exp(¾2)&1],

E[Y&E[Y]]3 = exp
J
3¹+

3¾2

2

KL
exp(3¾2)& 3exp(¾2) +2

M
:
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A.4.2. Bivariate lognormal distributions

Let X1 and X2 have a bivariate normal distribution with joint
probability density function

f(x1,x2) =
1

2¼¾1¾2
0
1& ½2

1 exp
:
& 1
2(1& ½)2

7"
x1&¹1
¾1

#2
+
"
x2&¹2
¾2

#2
& 2½

"
x1&¹1
¾1

#"
x2&¹2
¾2

#8C
:

Then X1 and X2 have marginal distributions N(¹1,¾
2
1) and

N(¹2,¾
2
2), respectively. (X1,X2) has a covariance matrixH

¾21 ½¾1¾2

½¾1¾2 ¾22

I
,

where ½ is the correlation coefficient between X1 and X2. Note
that ½= 1 if and only if Pr"X1 = aX2 +b#= 1 with a > 0.
Now consider the variables Y1 = exp(X1) and Y2 = exp(X2).

Note that log(Y1Y2) has a N(¹1 +¹2,¾
2
1 +¾

2
2 +2½¾1¾2) distribu-

tion. We have

Cov[Y1,Y2] = E[Y1Y2]&E[Y1]E[Y2]
= exp"(¹1 +¹2)+ 1

2[¾
2
1 +¾

2
2 +2½¾1¾2]#

& exp[¹1 +¾21 +¹2 +¾22]
= exp[¹1 +¹2 +

1
2(¾

2
1 +¾

2
2)]"exp(½¾1¾2)& 1#:

Therefore, the correlation coefficient of Y1 and Y2 is

½Y1,Y2 =
exp(½¾1¾2)& 10

exp(¾21)&1
0
exp(¾22)&1

,

where ½= ½X1,X2 .
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A.4.3. Multivariate lognormal distributions

Consider a vector (X1, : : : ,Xn)
3 of positive random variables.

Assume that (logX1, : : : , logXn)
3 has an n-dimensional normal

distribution with mean vector and variance-covariance matrix

¹=

$%%&
¹1
...

¹n

'(() and § =

$%%&
¾11 $ $ $ ¾1n
...

...
...

¾n1 $ $ $ ¾nn

'(() ,
respectively.

The distribution of (X1, : : : ,Xn)
3 is said to be an n-dimensional

lognormal distribution with parameters (¹,§) and denoted by
¤n(¹,§). The probability density function of X= (X1, : : : ,Xn)

3
having ¤n(¹,§) is (see Crow and Shimizu, [4, Chapter 1]):

f(x1, : : : ,xn) =123
1@

(2¼)n-§-Nn
i=1 xi

exp"& 1
2 (logx&¹)3§&1(logx&¹)#, x 2 (0,))n

0, otherwise:

From the moment generating function for the multivariate normal
distribution we have

E[X
s1
1 $ $ $X

sn
n ] = exp(s3¹+ 1

2s
3§s),

where s= (s1, : : : ,sn)
3. Specifically, we have for any i= 1,2, : : : ,n,

E[Xri ] = exp(r¹i+
1
2r
2¾2ii)

and for any i,j = 1,2, : : : ,n,

Cov[Xi,Xj] = exp"¹i+¹j + 1
2(¾

2
ii+¾

2
jj)#"exp(¾ij)& 1#:

A simulation of this multivariate lognormal distribution can be
easily achieved by first generating a sample from a multivariate
normal distribution and then taking the logarithms.
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APPENDIX B

MORE ON COPULAS AND SIMULATION METHODS

This appendix presents greater detail on the construction of
copulas and the associated simulation techniques. For simplicity,
we confine the discussion to the bivariate case. The discussion
here can be readily extended to higher dimensions (k > 2).

B.1. Bivariate Copulas

A bivariate copula refers to a joint cumulative distribu-
tion function C(u,v) = Pr"U , u;V , v# with uniform marginals
U,V .Uniform[0,1]. It links the marginal distributions to their
multivariate joint distribution. Let SX,Y(x,y) be a joint survivor
function with marginals SX and SY. Then there is a copula C
such that

SX,Y(x,y) =C(SX(x),SY(y)), for all x,y 2 (&),)):
Conversely, given any marginals SX , SY, and a copula C,
SX,Y(x,y) =C(SX(x),SY(y)) defines a joint survivor function with
marginals SX and SY. Furthermore, if SX and SY are continuous,
then C is unique.

Note that SX(X) and SY(Y) are uniformly distributed random
variables. The association between X and Y can be described
by the association between uniform variables U = SX(X) and
V = SY(Y). In theory, if one can first generate a sample pair (ui,vi)
from the bivariate uniform distribution of (U,V), one can simu-
late a sample pair of (X,Y) by the inverse transforms: xi = S

&1
X (ui)

and yi = S
&1
Y (vi). Unfortunately, there is no simple way of gener-

ating a set of bivariate uniform numbers that works for all cop-
ulas. In reality, each type of copula needs a different simulation
technique.
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Note that

FX,Y(x,y) =C(FX(x),FY(y)) and

SX,Y(x,y) =C(SX(x),SY(y))

may imply different bivariate distributions. Here we assume that
a copula is applied to the survivor functions unless otherwise
mentioned.

B.2. Distortion of the Joint Survivor Function

Let g : [0,1]( [0,1] be an increasing function with g(0) =
0 and g(1) = 1. If SX,Y(x,y) is a joint survivor function with
marginals SX and SY, then g[SX,Y(x,y)] defines another joint sur-
vivor function with marginals g 5 SX and g 5 SY. If we assume
that, after applying a distortion g, g[SX,Y(x,y)] has non-correlated
marginals:

g[SX,Y(x,y)] = g[SX(x)]g[SY(y)],

then we have

SX,Y(x,y) = g
&1(g[SX(x)] $ g[SY(y)]), (B.1)

which corresponds to the copula

C(u,v) = g&1[g(u)g(v)]: (B.2)

If we let h(t) =& logg(t), then Equation B.1 gives the follow-
ing relation: SX,Y(x,y) = h

&1(h[SX(x)] +h[SY(y)]), which gives
the Archimedean family of copulas (see Genest and Mackay,
[7]).

For a bivariate copula C, Kendall’s tau is

¿ = 4
* 1

0

* 1

0
C(u,v)dC(u,v)&1:

If a copula C = g&1(g(u)g(v)) is defined by a distortion g, then

¿ = 1+4
* 1

0

g(t) logg(t)
g3(t)

dt:
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EXAMPLE B.1 The distortion function g(t) = exp"1& t&®#, ® >
0, corresponds to the Clayton family of copulas with

C®(u,v) = "u&®+ v&®&1#&1=®,
C)(u,v) = lim

®()C®(u,v) = min[u,v],

C0(u,v) = lim
®(0+

C®(u,v) = uv:

(B.3)

Thus, C) and C0 are the copulas for the Frechet upper bounds
and the independent case, respectively.

EXAMPLE B.2 The distortion function g(t) = exp"&(& log t)®#,
®+ 1, corresponds to the Hougaard family of copulas with

C®(u,v) = exp"&[(& logu)®+(& logv)®]1=®#,
C)(u,v) = lim

®()C®(u,v) = min[u,v],

C1(u,v) = uv:

(B.4)

Thus, C) and C1 are the copulas for the Frechet upper bounds
and the independent case, respectively.

EXAMPLE B.3 The distortion function g(t) = ®t&1=®&1, ® >
0, corresponds to the Frank family of copulas with

C®(u,v) = [log®]
&1 log

:
1+

(®u&1)(®v&1)
®& 1

C
, 0<®<),

C)(u,v) = lim
®()C®(u,v) = max[u+ v&1,0],

(B.5)
C0(u,v) = lim

®(0+
C®(u,v) = min[u,v],

C1(u,v) = lim
®(1

C®(u,v) = uv:

Thus, C), C0, and C1 are the copulas for the Frechet lower and
upper bounds and the independent case, respectively.
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B.3. Common Frailty Models

Vaupel, Manton, and Stallard [24] introduced the concept of
frailty in their discussion of a heterogeneous population. Each
individual in the population is associated with a frailty, r. The
frailty varies across individuals and thus is modeled as a ran-
dom variable R with cumulative distribution function FR(r). The
conditional survival function of lifetime T, given r, is

Pr"T > t - R = r#= B(t)r,
in which B(t) is the base line survivor function (for a standard
individual with r = 1). The unconditional survivor function for a
heterogeneous population is

Pr"T > t#=
* )

0
B(t)r dFR(r) =MR(logB(t)),

where MR is the moment generating function of R.

Oakes [20] uses a bivariate frailty model to describe associa-
tions between two random variables as follows. Assume that X
and Y both can be modeled by frailty models

SX(x) =
* )

0
B1(x)

r dFR(r) =MR(logB1(x)) and

SY(y) =
* )

0
B2(y)

r dFR(r) =MR(logB2(y)),

respectively, in which B1 and B2 are the base line survivor func-
tions. Assume that X and Y are conditionally independent, given
frailty R = r. However, X and Y are associated as they depend on
the common frailty variable R. The bivariate frailty model yields
the following joint survivor function

SX,Y(x,y) = Pr"X > x,Y > y#=
* )

0
[B1(x) $B2(y)]r dFR(r)

=MR(log[B1(x) $B2(y)]):

For g(u) = exp[M&1
R (u)], we have

g[SX,Y(x,y)] = B1(x) $B2(y) = g[SX(x)] $g[SY(y)]:
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In other words, a bivariate frailty model yields a joint distribution
that can also be obtained by using the distortion function g.

EXAMPLE B.4 Assume that the frailty R has a gamma distribu-
tion with MR(z) = (1=1& z)1=®, ® > 0. Then M&1

R (u) = 1&u&®,
and g(u) = exp[1&u&®]. Therefore, the common gamma frailty
model yields the Clayton family of copulas given by Equation
B.3:

SX,Y(x,y) =
:

1
SX(x)®

+
1

SY(y)®
&1

C&1=®
, 0< ®<):

This family is particularly useful for constructing bivariate Burr
(including Pareto) distributions (see Johnson and Kotz, [13,
p. 289]).

EXAMPLE B.5 If the frailty R has a stable distribution with
MR(z) = exp"&(&z)1=®#, ®+ 1, the corresponding joint survivor
function is given by Equation B.4:

SX,Y(x,y) = exp"&[(& logSX(x))®+(& logSY(y))®]1=®#:
This family of copulas is particularly useful for constructing bi-
variate Weibull (including exponential) distributions.

EXAMPLE B.6 If the frailty R has a logarithmic (discrete) distri-
bution on positive integers with MR(z) = [log®]

&1 log[1+ ez(®&
1)], then we get the Frank family of copulas given by Equation
B.5.

Marshall and Olkin [19] proposed a simulation algorithm for
copulas with a frailty construction. This algorithm is applicable
to copulas with arbitrary dimensions (k + 2):

STEP 1 Generate a value r from the random variable R having
moment generating function MR.

STEP 2 Generate independent uniform (0,1) numbers U1, : : : ,Uk.
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STEP 3 For j = 1, : : : ,k, set U*j =MR(r
&1 logUj), and calculate

Xj = S
&1
j (U

*
j ).

B.4. The Morgenstern Copula

The Morgenstern copula is defined by

C(u,v) = uv[1+®(1&u)(1& v)], &1, ®, 1:
This copula cannot be generated by distortion or frailty models.

The following simulation algorithm for the Morgenstern cop-
ula can be found in Johnson [17, p. 185]:

STEP 1 Generate independent uniform variables V1,V2, and set
U1 = V1.

STEP 2 Calculate A= ®(2U1&1)&1 and B = [1&®(2U1&1)]2
+4®V2(2U1&1).

STEP 3 Set U2 = 2V2=(
%
B&A).

For the Morgenstern copula, Kendall’s tau is

¿(®) = 2
9®, &1, ®, 1,

which is limited to the range (&2
9 ,
2
9 ). Thus, the Morgenstern

copula can be used only in situations with weak dependence.

An extension of the Morgenstern copula to arbitrary dimen-
sions has been given by Johnson and Kotz [14, 15].

B.5. Summary and Comments

Table B.1 lists the most commonly used bivariate copulas.
Except for the reverse monotone copula, they can readily be
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TABLE B.1

A SUMMARY OF POPULAR COPULAS

Associated Kendall’s
Names Function Form C(u,v) Tau

Independence uv 0

Common
monotone

min[u,v] 1

Reverse
monotone

max[u+ v& 1,0] &1

Cook–
Johnson,
Clayton

[u&1=®+ v&1=® &1]&® (®> 0)

[u&®+ v&®&1]&1=® (® > 0)

1
1+2®
®

®+2

Frank log®

A
1+

(®u& 1)(®v & 1)
®& 1

B
(0<®<)) *

Farlie,
Gumbel, uv[1+®(1& u)(1& v)] (&1, ®, 1) 2

9®
Morgenstern

Gumbel–
Hougaard

exp"&[(& lnu)®+(& lnv)®]1=®# (®+ 1) 1&®&1

normal H(©&1(u),©&1(v))** (&1, ½, 1) 2
¼
arcsin(½)

* For the Frank copula,

¿(®) = 1+
4

& log(®)

7
1

& log(®)

* & log(®)

0

t

et &1 dt& 1
8
:

**H is the joint cumulative distribution function for a bivariate standard normal distribution with a
correlation coefficient ½.
Note that the Cook–Johnson copula with parameter ® is the same as the Clayton copula with parameter
1=®.

extended to multivariate cases (k > 2). In higher dimensions,
the Cook–Johnson copula requires that all taus are the same,
while the normal copula allows complete freedom in selecting
Kendall’s tau.

Some comments on higher dimension extensions of the listed
copulas are in order.
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1. The independence copula and the common monotone
copula both have a unique extension to higher dimen-
sions, while the reverse monotone has multiple possible
extensions.

2. Recall that the Cook–Johnson copula, the Clayton cop-
ula, the Frank copula, and the Gumbel–Hougaard copula
can be generated by the distortion method. They can be
readily generated to higher dimensions by the relation

g[SX1,X2,:::,Xk (t1, t2, : : : , tk)]

= g[SX1(t1)] $ g[SX2(t2)] $ $ $g[SXk (tk)]:
However, the correlation structure is restricted in a sense
that Kendall’s tau (or rank correlation coefficient) is the
same for any pair of variables.

3. The Morgenstern copula can be generated to higher di-
mensions, but the parameter values are further restricted.

4. The normal copula stands out among others for its ex-
tremely flexible correlation structure at higher dimen-
sions. It allows complete freedom in selecting Kendall’s
taus or rank order coefficients, as we have seen in Sec-
tion 8.

Frees and Valdez [6] have written a good survey paper on the
use of copulas, including the associated simulation techniques.
In general, the use of copulas permits simple implementation by
Monte Carlo simulation, thus aggregating correlated risks.

B.6. The Use of Mixed Copulas

Assume that joint cumulative distribution functions FX1,:::,Xk
and GX1,:::,Xk have the same marginals FX1 , : : : ,FXk . Then the mixed
joint cumulative distribution function

(1&q)FX1,:::,Xk (t1, : : : , tk)+qGX1,:::,Xk (t1, : : : , tk), 0< q < 1,
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also has a marginal cumulative distribution function FX1 , : : : ,FXk .
For this mixed joint distribution, we have

¿[Xi,Xj] = (1&q)¿F[Xi,Xj] +q¿G[Xi,Xj],
where ¿F and ¿G represent Kendall’s taus implied by the joint
cumulative distribution functions F and G, respectively. In par-
ticular, if we let FX1,:::,Xk (t1, : : : , tk) =

Nk
j=1 tj represent the inde-

pendent copula and GX1,:::,Xk (t1, : : : , tk) = min[t1, : : : , tk] represent
the comonotonic copula, then ¿[Xi,Xj] = q.

The mixture of joint cumulative distribution functions can be
used to adjust, up or down, Kendall’s tau. For example, if we feel
that a common mixture joint cumulative distribution function F
would give too strong a correlation, then we can mix it with an
independent joint cumulative distribution function G. If we feel
that a common mixture joint cumulative distribution function F
would give too weak a correlation, then we can mix it with a
comonotonic joint cumulative distribution function G3.



936 AGGREGATION OF CORRELATED RISK PORTFOLIOS

APPENDIX C

PANJER’S RECURSIVE METHOD

As an alternative to the FFT method, we introduce Panjer’s
recursive method for evaluation of aggregate loss distributions.

Suppose that the severity distribution fX(x) is defined on
0,1,2, : : : , representing multiples of some convenient monetary
unit.

Suppose that the frequency distribution is a member of the
(a,b) class satisfying

Pr"N = k#=
"
a+

b

k

#
Pr"N = k&1#, k = 1,2,3, : : : :

C.1

Note that the Poisson and negative binomial distributions are
included in this family.

For the Poisson distribution, we have a= 0 and b = ¸.

For the negative binomial (®,¯) distribution, we have

a=
¯

1+¯
and b =

(®&1)¯
1+¯

:

Panjer [21] has shown that the aggregate loss distribution fS(x)
can be evaluated recursively

fS(x) =

,- x!
y=1

"
a+

by

x

#
fX(y)fS(x& y)

./ (1& afX(0))&1:
(C.2)

The starting value of the recursive algorithm is fS(0) = PN(fX(0)).

In the case of the Poisson distribution, it reduces to

fS(x) =
¸

x

x!
y=1

yfX(y)fS(x& y), x= 1,2, : : : , (C.3)
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with starting value

fS(0) = e
&¸(1&fX (0)): (C.4)

The recursive method is fairly easy to program.

For example, suppose that the claim frequency N has a Pois-
son distribution with mean ¸= 3 and the claim severity X has a
probability distribution

Pr"X = 1#= 0:5, Pr"X = 2#= 0:3, Pr"X = 3#= 0:2,
(C.5)

then the probability distribution of the aggregate loss S can be
calculated recursively

fS(0) = e
&¸ = 0:04979,

fS(1) =
¸

1
[fX(1)fS(0)] = 0:07468,

fS(2) =
¸

2
[fX(1)fS(1)+fX(2)fS(0)] = 0:07842,

fS(3) =
¸

3
[fX(1)fS(2)+fX(2)fS(1)+fX(3)fS(0)] = 0:07157:
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APPENDIX D

SOME FREQUENTLY ASKED QUESTIONS

Q1. In this paper a lot of discussion has been given to cor-
related frequency models. What about models of correlation be-
tween claim severities?

A1. We have a general correlation model—normal copula—
which can be used to model correlated claim severities. In fact,
@Risk (which is an Excel add-in application) can be readily used
to carry out such simulations. But one should keep in mind that
the correlation parameters used in @Risk are rank correlation
coefficients.

Correlation in claim severities often comes from the uncer-
tainty in the future claim inflation and loss development. A sim-
ple method of quantifying this correlation is to use a common
multiplier:

X1 = B $Y1, : : : ,Xj = B $Yj , : : :XN = B $YN ,
where

! the Yjs are independent,
! the number of claims N may be fixed or random but indepen-
dent from the severity Yjs and the multiplier B, and

! the common multiplier B may be assigned a probability dis-
tribution (discrete or continuous).

The sum of the k losses is

Z = X1 +X2 + $ $ $+XN = B $ (Y1 +Y2 + $ $ $+YN):
Thus, one can first evaluate the independent sum of the Yjs, and
then combine it with the multiplier B. In this model, we have
Cov[Xi,Xj] = Var(B) $E[Yi] $E[Yj].
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Q2. In some situations, the claim frequency and severity are
correlated. How would one construct such a model?

A2. In some catastrophe modeling it might be plausible to
consider the dependency between claim frequency and claim
severity. For instance, the Richter scale value of an earthquake
may affect the claim frequency and severity simultaneously, and
for hurricane losses, the wind speed would affect both the claim
frequency and severity in the same direction. For a modeling
of such catastrophe losses, a good understanding of the underly-
ing loss generating mechanism is essential, which requires sound
knowledge in meteorology, construction engineering, population
density, insurance coverage, etc. Some have observed that de-
mand surge after a major catastrophe may also generate correla-
tion between claim frequency and severity. Nevertheless, math-
ematics can serve as a tool to quantify our understanding of the
underlying loss generating mechanism.

For reinsurance excess-of-loss modeling, the frequency and
severity of a given layer may be positively correlated in a high
inflation environment. This is due to the leverage effect of in-
flation. This correlation can be quantified by using a random
trending factor for ground-up losses and then quantifying the
frequency/severity for losses for a reinsurance layer.



IMPLEMENTATION OF PROPORTIONAL HAZARDS
TRANSFORMS IN RATEMAKING

SHAUN WANG

Abstract

This article introduces a relatively new method for cal-
culating risk load in insurance ratemaking: the use of
proportional hazards (PH) transforms. This method is
easy to understand, simple to use, and supported by theo-
retical properties as well as economic justification. After
an introduction of the PH-transform method, examples
show how it can be used in pricing ambiguous risks,
excess-of-loss coverages, increased limits, risk portfo-
lios, and reinsurance treaties.
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1. INTRODUCTION

Recently, there has been considerable interest in and extensive
discussion of risk loads within the Casualty Actuarial Society.
These discussions have focused on measures of risk and methods
to arrive at a ‘reasonable’ risk load. Although there are diverse
opinions on the appropriate measurement of risk, there is general
agreement on the distinction between process risk and parameter
risk, and on the importance of parameter risk in ratemaking.
(See Finger [5], Miccolis [18], McClenahan [15], Feldblum [4],
Philbrick [21], Meyers [16], Robbin [25], and Bault [1].)

Consistent with previous papers, this paper will consider only
pure risk-adjusted premiums (the expected loss plus risk load,

940
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excluding all expenses and commissions). These pure risk-ad-
justed premiums are sometimes referred to as premiums in the
paper.

Following Venter’s [28] advocacy of adjusted distribution
methods, Wang [30] proposes using proportional hazards (PH)
transforms in the calculation of the risk-adjusted premium. This
paper focuses on the practical aspects of implementation of PH-
transforms in ratemaking. More specifically, the paper shows
how PH-transforms can be used to quantify process risk, pa-
rameter risk, and dependency risk. It also discusses economic
justification after introducing implementation issues.

To utilize the PH-transform in ratemaking, a probability distri-
bution for claims is needed. A probability distribution can often
be estimated from industry claim data or by computer simula-
tions. Even though a probability distribution can be obtained
from past claim data, sound and knowledgeable judgements are
always required to ensure that the estimated loss distribution is
valid for ratemaking.

It is safe to say that no theoretical risk-load formula can claim
to be the right one, since subjective elements always exist in any
practical exercise of ratemaking. However, a good theoretical
risk-load formula can assist actuaries and help maintain logical
consistency in the ratemaking process. In this respect, it is hoped
that the PH-transform method becomes a useful tool for practic-
ing actuaries in insurance ratemaking.

The remainder of this paper is divided into four sections. Sec-
tion 2 introduces the PH-transform method and applies it to the
pricing of a single risk (including excess cover and increased
limits ratemaking). Section 3 discusses the use of PH-transforms
in pricing risk portfolios and reinsurance treaties. Section 4 dis-
cusses two simple mixtures of PH-transforms. The first mixture
can yield a minimal rate-on-line, and the second mixture suggests
a new measure for the right tail risk. Section 5 briefly reviews
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the leading economic theories of risk and uncertainty, and their
relationship to insurance ratemaking.

2. PROPORTIONAL HAZARDS TRANSFORM

In the pricing of insurance risks, it is common for the ac-
tuary to first obtain a best-estimate loss distribution based on
all possible information (e.g., empirical data) and/or judgement.
The best estimate loss distribution, serving as an anchor, is then
transformed into a heavier-tailed distribution, and the mean from
the latter is used to price the business, thereby producing a risk
load. Venter [28] advocated the adjusted distribution principle
and gave a theoretical justification by using a no-arbitrage pric-
ing argument. He observed that the only methods of premium
calculation that preserve layer additivity are those that can be
generated from transformed distributions, where the premium
for any layer is the expected loss for that layer under the trans-
formed distribution. Inspired by Venter’s insightful observation,
Wang [30] proposed the proportional hazards transform method
which is also the topic of this paper.

An insurance risk refers to a non-negative loss random vari-
able X, which can be described by the decumulative distribution
function (ddf): SX(u) = Pr!X > u". An advantage of using the
ddf is the unifying treatment of discrete, continuous, and mixed-
type distributions. In general, for a risk X, the expected loss can
be evaluated directly from its ddf:

E[X] =
! #

0
SX(u)du:

(A proof of this statement is given in Appendix A.) In practice,
the actuary does not know the true underlying loss distribution,
but instead may have a best-estimate loss distribution based on
available information. The PH-transform is a method for adjust-
ing the best-estimate distribution according to the levels of un-
certainty, market competition, and portfolio diversification.
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DEFINITION 1 Given a best-estimate loss distribution SX(u) =
Pr!X > u", for some exogenous index r (0< r $ 1), the pro-
portional hazards (PH) transform refers to a mapping SY(u) =
[SX(u)]

r, and the PH-mean refers to the expected value under the
transformed distribution:

Hr[X] =
! #

0
[SX(u)]

r du, (0< r $ 1):

The PH-mean was introduced by Wang to represent the risk-
adjusted premium (the expected loss plus risk load). As we shall
see, the PH-mean is quite sensitive to the choice of the index
r. It could be infinite for some unlimited loss distributions and
choices of r.

EXAMPLE 1 The following three loss distributions,

SU(u)= 1%u=(2b), 0$ u$ 2b (uniform),

SV(u)= e
%u=b (exponential), and

SW(u)= b
2=(b+u)2 (Pareto),

have the same expected loss, b. One can easily verify that

Hr[U] =
2b
1+ r

,

Hr[V] =
b

r
,

Hr[W] =

"#$
b

2r%1, r > 0:5;

#, r $ 0:5:
The PH-mean, interpreted as the risk-adjusted premium, pre-
serves the usually accepted ordering of riskiness based on heavi-
ness of tail (see Table 1). Here it is assumed that the distributions
are known to be of the type shown, whereas uncertainty about
the type of distribution could contribute further risk.



944 IMPLEMENTATION OF PH-TRANSFORMS IN RATEMAKING

TABLE 1

SOME VALUES OF THE PH-MEAN Hr[&]
U V W

r1 =
5
6 1:09b 1:2b 1:5b

r2 =
2
3 1:2b 1:5b 3:0b

EXAMPLE 2 When X has a Pareto distribution with parameters
(®,¸),

SX(u) =
%

¸

¸+u

&®
, and

the PH-transform SY(u) also has a Pareto distribution with pa-
rameters (r®,¸).

When X has a Burr distribution with parameters (®,¸,¿),

SX(u) =
%

¸

¸+u¿

&®
, and

the PH-transform SY(u) also has a Burr distribution with param-
eters (r®,¸,¿).

When X has a gamma (or lognormal) distribution, the PH-
transform SY(u) is no longer a gamma (or lognormal). In such
cases, numerical integration may be required to evaluate the PH-
mean.

2.1. Pricing of Ambiguous Risks

In practice, the underlying loss distribution is seldom known
with precision. There are always uncertainties regarding the best-
estimate loss distribution. Insufficient data or poor quality data
often result in sampling errors. Even if a large amount of high-
quality data is available, due to changes in the claim generating
mechanisms, past data may not fully predict the future claim
distribution. The PH-transform can be adjusted to give a higher
risk load when this parameter uncertainty is greater.
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FIGURE 1

MARGINS FOR PARAMETER UNCERTAINTY BY
PH-TRANSFORMS

As illustrated in Figure 1, the PH-transform, SY(u) = [SX(u)]
r,

can be viewed as an upper confidence limit for the best-estimate
loss distribution SX(u). A smaller index r yields a wider range
between the curves SY and SX . This upper confidence limit in-
terpretation has support in statistical estimation theory (see Ap-
pendix B). The index r can be assigned accordingly with respect
to the level of confidence in the estimated loss distribution. The
more ambiguous the situation is, the lower the value of r that
should be used.

EXAMPLE 3 Consider the following experiment conducted by
Hogarth and Kunreuther [6]. An actuary is asked to price war-
ranties on the performance of a new line of microcomputers.
Suppose that the cost of repair is $100 per unit, and there can
be at most one breakdown per period. Also, suppose that the
risks of breakdown associated with any two units are indepen-
dent. The best-estimate of the probability of breakdown has three
scenarios:

µ = 0:001, µ = 0:01, µ = 0:1:
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The level of confidence regarding the best estimate has two sce-
narios:

Non-ambiguous: There is little ambiguity regarding the best-
estimate loss distribution. Experts all agree with confidence
on the chances of a breakdown.

Ambiguous: There is considerable ambiguity regarding the
best-estimate loss distribution. Experts disagree and have little
confidence in the estimate of the probabilities of a breakdown.

Note that the loss associated with a computer component can
only assume two possible values, either zero or $100. For any
fixed u < 100, the probability that the loss exceeds u is the same
as the probability of being exactly $100, namely µ. For a fixed
u' 100, it is impossible that the loss exceeds u. Thus, the best-
estimate ddf of the insurance loss cost is

SX(u) =

'
µ, 0< u < 100;

0, 100$ u:
The PH-transform with index r yields a risk-adjusted premium
of 100µr.

In both cases a risk load is needed because there is frequency
uncertainty, but more load is needed in the ambiguous case. If
we choose r = 0:97 for the non-ambiguous case, and r = 0:87
for the ambiguous case, we get the premium structure shown in
Table 2.

For comparison purposes, Table 2 also shows the premium
structure using the standard deviation method1 set to agree with
the PH-mean at the 0.01 frequency. Note that for the Bernoulli
type of risks in this example, the standard deviation loads vary
more by frequency. However, as we shall see in Section 3.2, this

1The traditional standard deviation method calculates a risk-adjusted premium by the
formula E[X]+¯¾[X], where ¯ ' 0 is an exogenous constant.
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TABLE 2

THE RATIO OF THE RISK-ADJUSTED PREMIUM TO THE
EXPECTED LOSS

PH-Transform Method µ = 0:001 µ = 0:01 µ = 0:1

Non-ambiguous (r = 0:97) 1.23 1.15 1.07
Ambiguous (r = 0:87) 2.45 1.82 1.35

Standard Deviation Method µ = 0:001 µ = 0:01 µ = 0:1

Non-ambiguous (¯ = 0:01508) 1.48 1.15 1.05
Ambiguous (¯ = 0:0824) 3.60 1.82 1.25

pattern no longer holds for continuous-type risks. The main prob-
lem with standard deviation is in its lack of additivity when a risk
is divided into sub-layers.

In summary, the PH-transform can be used as a means of
provision for estimation errors. The actuary can subsequently
set up a table for the index r according to different levels of
ambiguity, such as the following:

Ambiguity Level Index r

Slightly Ambiguous 0:960% 1:000
Moderately Ambiguous 0:900% 0:959
Highly Ambiguous 0:800% 0:899
Extremely Ambiguous 0:500% 0:799

Note that the premium developed is particularly sensitive to
the choice of r, especially for small r, so care should be exercised
in its selection.

2.2. Pricing Excess Layers of a Single Risk

Since most insurance contracts contain clauses such as a de-
ductible and a maximum limit, it is convenient to use the general
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language of excess-of-loss layers. A layer (a,a+h] of a risk X
is defined by the loss function:

X(a,a+h] =

"((#(($
0, 0$ X < a;
(X % a), a$ X < a+ h;
h, a+h$ X,

where a is the attachment point (retention), and h is the limit.

In this subsection, we restrict our discussion to a single risk
X (individual or aggregate). For instance, X may represent an
underlying risk for facultative reinsurance, or the aggregate loss
amount for a risk portfolio being priced. Under this restriction,
there will be either no or one claim to a given layer. In other
words, the claim frequency to a given layer is Bernoulli. In Sec-
tion 3 we will discuss the pricing of excess layers of reinsurance
treaties where there can be multiple claims to a given layer.

One can verify that the loss variable X(a,a+h] has a ddf of

SX(a,a+h] (u) =

'
SX(a+u), 0$ u < h
0, h$ u,

and that the average loss cost for the layer (a,a+h] is

E[X(a,a+h]] =
! h

0
SX(a+u)du=

! a+h

a
SX(u)du:

Under the PH-transform SY(u) = [SX(u)]
r, the PH-mean for the

layer (a,a+h] is

Hr[X(a,a+h]] =
! #

0
[SX(a,a+h] (u)]

r du

=
! h

0
[SX(a+ u)]

r du=
! a+h

a
[SX(u)]

r du:

In other words, the expected loss and the risk-adjusted premium
for the layer (a,a+h] are represented by the areas over the inter-
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val (a,a+h] under the curves SX(u) and SY(u), respectively (see
Figure 1).

In Wang [30], it is shown that, for 0< r < 1, the PH-mean
has the following properties:

( Positive loading: Hr[X(a,a+h]]' E[X(a,a+h]].

( Decreasing risk-adjusted premiums:
For a < b, Hr[X(a,a+h]]'Hr[X(b,b+h]]:

( Increasing relative loading:

For a < b,
Hr[X(a,a+h]]
E[X(a,a+h]]

$ Hr[X(b,b+h]]
E[X(b,b+h]]

:

These properties are consistent with market premium struc-
tures (Patrick, [20]; Venter, [28]).

EXAMPLE 4 A single (ground-up) risk has a 10% chance of in-
curring a claim, and, if a claim occurs, the claim size has a Pareto
distribution (¸= 2,000, ®= 1:2). Putting the Bernoulli frequency
and the Pareto severity together, we have a ground-up loss dis-
tribution

SX(u) = Pr!X > u"
= Probability of occurrence)Pr!Loss Size > u"

= 0:1)
%

2,000
2,000+u

&1:2
:

The actuary is asked to price various layers of the (ground-
up) risk. Suppose that the actuary infers an index, say r = 0:92,
from individual risk analysis and market conditions. The actu-
ary may need to consider the risk loads for other contracts with
similar characteristics in the insurance and/or financial markets.
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TABLE 3

LAYER PREMIUMS USING PH-TRANSFORMS

Expected Percentage PercentageLayer X(a,b] H0:92[X(a,b]] H0:90[X(a,b]]

1K = $1,000 Loss (r = 0:92) Loading (r = 0:90) Loading

(0, 1K] 77.89 95.47 22.6% 100.45 29.0%
(5K, 6K] 20.51 27.99 36.5% 30.25 47.5%
(10K, 11K] 11.098 15.91 43.3% 17.41 56.8%
(50K, 51K] 1.982 3.26 64.5% 3.69 86.3%
(100K, 101K] 0.888 1.56 75.4% 1.79 102%
(500K, 501K] 0.132 0.269 104% 0.322 144%

(1,000K, 1,001K] 0.058 0.126 118% 0.152 165%

The PH-transform with r = 0:92 yields a ddf of

SY(u) = 0:1
0:92)

%
2,000

2,000+ u

&1:2)0:92
:

For any excess layer [a,a+ h), the expected loss to the layer is

E[X(a,a+h]] =
! a+h

a
0:1)

%
2,000

2,000+u

&1:2
du,

and the risk-adjusted premium by using a PH-transform (r =
0:92) is

Hr[X(a,a+h]] =
! a+h

a
0:10:92)

%
2,000

2,000+u

&1:2)0:92
du:

Risk-adjusted premiums for various layers are shown in Table
3. In Table 3 we also list the prices by using a slightly different
r = 0:90. Note that the developed prices are sensitive to the in-
dex r.

2.3. Increased Limits Ratemaking

In commercial liability insurance, a policy generally covers a
loss (it may include allocated loss adjustment expense) up to a
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specified maximum dollar amount that will be paid on any indi-
vidual loss. In the U.S., it is general practice to publish rates for
some standard limit called the basic limit (historically $25,000,
but now $100,000). Increased limit rates are calculated by ap-
plying increased limit factors (ILFs). Without risk load, the in-
creased limit factor is the expected loss at the increased limit
divided by the expected loss at the basic limit. The increased
limit factor with risk load is the sum of the expected loss and
the risk load at the increased limit divided by the sum of the
expected loss and the risk load at the basic limit:

ILF(!) =
E[X;!]+RL(0,!]

E[X;100,000]+RL(0,100,000]
:

It is widely felt that ILFs should satisfy the following condi-
tions (see Rosenberg [26], Meyers [16], and Robbin [25]). They
implicitly assume that insureds who buy different limits are nev-
ertheless subject to the same loss distributions.

1. The relative loading with respect to the expected loss is
higher for higher limits.

2. ILFs should produce the same price under any arbitrary
division of layers.

3. The ILFs should exhibit a pattern of declining marginal
increases as the limit of coverage is raised. In other words,
when x < y,

ILF(x+h)% ILF(x)' ILF(y+h)% ILF(y):
In the U.S., many companies use the ILFs published by the

Insurance Services Office (ISO). Traditionally, only the severity
distribution is used when producing ILFs. Until the mid-1980s,
ISO used the variance of the loss distribution to calculate risk
loads, a method proposed by Robert Miccolis [18]. From the
mid-1980s to the early 1990s, ISO used the standard deviation
of the loss distribution to calculate risk loads (e.g., Feldblum [4]).
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Meyers [16] presents a competitive market equilibrium approach,
which yields a variance-based risk load method; however, some
authors have questioned the appropriateness of the variance-
based risk load method for the calculation of ILFs (e.g., Robbin
[25]).

The following is an illustrative example to show how the PH-
transform method can be used in increased limits ratemaking.

EXAMPLE 5 Assume that the claim severity distribution has a
Pareto distribution with ddf

SX(u) =
%

¸

¸+u

&®
,

with ¸= 5,000 and ®= 1:1. This is the same distribution used
by Meyers, although he also considered parameter uncertainty.

Assume that, based on the current market premium structure,
the actuary feels that (for illustration only) an index r = 0:9 pro-
vides an appropriate provision for parameter uncertainty. When
using a Pareto severity distribution, there is a simple analytical
formula for the ILFs:

ILF(!) =
1%

%
¸

¸+!

&r®%1
1%

%
¸

¸+100,000

&r®%1 :
One can then easily calculate the increased limit factors at any
limit (see Table 4).

2.4. Some Properties of the PH-Mean

For a single risk X and for 0$ r $ 1, the PH-mean has the
following properties (see Wang [30]):

( E[X]$Hr[X]$max[X]. When r declines from one to zero,
Hr[X] increases from the expected loss, E[X], to the maximum
possible loss, max[X].
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TABLE 4

INCREASED LIMIT FACTORS USING PH-TRANSFORM

Policy Expected ILF Risk ILF
Limit ! Loss E[X;!] Without RL Load With RL

100,000 13,124 1.00 2,333 1.00
250,000 16,255 1.24 3,796 1.30
500,000 18,484 1.41 5,132 1.53
750,000 19,726 1.50 6,000 1.66

1,000,000 20,579 1.57 6,653 1.76
2,000,000 22,543 1.71 8,343 2.00

( Scale and translation invariant: Hr[aX +b] = aHr[X]+b, for
a,b ' 0.

( Sub-additivity: Hr[X+Y]$Hr[X]+Hr[Y].

( Layer additivity: when a single risk X is split into a number
of layers

!(x0,x1], (x1,x2], : : :",
the layer premiums are additive (the whole is the sum of the
parts):

Hr[X] =Hr[X(x0,x1]] +Hr[X(x1,x2]] + & & & :

Pricing often assumes that a certain degree of diversification
will be reached through market efforts. In real life examples,
risk-pooling is a common phenomenon. It is assumed that, in
a competitive market, the benefit of risk-pooling is transferred
back to the policyholders (in the form of premium reduction).
In the PH-model, the layer-additivity and the scale-invariance
have already taken into account the effect of risk-pooling. To
illustrate, consider a single risk with a maximum possible loss
of $100 million. Suppose one insurer is asked to quote premium
rates for each of the following as stand-alone coverages: sub-
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layers (0,10], (10,20], : : : , (90,100] and the whole risk (0,100].
The quoted premium for the entire risk (0,100] may exceed
the sum of individual premiums for each sub-layer. This is be-
cause the limit of $100 million may be a lot for a single insurer to
carry without a substantial profit margin. However, the market
mechanism would facilitate risk-sharing schemes among sev-
eral insurers (say, ten insurers each take a sub-layer). Thus,
when this risk pooling effect is transferred back to the policy-
holder, the premiums should be additive for different layers.
Likewise, if one insurer is asked to quote premium rates for a
10% quota-share of this risk as opposed to the whole risk, the
quoted premiums may exhibit non-linearity. However, the mar-
ket risk-sharing scheme would force the premiums to be scale
invariant—i.e., a 10% quota share demands 10% of the total pre-
mium.

Theoretically, in an efficient market (no transaction expenses
in risk-sharing schemes) with complete information, the optimal
cooperation among insurers is to form a market insurance port-
folio (like the Dow Jones index), and each insurer takes a layer
or quota-share of the market insurance portfolio.

In real life, however, the insurance market is not efficient.
This is mainly because of incomplete information (ambiguity)
and extra expenses associated with the risk-sharing transactions.
There exist distinctly different local market climates in different
geographic areas and in different lines of insurance. Catastrophe
risk varies from region to region. In some geographic regions,
due to high concentration and lack of information (ambigu-
ity), existing risk-sharing schemes are not sufficient to diversify
the risk to the extent one would wish. As a result the market
would demand a higher risk load (a smaller value of r in the PH-
model).

In summary, the index r may vary with respect to the local
market climate which is characterized by the levels of ambiguity,
risk concentration, and competition.
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3. PRICING RISK PORTFOLIOS AND REINSURANCE TREATIES

When pricing a (re)insurance contract that covers a group
of risks, the actuary often estimates claim frequency and claim
severity separately, due to the type of information available. One
straight-forward approach is to apply PH-transforms to the fre-
quency and severity distributions separately, and then take the
product of the loaded frequency and the loaded severity. An al-
ternative is to first calculate the aggregate loss distribution from
the estimated frequency and severity distributions, and then apply
the PH-transform to the aggregate loss distribution. This section
will discuss and compare both approaches.

3.1. Frequency/Severity Approach to Pricing Group Insurance

Let N denote the claim frequency with probability function pk
= Pr!N=k" and ddf SN(k) = pk+1 +pk+2+ & & & , (k=0,1,2, : : :).
The PH-mean for the frequency can be calculated as the sum

Hr[N] = SN(0)
r+ SN(1)

r+ SN(2)
r+ & & & ,

where convergence is required if N is unlimited (e.g., a Poisson
frequency is unlimited).

Depending on the available information, the actuary may have
different levels of confidence in the estimates for the frequency
and severity distributions. According to the level of confidence
in the estimated frequency and severity distributions, the actuary
can choose an index r1 for the frequency and an index r2 for the
severity. As a result, the actuary can calculate the risk-adjusted
premium for the risk portfolio as

Hr1[N])Hr2[X]:

EXAMPLE 6 Consider a group coverage of liability insurance.
The actuary has estimated the following loss distributions: (i) the
claim frequency has a Poisson distribution with ¸= 2:0, and (ii)
the claim severity is modeled by a lognormal distribution with
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a mean of $50,000 and coefficient of variation of 3 (which was
used by Finger [5] for a liability claim severity distribution). Here
we also assume a coverage limit of one million dollars per claim.
Suppose that the actuary has low confidence in the estimate of
claim frequency, but higher confidence in the estimate of the
claim severity distribution, and thus chooses r1 = 0:85 for the
claim frequency and r2 = 0:9 for the claim severity. The premium
can be calculated using numerical integrations:

H0:85[N] = 2:227, and H0:9[X] = 58,080:

Thus, the required total premium is

H0:85[N])H0:9[X] = 129,344:

Kunreuther et al. [13] discussed the ambiguities associated
with the estimates for claim frequencies and severities. They
mentioned that for some risks such as playground accidents,
there are considerable data on the chances of occurrence but
much uncertainty about the potential size of the loss due to ar-
bitrary court awards. On the other hand, for some risks such
as satellite losses or new product defects, the chance of a loss
occurring is highly ambiguous due to limited past claim data.
However, the magnitude of such a loss is reasonably predict-
able.

3.2. Frequency/Severity Approach to Pricing Per Risk
Excess-of-Loss Reinsurance Treaties

A reinsurance excess-of-loss treaty normally covers a block
of underlying policies where the attachment point and the policy
limit apply on a per risk basis. For such reinsurance treaties, the
claim frequency usually has a non-Bernoulli type distribution—
that is, the number of claims may exceed one. For some low limit
working layers where a substantial number of claims is expected,
the major uncertainty might be in the claim frequency rather than
in the severity.
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In the market, reinsurance brokers often structure the coverage
in a number of layers. It is important to have consistent pricing
on all layers. Here we give an example.

EXAMPLE 7 Consider a reinsurance excess-of-loss treaty. The
projected ceding company subject earned premium (SEP) for the
treaty is $10,000,000. The actuary is asked to price the following
excess layers which are all on a per risk basis:

1. $400K xs $100K,

2. $500K xs $500K, and

3. The combined layer $900K xs $100K.

Suppose that, based on past loss data of the ceding company,
after appropriate trending and development, the actuary has come
up with the following best-estimates:

( The number of claims which cut into the first layer has a Pois-
son distribution with mean ¸= 6.

( The size of losses greater than $100K can be modeled by a
single parameter Pareto with ddf

SX(u) =
%
100
u

&1:647
, u > 100:

Under this ground-up severity distribution, the loss to the first
layer has a Pareto (100,1:647) distribution truncated at 400
with a ddf of

S1(u) =

"(#($
%

100
u+100

&1:647
, 0< u < 400;

0, 400$ u,
which has a mean severity of $100,001.



958 IMPLEMENTATION OF PH-TRANSFORMS IN RATEMAKING

The loss to the second layer has a Pareto (500, 1.647) distri-
bution truncated at 500 with a ddf of

S2(u) =

"(#($
%

500
u+500

&1:647
, 0< u$ 500;

0, 500$ u,
which has a mean severity of $279,284.

In general, the frequency and severity distributions both
change with the attachment point. To ensure consistency, it is
important to work with the frequency and severity distributions
for losses above the minimum attachment point. For convenience
we refer to them as “ground-up” distributions, although they are
not “real” ground-up distributions. In practice, reinsurers are usu-
ally supplied with data of large losses only, the “real” ground-up
loss distribution below the attachment point is seldom known to
the reinsurer.

By transforming the “ground up” frequency and sever-
ity distributions separately, we can load for the different fre-
quency/severity risks accordingly.

For numerical illustration, we use the same PH-index r = 0:95
for both frequency and severity.

The PH-mean for a Poisson(6) distribution is 6.119, which
represents a 1.98% frequency loading. First, we apply the PH-
transform (r = 0:95) to the “ground-up” severity distribution and
allocate the loaded costs to each layer (see Table 5). Under
the Pareto (100, 1.647) “ground up” severity curve, the average
severity in the layer 500 xs 500 is $279,284, and the probability
of cutting into the second layer given that a loss has cut into
the first layer is 0.706. Therefore, the average loss to the second
layer, among all claims that have cut into the first layer, can be
calculated as the product 0:706)$279,284 = $19,717.
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TABLE 5

TRANSFORMING THE “GROUND UP” SEVERITY DISTRIBUTION

Average
Average Loss to the
Loss to the Layer After Relative
Layer Before Transform Loading

Layer Transform r = 0:95 Ratio

(1) 400 xs 100 $100,001 $105,726 1.057
(2) 500 xs 500 $ 19,717 $ 23,117 1.172
(3) 900 xs 100 $119,718 $128,843 1.076

(1)+ (2) 900 xs 100 $119,718 $128,843 1.076

TABLE 6

COMBINING LOADED “GROUND UP” FREQUENCY AND
SEVERITY (PH-INDEX r = 0:95)

Burning Cost Loaded Rate Relative
(expected loss) As % of SEP Loading

Layer As % of SEP Hr[N])Hr[X] Ratio

(1) 400 xs 100 6.000% 6.469% 1.078
(2) 500 xs 500 1.183% 1.414% 1.196
(3) 900 xs 100 7.183% 7.883% 1.098

(1)+ (2) 900 xs 100 7.183% 7.883% 1.098

Finally, we multiply the loaded “ground up” frequency and
loaded severity in each layer to get the premium rate for each
reinsurance layer (see Table 6). As a convention in reinsurance,
the burning costs and premium rates are expressed as a percent-
age of the subject earned premium (SEP), $10,000,000 in this
example.

Note that, with this approach, we get premiums that are layer-
additive. In other words, the total premium would not change
regardless of how we divide the coverage into layers.
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3.3. Aggregate Approach to Pricing Per-Risk Excess Treaty

As an alternative approach, the actuary can calculate/simulate
the aggregate loss distribution from the best-estimate frequency
and severity distributions, and subsequently apply the PH-
transform to the aggregate loss distribution.

For given frequency N and severity X, let

Z = X1 +X2 + & & &XN
represent the aggregate loss amount for the risk portfolio. Various
numerical and simulation techniques are available for calculating
the aggregate loss distribution (e.g., Heckman and Meyers [7],
and Panjer [19]).

In general, we get different results by transforming the fre-
quency and severity distributions separately versus transform-
ing the aggregate loss distribution. For the collective risk mod-
el, where claim severities are assumed mutually independent
and independent of the frequency, we have the following inequal-
ity:

Hr[Z]$Hr[N]Hr[X], 0< r < 1:

This is because, conditional on N = n, we always have

Hr[Z *N = n] =Hr[X1 + & & &+Xn]$ nHr[X]:
In other words, the PH-transform of the aggregate loss distribu-
tion takes account of the fact that the variability regarding the
aggregate loss is reduced in the pooling of N independent losses.
However, one should carefully examine the validity of the inde-
pendence assumption, especially with the presence of ambiguity
(parameter uncertainties) in the best-estimate loss distributions.
Parameter uncertainty can generate some correlation effect, al-
though the claim processes may be independent provided that
the true underlying distributions are known.

EXAMPLE 7 revisited: Now we re-consider the reinsurance treaty
example using an aggregate approach. For ease of computation,
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TABLE 7

APPLY PH-TRANSFORM TO THE AGGREGATE LOSS
DISTRIBUTIONS OF EACH PER RISK EXCESS LAYER

(r = 0:9025)

Burning Indicated Relative
Layer Cost Rate Loading
in 000’s As % of SEP As % of SEP Ratio

(1) 400 xs 100 6.000% 6.384% 1.064
(2) 500 xs 500 1.183% 1.408% 1.190
(3) 900 xs 100 7.183% 7.742% 1.078

(1)+ (2) 900 xs 100 7.183% 7.792% 1.085

here we assume independence among the individual claims in the
calculation of the aggregate loss distribution for each layer. For a
numerical comparison with the separate adjustment of frequency
and severity, we apply a PH-transform with an index r = r1) r2 =
0:95)0:95 = 0:9025 to the aggregate loss distribution of each
layer. The indicated rate for each layer is given in Table 7.

We give some modeling details regarding this specific exam-
ple. The claim frequency for the upper layer 500 xs 500 has a
Poisson distribution with mean 0.424. This can be derived from
the Poisson frequency for the lower layer 400 xs 100 and the
probability of cutting into the second layer given that a loss has
already cut into the first layer. Recall that the claim severity dis-
tribution for the layer 500 xs 500 has a Pareto (500,1:647) dis-
tribution truncated at the policy limit 500. This can be verified
using a conditional probability argument.

In this aggregate approach, we used a more severe PH-index
r = 0:9025 as compared to r = 0:95. The aggregate approach pro-
duces a premium structure similar to that obtained by transform-
ing frequency and severity separately (see Table 7 and Table 6).
The use of a more severe index offsets the risk reduction as a
result of pooling independent loss sizes.
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Another important observation can be made from Table 7.
With the aggregate approach, the premium rates are not additive
for layers. The premium rate for the first layer (6.384%) plus that
for the second layer (1.408%) is 7.792%, which is greater than
the rate for the combined layer (7.742%). This lack of layer ad-
ditivity may be a drawback of the aggregate approach in pricing
per risk excess reinsurance treaties.

3.4. Aggregate Approach to Pricing Aggregate Contracts

Some reinsurance contracts are written in aggregate terms
where the coverage triggers when the aggregate loss (or loss
ratio) for the whole book exceeds some specified amount. Usu-
ally these contracts specify the attachment point and coverage
limit in aggregate terms. In pricing such aggregate treaties, a
natural approach would be to use the aggregate loss distribu-
tion, simply because the coverage trigger is the aggregate loss
amount. In other words, the actuary needs to calculate/simulate
a probability distribution for the aggregate loss Z = X1 + & & &+
XN . Based on the claim generating mechanism as well as the
level of ambiguity, the actuary may assume some correlation
between individual risks. The PH-transform of the aggregate
loss distribution will automatically take into account the effect
of correlation. The higher the correlation between individual
risks, the greater the PH-mean for the aggregate loss distribu-
tion.

For some CAT events it might be plausible to consider the
dependency between claim frequency and claim severity. For
instance, the Richter scale value of an earthquake may affect
both the frequency and severity simultaneously, and for hurri-
cane losses, the wind velocity would affect both the frequency
and severity simultaneously. Regardless of the dependency struc-
ture, computer simulation methods can always be used to model
the aggregate losses based on a given geographic concentration.
The PH-transform of the aggregate loss distribution can capture
the correlation risk in the developed prices.
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4. MIXTURE OF PH-TRANSFORMS

While a single index PH-transform has one parameter r to
control the relative premium structure, one can obtain more flex-
ible premium structures by using a mixture of PH-transforms:

p1Hr1 +p2Hr2 + & & &+pnHrn ,
n)
j=1

pj = 1, 0$ rj $ 1 (j = 1, : : : ,n):

The PH-index mixture can be interpreted as a collective decision-
making process. Each member of the decision-making ‘commit-
tee’ chooses a value of r, and the index mixture represents differ-
ent rs chosen by different members. It also has interpretations as
(i) an index mixture chosen by a rating agency according to the
indices for all insurance companies in the market; (ii) an index
mixture which combines an individual company’s index with the
rating agency’s index mixture.

A mixture of PH-transforms has the same properties as that for
a single index PH-transform (see Section 2.4). For ratemaking
purposes, a mixture of PH-transforms enjoys more flexibility
than a single index PH-transform. Now we shall discuss two
special mixtures of the form

(1%®)Hr1 [X]+®Hr2[X], 0$ ®$ 1, r1,r2 $ 1:

4.1. Minimum Rate-on-Line

In most practical circumstances, very limited information is
available for claims at extremely high layers. In such highly am-
biguous circumstances, most reinsurers adopt a survival rule of
minimum rate-on-line. The rate-on-line is the premium divided
by the coverage limit, and most reinsurers establish a minimum
they will accept for this ratio (see Venter [28]).
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TABLE 8

LAYER PREMIUMS UNDER AN INDEX MIXTURE

Expected Risk-adjusted PercentageLayer X(a,b]
1K=$1,000 Loss Premium Loading

(0, 1K] 77.892 131.56 45.8%
(5K, 6K] 20.512 47.43 131%
(10K, 11K] 11.098 35.59 220%
(50K, 51K] 1.982 23.20 1,070%
(100K, 101K] 0.888 21.53 2,324%
(500K, 501K] 0.132 20.26 15,276%

(1,000K, 1,001K] 0.058 20.12 34,875%

By using a two-point mixture of PH-transforms with r1 $ 1
and r2 = 0, the premium functional

(1%®)Hr1[X]+®H0[X] = (1%®)Hr1 [X]+®max[X]
can yield a minimum rate-on-line at ®.

EXAMPLE 8 Reconsider Example 4. The best-estimate loss dis-
tribution (ddf) is

SX(u) = 0:1)
%

2,000
2,000+u

&1:2
:

By choosing a two-point mixture with r1 = 0:92, r2 = 0, and ®=
0:02, we get an adjusted distribution:

SY(u) = 0:98)0:10:92)
%

2,000
2,000+ u

&1:2)0:92
+0:02:

Note that SY being a proper loss distribution requires a finite
upper layer limit.

As shown in Table 8, this two-point mixture guarantees a
minimum rate-on-line at 0.02 (1 full payment out of 50 years).
Note that the average index r = (1%®)r1 +®r2 = 0:9016+ 0:90.
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We can see that this method yields distinctly different premiums
from those in Table 3 where the single indices r = 0:92 and r =
0:90 are used.

4.2. The Right-Tail Deviation

Consider a two-point mixture of PH-transforms with r1 = 1
and r2 =

1
2 :

(1%®)H1[X]+®H1=2[X] = E[X]+®(H1=2[X]%E[X]),
0<®< 1,

which is similar in form to the standard deviation method of
E[X]+®¾[X].

Now we introduce a new risk-measure analogous to the stan-
dard deviation.

DEFINITION 2 The right-tail deviation is defined as

D[X] =H1=2[X]%E[X] =
! #

0

*
SX(u)du%

! #

0
SX(u)du:

Analogous to the standard deviation, the right-tail deviation
D[X] satisfies the following properties:

( If Pr!X = b"= 1, then D[X] = 0.
( Scale-invariant: D[cX] = cD[X] for c > 0.
( Shift-invariant: D[X +b] =D[X] for any constant b.
( Sub-additivity: D[X +Y]$D[X]+D[Y].
( If X and Y are perfectly correlated, then D[X +Y] =D[X]+
D[Y].

It is shown in Appendix A that, for a small layer (a,a+h],
D[X(a,a+h]]$ ¾[X(a,a+h]], and D[X(a,a+h]] converges to ¾[X(a,a+h]]
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TABLE 9

THE RIGHT-TAIL DEVIATION VERSUS THE STANDARD
DEVIATION

Layer Expected Std-deviation Right-tail Percentage
1K = $1,000 loss of the loss deviation difference

L E[L] ¾[L] D[L] ¾[L]
D[L]

% 1

(0, 1K] 77.89 256.0 200.5 27.7%
(1K, 2K] 51.56 214.3 175.2 22.3%
(10K, 11K] 11.10 103.9 94.24 10.3%
(100K, 101K] .8879 29.76 28.91 2.93%

(1,000K, 1,001K] .05754 7.584 7.528 0.75%
(10,000K, 10,001K] .003640 1.908 1.904 0.19%

at upper layers (i.e., the relative error goes to zero when a be-
comes large). As a result, the right-tail deviation D[X] is finite
if and only if the standard deviation ¾[X] is finite.

EXAMPLE 9 Re-consider the loss distribution in Example 4 with
a ddf of

SX(u) = 0:1)
%

2,000
2,000+u

&1:2
:

For different layers with fixed limit at 1000, Table 9 compares
the standard deviation with the right-tail deviation.

Having stated a number of similarities, here we point out two
crucial differences between the right-tail deviation D[X] and the
standard deviation ¾[X] (see Wang [31]):

( D[X] is layer-additive, but ¾[X] is not additive.
( D[X] preserves some natural ordering of risks such as first
stochastic dominance,2 but ¾[X] does not.

2Risk X is smaller than risk Y in first stochastic dominance if SX(u)$ SY(u) for all u' 0;
or equivalently, Y has the same distribution as X+Z where Z is another non-negative
random variable.
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TABLE 10

LAYER ADDITIVITY: A COMPARISON

Expected Standard Right-Tail
Layer Losses Deviation Deviation

(0, 10K] 301 1378 1355
(10K, 20K] 80 834 809

(0, 20K] 381 2035 2164

Result Additive Sub-Additive Additive

These two crucial differences give the right-tail deviation
an advantage over the standard deviation in pricing insurance
risks.

Although for a small layer (a,a+h] we have D[X(a,a+h]]$
¾[X(a,a+h]], for the entire risk X the right-tail deviation often
exceeds the standard deviation, since the right-tail deviation is
layer-additive while the standard deviation is not. For example,
consider two sub-layers (0,10K] and (10K,20K], and a com-
bined layer (0,20K]. The right-tail deviation exceeds the standard
deviation for the combined layer (0, 20K], although the reverse
relation holds for each sub-layer (see Table 10).

Remark For a layer (a,a+h], the loss-to-limit ratio is de-
fined as the ratio of incurred loss to the limit of the layer. When
the layers are refined (h becomes small), the loss-to-limit ratio
approaches the ddf at that layer, which is also the frequency of
hitting the layer. This can be seen from the relation

lim
h,0

+ a+h
a SX(u)du

h
= SX(a):

If a ground-up risk is divided into small adjacent layers, the em-
pirical loss-to-limit ratios at various layers yield an approxima-
tion to the underlying ddf. As a pragmatic method for computing
risk loads, it has been a longstanding practice of some reinsurers
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to adjust the empirical loss-to-limit ratio by adding a multiple of
the square root of the empirical loss-to-limit ratio. As the layers
are refined (h becomes small), this pragmatic method approaches
the following:

E[X(a,a+h]] +®(D[X(a,a+h]] +E[X(a,a+h]]):

5. ECONOMIC THEORIES OF RISK LOAD

In this section we review some economic theories and show
how the PH-transform fits in.

5.1. Expected Utility Theory

Traditionally, expected utility (EU) theory has played a dom-
inant role in modeling decisions under risk and uncertainty. To
a large extent, the popularity of EU was attributed to the axioms
of von Neumann and Morgenstern [29].

Let V represent a random economic prospect and let SV(u) =
Pr!V > u" (i.e., the probability that the random economic
prospect V exceeds value u). Let the symbols - and . repre-
sent strict preference and indifference, respectively. Von Neu-
mann and Morgenstern proposed five axioms of decision under
risk:

EU.1 If V1 and V2 have the same probability distribution, then
V1 .V2.

EU.2 Weak order: / is reflective, transitive, and connected.
EU.3 / is continuous in the topology of weak convergence.
EU.4 If V1 ' V2 with probability one, then V1 / V2.
EU.5 If SV1 / SV2 , and for any p 0 [0,1], the probabilistic mix-

ture satisfies

(1%p)SV1 +pSV3 / (1%p)SV2 +pSV3 :
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Von Neumann and Morgenstern showed that any decision-
making which is consistent with these five axioms can be mod-
eled by a utility function u such that ‘V1 - V2 if and only if
E[u(V1)]' E[u(V2)].’
When EU is applied to produce an insurance premium for a

risk X, the minimum premium P that an insurance company will
accept for full insurance satisfies the EU-equation

u(w) = E[u(w+P%X)]
in which u and w refer to the insurer’s utility function and wealth
(see Bowers et al. [2]). The premium P from the EU-equation
does not satisfy layer-additivity. Thus, the PH-transform does not
fit in the expected utility framework.

5.2. The Dual Theory of Yaari

Modern economic theory questions the assumption that a firm
can have a utility function, even when it accepts that individuals
do. Yaari [32] proposed an alternative theory of decision under
risk and uncertainty.

While the first four EU axioms are apparently reasonable,
many people challenged the fifth axiom in the expected utility
theory. While keeping the first four EU axioms unchanged, Yaari
proposed an alternative to the fifth EU axiom:

DU.5* If V1, V2, and V3 are co-monotone and V1 /V2, for any
p 0 [0,1], the outcome mixture satisfies

(1%p)V1 +pV3 / (1%p)V2 +pV3:

Two risks X and Y are co-monotone if there exists a random
variable Z and non-decreasing real functions u and v such that
X = u(Z) and Y = v(Z) with probability one. Co-monotonicity is
a generalization of the concept of perfect correlation to random
variables without linear relationships. Note that perfectly cor-
related risks are co-monotone, but the converse does not hold.
Consider two layers (a,a+h] and (b,b+h] for a continuous vari-
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ate X. The layer payments X(a,a+h] and X(b,b+h] are co-monotone
since both are non-decreasing functions of the original risk X.
They are bets on the same event and neither of them is a hedge
against the other. On the other hand, for a 1= b, X(a,a+h] and
X(b,b+h] are not perfectly correlated since neither can be written
as a linear function of the other.

Under axioms EU.1–4 & EU.5*, Yaari showed that there ex-
ists a distortion function g : [0,1], [0,1] such that a certainty
equivalent to a random economic prospect V on interval [0,1] is! 1

0
g[SV(y)]dy:

In other words, the certainty equivalent to a random economic
prospect, 0$V $ 1, is just the expected value under the distorted
probability distribution, g[SV(y)], 0$ y $ 1.
Regarding the concept of risk-aversion, Yaari made the fol-

lowing observations:

At the level of fundamental principles, risk-aversion
and diminishing marginal utility of wealth, which are
synonymous under expected utility theory, are horses
of different colors. The former expresses an attitude
towards risk (increased uncertainty hurts) while the lat-
ter expresses an attitude towards wealth (the loss of a
sheep hurts more when the agent is poor than when
the agent is rich). [32, p. 95]

The PH-transform fits in Yaari’s economic theory with g(x)
= xr.

5.3. Schmeidler’s Ambiguity-Aversion

As early as 1921, John Keynes identified a distinction be-
tween the implication of evidence (the implied likelihood) and
the weight of evidence (confidence in the implied likelihood).
Frank Knight [10] also drew a distinction between risk (with
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known probabilities) and uncertainty (ambiguity about the prob-
abilities). A famous example on ambiguity-aversion is Ellsberg’s
[3] paradox which can be briefly described as follows: There are
two urns each containing 100 balls. One is a non-ambiguous urn
which has 50 red and 50 black balls; the other is an ambiguous
urn which also contains red and black balls but with unknown
proportions. When subjects are offered $100 for betting on a
red draw, most subjects choose the non-ambiguous urn (and the
same for the black draw). Such a pattern of preference cannot be
explained by EU (Quiggin, [24, p. 42]).

Ellsberg’s work has spurred much interest in dealing with
ambiguity factors in risk analysis. Schmeidler [27] brought to
economists non-additive probabilities in his axiomization of pref-
erences under uncertainty. For instance, in Ellsberg’s experiment,
the non-ambiguous urn with 50 red and 50 black balls is pre-
ferred to the ambiguous urn with unknown proportions of red
or black balls. This phenomenon can be explained if we assume
that one assigns a subjective probability 3

7 to the chance of get-
ting a red draw (or black draw). Since 3

7 +
3
7 =

6
7 which is less

than one, the difference 1% 6
7 =

1
7 may represent the magnitude

of ambiguity aversion.

In his axiomization of acts or risk preferences, Schmeidler
obtained essentially the same mathematical formulation (axioms
and theorems) as that of Yaari. A certainty equivalent to a random
economic prospect V (0$V $ 1) can be evaluated as

H[V] =
! 1

0
g[SV(u)]du,

where g : [0,1] 2, [0,1] is a distortion (increasing, non-negative)
function, and g[SX(u)] represents the subjective probabilities.

The major difference between the Schmeidler model and the
Yaari model lies in the interpretation (Quiggin, [24]). Yaari as-
sumes that the objective distributions (e.g., SX) are known and
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one applies a distortion (i.e., g) to the objective distribution.
Schmeidler argues that it is illogical to assume an objective dis-
tribution; instead, he interprets g 3 SX as non-additive subjective
probabilities which can be inferred from acts.

However, economic interpretations are important. For in-
stance, if the underlying distribution is assumed to be known,
then the process risks can be diversified away in a risk portfolio.
Ambiguity is uncertainty regarding the best-estimate probability
distribution, and thus may not be diversifiable in a risk portfolio.

The PH-transform fits in Schmeidler’s economic theory with
an interpretation of aversion to ambiguity (parameter risk).

5.4. No-Arbitrage Theory of Pricing

No-arbitrage is a fundamental principle in financial economic
theory, which requires linearity of prices. The theories of Yaari
and Schmeidler can be viewed as a more relaxed (or more gen-
eral) version of the no-arbitrage theory, i.e., they only require no
arbitrage (linearity) on co-monotone risks (e.g., different layers
of the same risk). Using a market argument, Venter [28] dis-
cussed the no-arbitrage implications of reinsurance pricing. He
observed that in order to ensure additivity when layering a risk,
it is necessary to adjust the loss distribution so that layer pre-
miums are expected losses under the adjusted loss distribution.
Venter’s observation is in agreement with the theories of Yaari
and Schmeidler. In fact, the PH-transform is a specific transform
which conforms to Venter’s adjusted distribution method.

6. SUMMARY

In this paper we have introduced the basic methodologies of
the PH-transform method and have shown by example how it
can be used in insurance ratemaking. We did not discuss how
to decide the overall level of contingency margin, which de-
pends greatly on market conditions. An important avenue for
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future research is to link the overall level of risk load with the
required surplus for supporting the written contract. Some pio-
neering work in this direction can be found in Kreps [11], [12]
and Philbrick [22].

The use of adjusted/conservative life tables has long been
practiced by life actuaries (see Venter, [28]). To casualty actuar-
ies, the PH-transform method contributes a theoretically sound
and practically plausible way to adjust the loss distributions.
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APPENDIX A: PROOFS OF SOME STATED RESULTS

THEOREM 1 For any non-negative random variable X (discrete,
continuous, or mixed), we have

E[X] =
! #

0
SX(u)du:

Proof For x' 0 it is true that
x=

! #

0
I(x > u)du,

where I is the indicator function (assuming values of 0 and 1).
For a non-negative random variable it holds that

X =
! #

0
I(X > u)du:

By taking expectation on both sides of the equation one gets

E[X] =
! #

0
E[I(X > u)]du=

! #

0
SX(u)du:

THEOREM 2 For a small layer [a,a+h) with h being a small
positive number, we have

( D[X(a,a+h]]$ ¾[X(a,a+h]], and
( lima,#D[X(a,a+h]]=¾[X(a,a+h]] = 1.

Proof Let p= SX(u) be the probability of hitting the layer
[a,a+h). Note that p, 0 as u,#. The payment by the small
layer [a,a+h) has approximately a Bernoulli type distribution:

Pr!X(a,a+h] = 0"= 1%p, Pr!X(a,a+h] = h"= p:

Thus, ¾(X(a,a+h]) =
*
p%p2h and D[X(a,a+h]] = (

4
p%p)h. The

two results come from the fact that
4
p%p$

*
p%p2 for 0$

p$ 1 and
lim
p,0

4
p%p*
p%p2

= 1:
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APPENDIX B: AMBIGUITY AND PARAMETER RISK

Most insurance risks are characterized by the uncertainty
about the estimate of the tail probabilities. This is often due to
data sparsity for rare events (small tail probabilities), which in
turn causes the estimates for tail probabilities to be unreliable.

To illustrate, assume that we have a finite sample of n obser-
vations from a class of identical insurance policies. The empirical
estimate for the loss distribution is

Ŝ(u) =
# of observations> u

n
, u' 0:

Let S(u) represent the true underlying loss distribution, which
is generally unknown and different from the empirical estima-
tion Ŝ(u). From statistical estimation theory (e.g., Lawless [14,
p. 402], Hogg and Klugman [8]), for some specified value of u,
we can treat the quantity

Ŝ(u)% S(u)
¾[Ŝ(u)]

,

as having a standard normal distribution for large values of n,
where

¾[Ŝ(u)]+
*
Ŝ(u)[1% Ŝ(u)]4

n
:

The ´% upper confidence limit (UCL) for the true underlying
distribution S(u) can be approximated by

UCL(u) = Ŝ(u)+
q´4
n

*
Ŝ(u)[1% Ŝ(u)],

where q´ is a quantile of the standard normal distribution:
Pr!N(0,1)$ q´"= ´. Keeping n fixed and letting t,#, the ra-
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tio of the UCL to the best-estimate Ŝ(u) is

UCL(u)

Ŝ(u)
= 1+

q´4
n

,--.1% Ŝ(u)
Ŝ(u)

,#,

which grows without bound as u increases.

As a means of dealing with ambiguity regarding the best-
estimate, the PH-transform

ŜY(u) = [ŜX(u)]
r, r $ 1,

can be viewed as an upper confidence limit (UCL) for the best-
estimate ŜX(u). It automatically gives higher relative safety mar-
gins for the tail probabilities, and the ratio

[ŜX(u)]
r

ŜX(u)
= [ŜX(u)]

r%1,#, as u,#,

increases without bound to infinity.



DISCUSSION BY GARY G. VENTER

1. INTRODUCTION

Dr. Wang has provided a good case for the use of the mean
of the PH-transform of a loss distribution as the risk-loaded pre-
mium. I would like to comment on several issues: 1) the need
for consistency of the adjustment among contracts; 2) alternative
transforms; 3) calibration; 4) the need for arbitrage free methods;
5) links to other premium loading methods; 6) minimum rates
on line; and 7) connecting to Yaari and Schmeidler.

2. CONSISTENCY AMONG CONTRACTS

In Venter [5] I argued that the following aspects of a risk load
formula are all equivalent:

1. It is arbitrage free.

2. It is strictly additive for both independent and correlated
risks.

3. It can be calculated as the expected value of an adjusted
probability distribution.

Note however that this does not guarantee a positive load over
expected values. That depends on the adjusted distribution cho-
sen and the cover being priced.

The PH-transform would be one choice for generating such
an adjusted distribution. When considering various contracts and
portfolios, however, the use of adjusted distributions produces
additive and arbitrage-free pricing only if a single adjustment of
probability is made for each event and this event probability is
kept fixed when looking at the various contracts. That is, to avoid
arbitrage, once a transformed probability has been selected for
an event, that probability has to be used for the entire calcula-
tion.

980
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This rule is violated, for example, in Wang’s Table 7. He ap-
plies PH-transformed probabilities to the aggregate losses in the
occurrence layers 400 xs 100 and 500 xs 500, and calculates
the mean loss in each layer under those probabilities (6.384%
and 1.408% respectively). Given these probabilities, the loss to
the layer 900 xs 100 then has to be the sum, or 7.792%. This is
regardless of independence—the means are always additive. But
as Wang shows, the PH-transform of the 900 xs 100 layer using
the same parameter gives a different mean, and so must imply
different probabilities for the layer losses.

This reasoning may lead to inconsistencies any time the PH-
transform is applied to aggregate losses, especially if any hypo-
thetical contract has to be priced. This would suggest applying
transformations separately to frequency and severity. In any case,
for use in reinsurance pricing, it would be useful to have sep-
arate transforms of the frequency and severity distributions, so
that the transformed distributions can be used in excess, propor-
tional, and aggregate treaty pricing.

For this reason, and for ease of calculation, the PH-transform
is probably best applied to the severity distribution only. Fre-
quency can be adjusted more simply, perhaps by changing the
parameters of the frequency distribution. The additivity that re-
sults from adjusting severity with a single transformation applied
to the entire severity distribution is illustrated in Wang’s Table 5.

The need for consistent adjustment of probabilities in order
to produce additivity can also be illustrated using an example
from Delbaen and Haezendonck [3]. One of the transforms they
consider is the adjusted distribution

f!(x) = f(x)[1+h(x"E(X))]:
This gives the adjusted mean

E!(X) = E(X)+hVar(X):

Thus, they seem to have shown that a variance load is a form of
adjusted probability. However, for this to be a true variance load,
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inconsistent probability adjustments are sometimes required. For
instance, if Y is adjusted by the same method, the price for Y
would be the adjusted mean

E!(Y) = E(Y) +hVar(Y):

These probability adjustments would then determine the adjusted
mean for X +Y to be

E!(X +Y) = E(X +Y)+ hVar(X) +hVar(Y),

as means are additive even for correlated variates. If X and Y are
in fact correlated, this is not the same as the variance load

E(X +Y)+hVar(X+Y):

This load could be achieved as an adjusted mean for X +Y, but
different probabilities for X and Y would be needed. Thus for an
adjusted mean to always give the variance load, the transformed
probabilities must change during the calculation. If the variable
X is kept fixed when transforming other variables, this trans-
formation becomes a covariance load that produces the variance
load only for X itself.

Even variables that depend only on X do not always receive
a variance loading under this transformation. For instance, a 2%
quota share of X would have mean under f! of

E!(0:02X) = 0:02[E(X)+ hVar(X)],

but under a variance load it would have a price of

0:02E(X)+h(0:02)2Var(X):

This is only 1/50th as much loading, so with a variance load a
risk could be 100% ceded to 50 reinsurers and 98% of the profit
retained by the cedant. With the adjusted probability method, the
whole profit would go to the reinsurers.
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3. AN ALTERNATIVE TRANSFORM

Buhlmann [2] suggested using the Esscher transform to
calculate risk load. This transformation is

f!(x) = ehxf(x)=E(ehX):

More recently, Gerber and Shiu [4] suggest using the Esscher
transform on lnX. They show how lognormally distributed se-
curity prices are transformed into another lognormal distribution
with just an adjustment to the ¹ parameter. The transformed ¹
parameter is ¹+h¾2. If you then calibrate h to produce the cur-
rent security price as the discounted transformed mean of the
original security, they show that you recover the Black–Scholes
option pricing formula as the adjusted expected present value of
the option. This makes the Esscher transform on logs interest-
ing, as in this case it ties in with known financial theory. It can
sometimes be calculated more simply as the equivalent power
transform of the original distribution f!(x) = xrf(x)=E(Xr).

However, for Poisson variables, they show that the Esscher
transform of the original variable (not the log) agrees with option
prices for jump processes. Here the transform is also Poisson. A
reasonable approach for compound frequency/long-tailed sever-
ity processes may be to apply the Esscher transform to frequency
and to the log of severity.

4. CALIBRATION

Both the PH and Esscher transforms have a free constant that
determines the level of the risk load. The value of this constant
will depend on market conditions. However, if the price for ba-
sic primary coverage is known, it can be used to determine the
value of the constant, which then can be used to price different
reinsurance or excess layers for the same risk. This is basically
the approach Black and Scholes use to price derivative contracts
based on the pricing of the underlying asset.
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As an example, suppose a portfolio of commercial property
risks has a disappearing deductible of 1 (in appropriate units),
and severity distribution F(x) = 1" x"a; i.e., the simple Pareto,
for x > 1. The distribution for lnX is the exponential distribution
G(x) = 1" e"ax. For this, the moment generating function is

M(h) = E(ehx) = a=(a"h):
Then the Esscher transform on G is

g!(x) = ehxg(x)(a"h)=a:
Since g(x) = ae"ax, this shows that

g!(x) = (a"h)e"(a"h)x,
which is another exponential distribution. Thus F!(x) = 1"
x"(a"h) is the transformed severity distribution. But this distri-
bution can also be reached as a PH-transform of the original
Pareto. In this case, then, the log-Esscher and PH-transform can
be calibrated to give the same distribution.

To determine the constant h, consider the loading for the
portfolio. The mean for the simple Pareto is a=(a"1). Sup-
pose a= 2, and a loading of 10% of premium is built into pri-
mary pricing. Assume no loading is made for frequency. Then
E(X) = 2, and h is needed so that (a"h)=(a"h" 1) = 2:2, or
(2"h)=(1" h) = 2:2. This gives h= 1=6. Thus the Pareto with
a= 1:833 gives the primary price as its mean, and so can be
used for consistent pricing of reinsurance layers. The corre-
sponding r for the PH-transform would be r = 11=12 = 0:9166,
as (x"2)0:9166 = x"1:833. Note that the transformed distribution is
zero below x= 1, as is the original. This is an important detail
omitted from the above discussion: in order to avoid arbitrage the
transformed distribution must give zero probability to the same
events as does the original distribution.

A problem with this calculation is that a loading should be
made for frequency, as the frequency risk will not be carried for
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free. Reinsurance contracts for aggregate losses or for aggregate
coverage on small per-occurrence layers would carry substan-
tial frequency risk, which would have to be priced. The above
calculation of the severity r or h can be done for any assumed
frequency load. Rather than no load, another assumption might
be that the frequency and severity loads are the same, or are in
some pre-selected proportion. Thus, there is still some judgment
involved in trying to find the adjusted probabilities that support
the underlying pricing.

The PH and log-Esscher transforms are not always the same.
For instance, for the inverse Weibull distribution

F(x) = exp("(µ=x)¿ ),
the PH-transform is

1" [1" exp("(µ=x)¿ )r,
whereas the log-Esscher transform is inverse transformed gam-
ma. These will tend to be similar in typical cases, however, de-
pending on the calibration. This suggests that the choice between
PH and log-Esscher transforms for severity may be largely a mat-
ter of ease of calculation. For example, the log-Esscher transform
of the lognormal is lognormal, whereas the PH-transform is more
complicated.

5. SHOULD ACTUARIES ALWAYS USE ARBITRAGE FREE
METHODS?

Insurers may want to try to build arbitrage possibilities into
prices; e.g., by using variance loadings. If these loadings succeed
in the market, this might give the insurers arbitrage opportunities.
Exploiting arbitrage opportunities is usually regarded as produc-
ing an improvement in market functioning, as it tends to compete
away those opportunities. However, this policy would need to be
monitored carefully, as the products with arbitrage might even-
tually lose out to other competitors, resulting in a loss of market
share.
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Some apparent arbitrage in the reinsurance market may not
actually be such. For instance, a strongly capitalized insurer may
cede a portion of its risk to a group of weaker reinsurers for
less than it received in premium. But the insurer is bearing the
insolvency risk of those reinsurers, while its customers are not.

6. LINKS TO OTHER RISK LOAD METHODS

I was interested in Dr. Wang’s comment that while the PH-
transform aims to give the market price, different insurers may
want different prices, depending for instance on their current risk
portfolios. While he does not discuss how an insurer’s desired
price would be calculated, a logical approach might be to try to
quantify the degree of risk assumed, and look to market norms
or carrier goals to determine what the return should be for carry-
ing that risk. This in general terms is how some other risk load
methodologies proceed; e.g., the papers of Kreps and Meyers
that Dr. Wang’s paper cites. Thus, those approaches could be
considered to be aiming at an insurer’s desired risk load, while
the transformed distributions are looking for the market price.

7. MINIMUM RATES ON LINE

Wang shows that a mixture of PH-transforms can produce
minimum rates on line as market prices for low-expected-value
risks. For individual reinsurers, minimum rates on line may make
sense due to capacity constraints. Minimums are problematic
from a market theory viewpoint, however. If a group of risks
with very low expected losses were each written at a market
minimum rate on line, they could conceivably be packaged and
ceded as a group at that same rate on line, generating an arbi-
trage profit. It could be that market minimums exist as barriers
but not as actual prices, as they may serve only to stop purchases
when the expected loss is sufficiently less than the rate. If so, the
above problem could not arise, as two or more minimum rate
risks would cost more than the minimum when combined as a
group.
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Even without the mixture, a single PH or Esscher transform
can produce layer rates that decline very slowly as the retention
increases, and the risk load as a percentage of expected losses
can increase without limit. Although not giving a true minimum
rate on line, this could approximate market behavior fairly rea-
sonably.

8. CONNECTING TO YAARI AND SCHMEIDLER

Both of these approaches advocate pricing by the mean of a
distortion of the ddf, denoted by Wang as g[SV(u)]. This makes it
look like the distorted probability should act directly on the ddf.
However, any distortion of probability can be re-expressed to
state its effect on the ddf. For instance, consider a scale transform
of a Pareto with original ddf of (1+ u=b)"a and transformed
ddf of (1+ u=c)"a. If g(x) = [1+ b(x"1=a"1)=c]"a, then it will
produce the transformed ddf from the original ddf.

Perhaps surprisingly, an increased scale parameter does not
always produce a positive loading. An example where it does not
is attributed to Thomas Mack in Albrecht [1]. It turns out that if
you have a disappearing deductible, and want a separate cover to
buy that back to full coverage, the buyback of the deductible can
be cheaper for a higher scale parameter. For instance, suppose
severity is Pareto with S(x) = (1+ x=b)"a, and you want to buy
a cover that pays the full loss X up to X = c, and nothing above
c. The expected loss for this cover is the expected loss limited
to c, E(X # c), less cS(c). From

E(X # c) = [1" (1+ c=b)1"a]b=(a"1),
and taking a= 2, this simplifies to

bc2=(b+ c)2:

This can be seen to be a decreasing function of b for c < b, so
in that case an increased scale parameter would give an adjusted
mean less than the actual mean. The scale transform is pushing
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probability up to higher loss levels, so there is less below the
deductible.

Unfortunately, this can happen with the PH and log-Esscher
transforms also. The PH-transform of a Pareto lowers the a pa-
rameter. For b = 1 the deductible expected value is

[1" (1+da)(1+d)"a]=(a"1),
which is an increasing function of a in some ranges. Thus low-
ering a will lower the expected value, making the adjusted mean
less than the true mean. The log-Esscher transform in h of the
Pareto is the generalized Pareto distribution with parameters
a"h,b,h+1. The deductible mean under this is also sometimes
less than the non-transformed mean.

Even Delbaen and Haezendonck’s loading of a portion of
the covariance of the deductible with full coverage would have
the same problem, as when c is low enough, the deductible is
negatively correlated with total losses due to it being zero for
larger loss amounts. For all of these approaches the full coverage
contract would have less risk load than coverage excess of a small
disappearing deductible.

This may be appropriate when the losses under the deductible
are negatively correlated with total losses. When the variance of
total losses is less than that of the losses excess of the disappear-
ing deductible, even a traditional standard deviation or variance
loading will price a buyback of the deductible for an excess
policyholder at less than the expected losses of the additional
coverage. For instance, consider the above Pareto with a= 2:5
and b = c= 1. The variance of a full coverage loss is 2.22, while
a loss excess of the deductible has variance 2.36. If losses are
loaded by h$ variance, an excess policyholder can buy back to
full coverage for the expected value of the deductible less 0:14h.
In any case, the loading method chosen will always have to be
checked for its practical application to the problem at hand.
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9. CONCLUSION

The PH-transform appears to be a useful way to build in risk
load, especially for severity. The power transform (i.e., the log
of the Esscher transform) should also be considered, especially
when it is easier to calculate. For frequency, the Esscher trans-
form can be applied, which in practice will often just result in a
change in the frequency parameters.
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DISCUSSION OF PAPER PUBLISHED IN
VOLUME LXXXIII

THE COMPLEMENT OF CREDIBILITY

JOSEPH A. BOOR

DISCUSSION BY SHOLOM FELDBLUM

It is the concept of credibility that has been the casualty
actuaries’ most important and most enduring contribu-
tion to casualty actuarial science.

—Matthew Rodermund

1. INTRODUCTION

Credibility theory is the crown jewel of casualty actuarial
science. The statistician measures the significance of empirical
findings, and the businessman uses judgment to select among
diverse recommendations. Credibility theory meshes these two
traditions, enabling us to combine varied indications based upon
the relative predictive power of each of them.

In the quotation above, Rodermund speaks of credibility the-
ory itself. Joseph Boor reminds us that the determination of cred-
ibility is only half of the pricing actuary’s task. The other half,
of no less importance, is to choose the figure that receives the
complement of credibility.

Boor focuses on the practical track. There are dozens of fine
actuarial papers on the theory of credibility, not all of which are
easily implemented by the practicing actuary. Boor’s paper, in
contrast, was written first for the actuarial student, as a study
note for the CAS ratemaking examination. It is equally valuable
for the experienced actuary, keeping our gaze focused on the
practicalities of insurance pricing.

991



992 THE COMPLEMENT OF CREDIBILITY

2. BAYESIAN VS. CLASSICAL CREDIBILITY

It is instructive to contrast Bayesian and classical credibility
procedures in the light of Boor’s paper. Classical credibility as-
signs a credibility value to the experience data based upon its
predictive power: that is, based upon the probability that the in-
dication derived from the historical experience will be relatively
close to the true expectations (see Longley-Cook [5]). The term
“indication” here refers to the claim frequency, the pure pre-
mium, the loss ratio, or any similar ratemaking figure. Following
Boor’s illustrations, this discussion also uses examples of pure
premiums.

In the classical tradition, the credibility assigned to the ex-
perience data is independent of the figure that is accorded the
complement of credibility. Indeed the qualities of the figure that
is assigned the complement of credibility are not relevant for
determining the credibility that it receives, and they are there-
fore not relevant for determining the final credibility-weighted
indication.

For instance, traditional automobile liability ratemaking pro-
cedures may assign a credibility value to the experience loss
ratio or the experience pure premium based upon the number of
claims in the experience period, using a full credibility standard
of 1,024 claims.1 For experience with fewer than 1,024 claims,
the credibility assigned to the experience data equals

!
N=1024,

where N is the number of claims in the experience.2 If the expe-
rience contains 164 claims, then the credibility formula requires

1The rationale for this approach stems from a normal approximation to a Poisson claim
distribution, whereby 1,024 claims in the experience period with no subsequent changes
in the parameters of the Poisson distribution provides a 95% confidence interval that
the true claim frequency is within !5% of the indicated claim frequency (Stern [8];
Longley-Cook [5]).
2The rationale for this partial credibility formula is that the variance of the experience
indications varies with the square root of the volume of the experience. It is difficult to
construct a partial credibility rule from this rationale, since classical credibility does not
consider the predictive accuracy of the information which receives the complement of
credibility.
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that we assign 60% weight to some other information, such as
the current pure premium, or the pure premium from some other
classes, some other territories, or some other time periods. Boor
asks: “How should we choose this other information? In partic-
ular, what characteristics should this other information have?”

We will come back to this question in a moment, to see
whether it is indeed well formulated. Let us first consider the
workings of classical credibility. Most fundamentally, the at-
tributes of the information that receives the complement of credi-
bility do not affect the amount of credibility to be assigned either
to this data or to the experience data. Whether we use the cur-
rent pure premium, or the pure premium from some other classes,
some other territories, or some other time periods makes no dif-
ference. The experience data still receives 40% credibility, and
the other information receives the remaining 60% credibility.

In contrast, Bayesian credibility procedures do not speak
about the predictive power of the experience data. In Bayesian
credibility, the experience data in one ratemaking scenario may
be sparse and volatile, but they will be assigned high credibility
simply because we have nothing else that is more accurate. In
another ratemaking scenario, the experience data may be volu-
minous and steady, but they may be assigned a lower credibility
because we have other, equally good information.

If Boor’s paper is important for classical credibility, then it
is doubly important for Bayesian credibility. In classical cred-
ibility, the determination of credibility comes first. Before we
have chosen the data to be assigned the complement of credibil-
ity, we know the amount of credibility that will be assigned to
the experience data. A proper choice of the data to be assigned
the complement of credibility improves the ratemaking indica-
tion only because it improves the part of the indication stemming
from the complement of credibility.

In Bayesian credibility, we do not know the amount of credi-
bility to be assigned the experience data until we know the type
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of information to which the complement of credibility will be
assigned. The attributes of this information, such as its predictive
power and its freedom from bias, affect the weight that we assign
both to this data and to the experience data.

Many actuaries conceive of classical credibility and Bayesian
credibility as two points along a continuum. Actuarial ratemaking
seeks to produce the most accurate indications possible. Classical
credibility was an early attempt to achieve this, and it remains
the most practical technique in most ratemaking environments.
Bayesian credibility is a more refined method of achieving the
same end. To summarize: Bayesian credibility is a statistically
justified procedure for optimizing the accuracy of the rate indi-
cations. Classical credibility is an early, less sophisticated attempt
to do the same.

3. LEAST FLUCTUATION CREDIBILITY AND GREATEST
ACCURACY CREDIBILITY

Gary Venter [9] has put forth an alternative perspective. The
aim of classical credibility is not solely the achievement of accu-
rate rate indications. Rather, the aim of classical credibility is to
limit the fluctuation of rate levels from year to year, unless there
is good statistical justification for a change. As Venter says [9,
pp. 383, 384]:

The basic philosophical difference between these
methods is as follows. The limited fluctuation ap-
proach aims to limit the effect that random fluctua-
tions in the data can have on the estimate; the greatest
accuracy approach attempts to make the estimation er-
rors as small as possible. The most well developed ap-
proach to greatest accuracy credibility is least squares
credibility, which seeks to minimize the expected value
of the square of the estimation error. The term “clas-
sical credibility” has sometimes been used in North
America to denote limited fluctuation credibility : : :
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Let us clarify this distinction with an illustration. Suppose
that we are making rates for a new coverage, and we have no
historical experience and no prior expectations upon which to
base the rate. It is a stated amount coverage for $1,000, with a
maximum of one claim per policy period, so we know that the
pure premium must be between $0 and $1,000 (depending on
the claim frequency).3

Since there is no statistical information or prior expectations
for this coverage, let us suppose that the regulator chooses a
random number between $0 and $1,000 as the pure premium for
the first five years. The random number is $670. We add risk
load, expenses, and profit margins to set the rate.

After the five years go by, we have some historical experience,
which indicates the pure premium should be $245. However,
the historical experience is sparse, and the true expected pure
premium may be much different. We want to use this experience
and credibility theory to set the pure premium for the next five
years.

Assume that we have no prior expectation and no external in-
formation. The only information we have is the $245 historical
pure premium. Under Bayesian credibility theory, the historical
experience gets full credibility, and our best estimate for the ex-
pected pure premium is $245.4

Classical credibility is designed to avoid undue fluctuations
in the rates. Both the customer and the regulator are accustomed
to a pure premium of $670. Because the data are sparse, the rate
level will change significantly if we rely on Bayesian credibility.
Classical credibility will change the rate only to the extent that
we have “credible” historical experience for doing so.

3For example, consider term life insurance coverage on an insured whose mortality ex-
pectation is entirely unknown.
4We may want to set a higher risk load, since there is a greater chance that we will
lose money with lower rates. However, the risk load is distinct from the expected pure
premium.
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Suppose that we determine that the classical credibility is
40%, based on the statistical parameters which we choose, such
as the size of the confidence interval. The new pure premium is
40%" $245+60%" $670 = $500.
With Bayesian credibility, the indicated pure premium moves

as rapidly as possible towards the true expected pure premium,
though the sequence of pure premium changes may have wide
swings. With classical credibility, the indication moves less
rapidly towards the true expected pure premium, but the se-
quence of pure premium changes has fewer and narrower swings.
Bayesian credibility emphasizes accuracy; classical credibility
emphasizes stability.

This example is admittedly extreme. In general, we have
a priori expectations for the pure premium, and the previously
charged rate is rarely so different from the experience data. How-
ever, this distinction between classical and Bayesian credibility is
true for any ratemaking scenario, though the differences between
the two methods will rarely be as great.

4. THE COMPLEMENT OF CREDIBILITY: CLASSICAL APPROACH

The implications for Boor’s thesis are important, assuming
that we interpret the distinction between classical and Bayesian
credibility in the manner proposed by Venter. For classical cred-
ibility, the primary concern is limiting the fluctuations in rates.
If so, the choice of the information which should be accorded
the complement of credibility is clear. It is the current rate, ad-
justed (if necessary) for factors unrelated to potentially random
fluctuations in experience.

Since this is the essence of classical credibility, it warrants
further explanation. Suppose that

# the underlying pure premium is $100 per exposure,

# there is no monetary inflation affecting claims costs (i.e., no
loss cost trend),
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# there is no expected change in claim frequency, and

# there are no changes in the compensation system that might
affect loss costs.

Random loss occurrences, however, affect the experience pure
premiums. Sometimes the experience data indicate a $90 pure
premium, and sometimes they indicate a $110 pure premium.
We don’t know whether the true expected pure premium per ex-
posure is $90, $100, $110, or some other amount. Unless there is
good actuarial justification for doing so, the insurance company
will not change the underlying pure premium. To the extent that
the experience is “credible,” the company will indeed change the
rate to bring it more in line with the historical experience.

Without reliable experience indications, the company and the
regulator are reluctant to change rates because (i) the public has
come to expect a $100 pure premium and (ii) there is no good
actuarial justification for changing the rates. There may be some
external factor affecting the expected pure premium. In that case,
the pricing actuary aims to reflect that factor in the price change.
For instance, if there is 10% monetary inflation affecting loss
costs (i.e., the loss cost trend is +10%), then the company, the
regulator, and the public expect a 10% increase in premium rates
if we have no other information. This is the rationale for credibil-
ity weighting the experience pure premium (or experience loss
ratio) not with the underlying pure premium (or the expected
loss ratio) but with the trended underlying pure premium (or the
trended expected loss ratio).

The same is true for any other external change affecting the
expected loss costs, such as changes in the expected claim fre-
quency, or changes in the insurance compensation system. In
practice, these factors affect both the experience data and the
underlying pure premium (or the expected loss ratio). For in-
stance, if there is a non-zero loss cost trend, the trend factor is
applied both to the experience data and to the underlying pure
premium.
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5. THE COMPLEMENT OF CREDIBILITY: IN PRACTICE

The central question of Boor’s paper is “What are the desir-
able characteristics of the information to be assigned the comple-
ment of credibility?” For classical credibility, we have answered
this question. If the goal is limited fluctuation, then the informa-
tion to be assigned the complement of credibility should be the
current rate (or the current pure premium, or the expected loss
ratio), adjusted for all factors other than the uncertainty inherent
in the insurance process.

This is indeed what is done in most primary lines of business.
In automobile liability, for instance, the experience loss ratio is
credibility weighted with the expected loss ratio, adjusted (if nec-
essary) for loss cost trends. Similarly, the indicated territorial or
classification rate relativity is credibility weighted with the cur-
rent territorial or classification rate relativity.

Boor’s illustration of Harwayne’s method of determining
workers compensation pure premiums is particularly instructive,
since it demonstrates numerous aspects of good ratemaking tech-
nique. In Harwayne’s method, there are three components given
credibility weights in calculating the pure premium (see Har-
wayne [4]):

1. the indicated pure premium,

2. the national pure premium, and

3. the underlying pure premium.

The second component of the formula, the national pure pre-
mium, reflects greatest accuracy credibility. The third component
of the formula, the underlying pure premium, reflects limited
fluctuation credibility. We discuss in Section 9 the rationale for
this rate making procedure, as well as the adjustments made to
the national pure premium for the greatest accuracy component.
For now, let it suffice to say that the underlying pure premium
is adjusted for all external influences, as described above.
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General liability has a more complex procedure for combining
the experience pure premium (or loss ratio) with the underlying
pure premium (or expected loss ratio). This procedure, termed
the “C-factor” by Graves and Castillo [3], was introduced by the
Insurance Services Office in the 1980s, and it is illustrated in
Boor’s paper.5

The procedure looks like limited fluctuation credibility, but its
rationale is different. The desirable characteristics of the infor-
mation receiving the complement of credibility follow directly
from the rationale of this credibility procedure.

Boor’s central concern is to determine the desirable charac-
teristics of the information receiving the complement of credibil-
ity. Boor lists these characteristics at the beginning of his paper.
He then discusses several commonly used credibility procedures,
and he discusses how well each one measures up to these char-
acteristics.

The primary purpose of this discussion is to show how the
desirable characteristics of the information receiving the com-
plement of credibility follow from the rationale of the credibility
procedure. We do this for each separate use of credibility: lim-
ited fluctuation, proxy for past experience, greatest accuracy, and
marketplace pricing. The results sometimes agree with the con-
clusion in Boor’s paper, and sometimes they expand on them.
Keep in mind this theme: if we wish to determine the desirable
characteristics of the information receiving the complement of
credibility, we must know why we are using credibility in the
first place.

Let us illustrate the C-factor procedure, so that its workings
are clear. We then differentiate it from limited fluctuation cred-

5Graves and Castillo, who use a loss ratio ratemaking procedure, credibility weight the
experience loss ratio with the trended and adjusted expected loss ratio. Boor uses the
same procedure, though he credibility weights the pure premium with a trended and
adjusted underlying pure premium.
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ibility, and we re-examine Boor’s central question: “What are
the desirable characteristics of the information that receives the
complement of credibility?”

For the sake of clarity, let us simplify the illustration by ig-
noring the time lags that are needed for data collection and rate
filings. Suppose that we are making rates for a policy to be ef-
fective on January 1, 1999, using experience from accident year
1998. (For simplicity, we are making rates for a single policy,
not for a policy year. Were we making rates for a policy year,
we would have an additional half year of trend in the mathemat-
ics below.) The current pure premium is $100 per exposure unit,
which was filed and became effective on January 1, 1998. Us-
ing accident year 1998 experience, the developed pure premium,
trended to the average effective date under the anticipated rates, is
$135 per exposure unit. The loss cost trend is +10% per annum.
The credibility to be assigned to the experience pure premium
is 60%, based upon classical credibility procedures. What is the
credibility weighted pure premium for the rate filing?

Limited fluctuation credibility says the following: the public
and the regulator have seen a pure premium of $100 per exposure
unit in 1998. Loss costs are increasing by +10% per annum, so
they expect a pure premium of $110 per exposure unit in 1999.
We are willing to change the pure premium to conform with our
experience only to the extent that this experience is “credible”
(regardless of the quality of other information). The classical
credibility is 60%, so the credibility weighted pure premium is

60% " $135+ (1$60%) " $110 = $125:

6. EXPONENTIAL SMOOTHING AND ACTUARIAL SHORT-CUTS

The formula above is correct, if our goal is limited fluctuation
in rate levels. But limited fluctuation is not the only rationale for
classical credibility. Let us change the interpretation of the cred-
ibility procedure; this in turn changes the appropriate formula.
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The new pricing actuary asks: “How many years of data
should one use for ratemaking?” The general answer is straight-
forward, though the specific parameters vary from case to case:

1. One should use as much experience as available, as long
as it relates to the type of coverage presently being of-
fered.

2. One should assign higher weight to the more recent ex-
perience, since it is likely to be a better predictor of fu-
ture experience.6

3. The additional benefit of maintaining, trending, and ad-
justing older years of data declines rapidly, and this bene-
fit is soon outweighed by the cost of this work. Actuarial
short-cuts can improve the efficiency of the ratemaking
process.

This actuarial short-cut is another use of credibility. Let us
resume with the previous illustration. We are making rates for
a policy to be issued on January 1, 1999, using data from acci-
dent year 1998, and assigning 60% credibility to the experience.
For simplicity, let us assume that we have always assigned 60%
credibility to the experience when making rates for this coverage.

Let PPt be the pure premium charged in year t, and let EXt
be the pure premium indicated by the experience in year t. The
pure premium charged in 1999 is

PP99 = 60%"EX98 +40%"PP98:
Assuming that the same 60% credibility value was used in the
past, we substitute for PP98 to give

PP98 = 60%"EX97 +40%"PP97:

6This statement is more applicable for rapidly developing experience. Mahler [5] uses
an illustration from baseball “win-loss” statistics, where there is no development. When
significant and especially volatile development is expected, as in casualty excess-of-loss
reinsurance, some actuaries are inclined to rely more heavily on older, more mature years
of experience; compare Cook [2].
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We combine the two equations to get

PP99 = 60%"EX98 +40%" [60%"EX97 +40%"PP97]:
We continue this substitution process to express the indicated
pure premium for 1999 as a function of the experience pure
premiums in all previous years for which we have data. If the
credibility each year is Z, then the indicated pure premium for
year k equals

PPk = Z"
%"
t=1

&(1$Z)t$1"EXk$t' (5.1)

where the summation runs over all preceding years for which
data are available (t= 1,2,3, etc.).7

This equation says that the indicated pure premium for year k
is a weighted average of the experience pure premiums in each
preceding year, where the weights form a decreasing exponen-
tial series. Intuitively, this makes sense. All experience provides
some information useful for determining the new rates, but the
older the experience is, the less useful it is.8

There are three problems with using the general equation for
PPk given above:

1. To use the general equation, we must retain all past ex-
perience, and we must re-analyze it each year. This can
be a cumbersome task, and the costs might outweigh the
benefits.

7See Mahler [6], pp. 255–256. If there are w years of data available, then the sum of
the coefficients in Equation (5.1) equals 1$ (1$Z)w. Thus, in theory, all the coefficients
should be multiplied by 1=[1$ (1$Z)w]. In practice, this is about the same as using
a slightly higher Z value. Since values of Z within a fairly broad range work about
equally well, an attempt to optimize the value of Z by the correction noted here would
not be cost-efficient. See Mahler [6], pp. 256–257, on the relative efficiency of different
Z values.
8For a more complete exposition of this rationale for the ratemaking credibility proce-
dure, see Mahler [6]. Different rationales for the credibility procedure lead to different
credibility formulas. Mahler extends the analysis by showing how the covariance structure
for the risk parameters affects the optimal credibility to be assigned to the experience.
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2. The general equation used here assumes that the value of
Z remains the same from year to year. In fact, the value
of Z may change from year to year, particularly if the
volume of business is changing from year to year. If it
does, the mathematics become much more complex.

3. The ratemaking process cannot be reduced to a rote for-
mula. Every rate review requires the careful judgment of
the pricing actuary to discern anomalies in the data, shifts
in the external environment or in the company’s oper-
ations that might affect the anticipated loss costs, and
changes in compensation systems or consumer behavior
that might affect the company’s ultimate claim payments.
Each year the pricing actuary may subjectively adjust the
experience indication up or down based upon an anal-
ysis of the data and of the insurance environment. The
general equation would require us to somehow retain all
these adjustment factors.

The last problem listed above is critical. We do want to use
all the past experience, but we also want to use the actuarial
judgment of the ratemakers who analyzed this past experience.

The Credibility “Short-Cut”

The solution to all three problems is the same, as is clear
from the derivation of the formula above. The underlying pure
premium serves as a proxy for the experience of all prior years.
The historical experience itself need not be retained by the com-
pany or re-analyzed each year by the pricing actuary. Credibility
weights may have varied from year to year, and at each filing the
pricing actuary may have adjusted the indications. The effects of
all these factors are retained in the underlying pure premium.

Let us examine the rationale of this credibility formula in
order to address Boor’s fundamental question. We are credibility
weighting the experience pure premium with the current pure
premium, so we are tempted to think of limiting the fluctuation



1004 THE COMPLEMENT OF CREDIBILITY

in rates. But the current pure premium is used here as a proxy for
the experience pure premiums from past years. We use all this
past experience in order to produce the most accurate indication.
Our goal is greatest accuracy, not limited fluctuation.

Proxy Problems

The information properly assigned the complement of credi-
bility is the underlying pure premium—as long as the underlying
pure premium is indeed an accurate proxy for the indicated pure
premiums from past years. If this is not true—that is, if it is not
an accurate proxy—then a different complement is required.

There are two ways in which the current (underlying) pure
premium may not be an accurate proxy for the indicated pure
premiums from past years:

1. The pricing actuary, when reviewing the experience from
past years, judgmentally adjusted the data and erred in
doing so. In this illustration, we have implicitly assumed
that there were no errors; we trust the previous pricing
actuary’s judgment. The current pure premium is the best
proxy for the indicated pure premium from past expe-
rience years, after adjustment for data outliers, system
changes, operational changes, and so forth.

2. The pricing actuary, after reviewing the experience from
past years, filed one pure premium, but the state insur-
ance department approved only part of the rate request.
If we trust the judgment of the pricing actuary, we would
use the filed pure premium, not the approved one. We
are assuming that the state insurance department’s ac-
tions were motivated by non-actuarial concerns, such as
a political desire not to raise rates more than a certain
amount.

Let us consider a numerical example for the second proxy
problem. Suppose that the 1998 pure premium is $100 per ex-
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posure, and there is a +10% annual loss cost trend. Based upon
the 1998 experience, the indicated pure premium for the 1999
policy is $135. The credibility to be assigned to the experience is
60%. As demonstrated above, if our goal is limited fluctuation in
rate levels, then the credibility weighted indicated pure premium
is

60%"$135+ (1$60%)"$110 = $125:
If, instead, we are using the current pure premium as a proxy
for the indicated pure premium based on past experience years,
then we must know the filed and approved pure premiums for
the 1998 policy. Suppose that the pricing actuary had filed for
a +50% rate increase, but the insurance department had granted
only a +25% rate increase.

These figures tell us that the pure premium for the 1997 policy
was $100(1:25, or $80. The indicated pure premium for the
1998 policy based on the 1997 experience was $80" 1:50, or
$120. If we want to use the current pure premium as a proxy for
the indicated pure premium based on past experience, we must
assign the complement of the credibility to the $120 adjusted
for trend and calculate the credibility weighted indicated pure
premium as

60%"$135+ (1$60%)" $120"1:10 = $133:80:

7. BAYESIAN CREDIBILITY

For applications of classical credibility, whether as limited
fluctuation credibility or as actuarial short-hand for older expe-
rience, the information that receives the complement of credibil-
ity is determined by the purpose of the credibility procedure. So
where do Boor’s six characteristics come into play?

Venter describes Bayesian credibility as greatest accuracy
credibility. If the rationale of the credibility procedure is to im-
prove the accuracy of our indications, then characteristics such
as predictive power, independence, and freedom from bias seem
natural.
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Nevertheless, a careful analysis leads to less firm conclusions.
So let us tread gingerly over this terrain, beginning with the
rationale for Bayesian credibility.9

There are some immediate problems with the question of de-
sirable characteristics for the complement of credibility. In the
Bayesian view, there is no qualitative distinction between the in-
formation that receives the credibility and the information that
receives the complement of credibility. Pricing actuaries tend to
think of the experience data as being assigned the credibility and
some other data as being assigned the complement of credibil-
ity. Those of us who are steeped in classical credibility tend to
think of credibility as a function of the reliability or the predic-
tive power of the experience data.10 This may indeed reflect
the thinking of most pricing actuaries, but it is not a Bayesian
view.

9When Boor speaks of Bayesian credibility, he uses an illustration of territorial relativi-
ties. This may confuse some readers, since there are two independent dimensions:
# Classical credibility versus Bayesian credibility, and
# Credibility for statewide indications versus credibility for territorial relativities.

When making rates for territorial relativities, most actuaries use classical credibility
techniques, not Bayesian credibility. Since the aim is often to limit fluctuation in territorial
relativities, the figure that receives the complement of credibility is the current territorial
relativity. For territorial ratemaking, this objective is sometimes explicitly stated. See, for
instance, Conger [1] on the objectives of personal automobile territorial ratemaking in
Massachusetts.
10The CAS Statements of Principles and the American Academy of Actuaries Standards
of Practice show how deeply ingrained this perspective is in the actuarial community.
Theoretical actuaries may have discarded classical credibility in favor of its Bayesian
counterpart, and the CAS examination syllabus extols the elegance of the Bayesian-
Bühlmann procedures. Yet the CAS Statements of Principles and the ASB Standards of
Practice show no trace of the Bayesian influence. The “Credibility” paragraphs in the
Statements of Principles begin “Credibility is a measure of the predictive value that the
actuary attaches to a particular body of data” (Statement of Principles Regarding Property
and Casualty Insurance Ratemaking, lines 88-89; compare also Statement of Principles
Regarding Property and Casualty Loss and Loss Adjustment Expense Reserves, line
193). The Actuarial Standard of Practice #25, “Credibility Procedures Applicable to
Accident and Health, Group Term Life, and Property/Casualty Coverages,” even defines
the “full credibility” standard as “the level at which the subject experience is assigned
full predictive value based on a selected confidence interval.” This definition, albeit
incorrectly worded (see the correct wording given earlier in this discussion), is based
entirely on classical credibility theory; there is no concept of a “full credibility standard”
in Bayesian credibility theory.
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In the Bayesian view, we have two or more sets of data, each
of which tells us something about the number that we seek to
estimate. We would like to use all of these data to develop our
estimate. That is, we seek a weighted average of the various
estimators. The Bayesian credibility procedure give us relative
weights to assign to each set of data.

We cannot speak of the desirable qualities of the information
that receives the complement of credibility as if this information
were somehow different from our other ratemaking data. No set
receives the credibility with some other set receiving the comple-
ment of credibility. It is only by convention that we speak of the
experience data as receiving the credibility and of some other
data receiving the complement of credibility. This convention
come from classical credibility, not from Bayesian credibility.

8. BAYESIAN RATEMAKING

Perhaps we can rephrase Boor’s question as: “What are the
desirable characteristics of the data that receives some portion
of the credibility?” This is, indeed, a proper question for the
pricing actuary to ask, and Boor’s six characteristics are a valid
set of characteristics. But this question has nothing to do with
credibility. It is a question about data quality: “What are the
desirable characteristics of ratemaking data?”

Actually, five of Boor’s characteristics can apply to data qual-
ity. One of the characteristics deals more specifically with cred-
ibility. Boor’s five characteristics of good ratemaking data are:

1. accuracy as a predictor of next year’s mean loss costs,

2. absence of bias as a predictor of next year’s mean subject
expected losses,

3. availability of data,

4. ease of computation, and

5. clarity of relationship to the subject loss costs.
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If one wishes to use two or more sets of ratemaking data, and
to combine them by means of a Bayesian credibility procedure,
then the ratemaking procedure is enhanced to the degree that the
two or more sets of data are relatively independent of each other.

But we start with the data sets. For optimal ratemaking, we
should use all the data available. Suppose we have three sets of
data, A, B, and C. Set A is the historical experience. It is the best
data, and it is the most acceptable data for the state insurance
department, so we surely want to use set A. Sets A and B are
relatively independent of each other. Sets A and C are relatively
dependent. Under Boor’s thesis we should assign the credibility
to set A, and assign the complement of credibility to set B, not
to set C. This will optimize the ratemaking procedure.

At first glance, Bayesian credibility doesn’t say this at all.
Rather, Bayesian credibility says that we should use all three sets
of data and assign the proper weights to each of them. There is
no constraint limiting us to only two data sets. In fact, it is com-
mon practice to use three or more data sets in many ratemaking
applications. Property ratemaking uses five years of data (man-
dated by statute in many jurisdictions), with different weights
applied to each year. Most common is a 10%–15%–20%–25%–
30% weighting, with the higher weights applied to the more
recent years. In theory, the optimal weights may be determined
from a Bayesian analysis, though the accuracy of the final indica-
tion may not depend that strongly on the weights chosen, as long
as they are within a reasonable range (see Mahler [6]). The ex-
perience loss ratio is then credibility weighted with a permissible
loss ratio. Indicated territorial relativities are credibility weighted
with the current relativities. In sum, the new rates for a particular
territory are a weighted average of the indications from five sep-
arate years of experience, the current statewide rates, the current
territorial relativity, and the indicated territorial relativity. These
weights are not chosen by a Bayesian analysis. Rather, classical
credibility procedures along with ad hoc weighting schemes are
used. But for classical credibility, as noted above, Boor’s paper
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is irrelevant. If Bayesian analysis were used for all the weights,
then Boor’s thesis does become relevant. However, we do not
choose the two data sets that are most independent. We choose
weights to optimize the accuracy of the indication, given all the
data that we have available.

Workers compensation ratemaking provides another good ex-
ample. The formula pure premiums are derived from six sets of
data:

A. Financial Data (all classifications)
(A.1) Calendar year experience
(A.2) Accident year experience
(A.3) Policy year experience

B. Unit Statistical Plan experience (by classification)
(B.1) Indicated partial pure premiums
(B.2) Underlying partial pure premiums
(B.3) National partial pure premiums.

In fact, the procedure is even more complex, since between the
unit statistical plan classification experience and the financial
data statewide experience there is class group experience (man-
ufacturing, contracting, and all other). In workers compensation,
just as with property, the credibility weights stem from the early
days of actuarial ratemaking, before Bayesian analysis caught
the fancy of pure actuaries. In theory, though, Bayesian analysis
could be used here as well.

9. HARWAYNE’S PROCEDURE

Harwayne’s procedure for a three-way credibility weighting
of workers compensation partial pure premiums is one of the
most illuminating of Boor’s examples. Indeed, Harwayne’s pro-
cedure is a wonderful example of actuarial practice. It was a
critical advance in workers compensation ratemaking, and it has
since been applied to other lines of business as well.
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How does it relate to Boor’s thesis? It is a wonderful example,
but what exactly does it show?

There are various elements in Harwayne’s procedure. Some
relate to ratemaking in general, some relate to credibility con-
siderations, and some relate to the characteristics of the data that
receives the complement of credibility. We must separate these
strands, so that we can focus on the last of these issues.

To appreciate its elegance, Harwayne’s procedure must be
viewed in the history of workers compensation ratemaking.11

The procedure uses three sets of information:

# the statewide classification experience, giving an indicated
pure premium,

# the current classification pure premium (the underlying pure
premium), and

# the classification experience from other states, giving the na-
tional pure premium.

Class Plan Refinement

The first two sets of information are routinely used in actuarial
ratemaking. For instance, when making personal automobile in-
surance rates for the state of New York, the pricing actuary uses
the New York experience and the current New York rates (per-
haps adjusted for trend and similar influences). The pricing actu-
ary would not consider Massachusetts personal auto experience
or Illinois personal auto experience or national personal auto ex-
perience. So why is workers compensation different? Why does
it combine the statewide pure premium with the national pure
premium?

In personal auto, the classification scheme is a well struc-
tured, multi-dimensional system. For any classification, there is

11Harwayne’s procedure is summarized in Boor’s paper. It is presented in detail in Har-
wayne [4], along with the justification for its use.
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generally sufficient experience in New York to set credible rates.
Moreover, the Massachusetts and Illinois automobile compensa-
tion systems are so different from the New York system, that the
Massachusetts and Illinois data won’t help much. New York has a
no-fault compensation system with a strong verbal tort threshold.
Massachusetts has a no-fault compensation system with a much
abused monetary tort threshold, and Illinois has a tort compen-
sation system.

The states also have different classification systems, and they
have different statutory constraints on underwriting, such as
those relating to gender-based differentiation. Finally, they have
vastly different rate filing systems. New York has a prior approval
system, Illinois has open competition, and Massachusetts has a
state rating bureau using a mandated financial pricing model.

In sum, the states are incomparable: Massachusetts experience
and Illinois experience are nearly impossible to convert to “New
York type” experience.

Workers compensation is almost the exact opposite of the per-
sonal auto situation. Workers compensation has a simple, one-
dimensional classification system. Each state has about six or
seven hundred classes, many of which have relatively little expe-
rience in any one state. Moreover, the states generally use similar
class definitions.12 Finally, the workers compensation systems
seemed to be of the same type (at least to the founding members
of the CAS), though there were differences in the parameters by
state. Medical benefits are unlimited, and indemnity benefits are
generally paid as some percentage of the pre-injury wage.

State workers compensation benefits were introduced rather
suddenly in the early years of the twentieth century. Before the
introduction of workers compensation laws, workplace accidents
were handled through the tort liability system, with injured em-

12This is particularly true in the NCCI states, and it is even true in states which have
their own rating bureaus.
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ployees suing employers for negligence. The applicable insur-
ance was employers’ liability coverage, not workers compensa-
tion. When first setting workers compensation rates for a state,
pricing actuaries had no prior experience from that state. For the
smaller and medium sized classes—which comprised the major-
ity of the workers compensation classes—a dozen years might
elapse before there would be credible experience from the state
under consideration. So how might one begin a workers com-
pensation pricing structure?

Reduction Factors

Massachusetts was one of the first states to initiate a work-
ers compensation system. As other states began their own sys-
tems, pricing actuaries took the Massachusetts experience and
converted it to the benefit levels of the other states. For instance,
suppose that the Massachusetts statute provided benefits equal to
two-thirds of the pre-injury wage, and that the statute of another
state provided benefits equal to 60% of the pre-injury wage. To
set initial rates for the other state, begin with the Massachusetts
rates and multiply them by 90% (= 60%(66:7%).
This procedure is straightforward and logical, enabling the

efficient development of a complete workers compensation pric-
ing structure. The founding members of the CAS meticulously
calculated all the required “reduction” factors to convert rates
from one state system to a second state system, considering not
just different compensation rates but also various maximum and
minimum benefit limitations, durations of compensation for var-
ious types of disability, and variations in state statutes regarding
dependency awards. The result, as embodied in some of the first
Proceedings papers, was a truly elegant actuarial procedure.

Unfortunately, it did not work. The founding fathers of the
CAS spent months of painstaking work determining reduction
factors to convert workers compensation loss costs from one
state to another, only to have their results empirically invalidated
by the emerging experience. The rigorous analysis, for instance,
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may have said that State X’s loss costs should be 25% greater
than State Y’s, but the emerging experience showed that they
were 15% lower. These results were surprising, but they were not
wrong. There are many differences between compensation sys-
tems that are difficult to quantify. The administrative procedures
in one compensation system, for instance, may encourage attor-
ney involvement in workers compensation claims, while those
in another state may discourage attorney involvement. The ef-
fects on loss costs can be dramatic, but these effects are rarely
amenable to actuarial quantification.
Actuaries live by numbers. If one could not quantify the ap-

propriate reduction factors, how could one use the experience
of other states in setting rates? The first generation of actuaries
rushed to develop reduction factors and to use the experience
of other states in setting rates. The next generation of actuaries,
discouraged by the empirical discrepancies, were ready to aban-
don these techniques and to use the experience of each state in
isolation.
The flaw with the original procedure was the attempt to quan-

tify a priori the reduction factor from one state to another. To
the early actuaries, this had seemed essential: how could one use
Massachusetts experience for a certain classification to help set
the New York classification rate unless one knew how the Mas-
sachusetts classification loss costs would appear under the New
York compensation system?
Harwayne saw a solution to this problem. Indeed, there are

no reduction factors at all in Harwayne’s procedure, because
there are too many powerful but invisible factors that affect loss
costs. Rather, Harwayne’s procedure assumes that these invisible
factors affect all classifications equally. Massachusetts loss costs
may be unusually high because of greater attorney involvement
in workers compensation claims, greater claims consciousness
among the populace, or any such unquantifiable factor. But if we
can empirically quantify the overall effect, then we can use the
Massachusetts experience to help set other states’ classification
rates.
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To highlight the advance made by Harwayne, let us consider a
simplified example. Suppose that we have classification rates for
State A, which is a large state with credible experience in most
classes. We need to set classification rates for State B, which is
a small state, with sparse experience in many classes.

If we look at the benefit structures in these two states, we
might say that State B loss costs will be 25% higher than those
in State A. This conclusion is not really helpful, since there are so
many factors than affect the relative loss costs in the two states.
Rather, we look at the overall empirical loss costs per exposure
in the two states. We might find that the State B loss costs are, on
average, 15% lower than those in State A. Using this figure as
the implicit reduction factor, we multiply each classification rate
from State A by 85% to get the indicated State B classification
rates.

Unfortunately, this doesn’t work either. We need an “overall
loss costs per exposure” for each state. But there is no such thing
as an overall loss cost per exposure. Some classes are high-risk,
and they have high loss costs per dollar of payroll. Other classes
are low-risk, and they have low loss costs per dollar of payroll.
Perhaps State A has more high-risk classes and State B has more
low-risk classes.

Think of the problem in the following fashion. We would
like to derive the average loss cost per dollar of payroll. But the
exposure base is not dollars of payroll. The exposure differs for
each class: it is dollars of blacksmith payroll in the blacksmith
class, dollars of carpentry payroll in the carpenters class, and so
forth. One can not add blacksmith payroll to carpentry payroll.

Harwayne’s solution was to translate every state to the same
classification mix. Suppose that State A has two blacksmiths for
each carpenter, and State B has two carpenters for each black-
smith. Harwayne’s procedure calculates the overall loss costs per
exposure in each state by taking 2/3 of that state’s carpentry pure
premium and 1/3 of that state’s blacksmith pure premium. This
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puts the experience of both states on the same classification mix
basis.

Harwayne’s procedure solves the workers compensation
problem, but this problem is unrelated to credibility consider-
ations. Harwayne wants to use State A experience to set rates in
State B by classification. He is not concerned with credibility.

As mentioned above, Harwayne’s procedure deals with three
issues:

1. The procedure adjusts the national pure premium to the
benefit level of the state under consideration. This is the
crux of the procedure. It relates to the general ratemaking
issue of ensuring that the ratemaking data is not biased.
It does not relate to issues of credibility.

2. Harwayne’s procedure uses a complex three-way credi-
bility weighting formula.

A. The indicated partial pure premium has a full credi-
bility standard based upon the expected losses in that
classification, with the full credibility standard differ-
ing for serious indemnity, non-serious indemnity, and
medical benefits.

B. Partial credibility is set by a “three-halves” rule.13

The three-halves rule says the following: If $X of

13The term “three-halves rule” stems from the obverse of this formula. If one needs $X
of expected losses for full credibility, then for Z% credibility, one needs $X"Z3=2.
One is tempted to delve into statistics textbooks to find a rationalization for the three-

halves rule. In fact, the three-halves rule is used because it looks actuarial and it works.
This justification of the three-halves rule has served admirably for over half a century
now, and it should not be dismissed lightly. Any formula with a two-thirds power and
used by actuaries all over the country must be mathematically unassailable; no one would
simply make it up. And it works, in the sense that regulators and underwriters consistently
defer to the pricing actuary’s expertise in using this formula. They can’t possibly argue
with the formula, since they can’t possibly understand it.
In a fascinating addendum to this school of thought, Howard Mahler has shown that

the formula actually works. In fact, he shows that almost any formula works, as long as
the credibility weights are within a reasonable range. Furthermore, they all work about
equally well. Given the advantages to three-halves formula noted above, the formula is
unimpeachable.
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expected losses suffices for full credibility, then the
credibility for $Y of expected losses is (Y(X)2=3.

C. The national partial pure premium has a full credi-
bility standard based upon the national claim count
in that classification. Once again, the full credibility
standard differs for serious indemnity, non-serious
indemnity, and medical benefits.

D. Partial credibility for the national partial pure premi-
ums is set by a three-halves rule, similar to the rule
for indicated partial pure premiums, except that claim
counts are used instead of expected losses.

E. The credibility for the national partial pure premium
may not exceed one-half of the complement of the
credibility for the indicated partial pure premium. For
instance, suppose that the indicated partial pure pre-
mium receives 40% credibility, and the three-halves
rule would give a credibility of 50% for the national
partial pure premium. The limit on the credibility for
the national partial pure premium is (1$ 40%)=2 =
30%, so this is the credibility assigned to the national
partial pure premium.

F. The remaining credibility is assigned to the under-
lying partial pure premium. In the example in the
preceding paragraph, this remaining credibility is
(1$40%$30%) = 30% If this were a very small
class, and the credibilities for the indicated and na-
tional partial pure premiums were 10% and 20%, re-
spectively, then the underlying pure premium would
receive (1$10%$20%) = 70% credibility.

In Venter’s terms [9], this procedure combines limited fluctua-
tion credibility with greatest accuracy credibility. Since it does not
purport to justify any of the parameters statistically, it would not
be reasonable for us to rationalize the parameters after the fact.
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Harwayne’s Procedure and Boor’s Thesis

The final issue in Harwayne’s formula pertains to Boor’s the-
sis. Why do we go to all the trouble of adjusting the national
experience to the benefit level of the state under review? Why
isn’t it sufficient to credibility weight with the underlying pure
premium, as is done in other lines of business?

Boor’s paper provides the answer. The underlying pure pre-
mium is not independent of the indicated pure premium. This is
particularly true for small classifications in workers compensa-
tion, more so than for most other blocks of business.

To see why this is so, let us consider a simple example. Sup-
pose that we are setting rates for a new insured in State A in
classification W. The classification is small; in fact, suppose that
there are only five other insureds in classification W in State A.
The historical experience is not fully credible. In other contexts,
when we say that historical experience is not fully credible, we
mean that random loss fluctuations may cause a significant dis-
parity between the observed pure premium and the expected pure
premium. In this case, the lack of full credibility has a more ex-
pansive meaning. Specifically, these five insureds may be better
or worse than average, so we do not want to rely totally upon
their experience to set rates for other insureds.

In actuarial terms, it is not simply that the historical experience
is too volatile. Rather, we are afraid that the historical experience
may be biased, though we do not know the magnitude of the
potential bias or even the direction of the bias. To reduce the
effects of the potential bias, we want to credibility weight the
historical experience with additional information.

What other information should we use? The standard ratemak-
ing answer is to use the underlying pure premium. In fact, many
novice actuaries will indeed credibility weight with the underly-
ing pure premium (or with the expected loss ratio). But this does
not do the trick at all. The five risks in this classification have
been insured for many years, and the underlying pure premium
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is based upon their experience in past years. We are concerned
that they are not representative of the average risk. The underly-
ing pure premium is just as problematic as the experience pure
premium.

The national pure premium, however, is independent of the
experience pure premium. It is based on the experience of other
risks. The five risks in this classification in this state may be
better or worse than average, but the hundred and fifty risks in
this classification in the rest of the country are more likely to
reflect the true average.

Contrast this workers compensation example with a corre-
sponding personal automobile example. Suppose that we are
making personal auto rates for a small classification W in state
A. The classification is not fully credible, because there are only
500 drivers in this classification.

Here we are concerned with random loss fluctuations, not with
bias. We are not worried that these 500 drivers may be better or
worse than the average classification W driver that the company
will insure. Rather, we are concerned with volatility. Perhaps the
true expected claim frequency is 10%, so we should expect 50
claims. Actual experience may have been 40 claims or 60 claims,
so the indicated rates may be 20% too low or too high.

The loss volatility affects each accident year separately. The
most recent experience may be too high or too low, so we cred-
ibility weight with the underlying pure premium (or with the
expected loss ratio), which reflects the experience of prior years,
along with the business judgment of the past pricing actuaries.
The underlying pure premium is not that interdependent with the
historical pure premium, so there is less need to turn to external
information.14

14The remarks made earlier about compensation system differences apply here as well.
In workers compensation, if classification W has twice the average loss costs per dollar
of payroll in State A compared to the statewide average, than it probably also has twice
the average loss costs per dollar of payroll in State B compared to the statewide average.



THE COMPLEMENT OF CREDIBILITY 1019

We can now state Boor’s thesis in rigorous terms:

If the ratemaking data may be biased (though neither
the magnitude of the bias nor even the direction of
the bias are known), it is useful to credibility weight
the experience indication with information that is rel-
atively independent of the ratemaking data set.

Two characteristics of this revised thesis are of particular import:

1. All data sets used in ratemaking should have the five de-
sirable characteristics drawn from Boor’s paper. These
characteristics are equally relevant for the information
that receives the complement of credibility as they are
for the basic ratemaking experience. The only difference
is a practical one: often the data that receives the comple-
ment of credibility must be carefully adjusted in accor-
dance with these characteristics, as is true in Harwayne’s
method.

2. Independence is particularly important when one be-
lieves that the historical experience may be biased, and
especially when one does not know the magnitude or
the direction of the bias. If the historical data is simply
sparse, and random loss fluctuations may distort the in-
dications, then independence is not of great concern. A
larger volume of data is all that is required. It is the bias
problem that demands a solution of independence.

In personal auto, the classification differentials are heavily dependent upon the com-
pensation system and the underwriting structure. For instance, young unmarried male
drivers may have an expected pure premium five times the statewide average in a tort
liability state but only three times the statewide average in a no-fault state with a strong
verbal tort threshold. Similarly, driver experience, or “years since first licensed,” may be
a more powerful classification variable in a state that does not permit underwriting by
age of the driver than in a state which does allow such underwriting. Finally, the major
classification dimension in personal auto is territory, which serves as a proxy for a host
of hard to quantify loss cost drivers, such as attorney involvement in insurance claims
and medical treatment of automobile injuries. Territorial relativities are peculiar to each
state. One cannot credibility weight an indicated territorial relativity with information
from other states.
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10. RATEMAKING VERSUS PRICING

: : : let me tell you how I use credibility. When I need
a higher rate, I choose a credibility factor that gives
me a higher rate. When I need a lower rate, I choose
a credibility factor that gives me a lower rate.

(A prominent American pricing actuary, 1988)

The previous discussions of credibility apply primarily to
small and medium sized insurers whose experience is intermit-
tently rocked by random loss occurrences. In personal automo-
bile, most of the coverage in the United States is written by large
carriers with thousands of claims in many states, such as State
Farm, Allstate, USAA, GEICO, Farmers, and Liberty Mutual.
The traditional formulas generally assign full credibility to their
historical experience. Do they have any need for considering the
complement of credibility?15

If the characteristics of the complement of credibility are
important for the small insurer, they are crucial for the large
insurer—though they are entirely different. The actuarial appren-
tice begins with traditional ratemaking, advances through finan-
cial pricing models and multi-year ratemaking procedures, and
finally graduates to the tasks of the master actuary: marketplace
competition, underwriting cycle movements, elasticity of supply
and of demand, and the relationship of risk quality to price.

We want to examine the relationship of Boor’s thesis to actual
insurance pricing, not simply to traditional actuarial rate reviews.
To understand the determinants of insurance pricing, we must
first understand the economics of risk.

15In a similar vein, Richard Woll [10] points out that there is insignificant “process risk”
in the claim costs of these large insurance companies, though “parameter risk” remains
for them, just as it affects other insurers. Classical credibility theory—at least in the tra-
ditional treatment by Longley-Cook [5]—pertains to process risk, not to parameter risk.
Indeed, these companies generally accord credibility of 100% to their historical experi-
ence in their formal rate reviews. However, the rate-setting practices of these insurers are
far more market-oriented than are the corresponding rate-setting practices of the more
traditional independent-agency companies.
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Insurance Risk

Novice actuaries are often told that insurance operations are
particularly risky, since the costs of coverage are not known until
after the policy has expired. The nature of insurance risk has
important implications for policy pricing and for Boor’s thesis,
so the dictum in the previous sentence warrants careful analysis.

Compare the auto manufacturer to the auto insurer. The auto
manufacturer—so the argument goes—knows the costs of its in-
ventory, its work force, its equipment, and its supplies before
it sets a price for the final product. This price can be set as a
fixed mark-up over the costs, ensuring a steady return for the
manufacturer.

The automobile insurer, in contrast, needs actuaries to peer
into the future—to convert raw historical records into prophecies
of future costs. These prophecies are uncertain, so auto insurers
need an extra margin of profit to compensate them for this risk.

This argument would be laughable if it were not so frequently
repeated, in one guise or another, in actuarial circles. Yes, there
are some risks that are indeed peculiar to insurers. Asbestos and
pollution risks have hurt many large commercial lines carriers,
and natural catastrophes have hurt many personal lines compa-
nies.16 But these are the extraordinary events that have ruined the
rare insurer: sometimes the overly aggressive insurer, sometimes
simply the unlucky insurer. Insurers writing mostly the “bread-
and-butter” lines with carefully considered reinsurance programs
have largely avoided these risks.

Let us consider the true business risks to the manufacturer
and to the insurer. Consider first the auto manufacturer. Most
auto makers must design new model cars at least 36 months

16In truth, this argument sheds more light on the myopic view of many casualty actuaries
and other businesspeople than on the attributes of the insurance industry. Asbestos has
bankrupted its manufacturers, and pollution liabilities have devastated many chemical
concerns. Asbestos and pollution have siphoned billions of dollars from the insurance
industry, but most carriers will weather the storm.
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before they are brought to the market.17 The investment is enor-
mous: retooling plants and equipment, sometimes building whole
new factories, setting up production lines, producing hundreds
of parts that will be needed with the new chassis, developing ex-
tensive advertising and promotional activities, educating an en-
tire sales force of independent dealers with the characteristics of
the new model.18 Sometimes the new model will sell well, and
the auto manufacturer will earn hundreds of millions of dollars.
Sometimes the new model will flop, and the auto manufacturer
will have lost hundred of millions of dollars.19

This is risk. It has nothing to do with Poisson distributions or
inverse power curves.

Insurance does not have these risks. To produce insurance
policies, the insurer must purchase a word processor and an of-
fice copier, hire an underwriter, and contract with an agent. It
does not need a plant or a factory or a laboratory. The insurer
does not spend tens of millions of dollars designing a product,
buying parts, producing the final goods, advertising them in ex-
pensive campaigns. The insurer hangs out a shingle and sells the
policy. Well : : : maybe it’s not that simple. But the underlying
principle is correct: the insurer does not face the large up-front
capital commitment that represents manufacturing risk.20

17This time lag was about 60 months through the mid-1980’s, until the intensified global
competition from Japanese firms forced U.S. auto manufacturers to streamline their pro-
duction schedules.
18As an example of the size of the investment, the decision to produce the Saturn au-
tomobile required General Motors to set up a new branch —the size of a major U.S.
firm—many years before a single car would be sold.
19Other industries have equally great investments. Pharmaceutical companies, for in-
stance, routinely spend tens of millions of dollars in research and development a dozen
years or more before they expect to bring a new prescription drug to market.
20The formal economic expression of this is that manufacturers, utilities, pharmaceutical
companies, and similar enterprises have high operating leverage, so their returns are
sensitive to changes in market demand. Insurers have low operating leverage, since almost
all their costs are variable. Even most of the expenses that casualty actuaries call “fixed
expenses” are considered variable expenses by economists: they do not vary in direct
proportion to premium, but they do vary with overall business volume. As a result,
insurance profits are far less sensitive to changes in market demand.
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In many industries, brand name differentiation adds to the
business risks. It is not just the expense of manufacturing a new
car that represents risk. To successfully bring a car to market, the
auto manufacturer must convince dealers and consumers that the
new model is superior to dozens of existing models. Insurance
policies, in contrast, look more or less like one another across the
industry. Product differentiation is hard to achieve in insurance.

Is insurance then riskless, or at least of low risk? Not at all,
but the risk is of a different sort.

The ease of entry into the insurance market—or at least the
apparent ease of entry into the insurance market—highlights the
actual risk of insurance operations. Many insurance products are
like commodities, with standard terms and multiple suppliers.
Customer loyalty is high; that is, repeat sales are not as sensitive
to price as new production is. As a result, many insurers are
sometimes misled. They do not see high price elasticity in the
majority of their business (that is, in the renewal customers),
so they presume that customer service is more important than
price.21

In fact, the opposite is true. Price is the dominant variable for
new business production in most lines of business, and (because
of high retention rates) new business production is of primary
importance for overall volume and ultimately for the viability of
the insurance enterprise.

Pricing: Cost-Based and Market-Based

The preceding paragraphs lay the groundwork; let us now re-
turn to Boor’s thesis. The pricing actuary is in a quandary. The
question is not what price best reflects the costs of the product.
Actuarial ratemaking skills are so well-honed, and the law of
large numbers so effectively eliminates much of the loss volatil-
ity, that actuarial techniques are accurate predictors of future

21It seems that every American insurer (by its own admission) provides exceptional
service—or, at least, this is true for every failing American insurer.
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costs. But the dilemma of the pricing actuary is different. If the
price is too high, the insurer will lose market share: imperceptibly
in the short run, but significantly in the long run. If the price is
too low, the insurer will lose money on the policies that it sells.

The novice actuary retorts: “If our techniques work so well,
the price will never be too high or too low.” This actuary has
confused ratemaking and pricing. Whether the rate indication
is too high or too low depends on the technical skills of the
actuary. Whether the price is too high or too low depends on
market conditions (such as supply and demand) and the prices
charged by competitors, which fluctuate with the underwriting
cycle, not just with random loss occurrences.

Actuaries seem to espouse cost-based pricing to the exclu-
sion of market-based pricing. This seems strange, since Western
economists are virtually unanimous that market-based pricing—
that is, pricing based on supply and demand considerations—is
the linchpin of free-market capitalist systems. Cost-based pric-
ing, in contrast, is not a rational pricing system for free markets.
It has been used in regulated markets, such as in utility markets
before the 1990’s, but it would be useless in the competitive
markets for property/casualty insurance that now prevail in most
states.

In truth, the apparent predilection for cost-based pricing is
an artifact of actuarial theory, not of actuarial practice. Actuar-
ial theory emphasizes rigorous mathematical procedures. Cost-
based pricing can be made as rigorous as desired, regardless of
how relevant it is for the real world, so the actuarial literature is
replete with formulas for cost-based pricing. Market-based pric-
ing may be the crux of actual practice, but there are no theorems
and few formulas, so the actuarial literature is devoid of papers
on market-based pricing.

Boor’s thesis is fundamental to the issues raised above. What
is the ideal data that should receive the complement of credibil-
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ity? The data from one’s own company is inherently suspect,
for two reasons. First, if the data relates to the coverage at issue,
it is rarely independent of the historical experience. Second,
such data gives us more information for cost-based pricing. A
large insurer has all the information it needs for cost-based pric-
ing. It needs instead information relevant to market-based pric-
ing.

The rates charged by peer companies are the ideal data set
for the complement of credibility, as long as they can be con-
verted to the underwriting basis of one’s own company. This
conversion is critical for real-world pricing. Suppose that you
are setting personal automobile insurance rates in a certain state.
After working out the rate indications based on your own com-
pany’s experience, you examine the rates of a major competitor.
You find that your competitor’s rates are about 40% higher than
your own rate indications.

The first question should be: “Is the coverage the same? That
is, are the underwriting criteria the same for the two companies?”
Your company may be selling policies to standard or preferred
risks, whereas your competitor may be selling to substandard
risks. If your substandard rates are about 40% higher than your
standard rates, then the disparity between your rates and your
competitor’s rates may be ascribed to underwriting differences,
not to pricing differences.22

Competitors’ rates tell us two things:

1. They tell us about the expected costs of the coverage,
based on independent historical data, probably some dif-
ferences in the ratemaking method, and differences in
actuarial judgment.

22This is analogous to Harwayne’s procedure. Harwayne adjusts for differing benefit
levels and cost levels by jurisdiction. Here you are adjusting for differing underwriting
practices by company.
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2. They tell us a great deal about market place forces, com-
petitive pressures, underwriting cycle movements, and
supply and demand considerations.

Some actuaries are loath to incorporate market-based consider-
ations into their rate recommendations. They say: “The actuary
determines the proper rates—rates that are equitable for both in-
surers and consumers. Market-based pricing is irrational, based
on seemingly bizarre underwriting cycle movements. Actuaries,
as the champions of rigorous theory, should not be abetting ir-
rational behavior.”

This is a wonderful argument, but it is irrelevant. Real world
insurers prefer market-based recommendations over mathemati-
cal elegance. Actuarial rigor is firmly established in traditional
ratemaking departments. Actuaries who wish to be heard must
seek the light of the marketplace.

Consider again the quotation at the beginning of this section.
Yes, the language is a bit facetious: even actuaries should be
allowed a sense of humor. But the underlying intent is serious.
The actuary who made the remark—the chief actuary of one of
the country’s largest and most successful insurers—was partic-
ularly skilled at anticipating the rate movements of competitors,
to know when it was safe to raise rates, and when other pricing
or underwriting actions would have to substitute. He made this
remark in response to a theoretical presentation on the credibility
that should be assigned to the experience loss ratio. The elegant
expositions so often heard at actuarial seminars and conferences
are often irrelevant to real world pricing.

Let us rephrase the quotation in accordance with Boor’s the-
sis. The pricing actuary ponders:

My actuarial student, upon examining the company’s
experience, has obtained a rate indication of +6%. The
marketing department says that our major competitors
are about 8% to 10% above our rates. My guess is that
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our competitors will take rate increases of around 5%
this year.

This means that we could take a rate increase of as
much as 14% or 15% this year without exceeding the
market rate. Perhaps the rate indication of +6% is
understated: maybe the trend estimate is too low, or
maybe we had some particularly lucky experience this
past year. Even if the +6% is accurate, we have all
this leeway between +6% and +15%. Should we take
something closer to +15% and reap the profits? Or
should we take something closer to +6% and try to
gain market share?

This is the essence of the complement of credibility thesis. So-
phisticated pricing means weighting together independent indi-
cations to determine the rate request that is actually filed. If two
indications stem from the same set of data, then these indica-
tions are probably interdependent, and they may contain little
more information than a single data set would provide. If the
two indications stem from different sources, and particularly if
the rationale for the indications are different (e.g., one is cost-
based and one is market-based), then the indications are probably
independent, and the two indications provide more information
than either one alone contains.

Actuaries well-versed in traditional rate-making techniques
will object, saying: “How can one determine the proper credi-
bility to assign to the historical data versus to the rates of peer
companies? This is too subjective; there is no rigor in this.” So
these actuaries give up on real-world pricing, and they return to
actuarial theory.

Quite the contrary is true. The traditional (classical) credibil-
ity figures are plucked out of the air. We say things like: “The
full credibility standard is 1,024 claims, which gives a 95% prob-
ability that the historical claim frequency is within !5% of the
true claim frequency. If there are fewer than 1,024 claims, then
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the credibility assigned to the historical experience is determined
by the square root rule, and the complement of credibility is
assigned to the trended expected loss ratio.”

There is no doubt that this impresses the layman. But what
does “a 95% probability : : : ” have to do with a firm that is
trying to maximize profits? What relation does it have to pricing
in a competitive market? The actuary is using cost-based pricing
when the actual prices will be set by marketplace forces. No
credibility formula will be correct, since the actuary has not asked
the right questions.

The actuary should be asking: “If the indicated rate from my
own experience is $1,000 per car for a certain classification and
territory, and the corresponding average rate of my peer compa-
nies is $1,100 per car, what rate should I use?” This is the proper
question, and this is a statistical question. The answer depends
on (i) the price elasticity of demand, (ii) the persistency rate of
insureds at different cost differentials, and (iii) the discount rate
for future profits. At one extreme, with (i) a high price elasticity
of demand, (ii) a low persistency rate of insureds at high cost
differentials, and (iii) a low discount rate for future profits, it is
wise to price below the competition (as long as one can do so
profitably), pick up market share (both in new business produc-
tion and in transfers from peer companies), and accrue the long
term profits from the expanded book of business. At the other
extreme, with (i) a low price elasticity of demand, (ii) a high
persistency rate of insureds even at high cost differentials, and
(iii) a high discount rate for future profits, it is better to move
towards the market rate and to take the current profits from the
redundant price.

This is a credibility question. At any given price elasticity of
demand, persistency rate, discount rate, and differential between
one’s own indications and the rates of peer companies, there is
a theoretically optimal credibility to assign to one’s own expe-
rience. Of course, price elasticities are difficult to measure, and
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some companies do not keep track of persistency rates, but at
least the pricing actuary is asking the right questions. Once ca-
sualty actuaries are turned in the right direction—that is, once
they have formulated the questions correctly—they will make
rapid progress on the solutions.

We have come full circle. Readers who skim lightly over
Boor’s paper receive the impression that the estimate of cred-
ibility is the crucial question, and the secondary consideration
is to know what will receive the complement of credibility. On
the contrary: until we define the purpose of the credibility pro-
cedure, we cannot know what should receive the complement of
credibility. And until we know what will receive the complement
of credibility, we cannot know the amount of credibility to assign
to the experience.

11. CONCLUSION

Boor’s paper leads in many directions, continually circling
back to his thesis.

There are four rationales of credibility procedures: (i) limited
fluctuation, (ii) proxy for past experience, (iii) greatest accuracy,
and (iv) marketplace pricing tool. Each of these rationales implies
a different formula for calculating the credibility, and each of
these rationales implies a different set of data that should receive
the complement of credibility.

Limited Fluctuation

Credibility may be used to limit the fluctuation in rate levels
from year to year. This is particularly important in a regulated in-
dustry with great public concern about price increases and about
alleged rate redundancies in some lines.23 This rationale leads
to the classical credibility procedures. The parameters of the full

23The author of this discussion, like most casualty actuaries, would dispute these allega-
tions. Nevertheless, they continually recur, and they have great influence on many state
legislators and regulatory officials.
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credibility standard—that is, the size of the confidence interval
and the probability constant—depend on how strictly one wishes
to limit the fluctuation in rate levels.

The complement of credibility should be assigned to the “cur-
rent rates:” i.e., to the underlying pure premium or to the ex-
pected loss ratio. The figure receiving the complement of cred-
ibility should first be adjusted for all factors other than random
loss fluctuations, such as loss cost trends and changes in the
insurance compensation system.

We may term this the Venter view of classical credibility.
Some pure actuaries look with disdain upon this procedure, as
a relic from unsophisticated actuarial practice. Nevertheless, it
remains the prevailing standard in most lines of business.

Proxy for Past Experience

The credibility weighting procedure may be used as a proxy
for the historical experience of older years.

The credibility assigned to the historical experience depends
on the rapidity of shift of risk parameters over time. In more
formal actuarial terms, it depends on the covariance structure of
these risk parameters along a time dimension.24

(B) The complement of credibility should be assigned to the
“current rates:” i.e., to the underlying pure premium or to the
expected loss ratio, after adjustment for any part of the most
recently filed rate revision that was not approved by the state
insurance department. In addition, the figure receiving the com-
plement of credibility should be adjusted for all factors other than

24See Mahler [6], pp. 261–263, for a full explanation. Based on Mahler’s analysis, which
examined baseball win-loss statistics, not insurance losses, a wide range of credibility
figures may give equally good results. Mahler’s sports results are probably valid for in-
surance experience as well, since they stem from the stochastic characteristics of random
variables, not from any peculiarities of baseball. However, it is difficult to prove this
assertion.
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random loss fluctuations, such as loss cost trends and changes
in the insurance compensation system.

This use of credibility is discussed by Mahler, and the ad-
justment to the expected loss ratio is documented by Graves
and Castillo. The procedure is used by ISO for general liabil-
ity ratemaking.

Greatest Accuracy

Credibility may improve the predictive accuracy of cost-based
pricing.

This rationale is the underpinning for Bayesian or Bühlmann
credibility methods. The credibility equals M=(M +K), where
M is a measure of business volume and K is proportional to
the “within variance” divided by the “between variance.”’ This
procedure is not concerned with deviations from the current rate.

In the Bayesian perspective, there is no conceptual difference
between the credibility amount and the complement of credibility
amount. There are as many estimators that may receive some
credibility as there are ratemaking data sets. Ratemaking data sets
are more useful to the extent that (i) they are accurate predictors
of future experience, (ii) they are practical, and (iii) they are
unbiased. Independence of these data sets avoids the costs of
extra analysis that may have little benefit.

The Bühlmann credibility formula is commonly used in ex-
perience rating plans, though the K values are not always chosen
by rigorous statistical analysis.25 Bayesian credibility procedures
have often been explored for territorial ratemaking, and K values
have sometimes been estimated for these applications. Bayesian
credibility analysis is not commonly used in practice for standard
statewide ratemaking (class ratemaking), though many casualty

25In the past decade, there has been a trend toward a more actuarial selection of the K
constants, particularly for rating bureau pricing procedures, such as those at ISO and at
the NCCI.
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actuaries and insurance companies have explored this topic and
are using some of these procedures on a limited basis.

Pricing

Credibility may be used to combine cost-based and market-
based pricing indications.

The goal of pricing is not to estimate the costs of the prod-
uct but to optimize the long-term profits of the firm, or to meet
other objectives of the firm. The credibility to be accorded to the
company’s historical experience depends on the price elasticity
of demand, the persistency of insureds at different cost differen-
tials, and the discount rate for future profits.

The estimate that should receive the complement of credibility
is the marketplace price, for which the rates of major competitors
(or peer companies) is often substituted. Adjustments must be
made for underwriting differences among the peer companies.

The actuarial literature, which is replete with papers on
ratemaking, is almost devoid of material on policy pricing. In
practice, senior company actuaries provide both ratemaking and
pricing recommendations for their employers.

Policy pricing is generally learned on the job, not from books
and papers. Policy pricing is learned from experience; the price
is not found in the experience.

The extension of actuarial expertise to real-world pricing
problems in competitive markets is one of the most alluring tasks
for the future casualty actuary. One of the primary questions is
how much weight should be accorded to one’s own indications.
Boor’s paper awakens us to the other, equally important ques-
tion: to what information should we give the remaining weight?

Solutions to these two questions will help move the actuary’s
backroom desk to the forefront of insurance company operations.
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ADDRESS TO NEW MEMBERS—NOVEMBER 9, 1998

MICHAEL A. WALTERS

First of all, let me congratulate you all again on this immense
accomplishment of Fellowship in the Casualty Actuarial Society.
Most of you no doubt spent an intense seven to nine years of
sacrifice and dedication to achieve this milestone.

While you bask in your glory today, let me highlight some
of the challenges ahead, adding the perspective that the training
you have had thus far stands you in pretty good stead to meet
the future.

I should really say training and selection. Of all the talented
people who started down the path of actuarial exams, you made
it to the finish line. The determination and judgment you have
already demonstrated will come in handy in meeting the chal-
lenges ahead. Let’s face it, the syllabus for our exams is still quite
a formidable barrier to master completely. You had to exercise
considerable judgment in finding the essence of those readings
and deducing the likely exam questions.

One area that has not been tested in the actuarial exams is
supervisory management skill—or the art of getting things done
through others. Actuaries do not come by this skill naturally, be-
cause their first instinct is to solve problems themselves, instead
of letting others do it.

Some time ago, when the CAS and SOA were discussing
the possibility of expanding the core of common exams, the
SOA was contemplating adding management courses to the syl-
labus, because new FSAs were struggling initially as managers.
It seems that large life companies were placing their new FSAs
immediately into management positions, without any supervisory
experience. The CAS response was, don’t put management on
the actuarial exams. Instead, exhort companies to include super-
visory management in the actuaries’ training before promoting
them.

1034
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Actually, in the future, supervisory management may be less
critical, although still important. In the new information age, cor-
porations don’t need vast spans of control and complex organiza-
tional structures. These are being replaced by knowledge work-
ers with vastly improved communication access. This lessens
the need for supervisory apprenticeship, with more emphasis on
conceptual and communication skills to go along with technical
skills which actuaries have in abundance.

The casualty actuarial profession has enjoyed phenomenal
growth over the past two decades meeting demands for their
skills. But will this growth continue in the future? Will the casu-
alty actuaries experience some of the problems our life brethren
now face, wherein the demand for traditional service from 10,000
life actuaries may have peaked? Hence, life actuaries are reach-
ing for new applications for their skills.

First, we won’t reach 10,000 in number for a decade or two.
Second, the demand for casualty skills doesn’t seem to be slow-
ing down. About ten years and 1,500 actuaries ago, we inter-
viewed selected CEOs of major insurers to gauge future casualty
actuarial demand. We focused on companies where the CEOs
either were actuaries or hired a lot of actuaries—Bill Bailey of
Aetna, Ed Budd of Travelers, Jack Byrne of Fireman’s Fund,
and Warren Buffett of Berkshire Hathaway.

Warren Buffett was actually a surprise interviewee, as Jack
Byrne on his own had lined him up for a teleconference with us
in the middle of his scheduled interview. In fact, we were told
we could get him only for a short time, and so were limited to a
few questions.

With our questions rationed, the first one we crafted was
“What are the keys to success in the casualty insurance business.”
Buffett hesitated at first, asking what we meant. We improvised
by observing that in some industries, the keys to success were
“brains and guts.” He thought for a moment and replied: “The
keys to success in casualty insurance are brains and no guts.”
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He also offered a suggestion regarding the newly emerging
requirements for every insurer to have an actuarial opinion on
loss reserves. Taking a page out of Jack Byrne’s perennial mes-
sage that insurers need a disciplined balance sheet, he exhorted
the appointed actuaries to have more courage in standing up to
their companies’ reserve committee in needed IBNR.

In fact, he recommended a unique reserve runoff test, which
has surprisingly not yet been adopted by our profession. He said:
“Compare the five-year run-off results of all the appointed ac-
tuaries. Then take the actuary with the worst record of underre-
serving and shoot him.” He added, “You don’t have to actually
pull the trigger. You could whisk him off to a South Sea island,
just so no one finds out you haven’t actually eradicated him.”
This message of the need for more accountability for loss re-
serve opinions was passed along to the appropriate committees,
including the Discipline Committee.

The other CEOs interviewed all concluded that casualty ac-
tuarial skill would continue to be in great demand, and even a
fourfold increase would not be enough. A much greater sup-
ply would allow some of those trained as actuaries to become
underwriters—perhaps an even more difficult job than an actu-
ary.

Of course, this group could not have known then that two
of their companies would later merge, and that consolidation of
many insurers could threaten to curtail the number of actuarial
positions available.

In fact, industry contraction has been a major, and not surpris-
ingly parochial, concern of actuaries recently. A few years ago,
the CAS began an annual survey of actuarial leaders to identify
the top ten actuarial stories of the year. For two years running, the
lead story was industry consolidation—first by primary insurers,
and then by reinsurers. For years there weren’t enough casualty
actuaries to put even one in each company. Lately, the ratio is
up to three per company. Not a cause for alarm just yet, but if
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the number of insurers drops below 50, there may be a need to
speed up the nontraditional applications of actuarial science.

Appropriately, the top story of the past year was the growth
of risk securitization. Talk about re-energizing actuarial need:
Pushed to an extreme, every separate book of business by subline
within a traditional insurer could potentially require an actuarial
opinion on its expected value for a transaction from a risk orig-
inator to a risk bearer. The latter may not even be an insurance
company.

A third top ten story was the emergence of enterprise risk
management—another nontraditional actuarial venture. Why not
take the tried and true precepts of risk management—risk iden-
tification, risk assessment, risk control, and risk financing, and
translate them into the rest of corporate risk management? Even
if some of those business risks are classically uninsurable, the
expertise of actuaries can surely be applied to some of those
ventures.

For example, the year 2000 problem lends itself to enterprise
risk management. In fact, there is even a way to buy insurance
for that computer risk. It may have liberal doses of risk control
in it, but some risk transfer is still possible.

But the greatest potential expansion of actuarial demand—
dynamic financial analysis (DFA)—did not even appear as a top
ten story probably because of the way that list was compiled.
Only external news stories were used, which had some actuarial
implications. No internal CAS research or committee work was
considered. This was to keep an external focus for potential long-
range planning purposes and to avoid commenting on internal
works in progress.

For almost eight years, the CAS has been actively working
to nurture the DFA concept, which has the potential of becom-
ing a major practice area for actuaries in the future, on a scale
with ratemaking or loss reserving. It builds on ratemaking and
reserving skills by adding a new dimension on the asset side of
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the ledger and its interaction with liabilities. It also adds a fourth
dimension by measuring the risk or variability of results and its
effect on capital needs.

DFA requires new skills not now in the repertory of most ac-
tuaries but which can be acquired. The CAS Syllabus 2000 will
be adding these new financial topics. And there is a mushroom-
ing set of continuing education guidelines to give some of our
existing members the skills and techniques needed to practice in
this area. What might also be needed is some marketing prowess,
as this concept still has some hurdles to overcome before it is
readily accepted by CEOs and CFOs.

Lastly, if these new opportunities don’t generate enough jobs
for actuaries, there are even more nontraditional possibilities. For
example, last year Mavis and I were returning from a golf outing,
and stopped at Romanelli’s pizzeria to pick up the order my wife
had phoned in. Much to my surprise, there were two pizzas in
my name—a small pepperoni and a medium cheese. This did
not look like a very good deal, because Romanelli’s new jumbo
pizza, with half pepperoni and half cheese, had a much lower
price and appeared to provide about the same amount of pizza.

So I started quizzing the cashier. How big is the jumbo pizza?
Answer: 18 inches. Is that radius or diameter? Ahh: : :around.
That can’t be the circumference; it must be the diameter. Then
I started some quick calculations, out loud, to assess the relative
areas. Let’s see. A small pie is 12 inches diameter and eight
dollars. At ¼r2, that’s 36¼. A medium is 14 inches at ten dollars;
¼r2 makes it 49¼; and a jumbo is 18 inches at twelve dollars;
¼r2 makes it 81¼—or almost the same size as the two smaller
pies but at a third less cost. So why didn’t you suggest a jumbo
pie when my wife called in? To which the English-as-second-
language cashier replied: “Pies are not square; pies are round.”

Meanwhile, I was attracting a crowd of interested parties, in-
cluding the owner who asked if I was a mathematician? No, an
actuary. He then asked if I was available to help him price his
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pizzas, since his view of the situation now was that he might be
underpricing the new jumbo pies. My response was that we had
to consider the fixed cost of pie preparation—not just the size.
Also, from the hungry customer’s viewpoint, there may be some
adverse selection against the seller. We left it that I would have
to get back to him when I was no longer hungry.

Never went back. The lesson learned? Every pricing problem
is an actuarial problem; we just have to understand the environ-
ment a little better. And when banks and investment firms get
into the insurance risk transfer business, we’ll just have to get
into their business at the same time.

Thank you and best of luck to the CAS Class of 1998.
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THERE IS MORE TO DO

MAVIS A. WALTERS

When Bob Anker handed me the gavel at this time last year,
he said the next twelve months would be interesting. I expected
they would also be challenging and demanding. I was not disap-
pointed. This really has been an exciting time to be in a leader-
ship role in the CAS.

Looking back over this past year, we’ve done a lot of things
well, but some things we could have, and should have, done bet-
ter. And I’m confident that my able successor, Steve Lehmann,
will find a way to improve on what has been accomplished so
far. After all, the CAS is a strong organization. Its members are
dedicated and resourceful. Each generation of leaders, including
committee volunteers, chairpersons, officers, and board mem-
bers, has without exception led us to higher levels of achieve-
ment.

I have no doubt that with Steve’s leadership and the strong
support of Alice Gannon, the Executive Council, and the Board
of Directors, the CAS will continue in that tradition. So, where
we might not have done so well this past year—not to worry—
our future leaders will remedy that in the years ahead.

There is more to do.

Before sharing with you some thoughts on CAS accomplish-
ments over this past year, as well as the challenges ahead, let me
acknowledge some very special people who provided me with
enormous support and encouragement during the past year.

The first is Bob Anker, my predecessor, who taught me what
being presidential was all about. Bob was always gracious, kind
and respectful, even to those he disagreed with. He was and is a
wonderful role model. Thanks, boss!
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And to Bob’s predecessor, Al Beer, special thanks for his ad-
vice and assistance in reviewing the CAS discipline procedures.
Al’s good judgment and encouragement were particularly valu-
able as we struggled with some fundamental issues.

And no CAS president could get through even the first month
without recognizing the enormous support and guidance pro-
vided by Tim Tinsley, our Executive Director. Tim is absolutely
the critical ingredient who holds the CAS operations together,
who sees to it that everything functions smoothly, and he does
this with style and demeanor that are truly first class. We are
most fortunate to have him as a part of our team.

Tim, you are a treasure. Many, many thanks.

I would also like to acknowledge and thank my counterpart at
the Society of Actuaries during this past year, Anna Rappaport.
Anna, my friend, thanks much for all your hard work and efforts
to help bring our two organizations into closer harmony.

Another past president of the CAS has served as a role model
for me, someone whose fairness and objectivity I have always
admired but never could quite measure up to—my brother Mike.
Mike is completely unflappable. I think he got all the patience
genes when we were born.

Mike, thanks for always being so supportive of me and for
encouraging me in all kinds of ways. I have always been proud
that you are my brother, and I’m particularly happy that we both
have been able to serve the CAS as its president.

I also want to thank Mike’s wife, Mary Anne, my matron-of-
honor. Her enthusiasm and willingness to do whatever she could
to assist me were unbounded. She’s been available to take on
any assignment to help things run smoothly for me, both in May
in Marco Island and here in Toronto. Thank you, Mary Anne.

And finally, I want to thank my husband, Tom—for all his
patience and understanding in general, but over the past two
years, in particular.
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We both do a fair amount of traveling but have usually been
able to catch up with each other on weekends.

But with the Council of Presidents, CAS Board, International
Presidents Group, and other travel over the past 24 months, I’ve
spent a lot of weekends someplace other than home. Tom’s career
demands made it virtually impossible for him to travel with me,
so we’ve spent a lot of time apart. I am happy that he has been
able to come to both CAS meetings this year and share in some
of the fun things that go with the CAS presidency. Thanks, Tom,
for your good humor, your patience, and for every other way
you have been so good to me.

Now I’d like to turn to the significant accomplishments of the
CAS over the last year—and to what more there is to do.

During 1998 our membership surpassed 3,000, and at this
meeting we are welcoming our largest Fellowship class ever—
126 new Fellows. Our current membership now stands at 3,064.
Our growth as a professional society has been quite impressive.
From 1974 to 1984 our membership grew 83 percent to 1,112.
From 1984 to 1994 membership doubled, and we have almost
doubled again since 1989. Obviously something about a career as
a casualty actuary is impressive to college students. And we have
continued to attract students who are intelligent, well motivated
and not intimidated by the prospect of sitting for 10 or 14 exams
to achieve their credentials.

But we should not let our past success delude us into com-
placency.

There is more to do.

We must be prepared to take whatever steps are necessary to
not only protect our franchise as casualty actuaries, but also to
expand our expertise so we remain relevant and necessary in the
changing marketplace. Our core competency today is well estab-
lished and highly regarded. But the world around us is changing
rapidly, and we have to keep pace.
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During 1998 our Board of Directors approved several propos-
als to amend our constitution and bylaws. One proposal provides
an affiliate class of membership that recognizes the training, ex-
perience, and interests of actuaries practicing in casualty work
who have received the highest actuarial designation in another
recognized organization.

But this new class of membership falls short of mutual recog-
nition of Fellowship. At the last meeting of the International
Presidents Group, such a proposal was advocated by the Institute
of Actuaries of Australia. And the Faculty, and the Institute of
Actuaries in the U.K. strongly endorsed it. Under the proposal
an actuary who is a Fellow of any of the sponsoring, exam-
giving organizations would, upon petition to any other similar
sponsoring organization, be granted Fellowship in that organiza-
tion, assuming the actuary practices in the area covered by the
petitioned organization.

It is possible that the Society of Actuaries and the Canadian
Institute of Actuaries may eventually find this proposal accept-
able, perhaps with additional requirements. Certainly it will be
pursued at the International Presidents Group meetings in the
coming year.

So there is more to do.

I suspect many CAS members will strongly oppose mutual
recognition, but I believe we should at least explore the concept
and give it careful consideration. A way to make mutual recog-
nition work to every nation’s and to every organization’s benefit
may be possible.

Also this year, the Board of Directors approved changes to the
constitution and bylaws addressing the discipline of members.

A complete package containing the proposed changes and the
revised Rules of Procedure for Disciplinary Action went to the
membership in July, and I discussed the new procedures in the
August Actuarial Review.
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To my surprise, only eleven CAS members actually com-
mented on the proposals. Why only eleven? Were CAS members
persuaded that the changes were improvements, and so there was
no need to comment? Are you satisfied that the new process is
fair and balanced? Do most members think they will never be
subjected to disciplinary action, so they believe the subject is ir-
relevant to them? I think the answer to all these questions is yes.
But that should not diminish the importance of the accomplish-
ment.

Still, there is more to do.

To maintain that we truly are a profession, it is essential that
we accept responsibility for disciplining those who do not abide
by the highest standards of professionalism.

It is difficult and painful to have to pass judgment on one
of our own members, but enforcing our code of professional
conduct is an obligation we cannot avoid. The new procedures
will serve us well as we fulfill that duty.

On the education front, this year we agreed to jointly sponsor
the first four examinations with the Society of Actuaries under
the new exam structure effective in 2000. This was explored
about two years ago, but for a variety of reasons, including a
series of misunderstandings that led to a lack of trust between
the CAS and the SOA, those efforts fell short.

Thanks to the dedication and hard work of a lot of actuaries
in both organizations, we were able to restart discussions that
eventually led to both boards adopting the joint sponsorship that
was announced to students in early July.

I believe joint sponsorship of the first four exams is a very
positive step, not only for the CAS, but also for the actuarial pro-
fession. Now students will have an opportunity to learn some-
thing about all areas of actuarial practice before having to decide
which series of exams to pursue. And in most cases students will
have some workplace experience before they make that decision.
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Of course there is still more to do to put the new syllabus and
exam structure in place. Our committees are hard at work. I am
confident they will reach or exceed their goal.

Another significant achievement this year: the excellent rela-
tionship that now exists between the leadership and the boards
of the CAS and the Society of Actuaries.

Many of you are aware of the difficulties, indeed, hostility be-
tween our organizations early last year. But repairing the damage
began almost immediately when Bob Anker and I were invited
to a Society of Actuaries Board of Governors meeting to explain
the CAS perspective on the events that led to the breakdown.
And in turn, we invited the SOA’s President and President-elect
to CAS board meetings.

Since then, SOA President Anna Rappaport and I have com-
municated frequently and candidly about matters of mutual in-
terest or concern. We have worked together on the American
Academy Board of Directors, the Council of Presidents, and the
International Presidents Group.

We’ve had dinner together on numerous occasions. And, just
this past September, our two societies held a joint meeting of
our boards. That provided a wonderful opportunity for the lead-
ership of both organizations to explore topics of mutual interest
and share views on the challenges facing our profession. I am
confident that all who attended that meeting came away with
increased respect and appreciation for each other professionally.

There is still more to do.

For the good of the profession we must make sure that mu-
tual respect and good working relationships continue beyond the
terms of any particular presidents. To that end, Anna and I have
recommended that joint board meetings be held at least every
other year, if not annually. We believe closer ties between us
strengthen both societies. I am confident that Steve Lehmann
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and Howard Bolnick will continue to work well together, as will
Alice Gannon and Norm Crowder the following year.

Another area where there is more to do is in the international
arena.

During this past year Steve Lehmann and I met with the In-
ternational Presidents Group in London and then went on to
the International Congress of Actuaries meeting in Birmingham,
England. Although about 950 actuaries from all over the world
attended that conference, not a single CAS member presented a
paper or participated in the formal program. And just last month
a combined ASTIN and general insurance conference was held
in Glasgow, where there was only one CAS presenter.

It is difficult to maintain the posture that the Casualty Actuar-
ial Society represents the finest, best educated and most knowl-
edgeable actuaries in the general insurance area when we don’t
participate in important international forums such as these. For-
tunately, while in Glasgow, Steve Lehmann was able to make
progress on a seminar to be jointly sponsored by the CAS, the
Faculty, and the Institute next June in London. We will also have
an excellent opportunity to make an impression at the next In-
ternational Congress in Cancun in 2002.

Lastly, we have intensified our focus on nontraditional areas
of practice: those wider fields where our members toil outside
the familiar ratemaking and reserving areas.

In response to a survey by our External Communications
Committee, our members most frequently identified marketing,
underwriting, and risk management as the nontraditional actuar-
ial duties they perform. In addition, 19 percent mentioned valu-
ation; almost 17 percent, dynamic financial analysis; and 8 per-
cent, investments.

And 22 percent of the respondents said they had “other” non-
traditional duties, which included capital analysis, mergers and
acquisitions, and strategic planning, to name a few.
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The real growth in opportunities for casualty actuaries will be
in nontraditional areas, and many of our members are already
leading the way.

Many of us are involved in catastrophe modeling and expo-
sure management, and this is leading some into exploring vari-
ous risk-securitization techniques. The contribution that casualty
actuaries can make to help find solutions to complex financial
problems is unlimited.

There is more to do.

We must find ways to support our members as they face those
new challenges and make sure our members have the tools to deal
with those challenges appropriately.

We have a new Task Force on Nontraditional Practice Areas,
chaired by Mike Miller, and we’ll look forward to their report.

In conclusion, I’d like to share with you just a few personal
observations.

It is a high honor to serve as your president. I’ve worked
closely with the leadership of our organization. I’ve seen first-
hand the enormous contribution so many members make, so I
leave office this November with great confidence and pride in
the Casualty Actuarial Society. We are blessed with a dedicated,
talented, motivated membership that can meet any challenge, no
matter how difficult.

The last 12 months have been a wonderful experience for me.
I am proud to have served as your President. It was great fun,
and I enjoyed almost every minute of it.

Thank You.
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November 8--11, 1998

SHERATON CENTRE TORONTO HOTEL 

TORONTO, ONTARIO, CANADA

Sunday, November 8, 1998

The Board of Directors held their regular quarterly meeting
from noon to 5:00 p.m.

Registration was held from 4:00 p.m. to 6:00 p.m.

From 5:30 p.m. to 6:30 p.m., there was a special presentation to
new Associates and their guests. All 1998 CAS Executive Council
members briefly discussed their roles in the Society with the new
members. In addition, Michael L. Toothman, who is a past presi-
dent of the CAS, gave a short talk on the American Academy of
Actuaries (AAA) Casualty Practice Council.

A welcome reception for all members and guests was held from
6:30 p.m. to 7:30 p.m. 

Monday, November 9, 1998

Registration continued from 7:00 a.m. to 8:00 a.m.

CAS President Mavis A. Walters opened the business session at
8:00 a.m. and introduced members of the Executive Council and
the CAS Board of Directors. Ms. Walters also recognized past
presidents of the CAS who were in attendance at the meeting, in-
cluding: Robert A. Anker (1997), Irene K. Bass (1993), Albert J.
Beer (1995), Phillip N. Ben-Zvi (1985), Ronald L. Bornhuetter
(1975), Michael Fusco (1989), Frederick W. Kilbourne (1982),
Michael L. Toothman (1991), and Michael A. Walters (1986).

Ms. Walters also recognized special guests in the audience:
A. Norman Crowder, president-elect of the Society of Actuaries;
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Peter F. Morse, president of the Canadian Institute of Actuaries;
Anna M. Rappaport, immediate past president of the Society of
Actuaries; Harris Schlesinger, immediate past president of the
American Risk and Insurance Association; Michael L. Toothman,
president-elect of the Conference of Consulting Actuaries; and
Stuart F. Wason, president-elect of the Canadian Institute of Actu-
aries.

Ms. Walters then announced the results of the CAS elections.
The next president will be Steven G. Lehmann, and the president-
elect will be Alice H. Gannon. Members of the Executive Council
for 1998—1999 will be: Curtis Gary Dean, Vice President--Ad-
ministration; Kevin B. Thompson, Vice President--Admissions;
Abbe Sohne Bensimon, Vice President--Continuing Education;
David R. Chernick, Vice President--Programs and Communica-
tion; and Robert S. Miccolis, Vice President--Research and De-
velopment. New members of the CAS Board of Directors are
Charles A. Bryan, John J. Kollar, Gail M. Ross, and Michael L.
Toothman.

Curtis Gary Dean and Kevin B. Thompson announced the new
Associates and Steven G. Lehmann announced the new Fellows.
The names of these individuals follow. 

NEW FELLOWS

John Porter Alltop
Lewis Victor Augustine
Barry Luke Bablin
Michael James

Bednarick
Michael James 

Belfatti
Wayne F. Berner
Barry E. Blodgett
Kimberly Ann Bowen
Douglas J. Bradac
Ron Brusky

Christopher John
Burkhalter

Tania Janice Cassell
Cindy C. M. Chu
Brian Arthur Clancy
Kay A. Cleary
Christopher G. Cunniff
Kenneth Scott Dailey
Smitesh Davé
Karen L. Davies
Jeffrey Wayne Davis
John David Deacon

Camley Ann Delach
Margaret E. Doyle
David L. Drury
Tammy Lynn Dye
Kristine M. Esposito
Sylvain Fauchon
Kendra Margaret

Felisky-Watson
Stephen A. Finch
Walter H. Fransen
Kay L. Frerk
John Edward Gaines
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David Evan Gansberg
Kathy Helene 

Garrigan
Margaret Wendy

Germani
Moshe David Goldberg
John E. Green
Steven A. Green
Daniel Cyrus Greer
Daniel Eli Greer
Greg M. Haft
Ellen M. Hardy
Robert L.

Harnatkiewicz
William Nesthus 

Herr Jr.
Daniel Leo Hogan Jr.
Jeffrey R. Hughes
Paul Ivanovskis
Christopher Donald

Jacks
Joseph William Janzen
Jeremy M. Jump
Hsien-Ming Keh
Brandon Daniel Keller
Steven A. Kelner
Thomas Paul Kenia
Joseph P. Kilroy
Bradley James

Kiscaden
Brian Scott Krick
Mary Downey Kroggel
Alexander Krutov
Kenneth Allen

Kurtzman
Timothy John Landick

Robert John Larson
Guy Lecours
Thomas C. Lee
Thomas L. Lee
Scott Jay Lefkowitz
Steven Joel Lesser
Robert Glenn Lowery
Gary P. Maile
Anthony L. Manzitto
Richard Joseph Marcks
Peter Robert Martin
Dee Dee Mays
Stephen J. McGee
Jeffrey A. Mehalic
Brian James Melas
Anne Hoban Moore
Matthew Stanley

Mrozek
Raymond D. Muller
Timothy O. Muzzey
Mindy Yu Nguyen
Mark A. O’Brien
Mary Beth O’Keefe
David J. Otto
Joseph Martin Palmer
Dmitry E. Papush
Thomas Passante
Abha B. Patel
Harry Todd Pearce
Lynne M. Peterson
Anne Marlene Petrides
Jennifer K. Price
David Scott Pugel
Kara Lee Raiguel
Kiran Rasaretnam
Natalie J. Rekittke

Dennis Louis
Rivenburgh Jr.

Daniel Gregg Roth
Chet James Rublewski
Kevin L. Russell
Thomas A. Ryan
Elizabeth A. Sander
Manalur Sundaram

Sandilya
Michael Bruce Schenk
Matt John Schmitt
Arthur J. Schwartz
Craig James Scukas
Gerson Smith
Mary Kathryn Smith
Alan M. Speert
Catherine Elaine Staats
Ilene Gail Stone
Scott Jay Swanay
Christopher Tait
Sebastian Yuan Yew

Tan
Georgia A.

Theocharides
Alice Underwood
Timothy John

Ungashick
Jeffrey Alan Van Kley
Kimberley A. Ward
Wyndel S. White
William Robert

Wilkins
Michael J. Williams
Kirby W. Wisian
Yoke Wai Wong
Charles John Yesker
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Stephen Allan
Alexander

Jennifer Ann
Andrzejewski

Michele Segreti Arndt
Robert Daniel Bachler
Lee Matthews Bowron
John Carol Burkett
Matthew R. Carrier
Andrew K. Chu
Louise Chung-Chum-

Lam
Mary Katherine

Thérèse Dardis
Robert Earl Davis
Nathalie Dufresne
Carolyn F. Edmunds
Jane Eichmann
Jonathan Palmer 

Evans
Michelle Lynn Freitag
Donald Michael

Gambardella
Charles Edward Gegax

Bradley Gordon
Gipson

Natasha Cecilia
Gonzalez

Francis Xavier Gribbo
Gary Michael Harvey
Kevin Blaine Held
Melissa Katherine

Houck
Weidong Wayne Jiang
Susan Kay Johnston
Daniel R. Kamen
Mary Jo Kannon
Jeffrey Dale Kimble
Andrew M. Koren
Scott C. Kurban
Douglas H. Lacoss
James Peter Leise
Diane Lesage-Cantin
Xiaoying Liang
Jason Kirk Machtinger
James William Mann
Stephen Paul Marsden
John Vincent Mulhall

Moshe C. Pascher
Judith Diane Perr
Dylan Pamphilon Place
Ricardo Anthony

Ramotar
Brian Paul Rucci
Asif Sardar
Kelvin Bryce

Sederburg
Kelli Denise 

Shepard-El
John Haldane Soutar
Andrew K. Tran
Michael Charles

Tranfaglia
Joel Andrew Vaag
Steven John Vercellini
Linda M. Waite
Robert Joseph Wallace
William Boyd Westrate
Matthew Michael

White
L. Alicia Williams
Robin Davis Williams

NEW ASSOCIATES

Ms. Walters then introduced Michael A. Walters, a past presi-
dent of the Society, who presented the Address to New Members.

A short awards program followed the address. Ms. Walters pre-
sented the 1998 CAS Matthew S. Rodermund Service Award to
Richard H. Snader. Mr. Snader was chosen for his contributions to
the actuarial profession. Ms. Walters also announced James A.
Tilley, Ph.D. as the recipient of the 1998 CAS Charles A.
Hachemeister Prize for his paper, “The Securitization of Cata-
strophic Property Risks.” Ms. Walters noted that Dr. Tilley was
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unable to attend this meeting but may present his paper at the
1999 Spring Meeting in Orlando, Florida.

Curtis Gary Dean announced Gene C. Lai, Robert C. Witt,
Hung-Gay Fung, and Richard D. MacMinn as the winners of the
CAS Online Services Prize. The group won for their contribution,
“On Liability Insurance Crises,” a paper in a portable document
format with links to a Web page with animated graphics. The CAS
Online Services Prize was established as the result of the 1998
Call for Contributions to the CAS Web Site. The call’s purpose is
to make CAS members aware of, and actively involved in the CAS
Web Site and to establish the Web site as a primary forum for
sharing news and ideas.

Gary R. Josephson, Chairperson of the CAS Committee on Re-
view of Papers, presented the 1998 Woodward-Fondiller Prize to
Donald F. Mango for his paper, “An Application of Game Theory:
Property Catastrophe Risk Load.” Mr. Josephson then presented
the 1998 CAS Dorweiler Prize to Rodney E. Kreps for his paper,
“Investment-Equivalent Reinsurance Pricing.” Both papers are
published in this edition of the Proceedings.

Mr. Josephson announced that nine Proceedings papers and
one discussion of a November 1998 Proceedings paper would be
presented at this meeting. In addition, one paper would be pub-
lished in the 1998 Proceedings but would not be presented.

Patrick J. Grannan, CAS Vice President--Programs and Com-
munications, announced Joan Lamm-Tennant and Mary A. Weiss
as winners of the American Risk and Insurance Association Prize
(ARIA) for their paper, “International Insurance Cycles: Rational
Expectations/Institutional Intervention.” Mr. Grannan then intro-
duced Harris Schlesinger, Immediate Past President of ARIA, who
spoke briefly about ARIA.

Ms. Walters then requested a moment of silence in honor of
those CAS members who passed away since November 1997.
They are: James M. Cahill, Clarence C. Coates, Charles Des-
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jardins, K. Arne Eide, Gilbert W. Fitzhugh, Dave R. Holmes,
Robert C. Perry, Paul E. Singer, Emil J. Strug, Paul A. Verhage,
and Herbert E. Wittick.

In a final item of business, Ms. Walters acknowledged a dona-
tion of $10,000 from D. W. Simpson & Company to the CAS
Trust (CAST). The donation was made October 7, 1998.

Ms. Walters then concluded the business session of the Annual
Meeting and introduced the featured speaker, Alan J. Parisse. Mr.
Parisse is a managing partner of his own firm, a former senior ex-
ecutive for Oppenheimer and other national investment firms, a
guest lecturer at Stanford and Wharton, and the author of numer-
ous articles and several technical books.

After a refreshment break, the first General Session was held
from 10:45 a.m. to 12:15 p.m.

“Globalization”
Moderator/ Albert J. Beer
Panelist: President

Munich-American RiskPartners
Panelists: Wayne H. Fisher

Head of Global Specialties
Zurich Insurance Group
James N. Stanard
Chairman, President and Chief Executive
Officer
Renaissance Reinsurance, Ltd.

Following the general session, CAS President Mavis A. Walters
gave her Presidential Address at the luncheon. At the luncheon’s
end, she officially passed on the CAS presidential gavel to the new
CAS President, Steven G. Lehmann.

After the luncheon, the afternoon was devoted to presentations
of concurrent sessions, which included presentations of the ARIA
Prize paper and Proceedings papers. The panel presentations from
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1:30 p.m. to 3:00 p.m. covered the following topics:
1. Y2K—Impact on D&O Insurance

Moderator/ Hilary Rowan
Panelist: Partner

Thelen, Reid, & Priest
Panelist: Michael T. Hasse

Consultant
Eon 2000 Division
Double-E Computers

2. Workers Compensation Managed Care—Has Its Impact
Been Felt?
Moderator/ Charles W. McConnell
Panelist: Consulting Actuary
Panelists: N. Mike Helvacian

Director of Research and Chief Economist
National Council on Compensation 
Insurance
Layne M. Onufer
Principal
Ernst & Young LLP

3. Canadian Catastrophes
Moderator: Joseph A. Herbers

Consulting Actuary
Miller, Rapp, Herbers & Terry, Inc.

Panelists: Paul Kovacs
Vice President and Chief Economist
Insurance Bureau of Canada
Isabelle Perigny
Consulting Actuary
Tillinghast-Towers Perrin
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Hugh G. White
Senior Vice President, Corporate 
Underwriting
Zurich Canada

4. Using Complex Models: A Proposed Actuarial Standard of
Practice
Moderator: Karen F. Terry

Actuary
State Farm Fire & Casualty Company

Panelists: Paul E. Kinson
Consulting Actuary
Liscord, Ward & Roy, Inc.
Ronald Kozlowski
Consulting Actuary
Tillinghast-Towers Perrin

5. Introduction to the CAS Examination Committee
Moderator: David L. Menning

Chairperson, CAS Examination 
Committee
Senior Associate Actuary
State Farm Mutual Automobile 
Insurance Company

Panelists: Pierre Dionne
Property and Casualty Actuary
CIBC Insurance
J. Thomas Downey
Manager, Admissions
Casualty Actuarial Society
Thomas G. Myers
Vice President
Prudential Property & Casualty 
Insurance Co.
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The following 1998 ARIA Prize Paper was presented:
“International Insurance Cycles: Rational Expectations/Institu-
tional Intervention”

Authors: Joan Lamm-Tennant
Vice President
General Re New England Asset 
Management
Professor of Finance
Villanova University
Mary A. Weiss
Chair of Risk Management and Insurance
Temple University

The following 1998 Proceedings Papers were presented:
1. “Personal Automobile: Cost Drivers, Pricing, and Public

Policy”
Authors: John B. Conners

Executive Vice President
Liberty Mutual Group
Sholom Feldblum
Assistant Vice President and Senior 
Associate Actuary
Liberty Mutual Group

2. “Studying Policy Retention Using Markov Chains”
Author: Joseph O. Marker

Vice President and Chief Actuary
Citizens Insurance Company of America

After a refreshment break from 3:00 p.m. to 3:30 p.m., presen-
tations of concurrent sessions and Proceedings papers continued.
Certain call papers and concurrent sessions presented earlier were
repeated. Additional concurrent sessions presented from 3:30 p.m.
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to 5:00 p.m. were:
1. Mortgage Guaranty Insurance

Moderator: John F. Gibson
Principal
PricewaterhouseCoopers LLP

Panelists: Douglas Rivenburgh
Assistant Vice President Structural 
Products
United Guaranty Corporation
Michael C. Schmitz
Associate Actuary
Milliman & Robertson, Inc.

2. Actuarial Supply and Demand
Moderator: Frederick O. Kist

Senior Vice President and Corporate 
Actuary
CNA

Panelists: Francis J. Lattanzio
Partner
Kelly and Lattanzio
Isaac Mashitz
Senior Vice President and Chief Actuary
Zurich Reinsurance North America, Inc.
Arlie J. Proctor
Senior Consulting Actuary
Scruggs Consulting

3. Questions and Answers With the CAS Board of Directors
Moderator: Steven G. Lehmann

CAS President-Elect
Consulting Actuary
Miller, Rapp, Herbers & Terry, Inc.

Panelists: Regina M. Berens
Consulting Actuary
MBA, Inc.
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David N. Hafling
Senior Vice President and Actuary
American States Insurance Companies
David L. Miller
Senior Vice President and Chief Actuary
Commercial Union Insurance Companies

Proceedings papers presented during this time were:
1. “Testing the Assumptions of Age-To-Age Factors”

Author: Gary G. Venter
Executive Vice President
Sedgwick Re

2. “The Mechanics of a Stochastic Corporate Financial
Model”
Authors: Gerald S. Kirschner

Associate Actuary
Liberty Mutual Group
William C. Scheel
President
DFA Technologies, LLC

3. “A Graphical Illustration of Experience Rating 
Credibilities”
Author: Howard C. Mahler

Vice President and Actuary
Workers Compensation Rating and 
Inspection Bureau of Massachusetts

4. “The Myers--Cohn Profit Model, A Practical Application”
Author: Howard C. Mahler

Vice President and Actuary
Workers Compensation Rating and 
Inspection Bureau of Massachusetts
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An Officers’ Reception for New Fellows and accompanying
persons was held from 5:30 p.m. to 6:30 p.m. A general reception
for all attendees followed from 6:30 p.m. to 7:30 p.m.

Tuesday, November 10, 1998

Registration continued from 7:00 a.m. to 8:00 a.m.

The following General Sessions were held from 8:00 a.m. to
9:30 a.m.:

“Integrating Financial and Insurance Products”
Moderator: Jeffrey H. Mayer

Principal
Head of Client Service Group
Swiss Re New Markets

Panelists: E. Randall Clauser
Executive Vice President and Head of 
Zurich Corporate Solutions
Zurich American Insurance
Steven R. Fallon
Senior Vice President
Centre Solutions
Daniel Isaacs
Vice President and Investment Actuary
Falcon Asset Management

“Fraud-The Unknown Factor in Claim Payments”
Moderator/ Richard A. Derrig
Panelist: Vice President--Research

Insurance Fraud Bureau of Massachusetts
Panelists: Keith J. Crocker

Professor of Economics
University of Michigan



1060 MINUTES OF THE 1998 CAS ANNUAL MEETING

Elizabeth A. Sprinkel
Senior Vice President and Chief 
Research Officer
Insurance Research Council

Following a break from 9:30 a.m. to 10:00 a.m., certain concur-
rent sessions that had been presented earlier during the meeting
were repeated from 10:00 a.m. to 11:30 a.m. Additional concur-
rent sessions were:

1. Securitization 102—Securitizing Noncatastrophe Risks
Moderator: John S. Bunt

Senior Vice President
American Re Financial Products

Panelists: Peter Bouyoucos
Principal
Morgan Stanley & Company, Inc.
John Kelly
Managing Director
Citicorp Securities, Inc.
Ronald G. Keenan
Managing Director
American Re Securities Corp.

2. Predicting the Auto Underwriting Roller-Coaster
Moderator/ Patrick B. Woods
Panelist: Assistant Vice President

Insurance Services Office, Inc.
Panelist: Claudette Cantin

Consulting Actuary
Tillinghast-Towers Perrin

3. Mergers and Acquisitions—Beyond the Numbers
Moderator: Michael C. Dubin

Consulting Actuary
Milliman & Robertson, Inc.
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Panelists: John C. Burville
Chief Actuary
ACE, Limited
Spencer M. Gluck
Head of Actuarial Services
Swiss Re New Markets
Gail M. Ross
Vice President
AM-RE Consultants

4. The Appointed Actuary in Canada
Moderator: James K. Christie

Partner
Ernst & Young LLP

Panelists: Barbara J. Addie
President and Chief Executive Officer
Canadian Surety Company
Andrew R. Cartmell
Vice President Personal Lines
The Co-operators
Michael Hale
Director, Actuarial Division
Office of the Superintendent of Financial
Institutions of Canada
Cynthia M. Potts
Partner
Eckler Partners Ltd.

The following Proceedings papers were presented:
1. “Implementation of PH-Transforms in Ratemaking”

Author: Shaun Wang
Associate Actuary
SCOR Reinsurance Company
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2. Discussion of “Implementation of PH-Transforms in
Ratemaking”
Shaun Wang (November 1998)
Discussion by: Gary Venter

Executive Vice President
Sedgwick Re

Various committee meetings were held from 1:00 p.m. to 5:00
p.m. Certain concurrent sessions that had been presented earlier
during the meeting were also repeated from 1:00 p.m. to 2:30 p.m.
Additional concurrent sessions presented at this time were:

1. Internet Interaction
Moderator: Israel Krakowski

Senior Actuary
Allstate Insurance Company

Panelists: J. Michael Boa
Communications and Research 
Coordinator Casualty Actuarial Society
LeRoy A. Boison Jr.
Senior Vice President
Insurance Services Office, Inc.
Robin A. Harbage
General Manager
Progressive Corporation

2. General Principles of Actuarial Science
Moderator/ Stephen W. Philbrick
Panelist: Consulting Actuary
Panelists: Linda L. Bell

Senior Vice President and Chief Actuary
The Hartford
Michael A. Walters
Consulting Actuary
Tillinghast-Towers Perrin
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A reception and buffet dinner were held from 6:30 p.m. to
10:00 p.m. at the Royal Ontario Museum.

Wednesday, November 11, 1998

Certain concurrent sessions were repeated from 8:00 a.m. to
9:30 a.m., and the following Proceedings Papers were presented:

1. “Credibility With Shifting Risk Parameters, Risk Hetero-
geneity and Parameter Uncertainty”
Author: Howard C. Mahler

Vice President and Actuary
Workers Compensation Rating and 
Inspection Bureau of Massachusetts

2. “Aggregation of Correlated Risk Portfolio: Models and 
Algorithms”
Author: Shaun Wang

Associate Actuary
SCOR Reinsurance Company

After a break from 9:30 a.m. to 10:00 a.m., the final General
Session was held from 10:00 a.m. to 11:30 a.m.

“Dynamic Capital Adequacy Testing”
Moderator: Stephen R. Haist

Principal
Ernst & Young

Panelists: Pierre Lepage
Consulting Actuary
Tillinghast-Towers Perrin
David J. Oakden
Senior Vice President and Chief Actuary
Zurich Canada
A. David Pelletier
Executive Vice President
RGA Life Reinsurance
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Mavis A. Walters officially adjourned the 1998 CAS Annual
Meeting at 11:40 a.m. after closing remarks and an announcement
of future CAS meetings.

Attendees of the 1998 CAS Annual Meeting

The 1998 CAS Annual Meeting was attended by 353 Fellows,
115 Associates, and 190 guests. The names of the Fellows and As-
sociates in attendance follow:

FELLOWS

Barbara J. Addie
Kristen M. Albright
Christiane Allaire
Craig A. Allen
Richard B. Amundson
Scott C. Anderson
Robert A. Anker
Steven D. Armstrong
Timothy Atwill
Lewis V. Augustine
Barry L. Bablin
Victoria L. Bailey
Irene K. Bass
Philip A. Baum
Andrea C. Bautista
Michael J. Bednarick
Albert J. Beer
Linda L. Bell
Phillip N. Ben-Zvi
Abbe S. Bensimon
Regina M. Berens
Wayne F. Berner
James E. Biller
Annie Blais
Cara M. Blank
Barry E. Blodgett

LeRoy A. Boison
Ronald L. Bornhuetter
Charles H. Boucek
François Boulanger
Kimberly Bowen
Douglas J. Bradac
J. Scott Bradley
Nancy A. Braithwaite
Paul Braithwaite
Yaakov B. Brauner
Robert S. Briere
Margaret A.

Brinkmann
Ward M. Brooks
Ron Brusky
Christopher J.

Burkhalter
Mark W. Callahan
Jeanne H. Camp
Claudette Cantin
Lynn R. Carroll
Andrew R. Cartmell
Michael J. Cascio
Tania J. Cassell
Galina M. Center
Joseph S. Cheng

David R. Chernick
Gary C. Cheung
James K. Christie
Cindy C. Chu
Allan Chuck
Kasing L. Chung
Gregory J. Ciezadlo
Brian A. Clancy
Eugene C. Connell
John B. Conners
Christopher G. Cunniff
Kenneth S. Dailey
Smitesh Davé
Jeffrey W. Davis
John D. Deacon
Curtis Gary Dean
Jerome A. Degerness
Camley A. Delach
Germain Denoncourt
Claude Desilets
Behram M. Dinshaw
Pierre Dionne
James L. Dornfeld
William F. Dove
Margaret E. Doyle
Karl H. Driedger
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David L. Drury
Michael C. Dubin
Kenneth Easlon
Gary J. Egnasko
Valere M. Egnasko
Nancy R. Einck
Douglas D. Eland
David M. Elkins
Thomas J. Ellefson
Paula L. Elliott
James Ely
Martin A. Epstein
Kristine M. Esposito
Philip A. Evensen
Steven R. Fallon
Dennis D. Fasking
Sylvain Fauchon
Richard I. Fein
Stephen A. Finch
Ginda K. Fisher
Russell S. Fisher
Wayne H. Fisher
Louise A. Francis
Walter H. Fransen
Kay L. Frerk
Jacqueline F. 

Friedland
Michael Fusco
John E. Gaines
Alice H. Gannon
David E. Gansberg
Steven A. Gapp
Robert W. Gardner
Kathy H. Garrigan
Richard Gauthier
James J. Gebhard

Margaret Wendy
Germani

John F. Gibson
Michael A. Ginnelly
Mary K. Gise
Bradley J. Gleason
Spencer M. Gluck
Leonard R. Goldberg
Moshe D. Goldberg
James F. Golz
Patrick J. Grannan
John E. Green
Steven A. Green
Daniel C. Greer
Daniel E. Greer
Cynthia M. Grim
Anthony J. Grippa
David N. Hafling
Greg M. Haft
Allen A. Hall
Leigh J. Halliwell
William D. Hansen
H. D. Hanson
Robin A. Harbage
Ellen M. Hardy
Robert L.

Harnatkiewicz
David C. Harrison
William N. Herr
Betty-Jo Hill
Alan M. Hines
Daniel L. Hogan
Robert J. Hopper
Paul E. Hough
David D. Hudson
Jeffrey R. Hughes

Paul Ivanovskis
Christopher D. Jacks
Peter H. James
Joseph W. Janzen
Christian Jobidon
Eric J. Johnson
Jeffrey R. Jordan
Gary R. Josephson
Jeremy M. Jump
Stephen H. Kantor
Hsien-Ming K. Keh
Brandon D. Keller
Anne E. Kelly
Steven A. Kelner
Thomas P. Kenia
Rebecca A. Kennedy
Frederick W.

Kilbourne
Joseph P. Kilroy
Gerald S. Kirschner
Bradley J. Kiscaden
Frederick O. Kist
Joel M. Kleinman
John J. Kollar
Ronald T. Kozlowski
Israel Krakowski
Rodney E. Kreps
Adam J. Kreuser
Brian S. Krick
Mary D. Kroggel
Jane J. Krumrie
Jeffrey L. Kucera
Andrew E. Kudera
Howard A. Kunst
Kenneth A. Kurtzman
Edward M. Kuss
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Bertrand J. LaChance
Mylene J. Labelle
Timothy J. Landick
James W. Larkin
Robert J. Larson
Francis J. Lattanzio
Pierre G. Laurin
Guy Lecours
Robert H. Lee
Thomas C. Lee
Marc-Andre Lefebvre
Scott J. Lefkowitz
Steven G. Lehmann
Winsome Leong
Pierre Lepage
Steven J. Lesser
Kenneth A. Levine
Orin M. Linden
Barry C. Lipton
Stephen P. Lowe
Robert G. Lowery
Aileen C. Lyle
Brett A. MacKinnon
Howard C. Mahler
Gary P. Maile
Donald F. Mango
Richard J. Marcks
Lawrence F. Marcus
Joseph O. Marker
Peter R. Martin
Isaac Mashitz
Jeffrey H. Mayer
Dee Dee Mays
Michael G. McCarter
Charles W. McConnell
Sean P. McDermott

Stephen J. McGee
Kelly S. McKeethan
Kathleen A.

McMonigle
Michael A. McMurray
William T. Mech
Jeffrey A. Mehalic
Brian J. Melas
David L. Menning
Stephen J. Meyer
Robert S. Miccolis
David L. Miller
David L. Miller
Mary F. Miller
Michael J. Miller
Ronald R. Miller
Scott M. Miller
Neil B. Miner
Madan L. Mittal
Anne H. Moore
Matthew S. Mrozek
Raymond D. Muller
Donna S. Munt
Thomas G. Myers
Chris E. Nelson
Karen L. Nester-

Schmitt
Benjamin S. Newville
Mindy Y. Nguyen
Ray E. Niswander
Mark A. O’Brien
Mary Beth O’Keefe
David J. Oakden
Marlene D. Orr
David J. Otto
Joseph M. Palmer

Jennifer J. Palo
Dmitry E. Papush
Thomas Passante
Harry T. Pearce
Steven C. Peck
Karen L. Pehrson
Brian G. Pelly
Lynne M. Peterson
Anne M. Petrides
Stephen W. Philbrick
Mark W. Phillips
Daniel C. Pickens
On Cheong Poon
Cynthia M. Potts
Robert Potvin
Jennifer K. Price
Boris Privman
Arlie J. Proctor
David S. Pugel
Richard A. Quintano
Andre Racine
Jeffrey C. Raguse
Kara L. Raiguel
Srinivasa Ramanujam
Kiran Rasaretnam
Natalie J. Rekittke
Dennis L. Rivenburgh
Steven C. Rominske
Deborah M. Rosenberg
Kevin D. Rosenstein
Gail M. Ross
Daniel G. Roth
Richard J. Roth
Chet J. Rublewski
Thomas A. Ryan
Manalur S. Sandilya
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Michael B. Schenk
Matt J. Schmitt
Harold N. Schneider
Roger A. Schultz
Arthur J. Schwartz
Susanne Sclafane
Kim A. Scott
Mark R. Shapland
Edward C. Shoop
Rial R. Simons
Raleigh R. Skaggs
Gerson Smith
Lee M. Smith
Michael B. Smith
Richard A. Smith
Richard H. Snader
Keith R. Spalding
Alan M. Speert
David Spiegler
Daniel L. Splitt
Catherine E. Staats
Barbara A. Stahley
James N. Stanard
Lee R. Steeneck

Grant D. Steer
Elton A. Stephenson
Deborah L. Stone
Ilene G. Stone
Scott J. Swanay
Susan T. Szkoda
Christopher Tait
Angela E. Taylor
Karen F. Terry
Georgia A.

Theocharides
Kevin B. Thompson
Margaret W. Tiller
Michael L. Toothman
Linda K. Torkelson
Christopher J.

Townsend
Nancy R. Treitel
Timothy J. Ungashick
David B. Van

Koevering
Gary G. Venter
Glenn M. Walker
Mavis A. Walters

Michael A. Walters
Kimberley A. Ward
Michael R. Ward
Jeffrey C. Warren
Nina H. Webb
Dominic A. Weber
John P. Welch
Hugh G. White
Wyndel S. White
William R. Wilkins
Michael J. Williams
Gregory S. Wilson
Chad C. Wischmeyer
Kirby W. Wisian
Richard G. Woll
Patrick B. Woods
John S. Wright
Floyd M. Yager
Charles J. Yesker
Alexander G. Zhu
John D. Zicarelli
Joshua A. Zirin

ASSOCIATES

Michele S. Arndt
Mohammed Q. Ashab
Rose D. Barrett
Lee M. Bowron
Richard A. Brassington
Michelle L. Busch
Robert N. Campbell
Stephanie T. Carlson
Matthew R. Carrier
Victoria J. Carter

Bethany L. Cass
Andrew K. Chu
Kuei-Hsia R. Chu
Louise Chung-Chum-

Lam
Donald L. Closter
J. P. Cochran
Mary Katherine T.

Dardis
Robert E. Davis

William Der
David K. Dineen
Michael E. Doyle
Kimberly J. Drennan
Nathalie Dufresne
Rachel Dutil
Carolyn F. Edmunds
Anthony D. Edwards
Wayne W. Edwards
Jane Eichmann
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Dawn E. Elzinga
S. Anders Ericson
Jonathan P. Evans
Charles V. Faerber
Kristine M. Firminhac
Michelle L. Freitag
Kai Y. Fung
Jean-Pierre Gagnon
Charles E. Gegax
Bradley G. Gipson
Terry L. Goldberg
Natasha C. Gonzalez
Francis X. Gribbon
Nasser Hadidi
Eugene E. Harrison
Gary M. Harvey
Kevin B. Held
Joseph A. Herbers
Thomas E. Hettinger
Eric J. Hornick
Brett Horoff
Melissa K. Houck
Jeffrey R. Ill
Philip W. Jeffery
Susan K. Johnston
Edwin G. Jordan
Daniel R. Kamen
Mary Jo Kannon
David L. Kaufman

Jeffrey D. Kimble
Paul E. Kinson
Brandelyn C. Klenner
Andrew M. Koren
Scott C. Kurban
David W. Lacefield
Steven M. Lacke
Douglas H. Lacoss
Todd W. Lehmann
James P. Leise
Xiaoying Liang
Jason K. Machtinger
Betsy F. Maniloff
James W. Mann
Stephen P. Marsden
Scott A. Martin
Jarow G. Myers
Charles Pare
Moshe C. Pascher
Willard W. Peacock
Richard M. Pilotte
Dylan P. Place
Karen L. Queen
Kathleen M. Quinn
James E. Rech
Brenda L. Reddick
John W. Rollins
Peter A. Royek
Brian P. Rucci

Michael Sansevero
J. S. Sawyer
Michael C. Schmitz
Michael L. Scruggs
Kelvin B. Sederburg
Kelli D. Shepard-El
Meyer Shields
Carol A. Stevenson
Avivya S. Stohl
Frederick M. Strauss
Katie Suljak
Adam M. Swartz
Richard G. Taylor
David M. Terne
Diane R. Thurston
Michael J. Toth
Andy K. Tran
Michael C. Tranfaglia
Joel A. Vaag
Steven J. Vercellini
Linda M. Waite
David G. Walker
Robert J. Wallace
Robert J. Walling
William B. Westrate
Matthew M. White
David L. Whitley
Robin D. Williams
Robert F. Wolf



REPORT OF THE VICE PRESIDENT–ADMINISTRATION

This report provides a summary of CAS activities since the
1997 CAS Annual Meeting. I will first comment on these ac-
tivities as they relate to the following purposes of the Casualty
Actuarial Society as stated in our Constitution:

1. Advance the body of knowledge of actuarial science in appli-
cations other than life insurance;

2. Establish and maintain standards of qualifications for mem-
bership;

3. Promote and maintain high standards of conduct and compe-
tence for the members; and

4. Increase the awareness of actuarial science.

I will then provide a summary of other activities that may not
relate to a specific purpose, but yet are critical to the ongoing
vitality of the CAS. Finally, I will summarize the current status
of our finances and key membership statistics.

The CAS call paper programs and the publication of the Pro-
ceedings contribute to the attainment of the first purpose. In ad-
dition to the Proceedings, three volumes of the Forum and the
Spring Meeting discussion program papers were published and
distributed to members in 1998:

! The 1997 Proceedings contained 887 pages, the greatest num-
ber of pages yet for any Proceedings. Included in this volume
were thirteen papers and two discussions.

! The winter 1998 edition of the Forum included eight ratemak-
ing call papers.

! The summer 1998 edition of the Forum included nine DFA
call papers as well as five papers on other topics.

! The fall 1998 edition of the Forum included eleven reserving
call papers.

1069



1070 REPORT OF THE VICE PRESIDENT–ADMINISTRATION

! A volume titled Dynamic Analysis of Pricing Decisions in-
cluded five submissions from the 1998 Spring Meeting dis-
cussion paper program.

Also related to purpose 1, discussion drafts of the “General
Principles of Actuarial Science,” a joint effort of the CAS and
SOA, were released to the membership for their comments.

The Task Force on Health and Managed Care Issues presented
its report to the Board of Directors in May 1998. They recom-
mended that the CAS sponsor research on data needs for man-
aged care issues as they affect casualty coverages and develop
methods for evaluating the initial and long-term effects of man-
aged care on Medicare and costs paid under the various prop-
erty/casualty lines of insurance. A new CAS standing committee
was authorized for this area.

In regards to purpose 2, a new structure was approved for the
CAS examination process. Associateship will continue to require
seven exams but Fellowship will require nine exams rather than
the current ten. The new structure will be effective in the year
2000.

The CAS reached agreement with the SOA on the joint spon-
sorship and administration of the first four exams. These four
exams will be given twice a year. The remaining exams will be
given once a year with parts 5, 7, and 8 in the spring and 6 and
9 in the fall.

A new class of CAS membership was created: Affiliate. Af-
filiate members will be able to participate as active CAS mem-
bers without becoming Associates or Fellows but they will not
have voting rights nor be able to use the designations ACAS or
FCAS. Affiliate membership recognizes that the Affiliate Mem-
ber has been granted professional status as an actuary by another
actuarial organization and that he or she practices in the prop-
erty/casualty field.
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Purpose 3 is partially achieved through a quality program
of continuing education. The CAS provides these opportunities
through the publication of actuarial materials and the sponsor-
ship of meetings and seminars. This year’s sessions included:

Meetings:
Location Registrants

Spring Marco Island, Florida 555
Annual Toronto 521

Seminars:

Title Location Month Registrants
Ratemaking Chicago March 714
Emerging Technologies Miami Beach April 152
Reinsurance Greenwich, CT June 285
Dynamic Financial Analysis Boston July 311
Casualty Loss Reserve Philadelphia September 626
CIA/CAS Appointed Actuary Toronto September 314
Catastrophes New Orleans October 166
Course on Professionalism Five locations 224

Limited Attendance Seminars:

Title Location Month Registrants
Managing Asset Risk and Return Washington, D.C. April 30
Principles of Finance Atlanta June 23
Loss Distributions Chicago July 42
Reinsurance New York August 65
Hands-on DFA Model: Basic Chicago October 35

In October 1998 the CAS sponsored the first module of the
online course “Financial Risk Management for Insurers.” The
course had 27 registrants and was taught by Steve D’Arcy, Pro-
fessor of Finance at the University of Illinois. This newly devel-
oped course was the first CAS-sponsored continuing education
program to be offered online via the Internet.

A new Regional Affiliate outside of North America, Casualty
Actuaries of Europe, was formed to help meet the educational
and professional needs of CAS members residing in Europe.
The CAS Regional Affiliates provide valuable opportunities for
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members to participate in educational forums at less expense and
travel than national meetings and seminars.

The CAS publication, Foundations of Casualty Actuarial Sci-
ence, is being revised. Authors were selected this past year and
work has begun on the rewrite of selected chapters.

The membership approved new rules of procedure for disci-
plinary actions presented by an investigatory body against CAS
members. These rules are intended to provide fairness and due
process by requiring adequate notice, an opportunity to respond,
and fair and impartial decision-makers in the discipline process.

To increase the awareness of actuarial science, purpose 4, the
CAS and the SOA jointly sponsored two Actuarial Career In-
formation Fairs, one in Philadelphia and the other in New York.
Attracting minority candidates to the profession is one goal of
these fairs.

The CAS Academic Correspondent Program was enhanced
to provide meeting and seminar fee waivers. Grants will also be
made to educational institutions when an academic staff member
attains a CAS member designation. The CAS intends to build
stronger ties with the academic community so that students will
be more aware of the property/casualty actuarial career, more
courses on property/casualty actuarial science will be offered,
and professors will be motivated to perform research and write
articles on property/casualty actuarial science.

The CAS Web Site supports all four purposes. The Proceed-
ings and Forums are available online for review and downloading.
New research and call papers can also be accessed online. Many
of the prior Proceedings have been added to the online library
and the CAS Bibliographies, The Actuarial Review, and Future
Fellows are all online. A text search engine is available to search
all pages within the web site for a key word or phrase.

Other features have been added to the Web site including an
“Advertising” section with a job posting page. The revenue from
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advertising will defray part of the cost of running the Web site.
Students can examine their current exam status in the online
database and calculate their future status using the transition rules
calculator. CAS members could respond to the annual CAS Par-
ticipation Survey online beginning in 1998. An e-mail mailing
list of CAS membership was also activated.

New task forces were created to monitor volunteer resources,
investigate nontraditional practice areas, consider mutual recog-
nition of actuarial credentials, and review the exam and educa-
tion process and procedures. An Editorial Board was created
to provide advice and counsel to the staff of The Actuarial Re-
view.

A detailed survey of the CAS membership was made in 1998
to gather information and opinions on a variety of topics. The
results will be compiled, analyzed, and distributed in 1999.

The CAS became a member association of the International
Actuarial Association, which was restructured in June 1998 from
an organization with individual members. All CAS Fellows are
now members of the IAA.

Joint activities with the SOA continued. The CAS is partic-
ipating on the Joint CAS/SOA Task Force on Academic Ties.
A joint CAS/SOA Board meeting was held on September 17,
1998 for getting to know each other and sharing ideas. Howard
Bolnick, then President-Elect of the SOA, shared the idea of a
“big tent” strategy for membership in actuarial organizations.
Financial engineers and other practitioners who use advanced
mathematical tools for management of financial risk would be
welcomed into the actuarial ranks. This controversial topic will
be discussed at the 1999 CAS Leadership meeting.

New members elected to the Board of Directors for next year
include Charles A. Bryan, John J. Kollar, Gail M. Ross, and
Michael L. Toothman. The Board appointed Russell S. Fisher
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to complete the last year of Alice H. Gannon’s term on the
Board. The membership elected Alice H. Gannon to the posi-
tion of President-Elect, while Steven G. Lehmann will assume
the presidency.

The Executive Council, with primary responsibility for day-
to-day operations, met either by teleconference or in person at
least once a month during the year. The Board of Directors
elected the following Vice Presidents for the coming year:

Vice President–Administration, Curtis Gary Dean

Vice President–Admissions, Kevin B. Thompson

Vice President–Continuing Education, Abbe S. Bensimon

Vice President–Programs and Communications, David R.
Chernick

Vice President–Research and Development, Robert S. Micco-
lis

In closing, I will provide a brief status of our membership and
financial condition. Our size continued its rapid increase as we
added 177 new Associates and 144 new Fellows. Our member-
ship now stands at 3,059. In 1998 there were 6,618 registrations
for CAS exams.

The CPA firm of Langan Associates was engaged to exam-
ine the CAS books for fiscal year 1998 and its findings will
be reported by the Audit Committee to the Board of Directors
in February 1999. The fiscal year ended with an audited Net
Income from Operations of $316,827 compared to a budgeted
amount of $8,069. This higher than expected net income was
the result of: (1) lower than budgeted expenses, particularly of-
fice expense; (2) more exam income from higher than expected
exam enrollments; and (3) more publication sales than expected.

Members’ equity now stands at $2,912,962. This represents
an increase in equity of $436,281 over the amount reported last
year.
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For 1998–1999, the Board of Directors has approved a bud-
get of approximately $3.9 million. Members’ dues for next year
will be $280, an increase of $10, while fees for the Subscriber
Program will increase by $15 to $350.

Respectfully submitted,
Curtis Gary Dean
Vice President–Administration



FINANCIAL REPORT
FISCAL YEAR ENDED 9/30/98

OPERATING RESULTS BY FUNCTION
FUNCTION  INCOME EXPENSE  DIFFERENCE
Membership Services  $01,095,602 (a) $01,056,140 $0( (39,462
Seminars  1,093,604  891,812 201,792
Meetings  681,724  670,797  10,927
Exams  2,509,830 (b) 2,389,915 (b) 119,915
Publications 75,630  38,550  37,080
TOTAL $ 5,456,390  $ 5,047,214  $00,409,176 (c)
NOTES: (a) Includes income of $92,348 to adjust marketable securities to market value (SFAS 124).

(b) Includes $1,475,850 of Volunteer Services for income and expense (SFAS 116).
(c) Change in CAS Surplus net of $52,000 of interfund transfers ($50,000 to Research Fund and

$2,000 to ASTIN Fund).

BALANCE SHEET
ASSETS  9/30/97  9/30/98  DIFFERENCE
Checking Account  $00237,098 $00,149,088 $00(88,010)
T-Bills/Notes  2,922,852 3,436,980  514,128
Accrued Interest  49,875 49,902  27
Prepaid Expenses  31,798 74,072  42,274
Prepaid Insurance  11,467 11,184  (283)
Accounts Receivable  13,782 39,461  25,679
Textbook Inventory  14,435 12,247  (2,188)
Computers, Furniture  270,717 313,752  43,035
Less: Accumulated Depreciation  (223,531)  (254,800)  (31,269)
TOTAL ASSETS $ 3,328,493 $ 3,831,886  $00,503,393

LIABILITIES  9/30/97  9/30/98 DIFFERENCE
Exam Fees Deferred  $00,338,649 $00,388,425  $000 49,776
Annual Meeting Fees Deferred  52,860 42,246 (10,614)
Seminar Fees Deferred  21,106 61,440  40,334
Accounts Payable and Accrued Expenses  372,617 372,716  99
Deferred Rent 21,744 15,384  (6,360)
Accrued Pension  44,835 38,714  (6,121)
TOTAL LIABILITIES $00,851,811  $00, 918,925  $00 67,114

MEMBERS' EQUITY
Unrestricted  9/30/97  9/30/98  DIFFERENCE
CAS Surplus  $02,150,935 $ 2,560,111  $00 409,176
Michelbacher Fund  98,425 102,249  3,824
Dorweiler Fund  3,591 2,771  (820)
CAS Trust  18,825 19,765  940
Research Fund  154,207 166,207 12,000
ASTIN Fund  31,550 43,353  11,803

Subtotal Unrestricted 2,457,533 2,894,456  436,923

Temporarily Restricted
Scholarship Fund  7,042 6,895  (147)
Rodermund Fund  12,106 11,611  (495)

Subtotal Restricted 19,148 18,506 (642)
TOTAL EQUITY $ 2,476,681 $ 2,912,962  $00,436,281

C. Gary Dean, Vice President–Administration
This is to certify that the assets and accounts shown in the above
financial statement have been audited and found to be correct.

CAS Audit Committee: David N. Hafling, Chairperson;
Paul Braithwaite, Anthony J. Grippa, and Richard W. Lo
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1998 EXAMINATIONS—SUCCESSFUL CANDIDATES

Examinations for Parts 3B, 4A, 4B, 5A, 5B, 6, 8-United States,
8-Canada, and 10 of the Casualty Actuarial Society were held on
May 4, 5, 6, 7, and 8, 1998. Examinations for Parts 3B, 4A, 4B,
5A, 5B, 7-United States, 7-Canada, and 9 of the Casualty Actuar-
ial Society were held on October 26, 27, 28, and 29, 1998.

Examinations for Parts 1, 2, 3A, and 3C (SOA courses 100,
110, 120, and 135, respectively) are jointly sponsored by the Ca-
sualty Actuarial Society and the Society of Actuaries. Parts 1 and
2 were given in February, May, and November 1998, and Parts 3A
and 3C were given in May and November of 1998. Candidates
who were successful on these examinations were listed in joint re-
leases of the two Societies.

The Casualty Actuarial Society and the Society of Actuaries
jointly awarded prizes to the undergraduates ranking the highest
on the Part 1 CAS Examination.

For the February 1998 Part 1 CAS Examination, the $200 first
prize winners were: Yue Che Lau, University of Michigan; Van
Khanh Le, Ohio State University; and Christina Szu-Hung Liu, Si-
mon Fraser University. The $100 second prize winners were Kin
Lun Choi, Columbia University and Michael Kayne McDermid,
University of Manitoba.

For the Spring 1998 Part 1 CAS Examination, the $200 first
prize winner was Yi Jing, University of Science and Technology.
The $100 second prize winners were: Stephen R. Griscom,
Princeton University; Heng Li, Peking University; Jun Li, Peking
University; Chi S. Liu, The University of Hong Kong; and Anping
Wang, University of Science and Technology.

For the Fall 1998 Part 1 CAS Examination, the $200 first prize
winners were Ming Cheung Choi, The University of Hong Kong;
and Dong Jun Hua, Renmin University. The $100 second prize
winners were: Vincent Chen, University of Western Ontario; Yiu
Wai Choy, University of Hong Kong; Jeong-Suk Im, Korea Uni-
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versity; Xiao Dong Luo, Renmin University; and Chunping Wei,
University of Science & Technology of China.

The following candidates were admitted as Fellows and Associ-
ates at the 1998 CAS Spring Meeting in May. By passing Fall
1997 CAS examinations, these candidates successfully fulfilled
the Society requirements for Fellowship or Associateship designa-
tions. 

NEW FELLOWS

Michael K. Curry
Elizabeth B. DePaolo
Steven T. Harr
Daniel F. Henke
Thomas G. Hess
Marie-Josée Huard

Man-Gyu Hur
Andre L’Esperance
Steven W. Larson
Christina Link
Michael K. McCutchan
Thomas S. McIntyre

David Molyneux
Vinay Nadkarni
William Peter
John S. Peters
Michael D. Price
Michael J. Steward II

NEW ASSOCIATES

Mustafa Bin Ahmad
Nancy S. Allen
Wendy L. Artecona
Carl X. Ashenbrenner
David S. Atkinson
Craig V. Avitabile
Phillip W. Banet
Emmanuil Bardis
Michael W. Barlow
Gina S. Binder
Kevin M. Bingham
James D. Buntine
Alan Burns
Hayden Burrus
Thomas J. Chisholm
Wanchin W. Chou
Christopher W. Cooney
Jonathan S. Curlee

Loren R. Danielson
Timothy A. Davis
Brian H. Deephouse
Nancy K. DeGelleke
Michael B. Delvaux
Karen D. Derstine
Sara P. Drexler
Tammi B. Dulberger
Francois R. Dumontet
Mark Kelly Edmunds
Brian A. Evans
Stephen C. Fiete
Sarah J. Fore
Mauricio Freyre
Timothy J. Friers
Bernard H. Gilden
Sanjay Godhwani
Daniel Cyrus Greer

Daniel Eli Greer
David J. Gronski
Eric C. Hassel
Christopher R. Heim
Chad A. Henemyer
Melissa K. Higgins
Tina T. Huynh
Susan E. Innes
Claudine H. Kazanecki
Kelly Martin Kingston
James D. Kunce
Carl Lambert
Hugues Laquerre
Dennis H. Lawton
Manuel Alberto T. Leal
David Leblanc-Simard
Bradley R. LeBlond
Glen A. Leibowitz



1998 EXAMINATIONS—SUCCESSFUL CANDIDATES 1079

Craig A. Levitz
John N. Levy
Shiu-Shiung Lin
Victoria S. Lusk
Allen S. Lynch Jr.
Stephen J. McAnena
Jennifer A. McCurry
Mark Z. McGill III
David P. Moore
Jennifer A. Moseley
Ethan Mowry
Jarow G. Myers
Seth W. Myers
Kari A. Nicholson
John E. Noble
Jason M. Nonis
Corine Nutting
Jean-François Ouellet
Kathryn A. Owsiany
Pierre Parenteau
M. Charles Parsons
Jeremy P. Pecora
Richard M. Pilotte

Glen-Roberts
Pitruzzello

Christopher D. Randall
Hany Rifai
Brad E. Rigotty
Karen L. Rivara
Rebecca L. Roever
Nathan W. Root
Kimberly R. Rosen
Richard A.

Rosengarten
Seth A. Ruff
Brian C. Ryder
James C. Sandor
Gary F. Scherer
Nathan A. Schwartz
Steven G. Searle
Meyer Shields
Aviva Shneider
Alastair Shore
Matthew R. Sondag
Benoit St-Aubin
Joy M. Suh

Karrie L. Swanson
Rachel R. Tallarini
Varsha A. Tantri
Glenda O. Tennis
Laura L. Thorne
Beth S. Tropp
Kris D. Troyer
Turgay F. Turnacioglu
Leslie A. Vernon
Kyle J. Vrieze
Matthew J. Wasta
Lynne K. Wehmueller
Christopher B. Wei
Scott Werfel
Dean A. Westpfahl
Thomas J. White
Vanessa C. Whitlam-

Jones
Kendall P. Williams
Yoke Wai Wong
Linda Yang

The following candidates successfully completed the Parts of
the Spring 1998 CAS Examinations that were held in May.

Part 3B

Sajjad Ahmad
Jennifer A.

Andrzejewski
Veronique Bouchard
Ryan M. Diehl
Jonathan Palmer Evans
Genevieve Garon

Lisa N. Guglietti
Milton G. Hickman
Carole K. L. Ho
Debra Hudson
Vibha N. Jayasinghe
Brian B. Johnson
David R. Kennerud

Peter Latshaw
Tak Yam Lee
Linda L. Maier
Kevin P. McClanahan
Ryan A. Michel
Suzanne A. Mills
Gilbert Ouellet
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Jorge E. Pizarro
Carmilla T. Rivera

Michael A. Sce
James M. Smieszkal

Dennis R. Unver
John Wong

Part 4A

Josh A. Abrams
Keith P. Allen
Catherine

Ambrozewicz
Vagif Amstislavskiy
Brian D. Archdeacon
Farid Aziz Ibrahim
Kris Bagchi
Damian T. Bailey
Grazyna A. Bajorska
Daniel Bar-Yaacov
John M. Barish
Mark Belasco
Richard J. Bell III
Jeremy T. Benson
Jonathan P. Berenbom
Mark W. Bingener
Neil M. Bodoff
Nebojsa Bojer
Kevin E. Branson
Melissa L. Brewer
Elaine K. Brunner
Scott T. Bruns
Christopher R. Burgess
Sarah Burns
Lori Casey
Matthew J. Cavanaugh
Raji H. Chadarevian
Hao Chai
Kevin K. W. Chan
Zoe Cheung

Daisy L. Chu
Glenn A. Colby
Jeanne L. Connolly
Thomas Cosenza
Helene Crovatto
Michael B.

Cunningham
Aaron T. Cushing
Jacek Czajkowski
David W. Dahlen
Lucia De Carvalho
Donna K. DiBiaso
Brian M. Donlan
Tomer Eilam
Malika El Kacemi
Jessica L. Elsinger
Melissa M.

Emmendorfer
Tricia L. Evans
Matthew B. Feldman
Sean W. Fisher
Joshua L. Fishman
Feifei Ford
Jeffrey J. Fratantaro
James M. Gallagher
Angelito P. Garcia
Michael P. Gibson
Matthew J. Gillette
William G. Golush
Linda Grand
Christa Green

Jennifer T. Grimes
John W. Grove
Manuel S. Guerra Jr.
Serhat Guven
Edward Kofi Gyampo
Rena Hartstein
Gary M. Harvey
Shrinivas Havaldar
Joshua E. Hedgecorth
Todd H. Hoivik
Douglas Bruce Homer
Hyunpyo Hong
David J. Horn Jr.
Gerald K. Howard
Chih-Che Hsiao
Todd D. Hubal
Elizabeth J. Hudson
Craig D. Isaacs
Katherine Jacques
William T. Jarman
David B. Johnson
Erik A. Johnson
Jason A. Jones
Jason C. Jones
Linda M. Kane
John B. Kelly
David R. Kennerud
Susanlisa Kessler
Chung-Hun Kim
Ziv Kimmel
Brant L. Kizer
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Scott M. Klabacha
Linda S. Klenk
Steve C. Klingemann
Perry A. Klingman
John E. Kollar
Andrew M. Koren
Anand S. Kulkarni
Charles B. Kullmann
Gregory Kushnir
David J. Kwak
Ting Kwok
James A. Landgrebe
Nancy E. Lanier
Michael A. Lardis
Michael L. Laufer
Damon T. Lay
Doris Lee
Patricia Lee
Stuart Saiwah Lee
Daniel Leff
Antoine Letourneau
Monika Lietz
Herman Lim
Kenneth Lin
Enkuei Liu
Xiaoquing Iris Liu
Wan Li Lu
Yu-ping Lu
Dan Mahamah
Jaclyn B. Maher
Lynn C. Malloney
Roy M. Markham
Peter K. Markiewicz

Kenneth J. Martinez
Christopher M.

Maydak
John R. McCollough
Stephane McGee
Karen J. McKenna
Michael E. McKeon
Charles A. Metzger
Camilo Mohipp
Celso M. Moreira
Craig S. Mosher
Sherry L. Mueller
Matthew D. Myshrall
Christopher A. Najim
Shannon P. Newman
Vuong V. Nguyen
Carlos E. Nunez
James P. O’Donovan
Nathalie Payette
Sue L. Poduska
Robert R. P. Pouliot
Anatoly Raklyar
Arthur R. Randolph II
Bruce A. Redmond
Charity A. Rieck
Joseph L. Rizzo
Paul J. Rostand
Hal D. Rubin
Nichole M. Runnels
Gary R. Russell
Vickie J. Scherr
Thomas W. Schroeder
Elizabeth M. Scott

Anand D. Shah
Yipei Shen
Jimmy Shkolyar
Chayanna Siripirom
Jared M. Skowron
Benjamin R. Specht
Bryan V. Spero
Alexandra R. St-Onge
Esperanza Stephens
Shelley A. Stone
Stuart C. Strauss
Ju-Young Suh
Barbara Sylvain
Jonas F. Thisner
Malgorzata Timberg
Lori S. Tinsley
Melissa K. Trost
Salvatore M. Tucci
Stephen H. Underhill
William D. Van Dyke
Karen L. VanCleave
Jennifer A. Vezza
Brian A. Viscusi
Peter R. Vita
Kate L. Walsh
David J. Watson
Thomas E. Weist
Andrew T. Wiest
Duanne A. Willis
Kelvin K. Yau
Xiangfei Zeng
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Part 4B

Kedar Mulgund
Rizwan Abdul Aziz
Faisal Ahmed
Rhonda K. Ahrens
Adebowale O. Ajayi
Sami Alajaji
Emilie Alary
Richard T. Alden
Michel D. Allain
Brian M. Ancharski
Pang S. Annie
Venessa L. Archibald
Stephane Arvanitis
Keith C. Bailey
Martin Bauer
Stephen H. Beal
Jennifer A. Beattie
Esther Becker
Brian R. Bedwell
Eve Belmonte
Martine Bergeron
Robert Bhatia
Steve P. Binioris
Mike Bishop
Neil M. Bodoff
Jean-Philippe Boucher
John R. Bower
Michelle S. Brandel
Roman T. Brewka
Chris Brisebois
Peter A. Brot
Elaine K. Brunner
Cheryl R. Burrows
Lori L. Burton

Fatima E. Cadle
Lianhe Cai
Isabelle Carignan
Hao Chai
Yanick Chainey
Chi Wai Chak
Gavin Brent Chambers
Alice Y. H. Chan
Beda Chan
Ming Yan Judith M. Y.

Chan
Eric Charron
Sanjeev Chaudhuri
Frank H. Chechel
Tzu-Ling Chen
Henrietta H. Cheng
Tsui-Hsien J. Chien
Allison H. Chu
Chia-Chun Chu
Hannung Chu
Kam I. Chu
Peggy P. Chung
Benjamin W. Clark
Jacques Cloutier
Nathalie Cloutier
Eliezer Cohen
Sanford K. Cohn
Robert J. Collingwood
Larry Kevin Conlee
Patrick Corbin
Carmen Csillag
Wangling Cui
Arthur D. Cummings
Alan D. Dang

Michael J. Davis
Michael S. Deckert
Douglas L. Dee
Katarzyna Deja
Peter R. DeMallie
Patrick De Roy
Patrice Denis
Robert E. Dennison
Steven M. Dersom
Mark R. Desrochers
Marie Des Roches
Benjamin Diederich
Nilesh O. Dihora
Panagiotis D.

Dimitriou
Jerome Dionne
Peter C. Dolan
Crisanto A. Dorado
Courtney A. Dubbs
Philippe Dunn
Melanie Dupont
Ponniah Elancheran
Daniel Ezer
Lily H. Fang
Chad A. Fix
Susan C. Flynn
David E. Forbes
Tamasin S. Ford
Michel Fournier
Pamela A. Franz
Timothy C. French
Michael J. Gaal
Patrice Gaillardetz
Alan R. Gard
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Stuart G. Gelbwasser
Lyna Gendron
Mark B. Gengenbach
William J. Gerhardt
Guy Gignac
David Patrick Glenn
Jio Young Goh
Joseph E. Goldman
William G. Golush
Christopher Groendyke
Andrew J. Haider
Genevieve Hebert
Matthew T. Henry
Patrick Henry
Susan K. Himmelman
Molly K. Hitzges
Craig D. Holcomb
Xiaoyan Hu
Todd D. Hubal
Phillipe Hudon
Shyh-ho Hung
Syed T. Hussain
Elena Ilina
Pak Chung Ip
Vladimir Y. Itkin
Alain Jacob
Jennifer J. Janvrin
Lynda E. Jeffs
Suman Jiwani
William R. Johnson
Vartivar Joukakelian
Barbara L. Kanigowski
Eric A. Keener
Brennan D. Kennedy
Sean M. Kennedy
Susanlisa Kessler

Changki Kim
Jinney Kim
Yong Woon Kim
Youngsoon Kim
Yevgeniy Kirichenko
Jeff A. Kluck
Robert A. Koth
Vasileios Koutsaftis
Vincent C. Kozlowski
Matthew R. Kuczwaj
Jennifer M. Kuehl
Karen M. Kulchyski
Edward Kuo
Mun-Bin Kuo
Kevin K. Kwok
Eric Kwong
Martin Labelle
Philippe Lagace
Crystal King Hang

Lam
David Larsen
Hans H. Larsen
Louise Lavoie
Sandrine Leard
Francis Letourneau
Julia Leung
Brigitte Levasseur
Daniel A. Levin
Amanda M. Levinson
Hayden Anthony

Lewis
Guodong Li
Haidong Li
Harold H. Li
Jiun-tai Li
Matthew A. Lillegard

David Grant Lim
Karina G. Limsico
Hong Lin
Hsu-feng Lin
Liqian Lin
Su-Hua Lin
Caroline D. Liu
Kathleen T. Logue
Xue Qing Lu
Yu-ping Lu
Yann Lussier
Lee-Shing Ma
Kevin B. Mahoney
Grigoriy Makarov
Gregory N. Malone
Neil P. Manning
Tousignant Marjorie
Zinoviy Mazo
Brendan S. McCallum
Stephane McGee
Pantelis N.

Messolonghitis
Bryan D. Miller
Mickey Moon
Harker D. Moor
Edward M. Moore
Dean E. Murray
Jordan E. Muse
Marie-Noelle Nadeau
Darren J. Nakanishi
Simon J. Nelson
Brent S. Neville
Richard U. Newell
Lester M. Y. Ng
Sean R. Nimm
Patricia Nols
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Lauree J. Nuccio
Roger S. Offerman
Robert Scott Otchere-

Sarfo Jr.
Eric P. Palmer
Johan Pao
Claude Paquette
Andrea L. Pass
Kathryn L. Pate
Craig F. Pedersen
Marc Pelletier
Matthew J. Perkins
Elissa D. Perl
François Perrier
David J. Petruzzellis
Terry C. Pfeifer
Jeffrey J. Pfluger
Brian S. Piccolo
Troy S. Podraza
Peter V. Polanskyj
Sean E. Porreca
Gregory T. Preble
David Previte
Christopher M. C. Pun
Amy M. Quinn
Melanie Quintin
Carl T. Rajendram
Leonid Rasin
Dean R. Reigner
Shanour Remtoulah
Isabelle Renaud
Franklin W. Reynolds
Joann C. Ribar
Keith J. Richtik
Benoit Robert
Ezra J. Robison

Nicolas Rochon
Robert C. Roddy
Ian R. Roke
Kevin D. Roll
Charles A. Romberger
Scott I. Rosenthal
Ryan S. Rowland
Normand Roy
Zahid R. Salman
Mita B. Sandilya
Ashu Sarna
Lori R. Satov
Andrew J. Schafer
Laurie Schlenkermann
Mindy B. Schmitz
Deborah A. Schultz
Darrel W. Senior
Scott A. Shaddick
Syed Afzal A. Shah
Naixiu Shen
Yipei Shen
Osman A. Shirwany
Zandria Sia
Jose David Siberon
Kenneth L. Sidikman
Gregory J. Sikora
Stuart H. Silverman
Frederic Simard
Marc-Andre Simard
Nicolas Sirois
Elizabeth C. Skiba
Walter J. Slobojun
James M. Smieszkal
Clarissa L. Smith
Jodi Smith
Richard C. Smith

Travis R. Smith
Anthony A. Solak
Scott W. Spencer
Natalie St-Jean
Karine St-Onge
Owen J. Stein
Steven J. Stender
Michael D. Stephens
Julia M. Stetter
Karen M. Strand
Lisa D. Strobel
Thomas J. Stypla
Yu-Fan Su
Brett M. Swenson
Erica W. Szeto
John T. C. Tan
Kok-How Tan
Neeza Thandi
Jean-François Therrien
Colin A. Thompson
John J. Thompson
Christopher S.

Throckmorton
Daniel J. Towriss
Katie Trahan
Catherine Tremblay
Mathiew Tremblay
Rejean Tremblay
Jean-Pierre Tremblay-

Canuel
Tammy Truong
Huan P. Tseng
Chung Y. Um
Valerio Valenti
William D. Van Dyke
Carole Vincent
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James I. Voelker
Youcheng Wei
Mark Weinblatt
Lisa M. Weir
Barbara Wiesler
Paul G. Winnett
Julia Lynn Wirch
Jon A. Wirkkula
Ann Min-Sze Wong

Giak Diang Tan Wong
Ha Kion Wong
Randall C. Wright
Scott E. Wright
Mihoko Yamazoe
Esther Y. Yang
Huey Wen Yang
Davout Yean
Pai-Hung Yeh

Eng Kim Yeoh
Sung G. Yim
Derek Yokota
Hamilton Yuen
Kam Chuen Yuen
King Shing Yung
Michael R. Zarember
Xiangfei Zeng
Wendy Zicari

Part 5A

Muhammad Munawar
Ali

Kevin J. Atinsky
Stevan S. Baloski
Tony F. Bloemer
Lee M. Bowron
Jennifer P. Capute
Patrick J. Causgrove
Brian J. Cefola
Louise Chung-Chum-

Lam
Jeffrey A. Clements
Leanne M. Cornell
Richard R. Crabb
Mary Katherine T.

Dardis
Donna K. DiBiaso
Crisanto A. Dorado
Nathalie Dufresne
Rebecca E. Freitag
Graham S. Gersdorff

Neil P. Gibbons
Christie L. Gilbert
Bradley G. Gipson
Natasha C. Gonzalez
Matthew R. Gorrell
Chantal Guillemette
Edward Kofi Gyampo
Hans Heldner
Scott E. Henck
Daniel D. Heyer
Xiaohu Jiang
John J. Karwath
Karen A. Kosiba
Rocky S. Latronica
Karen J. Lee
Shangjing Li
Dengxing Lin
Jin Liu
Martin Menard
William S. Ober
Jill E. Peppers

Brian S. Piccolo
Shing Chi Poon
Michael J. Quigley
Ricardo A. Ramotar
Joe Reschini
Choya A. Robinson
Ronald J. Robinson
Richard R. Sims
Adam D. Swope
Eric D. Telhiard
Craig Tien
Andy K. Tran
Andrea E. Trimble
Brian K. Turner
Lawrence A. Vann
Youcheng Wei
Daniel Westcott
Paul D. Wilbert
Dana L. Winkler
Philip Wong
Huey Wen Yang
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Leah C. Adams
Faisal Ahmed
Michael L. Alfred
Brian M. Ancharski
Pamela G. Anderson
Anju Arora
Nancy A. Ashmore
John D. Back
Pranav D. Badheka
Kris Bagchi
Benjamin Beckman
Toby Layne

Bennington
Sarah J. Billings
Neil M. Bodoff
Alison S. Carter
Kin Lun Choi
Michael B.

Cunningham
Peter R. DeMallie
David E. Dela Cruz
Brian Elliott
Kyle A. Falconbury
Elizabeth J. Fethkenher
Jeffrey R. Fleischer
Mark T. Ford
Teresa M. Fox
Rebecca E. Freitag
Dustin W. Gary
Michael L. Gish
Stephanie A.

Groharing
Serhat Guven
Rebecca N. Hai

Dawn Marie S. Happ
Richard A. Haugen
Hans Heldner
Daniel D. Heyer
Mark D. Heyne
Wendy L.

Hopfensperger
Candace Yolande

Howell
Mohammad A.

Hussain
Mohamad H. Ibrahim
Craig D. Isaacs
William T. Jarman
Erik A. Johnson
Jason A. Jones
Julie A. Jordan
Betsy J. Koestler
Ting Kwok
Julie-Linda LaForce
Peta Lewin
Carrie L. Lewis
James W. Mann
Luis S. Marques
Kevin P. McClanahan
Isaac Merchant
Deborah Ann Mergens
Vadim Y. Mezhebovsky
Ross H. Michehl
Kathleen M. Miller
Celso M. Moreira
Matthew E. Morin
Matthew D. Myshrall
John F. Pagano

Jeff D. Paggi
Jorge E. Pizarro
Aaron N. Prisco
Charity A. Rieck
Erica L. Riggs
Choya A. Robinson
Ezra J. Robison
Gail S. Rohrbach-Fink
Benjamin G.

Rosenblum
Richard R. Ross
Jennifer L. Rupprecht
Tammy L. Schwartz
Mandy M. Y. Seto
Paul Silberbush
Summer L. Sipes
Clarissa L. Smith
Neeza Thandi
Nicole C. Tillyer
Dominic A. Tocci
Raymond D. Trogdon
Michael S. Uchiyama
Stephen H. Underhill
Karen L. VanCleave
Karl C. Von Brockdorff
Tice R. Walker
Robert J. Wallace
Joseph C. Wenc
So Fun Wong
Joshua C. Worsham
Mihoko Yamazoe
Jacinthe Yelle
David Zambo
Lianmin Zhou

Part 5B
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Jason R. Abrams
Michael B. Adams
Jodie Marie Agan
Stephen A. Alexander
Genevieve L. Allen
Scott J. Altstadt
Silvia J. Alvarez
Denise M. Ambrogio
Gwendolyn Lilly

Anderson
Kevin L. Anderson
Mary K. Anderson
Jonathan L. Ankney
Michele S. Arndt
Richard T. Arnold
Afrouz Assadian
Peter Attanasio
Robert D. Bachler
Maura Curran Baker
John L. Baldan
Patrick Barbeau
Linda S. Baum
Patrick Beaudoin
Marie-Eve J. Belanger
David J. Belany
Jason E. Berkey
Ellen A. Berning
Penelope A. Bierbaum
David M. Biewer
Mary Denise Boarman
Christopher D. Bohn
Veronique Bouchard
Erick A. Brandt
Jeremy James Brigham

David C. Brueckman
Robert J. Brunson
Paul E. Budde
John C. Burkett
Derek D. Burkhalter
Matthew R. Carrier
Nathalie Charbonneau
Patrick J. Charles
Todd D. Cheema
Yvonne Wai Ying

Cheng
Kin Lun Choi
Andrew K. Chu
Bernadette M. Chvoy
Susan M. Cleaver
Eric J. Clymer
Carolyn J. Coe
Christian J. Coleianne
Helaina I. Connelly
Peter J. Cooper
Kiera E. Cope
Kevin A. Cormier
Sharon R. Corrigan
Tina M. Costantino
Jeffrey A. Courchene
Spencer L. Coyle
Hall D. Crowder
David F. Dahl
John E. Daniel
Robert E. Davis
Stephanie A. DeLuca
Alain P. DesChatelets
Jean-François

Desrochers

Jonathan M. Deutsch
Timothy M. DiLellio
Christopher A.

Donahue
Gregory L. Dunn
Louis Christian Dupuis
Sophie Duval
Carolyn F. Edmunds
Jane Eichmann
James R. Elicker
Keith A. Engelbrecht
Greg J. Engl
Tricia G. English
Laura A. Esboldt
Juan Espadas
Weishu Fan
Solomon Carlos

Feinberg
Kenneth D. Fikes
Janine A. Finan
William M. Finn
Donia N. Freese
Michelle L. Freitag
Rosemary D. Gabriel
Serge Gagne
Martine Gagnon
Cynthia Galvin
Donald M.

Gambardella
Anne M. Garside
Ellen M. Gavin
Amy L. Gebauer
Hannah Gee
Charles E. Gegax

Part 6
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Justin G. Gensler
Keith R. Gentile
Rainer Germann
Patrick J. Gilhool
Bradley G. Gipson
Todd B. Glassman
Joseph E. Goldman
Stacey C. Gotham
Stephanie A. Gould
Elizabeth A. Grande
Joseph P. Greenwood
Mark R. Greenwood
Francis X. Gribbon
Rebecca N. Hai
Brian T. Hanrahan
Dawn Marie S. Happ
Elaine M. Harbus
Harry K. Hariharan
Michael S. Harrington
Jeffery T. Hay
Qing He
James A. Heer
Kristina S. Heer
James D. Heidt
Kandace A. Heiser
Kevin B. Held
Deborah L. Herman
Amy L. Hicks
Glenn R. Hiltpold
Kurt D. Hines
Marcy R. Hirner
Patricia A. Hladun
Brook A. Hoffman
Richard M. Holtz
Kaylie Horning
Melissa K. Houck

Terrie L. Howard
Carol I. Humphrey
Christopher W. Hurst
Scott R. Hurt
Rusty A. Husted
Philip M. Imm
Michael S. Jarmusik
Weidong Wayne Jiang
Charles B. Jin
Philippe Jodin
Paul J. Johnson
Shantelle A. Johnson
Susan K. Johnston
Steven M. Jokerst
Bryon R. Jones
Mark C. Jones
Dana F. Joseph
Daniel R. Kamen
Mary Jo Kannon
Stacey M. Kidd
Jeffrey D. Kimble
Jill E. Kirby
Susan L. Klein
Steven T. Knight
Scott C. Kurban
Isabelle LaPalme
Douglas H. Lacoss
Ravikumar

Lakshminarayan
Chingyee Teresa Lam
Stephen J. Langlois
Travis J. Lappe
Jean-François

Larochelle
Aaron M. Larson
Khanh M. Le

Borwen Lee
Wendy R. Leferson
James P. Leise
Christian Lemay
W. Scott Lennox
Brendan M. Leonard
Diane Lesage-Cantin
Sharon Xiaoyin Li
Xiaoying Liang
Joshua Y. Ligosky
Dengxing Lin
Jing Liu
Erik F. Livingston
Richard P. Lonardo
Aviva Lubin
Jason K. Machtinger
John T. Maher
Atul Malhotra
Joshua N. Mandell
Richard J. Manship
Albert Maroun
Stephen P. Marsden
Victor Mata
James J. Matusiak Jr.
David M. Maurer
Laura S. McAnena
Timothy L. McCarthy
Ian J. McCracken
Jennifer A. McGrath
Smith W. McKee
Mitchel Merberg
Ryan A. Michel
Rebecca E. Miller
Scott A. Miller
Ain H. Milner
Matthew K. Moran
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Christian Morency
John V. Mulhall
Loren J. Nickel
Sean R. Nimm
Sylvain Nolet
Brett M. Nunes
Randall W. Oja
Sheri L. Oleshko
Helen S. Oliveto
Michael A. Onofrietti
Rodrick R. Osborn
Matthew R. Ostiguy
Apryle L. Oswald
Chad M. Ott
Robert A. Painter
Cosimo Pantaleo
Moshe C. Pascher
Lorie A. Pate
Prabha Pattabiraman
Michael T. Patterson
Wendy W. Peng
Robert B. Penwick
Sylvain Perrier
Christopher K. Perry
Kevin T. Peterson
Kraig P. Peterson
Michael R. Petrarca
Andrea L. Phillips
Kristin S. Piltzecker
Donna M. Pinetti
Frank P. Pittner
Dylan P. Place
Jayne L. Plunkett
Sean E. Porreca
Brentley J. Radeloff
Leonid Rasin

Mary Elizabeth
Reading

Sara Reinmann
Teresa M. Reis
Brian E. Rhoads
David C. Riek
Stephen D. Riihimaki
Arnie W. Rippener
Delia E. Roberts
Kathleen F. Robinson
Brian P. Rucci
Bryant E. Russell
Frederick D. Ryan
Salimah H. Samji
Rachel Samoil
Michelle L. Sands
James C. Santo
Frances G. Sarrel
Jeremy N. Scharnick
Jennifer A. Scher
Daniel David

Schlemmer
David B. Schofield
Jeffery W. Scholl
Jonathan A. Schriber
Ronald J. Schuler
Kelvin B. Sederburg
Vladimir Shander
Scott A. Sheldon
Kelli D. Shepard-El
Michelle L. Sheppard
Maria Shlyankevich
Joseph A. Smalley
Lora L. Smith-Sarfo
John H. Soutar
Michael D. Sowka

Anya K. Sri-Skanda-
Rajah

Laura B. Stein
Gary A. Sudbeck
Edward Sypher
Stephen J. Talley
Josephine L. C. Tan
Michel Theberge
Tanya K. Thielman
Robert M. Thomas II
Gary S. Traicoff
Michael C. Tranfaglia
John D. Trauffer
Nathalie Tremblay
Kieh Treavor Ty
David Uhland
Matthew L. Uhoda
Joel A. Vaag
Jennifer L. Vadney
Richard A. Van Dyke
Justin M. Van Opdorp
Steven J. Vercellini
Mark A. Verheyen
Linda M. Waite
Amy R. Waldhauer
Kristie L. Walker
Keith A. Walsh
Shaun S. Wang
Victoria K. Ward
David W. Warren
Wade T. Warriner
Kelly M. Weber
Chris J. Westermeyer
William B. Westrate
Matthew M. White
L. Alicia Williams
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Robin Davis Williams
Amy M. Wixon
Karin H. Wohlgemuth

Jeffrey S. Wood
Jonathan S. Woodruff
Scott M. Woomer

Jimmy L. Wright
Yin Zhang
Steven B. Zielke

Part 8—Canada

Part 8—United States

Martin Carrier
Christopher William

Cooney
Denis Dubois
Rachel Dutil

Philippe Gosselin
Patrice Jean
Elaine Lajeunesse
Thomas L. Lee
Andrew M. Lloyd

Shawn Allan
McKenzie

Hany Rifai
Nitin Talwalkar

Mustafa Bin Ahmad
John Scott Alexander
John P. Alltop
Amy P. Angell
David Steen Atkinson
Craig Victor Avitabile
Keith M. Barnes
Michael J. Bednarick
Michael J. Belfatti
Brian K. Bell
Bruce J. Bergeron
Eric D. Besman
Kristen M. Bessette
John T. Binder
Mark E. Bohrer
David R. Border
Erik R. Bouvin
Rebecca Schafer

Bredehoeft
Robert F. Brown
Kevin D. Burns
Stephanie T. Carlson
Allison F. Carp

Kristi Irene Carpine-
Taber

Bethany L. Cass
Tania J. Cassell
Jill C. Cecchini
Hsiu-Mei Chang
Hong Chen
Brian K. Ciferri
Maryellen J. Coggins
Kathleen T.

Cunningham
Jonathan Scott Curlee
Kenneth S. Dailey
Loren Rainard

Danielson
Smitesh Davé
Francis L. Decker IV
Nancy K. DeGelleke
Michael Brad Delvaux
Patricia A. Deo-Campo

Vuong
Mike Devine
Michael Edward Doyle

David L. Drury
Tammi Dulberger
Brandon L. Emlen
Joseph G. Evleth
Vicki A. Fendley
Stephen A. Finch
Christine M. Fleming
Ronnie S. Fowler
David I. Frank
Kay L. Frerk
Noelle Christine Fries
Donald M.

Gambardella
Kathy H. Garrigan
James B. Gilbert
Emily C. Gilde
Susan I. Gildea
Moshe D. Goldberg
Jay C. Gotelaere
John W. Gradwell
Greg M. Haft
Scott T. Hallworth
Gregory Hansen
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Eric Christian Hassel
Christopher Ross Heim
David E. Heppen
Ronald J. Herrig
Todd H. Hoivik
John F. Huddleston
Paul Ivanovskis
Christopher Donald

Jacks
John F. Janssen
Chad C. Karls
Claudine Helene

Kazanecki
James M. Kelly
Steven A. Kelner
Joseph P. Kilroy
Eleni Kourou
James Douglas Kunce
Kenneth A. Kurtzman
Steven M. Lacke
Timothy J. Landick
Robert J. Larson
Yin Lawn
Thomas C. Lee
Scott J. Lefkowitz
Neal M. Leibowitz
Diana M. S. Linehan
Robb W. Luck
Victoria S. Lusk
James P. Lynch
Daniel Patrick Maguire
Vahan A. Mahdasian
Anthony L. Manzitto
Richard J. Marcks
David E. Marra

Peter R. Martin
Bonnie C. Maxie
Jeffrey A. Mehalic
Mark F. Mercier
Richard Ernest Meuret
Stephanie J. Michalik
Michael J. Miller
Paul D. Miotke
Christopher James

Monsour
Roosevelt C. Mosley
Sureena Binte Mustafa
Timothy O. Muzzey
Mindy Y. Nguyen
Michael A. Nori
Rebecca Ruth Orsi
Kathryn Ann Owsiany
Dmitry E. Papush
M. Charles Parsons
Thomas Passante
Abha B. Patel
Michael A. Pauletti
Rosemary C. Peck
Miriam E. Perkins
Anne Marlene Petrides
Ellen K. Pierce
Richard Matthew

Pilotte
Jordan J. Pitz
Richard B. Puchalski
Kathleen Mary Quinn
Kiran Rasaretnam
Peter S. Rauner
Rebecca Lea Roever
John R. Rohe

Kim R. Rosen
Seth Andrew Ruff
Kevin L. Russell
Tracy A. Ryan
Joseph J. Sacala
Elizabeth A. Sander
Jason T. Sash
Matt J. Schmitt
Michael C. Schmitz
Timothy D. Schutz
M. Kate Smith
Theodore S. Spitalnick
Catherine E. Staats
Lori E. Stoeberl
Brian Tohru Suzuki
Roman Svirsky
Karrie Lynn Swanson
Adam M. Swartz
Sebastian Yuan Yew

Tan
Jennifer L. Throm
Laura M. Turner
Alice M. Underwood
Timothy J. Ungashick
Eric Vaith
Robert J. Walling III
Karen E. Watson
Patricia Cheryl White
Wendy L. Witmer
Yoke Wai Wong
Stephen K. Woodard
Yuhong Yang
Charles J. Yesker
Edward J. Zonenberg
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Mustafa Bin Ahmad
Ethan David Allen
Michael E. Angelina
Lewis V. Augustine
William P. Ayres
Barry Luke Bablin
Wayne F. Berner
Barry E. Blodgett
Kimberly Bowen
Douglas J. Bradac
Betsy A. Branagan
Ron Brusky
Julie Burdick
Hugh E. Burgess
Christopher J.

Burkhalter
Cindy Cin-Man Chu
Brian A. Clancy
Kay A. Cleary
Christopher G. Cunniff
Karen Barrett Daley
Karen L. Davies
Jeffrey W. Davis
Timothy Andrew Davis
John D. Deacon
Camley A. Delach
Sean R. Devlin
Kurt S. Dickmann
Margaret Eleanor

Doyle
Tammy L. Dye
Kevin M. Dyke
Mark Kelly Edmunds
Wayne W. Edwards

Kristine Esposito
Alana C. Farrell
Sylvain Fauchon
Kendra M. Felisky-

Watson
Chauncey E.

Fleetwood
Walter H. Fransen
John E. Gaines
Gary J. Ganci
David Evan Gansberg
Margaret Wendy

Germani
John E. Green
Steven A. Green
Daniel Cyrus Greer
Daniel Eli Greer
Alexander Archibold

Hammett
Ellen M. Hardy
Robert L.

Harnatkiewicz
William N. Herr Jr.
Christopher Todd

Hochhausler
Daniel L. Hogan Jr.
Jeffrey R. Hughes
Brian L. Ingle
Joseph W. Janzen
Jeremy M. Jump
Hsien-Ming Keh
Brandon Daniel Keller
Thomas P. Kenia
Deborah M. King

James F. King
Bradley J. Kiscaden
Brandelyn C. Klenner
Brian S. Krick
Mary D. Kroggel
Alexander Krutov
Sarah Krutov
David Leblanc-Simard
Guy Lecours
Steven J. Lesser
Richard B. Lord
Robert G. Lowery
Gary P. Maile
Dee Dee Mays
Stephen J. McGee
Scott A. McPhee
Brian James Melas
Anne Hoban Moore
Matthew S. Mrozek
Raymond D. Muller
Donald R. Musante
Henry E. Newman
James L. Nutting
Mark A. O’Brien
Mary Beth O’Keefe
Christopher Edward

Olson
David Anthony

Ostrowski
David J. Otto
Michael G. Owen
Joseph M. Palmer
Charles Pare
Harry Todd Pearce

Part 10
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Lynne M. Peterson
Kathy Popejoy
Jennifer K. Price
Anthony E. Ptasznik
David S. Pugel
Kara Lee Raiguel
Ricardo A. Ramotar
Natalie J. Rekittke
Dennis L. 

Rivenburgh, Jr.
John W. Rollins
Richard A.

Rosengarten
Daniel G. Roth
Chet James Rublewski
Thomas A. Ryan
Manalur S. Sandilya

Michael B. Schenk
Arthur J. Schwartz
Nathan Alexander

Schwartz
Craig J. Scukas
Michael Shane
Alastair Charles Shore
Bret Charles Shroyer
Gerson Smith
Matthew Robert

Sondag
Alan M. Speert
Ilene G. Stone
Scott J. Swanay
Christopher C.

Swetonic
Christopher Tait

Georgia A.
Theocharides

Jeffrey S. Trichon
Kai Lee Tse
Jeffrey A. Van Kley
Leslie Alan Vernon
Kyle Jay Vrieze
Kimberley A. Ward
Douglas M. Warner
Wyndel S. White
William Robert

Wilkins
Michael J. Williams
Kirby W. Wisian
Simon Kai-Yip Wong
Yoke Wai Wong
Vincent F. Yezzi

The following candidates were admitted as Fellows and Associ-
ates at the 1998 CAS Annual Meeting in November. By passing
Spring 1998 examinations, these candidates successfully fulfilled
the Society requirements for Fellowship or Associateship designa-
tions.

NEW FELLOWS

John Porter Alltop
Lewis Victor Augustine
Barry Luke Bablin
Michael James

Bednarick
Michael James Belfatti
Wayne F. Berner
Barry E. Blodgett
Kimberly Ann Bowen
Douglas J. Bradac
Ron Brusky

Christopher John
Burkhalter

Tania Janice Cassell
Cindy C. M. Chu
Brian Arthur Clancy
Kay A. Cleary
Christopher G. Cunniff
Kenneth Scott Dailey
Smitesh Davé
Karen L. Davies
Jeffrey Wayne Davis

John David Deacon
Camley Ann Delach
Margaret E. Doyle
David L. Drury
Tammy Lynn Dye
Kristine M. Esposito
Sylvain Fauchon
Kendra Margaret

Felisky-Watson
Stephen A. Finch
Walter H. Fransen
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Kay L. Frerk
John Edward Gaines
David Evan Gansberg
Kathy Helene Garrigan
Margaret Wendy

Germani
Moshe David Goldberg
John E. Green
Steven A. Green
Daniel Cyrus Greer
Daniel Eli Greer
Greg M. Haft
Ellen M. Hardy
Robert L.

Harnatkiewicz
William Nesthus 

Herr Jr.
Daniel Leo Hogan Jr.
Jeffrey R. Hughes
Paul Ivanovskis
Christopher Donald

Jacks
Joseph William Janzen
Jeremy M. Jump
Hsien-Ming Keh
Brandon Daniel Keller
Steven A. Kelner
Thomas Paul Kenia
Joseph P. Kilroy
Bradley James

Kiscaden
Brian Scott Krick
Mary Downey Kroggel
Alexander Krutov
Kenneth Allen

Kurtzman
Timothy John Landick

Robert John Larson
Guy Lecours
Thomas C. Lee
Thomas L. Lee
Scott Jay Lefkowitz
Steven Joel Lesser
Robert Glenn Lowery
Gary P. Maile
Anthony L. Manzitto
Richard Joseph 

Marcks
Peter Robert Martin
Dee Dee Mays
Stephen J. McGee
Jeffrey A. Mehalic
Brian James Melas
Anne Hoban Moore
Matthew Stanley

Mrozek
Raymond D. Muller
Timothy O. Muzzey
Mindy Yu Nguyen
Mark A. O’Brien
Mary Beth O’Keefe
David J. Otto
Joseph Martin Palmer
Dmitry E. Papush
Thomas Passante
Abha B. Patel
Harry Todd Pearce
Lynne M. Peterson
Anne Marlene Petrides
Jennifer K. Price
David Scott Pugel
Kara Lee Raiguel
Kiran Rasaretnam
Natalie J. Rekittke

Dennis Louis
Rivenburgh Jr.

Daniel Gregg Roth
Chet James Rublewski
Kevin L. Russell
Thomas A. Ryan
Elizabeth A. Sander
Manalur Sundaram

Sandilya
Michael Bruce Schenk
Matt John Schmitt
Arthur J. Schwartz
Craig James Scukas
Gerson Smith
Mary Kathryn Smith
Alan M. Speert
Catherine Elaine Staats
Ilene Gail Stone
Scott Jay Swanay
Christopher Tait
Sebastian Yuan Yew

Tan
Georgia A.

Theocharides
Alice Underwood
Timothy John

Ungashick
Jeffrey Alan Van Kley
Kimberley A. Ward
Wyndel S. White
William Robert

Wilkins
Michael J. Williams
Kirby W. Wisian
Yoke Wai Wong
Charles John Yesker
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Stephen Allan
Alexander

Jennifer Ann
Andrzejewski

Michele Segreti Arndt
Robert Daniel Bachler
Lee Matthews Bowron
John Carol Burkett
Matthew R. Carrier
Andrew K. Chu
Louise Chung-Chum-

Lam
Mary Katherine

Thérèse Dardis
Robert Earl Davis
Nathalie Dufresne
Carolyn F. Edmunds
Jane Eichmann
Jonathan Palmer Evans
Michelle Lynn Freitag
Donald Michael

Gambardella
Charles Edward Gegax
Bradley Gordon Gipson

Natasha Cecilia
Gonzalez

Francis Xavier Gribbon
Gary Michael Harvey
Kevin Blaine Held
Melissa Katherine

Houck
Weidong Wayne Jiang
Susan Kay Johnston
Daniel R. Kamen
Mary Jo Kannon
Jeffrey Dale Kimble
Andrew M. Koren
Scott C. Kurban
Douglas H. Lacoss
James Peter Leise
Diane Lesage-Cantin
Xiaoying Liang
Jason Kirk Machtinger
James William Mann
Stephen Paul Marsden
John Vincent Mulhall
Moshe C. Pascher
Judith Diane Perr

Dylan Pamphilon Place
Ricardo Anthony

Ramotar
Brian Paul Rucci
Asif Sardar
Kelvin Bryce

Sederburg
Kelli Denise Shepard-

El
John Haldane Soutar
Andrew K. Tran
Michael Charles

Tranfaglia
Joel Andrew Vaag
Steven John Vercellini
Linda M. Waite
Robert Joseph Wallace
William Boyd Westrate
Matthew Michael

White
L. Alicia Williams
Robin Davis Williams

NEW ASSOCIATES

The following candidates successfully completed the Parts of
the Fall 1998 CAS Examinations that were held in October.

Part 3B

Kris Bagchi
Brian J. Barth
Richard J. Bell III
Jonathan P. Berenbom
Erick A . Brandt

Monica M. Buck
Daniel R. Campbell
Kin Lun Choi
Richard R. Crabb
Marc-Andre Dallaire

Bruce R. Darling
Paul B. Deemer
Peter R. DeMallie
Jean A. DeSantis
Patrick J. Dubois
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Keith R. Gentile
Christopher J. Graham
Donald B. Grimm
Serhat Guven
Edward Kofi Gyampo
Christopher W. Hurst
Susan R. Johansen-

Green
Jason A. Jones
Lawrence S. Katz
John H. Kerper
Nathalie M. Lavigne
Shangjing Li

Joshua Y. Ligosky
Matthew A. Lillegard
Diana M. S. Linehan
Ratsamy Manoroth
Mea Theodore Mea
Vadim Y. Mezhebovsky
Scott A. Miller
Matthew E. Morin
Stephen J. Mueller
Sean R. Nimm
Maureen D. O’Keefe
Jean-Pierre Paquet
Kristin S. Piltzecker

Carmen Racy
Neil W. Reiss
Ezra J. Robison
David G. Shafer
Duc M. Ta
Neeza Thandi
Sheng P. Tseng
Susan B. Van Horn
Shaun S. Wang
Scott M. Woomer
Xiangfei Zeng

Part 4A

Greg A. Aikey
Anju Arora
Nancy A. Ashmore
Joel E. Atkins
Peter Attanasio
Richard Audet
Pranav D. Badheka
Christine L. Berg
Andrew W. Bernstein
David M. Biewer
Jonathan E. Bransom
Gregor L. Brown
Lisa K. Buege
Ronald Cederburg
Ramses T. Celestin
Yves Charbonneau
Tsui-Hsien J. Chien
Kin Lun Choi
Byron W. Clift
John R. Cloutier

Jeffrey R. Coker
Christopher L.

Cooksey
Dustin W. Curtit
Walter C. Dabrowski
Tanuja S.

Dharmadhikari
Erik L. Donahue
John A. Duffy
Lawrence K. Fink
Michael J. Fiorito
Sharon L. Fochi
Dana R. Frantz
Veronique Grenon
Adrian F. Guardado
Jennifer L. Hany
Stuart J. Hayes
Joseph Hebert
Greg Helser
Mark D. Heyne

Joseph H. Hohman
Melissa S. Holt
Carissa A. Hughes
Abraham J. Israel
Kenneth L. Israelsen
David R. James
Amy B. Kamen
Hye-Sook Kang
John J. Karwath
Inga Kasatkina
Stephen F. Katz
Amy Jieseon Kim
Roman Kimelfeld
Laurie A. Knoke
David Kodama
Todd J. Kuhl
Melissa Kuykendall
Nadya Kuzkina
Eric N. Laszlo
Annie Latouche
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Geraldine Marie Z.
Lejano

James J. Leonard
Stephen M. Lippman
Nataliya A. Loboda
Andrea A. Lombardi
Michael H. Loretta
Paul T. Lupica
Eric A. Madia
John C. Marques
Lora K. Massino
Michael B. McCarty
James P. McCoy
Scott A. McPhee
Thomas E. Meyer
Michael E. Mielzynski
Charles W. Mitchell
Robert E. Moran
Jason L. Morgan
Timothy C. Mosler
David B. Mukerjee
Darren J. Nakanishi

Georgia A. Nelson
Lester M. Y. Ng
Julie K. Nielsen
Stoyko N. Nikolov
Alejandra S. Nolibos
Lorie A. Pate
Michael C. Petersen
Michael R. Petrarca
David M. Pfahler
Eric W. L. Ratti
William C. Reddington
Anita E. Samuelson
Mandy M. Y. Seto
Summer L. Sipes
Robert P. Siwicki
Thomas R. Slader
Emily J. Smith
Thomas S. Stadler
Christopher J. Styrsky
Lisa Liqin Sun
Lucia Tedesco
Colleen A. Timney

Lapki Tsang
Elaine Ching Tse
Choi Nai Charlies Tu
Lien K. Tu
Kevin G. Turner
Shannon C.

Vecchiarello
Sebastien Y. Vignola
Eric T. Viney
Cameron J. Vogt
Hanny C. Wai
Daniel Westcott
Todd M. Wing
Philip Wong
Jeffrey S. Wood
Shawn A. Wright
Andreas Wyler
Andrew Yershov
Sung G. Yim
Yingjie Zhang

Part 4B

Angela H. A’Zary
James E. Alford
Michael L. Alfred
Vagif Amstislavskiy
Pamela G. Anderson
Brian D. Archdeacon
Joel E. Atkins
Kris Bagchi
Vicki J. Bagley
Wendy A. Barone
Suzanne Barry

David W. Batten
Craig E. Bauer
Jonathan P. Berenbom
Elliot J. Bernstein
Mark W. Bingener
Gary R. Blackwood
Marie-Josée C.

Blanchet
KayAnn Blaszcyzk
Charles W. Bloss IV
Aree K. Bly

Julie K. Bohning
Brad N. Bondy
Marcus J. Bosland
Frederic Boule
Chantal Bray
Melissa L. Brewer
Elizabeth K. Brill
Jeffrey D. Brook
Lan Z. Brown
Caroline Bruniau
Rebecca L. Burton
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Ryan A. Buschert
Timothy W. Caldwell
Alyssa M. Caslick
Joseph S. Cella
Kevin K. W. Chan
Michael Tsz-Kin Chan
Whye-Loon Chan
Ming-Shiu Chang
Donna Chen
Hai Fen Chen
Shu-Chuan Chen
Yung-Chih Chen
Carrie Cheung
Su-Ying Chiang
Tracy L. Child
Yiu Wai B. Chiu
Wil Chong
Alan M. Chow
Kwok Wing Choy
Shu Hung Choy
Paul L. Cohen
Chandra B. Cole
Candace A. Cooper
Ronald M. Cornwell
Stephen M. Couzens
Richard R. Crabb
Hall D. Crowder
Dermot M. Cryan
Mary Jo Curcio
Dave J. Czernicki
David W. Dahlen
Stephanie A. DeLuca
David E. Dela Cruz
Paul M. Dennee
Milind K. Desai
Manon Desrosiers

Christopher A.
Donahue

Brian M. Donlan
Thierry Duchesne
Laura A. Esboldt
Ashifa Esmail
John D. Faught
Janine A. Finan
Eric J. Fitton
Sharon L. Fochi
Feifei Ford
Guy J. Foutz
Janis L. Frazer
Elinor Friedman
Po C. Fu
Andre Gagnon
Virginia K. Gammill
Joan K. C. Ganas
Dustin W. Gary
Matthew P. Gatsch
Timothy J. Geddes
Leslie A. George
Kelly C. Geragotelis
Daniel J. Gieske
Donald L. Glick
Kevin A. Gontowski
Matthew R. Gorrell
Andrew S. Greenhalgh
Donald B. Grimm
Jared M. Gross
John W. Grove
Jocelyn Guerin
Daniel R. Guilbert
Edward Kofi Gyampo
Matthew M. Ha
Michael A. Ha

Brian P. Hall
Eric D. Halpern
Kanwal Hameed
F. Keith Handley
Robert T. Hatcher
Erik L. Heiny
Kandace A. Heiser
Scott L. Herchenbach
Mark D. Heyne
Marcy R. Hirner
Kathleen Hobbs
Margaret M. Hook
William E. Hopkins
Derek R. Hoyme
Shaohe T. Huang
Kee Wai Ip
Corrine M. Iverson
Ellen H. Jacoby
Katherine Jacques
Paul T. Jakubczak
David R. James
Steven Thomas James
Donna R. Jarvis
Huahua Jiang
Brian B. Johnson
Darrell G. Johnson
Erik A. Johnson
Kristin Lynn Johnson
Samuel Johnson
Stephane Julien
Cheryl L. Jurgens
Brian J. Kasper
David R. Kennerud
Mark S. Kertzner
Ziv Kimmel
Chris L. Kinnison
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Gregory L. Kissel
Darren H. Klorfine
Laurie P. Kolb
Rostislav Kongoun
Jason M. Konopik
Sonya Koo
James A. Kosinski
Frank J. Kowal
Jodi L. Krantz
Anand S. Kulkarni
Kin Chung Kung
Gregory Kushnir
Wing Wai Kwan
François Lacroix
Joel A. Lahrman
Wen Lan Lai
Hrvoje Lakota
Margaret W. Lam
Maxime Lanctot
Frederic Lapostolle
Sylvia Wy Law
Dawn M. Lawson
Marc Leblond
Doris Lee
Patricia Lee
Tak Yam Lee
William Henry 

Leslie IV
Wing Wah Leung
David C. Lewis
Jennifer L. Lewis
Zhiyuan Li
Eric F. Liland
Mien Seng Lim
Shiah Shiuan Lin
Christina S.H. Liu

Daniel A. Lowen
Tony Lu
Kelly A. Lysaght
Daniel K. Ma
Sally Ann MacFadden
Michael R. Mace
Deidre A. Mangan
Steven Manilov
Zhouhong Mao
Jeffrey L. Martin
Raul G. Martin
Kenneth J. Martinez
Victor Mata
Paul G. Mattson
Timothy J. McCarthy
Robert B. McCleish IV
John R. McCollough
Kerri A. McLaughlin
Isaac Merchant
Deborah Ann Mergens
Shawna A. Meyer
Paul B. Miles
Robert Mizner
David G. Moger
Lori A. Moore
Amy J. Morehouse
Joseph Muccio
Michelle L. Myers
Jason H. Natof
Anne-Marie Nawar
Norman Niami
Daisy H. M. Ning
Alejandra S. Nolibos
Julie L. Normand
Charles A. Norton
Tom E. Norwood

Francesco Nudo
James P. O’Donovan
Yanik Paquin
Felix Patry
Joy-Ann C. Payne
Bruce G. Pendergast
Holly A. Pfeiffer
Kristin S. Piltzecker
Michael A. Polonsky
Jeffrey M. Pomerantz
Samir Prasad
Elisabeth Prince
Julie-Ann Puzzo
Bujia Qiao
Jason J. Reed
Brian E. Rhoads
Danielle L. Richards
Rodney E. Rishel
Charles Rodrigue
Randall J. Rogers
Michele S. Rosenberg
Yori B. Rubinson
Srinath Sampath
Siddhartha Sankaran
Philip Santiago
Matthew D. Schafer
Leon Schmerhold
David P. M. Scollnik
Elizabeth A. Sexauer
Bintao Shi
Alan L. Shulman
Riana Sia
Janel M. Sinacori
Frederick W. Slater
Katherine E. Slover
Ada M. So



1100 1998 EXAMINATIONS—SUCCESSFUL CANDIDATES

Xi Song
Harold L. Spangler Jr.
Sean B. Staggs
Ulrich Stengele
Esperanza Stephens
John D. Stiefel
Jonathan E. Stinson
Jeffery S. Stout
Wei Hua Su
Beth M. Sweeney
Mikel M. Swyers
Barbara Sylvain
Yuan Kwan Sze
David B. Thaller
Emmerik Theriault
Bernadette M. Thie
Malgorzata Timberg
Pauline P. M. To
Marie-Josée Tremblay-

Canuel
Maureen B. Tresnak

Karen J. Triebe
Erik S. Troutman
Shu-Chen Tsai
Jye-Terng Tsay
Lien K. Tu
Douglas A. Turner
William H. Turner
Alexander S. Vajda
Amy W. Van Nostrand
Nancy C. Van

Walleghem
Karen L. VanCleave
Jennifer A. Vezza
Cameron J. Vogt
Colleen Ohle Walker
Matthew J. Walter
Kaicheng Wang
Mingqi Wang
Ya-Feng Wang
Javanika Patel Weltig
Joseph C. Wenc

Jay W. West
Daniel Westcott
Miles C. Williams
Stephanie J. Williams
Todd M. Wing
Tammy L. Wood
Shawn A. Wright
Jun Wu
Jennifer A. Yanulavich
Kuo-Jen Yen
Andrew Yershov
Shuk-Han Lisa Yeung
Timothy M. Yi
Lai Yuen Yip
Jinsung Yoo
Yuan Yuan
Ka Chun Yue
Paul T. Zelazoski
James J. Zheng
Huawei Jamie Zhu
Christopher D. Zuiker

Part 5A

Michael B. Adams
Amy P. Angell
Lara L. Anthony
John D. Back
Jonathan P. Berenbom
Steven G. Brenk
Alison S. Carter
Aimee B. Cmar
Natalie A. Cmar
Lynn E. Cross
Alana C. Farrell

Dale A. Fethke
Todd B. Glassman
Stacey C. Gotham
Rebecca N. Hai
Dawn Marie S. Happ
Richard A. Haugen
Henry J. Konstanty
Leland S. Kraemer
Jonathan D. Leuy
Joshua Y. Ligosky
Steven R. Lindley

Jia Liu
Wing Lowe
Tony Lu
Kevin M. Madigan
Vadim Y. Mezhebovsky
Ross H. Michehl
Jason E. Mitich
Matthew E. Morin
Randall W. Oja
Gilbert Ouellet
Ajay Pahwa
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Christopher A. Pett
Ezra J. Robison
James C. Santo
Avijit Sarkar

Peter A. Scourtis
Annemarie Sinclair
Thomas M. Smith
Alexandra R. St-Onge

Lisa C. Stanley
Neeza Thandi
Jo Dee Westbrook
Xiangfei Zeng

Part 5B

Muhammad Munawar
Ali

Vagif Amstislavskiy
Brandie J. Andrews
Amy P. Angell
Koosh Arfa-Zanganeh
Kevin J. Atinsky
Nabila Audi
John L. Baldan
Stevan S. Baloski
Nathalie Belanger
Mark Belasco
David M. Biewer
Nebojsa Bojer
Joseph V. Bonanno Jr.
John R. Bower
Anthony P. Brown
Jeffrey A. Brueggeman
Judith E. Callahan
Thomas L. Cawley
Brian J. Cefola
Scott R. Clark
Christopher J.

Cleveland
Aimee B. Cmar
Natalie A. Cmar
Cameron A. Cook
Arthur D. Cummings
Keith R. Cummings

David B. Dalton
Rich A. Davey
Scott C. Davidson
Amy L. DeHart
Stephanie A. DeLuca
Sheri L.

Delaboursodiere
Christopher P.

DiMartino
Diana M. Dodu
Scott H. Drab
James R. Elicker
William H. Erdman
Dale A. Fethke
William M. Finn
Kristine M. Fitzgerald
Lisa C. Fontana
Gregory A.

Frankowiak
Stuart G. Gelbwasser
Christie L. Gilbert
Todd B. Glassman
William G. Golush
Boris V. Gorelik
Matthew R. Gorrell
Stacey C. Gotham
Christa Green
Manuel S. Guerra Jr.
Timothy P. Hawkins

Brandon L. Heutmaker
Troy W. Holm
David J. Horn, Jr.
Kaylie Horning
Hai Huang
Jesse T. Jacobs
Shantelle A. Johnson
William B. Johnson
Elena Y. Karzhitskaya
Susan M. Keaveny
Sarah M. Kemp
Susanlisa Kessler
Karen A. Kosiba
Vladimir A.

Kremerman
Stephen J. Langlois
Jason A. Lauterbach
Amy E. LeCount
Ruth M. LeStourgeon
Geraldine Marie Z.

Lejano
Jonathan D. Leuy
Jenn Yih Lian
Kenneth Lin
Jia Liu
Jin Liu
Xiaoquing Iris Liu
Todd L. Livergood
Teresa Madariaga



1102 1998 EXAMINATIONS—SUCCESSFUL CANDIDATES

Roy M. Markham
Jeffrey L. Martin
Joseph W. Mawhinney
Jeffrey B. McDonald
Patricia McGahan
Ryan A. Michel
Stephanie Miller
Bilal Musharraf
Scott L. Negus
Julie K. Nielsen
Stoyko N. Nikolov
Rodrick R. Osborn
Matthew R. Ostiguy
Robin V. Padwa
Aseem Palvia
Matthew J. Perkins
James J. Rehbit
John J. Reid

Sara Reinmann
Robert C. Roddy
Michele S. Rosenberg
Ryan P. Royce
Ray M. Saathoff
Anthony D. Salido
Dionne M. Schaaffe
Bryan K. Scott
Vladimir Shander
Scott M. Shannon
Barry D. Siegman
William A. Smyth
Anthony A. Solak
Evan M. Spiegel
Jason D. Stubbs
Nicki A. Styka
Edward T. Sweeney
Adam D. Swope

Aason A. Temples
Charles A. Thayer
Christian A. Thielman
Pantelis Tomopoulos
Isabel Trepanier
Jennifer L. Vadney
Lisa M. VanDermark
Jennifer A. Vezza
Brian A. Viscusi
Qingxian Wang
Bethany R. Webb
Carolyn D. Wettstein
Stephen C. Williams
Jonelle A. Witte
Philip Wong
Xiangfei Zeng
Yingjie Zhang

Part 7—Canada

Genevieve L. Allen
Nathalie J. Auger
Veronique Bouchard
Stephane Brisson
Nathalie Charbonneau
Yvonne Wai Ying

Cheng
Steven A. Cohen
Peter J. Cooper
Sophie Duval

Serge Gagne
David Gagnon
Isabelle Gingras
Lisa N. Guglietti
Julie-Linda LaForce
Jean-Sebastien Lagace
Stephane Lalancette
Isabelle LaPalme
Christian Lemay
Julie Martineau

Shawn Allan
McKenzie

Christian Menard
Sylvain Nolet
Sylvain Perrier
Sylvain Renaud
Mario Richard
Ernest C. Segal
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Jason R. Abrams
Anthony L. Alfieri
Silvia J. Alvarez
Brian M. Ancharski
Gwendolyn Lilly

Anderson
Paul D. Anderson
Katherine H. Antonello
Amy L. Baranek
Patrick Beaudoin
Esther Becker
Saeeda Behbahany
David J. Belany
Kristen M. Bessette
John T. Binder
Mario Binetti
Neil M. Bodoff
Christopher D. Bohn
Mark E. Bohrer
Caleb M. Bonds
David R. Border
Thomas S. Botsko
Jeremy James Brigham
Karen A. Brostrom
Conni J. Brown
Paul E. Budde
Julie Burdick
Angela D. Burgess
Derek D. Burkhalter
Anthony R. Bustillo
Allison F. Carp
Daniel G.

Charbonneau
Patrick J. Charles
Todd D. Cheema

Kin Lun Choi
Julia F. Chu
Jeffrey A. Clements
Jeffrey J. Clinch
Eric J. Clymer
Carolyn J. Coe
Brian R. Coleman
Larry Kevin Conlee
Sean O. Cooper
Sharon R. Corrigan
David E. Corsi
Jeffrey A. Courchene
Jose R. Couret
Julie R. Crane
John E. Daniel
Mujtaba H. Datoo
Catherine L. DePolo
Krikor Derderian
Mark R. Desrochers
Jonathan M. Deutsch
Timothy M. DiLellio
Richard J. Engelhuber
Greg J. Engl
Weishu Fan
Brian M. Fernandes
Kenneth D. Fikes
Sean P. Forbes
Ronnie S. Fowler
Mark R. Frank
Rosemary D. Gabriel
James M. Gallagher
Anne M. Garside
Amy L. Gebauer
Justin G. Gensler
Rainer Germann

Emily C. Gilde
Cary W. Ginter
Theresa Giunta
Stephanie A. Gould
Paul E. Green
Joseph P. Greenwood
Mark R. Greenwood
Rebecca N. Hai
David L. Handschke
Bryan Hartigan
Jeffery T. Hay
Qing He
Amy L. Hicks
Jay T. Hieb
Stephen J. Higgins Jr.
Glenn R. Hiltpold
Kurt D. Hines
Glenn S. Hochler
Todd H. Hoivik
Terrie L. Howard
Long-Fong Hsu
Philip M. Imm
Craig D. Isaacs
Charles B. Jin
Karen L. Jiron
Paul J. Johnson
Bryon R. Jones
Burt D. Jones
Derek A. Jones
Dana F. Joseph
Robert C. Kane
Douglas H.

Kemppainen
Sean M. Kennedy
Ung Min Kim

Part 7—United States
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Jennifer E. Kish
Wendy A. Knopf
Thomas F. Krause
Ravikumar

Lakshminarayan
Chingyee Teresa Lam
John B. Landkamer
Travis J. Lappe
Aaron M. Larson
Borwen Lee
Wendy R. Leferson
Brendan M. Leonard
Karen N. Levine
Sally M. Levy
Shangjing Li
Sharon Xiaoyin Li
Dengxing Lin
Erik F. Livingston
James P. Lynch
Vahan A. Mahdasian
Atul Malhotra
Joshua N. Mandell
Jason A. Martin
Meredith Martin
James J. Matusiak Jr.
Laura S. McAnena
Timothy L. McCarthy
Kevin P. McClanahan
Jennifer A. McGrath
Rasa V. McKean
Sarah K. McNair-

Grove
Kirk F. Menanson
Rebecca E. Miller
Ain H. Milner
Rodney S. Morris
Michael W. Morro

Brian C. Neitzel
John-Giang L. Nguyen
Khanh K. Nguyen
Loren J. Nickel
Michael D. Nielsen
Sean R. Nimm
Sheri L. Oleshko
Leo Martin Orth Jr.
Apryle L. Oswald
Gerard J. Palisi
Prabha Pattabiraman
Michael A. Pauletti
Fanny C. Paz-Prizant
Rosemary C. Peck
John M. Pergrossi
Christopher K. Perry
Anthony J. Pipia
Jordan J. Pitz
Thomas L. Poklen Jr.
Peter V. Polanskyj
Sean E. Porreca
William D. Rader Jr.
Leonid Rasin
Darin L. Rasmussen
Frank S. Rau
David C. Riek
Marn Rivelle
Delia E. Roberts
Kathleen F. Robinson
Joseph F. Rosta
Janelle P. Rotondi
Robert A. Rowe
Joseph J. Sacala
Frances G. Sarrel
Jason T. Sash
Jeremy N. Scharnick
Jeffery W. Scholl

Annmarie Schuster
Tina Shaw
Seth Shenghit
Michelle L. Sheppard
Helen A. Sirois
Joseph A. Smalley
Michael W. Starke
David K. Steinhilber
Karen M. Strand
Mark R. Strona
Jayme P. Stubitz
Stephen J. Talley
Josephine L. C. Tan
Robert M. Thomas II
Christopher S.

Throckmorton
Jennifer L. Throm
Gary S. Traicoff
John D. Trauffer
Andrea E. Trimble
Brian K. Turner
Peggy J. Urness
Mark A. Verheyen
Jon S. Walters
Douglas M. Warner
David W. Warren
Wade T. Warriner
Kevin E. Weathers
Kelly M. Weber
Arthur S. Whitson
William B. Wilder
Trevar K. Withers
Jonathan S. Woodruff
Perry K. Wooley
Yin Zhang
Steven B. Zielke
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Mustafa Bin Ahmad
Nancy L. Arico
Carl Xavier

Ashenbrenner
Craig Victor Avitabile
Phillip Wesley Banet
Emmanuil Theodore

Bardis
Michael William

Barlow
Paul C. Barone
Rick D. Beam
Anna Marie Beaton
Nicolas Beaupre
Andrew S. Becker
Lisa A. Bjorkman
Michael J. Bluzer
Lesley R. Bosniack
Lori Michelle Bradley
Betsy A. Branagan
Russell J. Buckley
Hugh E. Burgess
Elliot R. Burn
Kevin D. Burns
Pamela A. Burt
Janet P. Cappers
Stephanie T. Carlson
Hsiu-Mei Chang
Eric D. Chen
Richard M. Chiarini
Christopher William

Cooney
Loren Rainard

Danielson

Sheri L. Daubenmier
Timothy Andrew Davis
Brian Harris

Deephouse
John T. Devereux
Kevin Francis Downs
Peter F. Drogan
Wayne W. Edwards
Brandon L. Emlen
Jonathan Palmer Evans
Bruce D. Fell
Kevin Jon Fried
Noelle Christine Fries
Jean-Pierre Gagnon
Donald M.

Gambardella
Christopher H. Geering
Bradley G. Gipson
Stewart H. Gleason
Sanjay Godhwani
Natasha C. Gonzalez
Robert A. Grocock
James C. Guszcza
Kenneth Jay Hammell
Christopher Ross Heim
David E. Heppen
Daniel D. Heyer
Amy L. Hoffman
Jane W. Hughes
Jason Israel
Walter L. Jedziniak
Philip W. Jeffery
Philippe Jodin
Susan K. Johnston
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Scott Andrew Kelly
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Steven M. Lacke
Marc La Palme
Yin Lawn
Dennis H. Lawton
Bradley R. LeBlond
Betty F. Lee
Kevin A. Lee
Todd William

Lehmann
Neal M. Leibowitz
Bradley H. Lemons
Charles Letourneau
Janet G. Lindstrom
Richard B. Lord
Cara M. Low
Michelle Luneau
James W. Mann
William A. Mendralla
Michael J. Miller
David Patrick Moore
Sureena Binte Mustafa
Seth Wayne Myers
Kari S. Nelson

Part 9
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Kari A. Nicholson
Darci Z. Noonan
Rebecca Ruth Orsi
David Anthony

Ostrowski
M. Charles Parsons
James Alan Partridge
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Luba O. Pesis
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Rebecca Lea Roever
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Nathan Alexander
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Sondag
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Katie Suljak
Adam M. Swartz
Christopher C.

Swetonic
Nitin Talwalkar
Kai Lee Tse
Kieh Treavor Ty
Leslie Alan Vernon

Martin Vezina
Kyle Jay Vrieze
Claude A. Wagner
Tice R. Walker
Isabelle T. Wang
William B. Westrate
Vanessa Clare

Whitlam-Jones
Jerelyn S. Williams
Kendall P. Williams
Laura Markham

Williams
Kah-Leng Wong
Jeffrey F. Woodcock
Linda Yang
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OBITUARIES

JAMES M. CAHILL
CHARLES DESJARDINS

K. ARNE EIDE
ROBERT C. PERRY
PAUL E. SINGER
EMIL J. STRUG

PAUL A. VERHAGE
HERBERT E. WITTICK

JAMES M. CAHILL
1905–1998

James M. Cahill died on September 28, 1998 at Inglemoor
Care Center in Livingston, New Jersey. He was 92.

Born in Hartford, Connecticut, on November 16, 1905, Cahill
lived in Scarsdale, New York, before moving to Ramsey, New
Jersey. He lived in Ramsey for 50 years before moving to Liv-
ingston in 1995.

After graduating from Hartford Public High School in 1923,
Cahill attended Trinity College in Hartford. At Trinity, Cahill
was named valedictorian of the class of 1927. He also set the
school’s quarter-mile track record.

Cahill began his career in 1927 with the Travelers Insurance
Company in Hartford. He earned his CAS Fellowship in 1929.
Cahill joined the Compensation Rating Board in New York City
in 1938, progressing to the National Bureau of Casualty Under-
writers (NBCU) in 1944. At NBCU he served as secretary and
later general manager.

Cahill played a pivotal role in consolidating the NBCU and
the National Automobile Underwriters Association into the In-
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surance Rating Board in 1968, serving as its first general man-
ager until his retirement in 1971.

An active member of the Casualty Actuarial Society, Cahill
served as president from 1947–48, as a vice president from
1945–46, and as a member of the CAS Council from 1938–41.
He wrote several Proceedings papers including “Product Pub-
lic Liability Insurance” (PCAS XXI), which won the Richard
Fondiller Prize in 1934–35. Cahill also participated as a panelist
in CAS meeting sessions.

During his CAS presidency, Cahill took a great interest in
mentoring mathematics students by initiating apprentice pro-
grams. In his presidential address on November 19, 1948, he
predicted an increased need for casualty actuaries and encour-
aged members to mentor young people who were considering
careers as casualty actuaries.

Cahill is survived by two daughters, Susan Ramsey of Wayne,
New Jersey, and Barabara Melendez of Phoenix, Arizona; four
grandchildren; and seven great grandchildren. His wife, Mildred
(nee Potter) Cahill, predeceased him in 1993.
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CHARLES DESJARDINS
1962–1998

Charles Desjardins died February 20, 1998 at the age of 35.

Born March 11, 1962, Québec City, Québec, Desjardins grad-
uated from Laval University in Montréal in 1983 with a degree
in actuarial science.

In 1983, Desjardins worked for Fireman’s Fund Insurance
Company of Canada, and from 1983 to 1985 he worked in
the ratemaking department for Wellington Insurance Company.
While at Wellington he was responsible for implementing and
updating the company’s loss reserving databases and evaluat-
ing its IBNR needs. Desjardins moved to Commercial Union in
Toronto, Ontario in 1985 as an actuarial assistant. Desjardins
became an Associate of the Casualty Actuarial Society in 1989.

Christopher J. Townsend (FCAS 1986), a colleague of Des-
jardins at Commercial Union, recalled his clever wit. In par-
ticular, Townsend remembered Desjardins’ definition of a large
loss as being a “failure to meet plan.” Although Desjardins left
the actuarial field in 1992, he continued as a member of Ontario
Conference of Casualty Actuaries and the Casualty Actuarial So-
ciety.

A close friend of Desjardins, Andrew Hamilton, described
him as the “life of every party.” “At every gathering, you would
be sure to see him, fashionably dressed, talking a mile a minute
and surrounded by people,” said Hamilton. Desjardins was a
thoughtful man who never forgot birthdays or anniversaries and
whose gifts were always beautifully appropriate to the occasion.

“Charles was a brave man,” said Hamilton. “Living with a
terminal illness was both difficult and debilitating, but Charles
remained cheerful, optimistic, and concerned about others. Few
of his friends knew how ill he was because he hid it so well. He
was always asking about his friends, rather than dwelling on his
own problems. We miss him.”
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Desjardins is survived by his parents, Jeanne and Raymond
Desjardins of Sillery, Québec; and a brother, Jacques of Québec
City.



1122 OBITUARIES

KNUT ARNE EIDE
1912–1997

Knut Arne Eide died November 8, 1997. He was 85.

Eide was born July 10, 1912 in Fertile, Minnesota, the oldest
of eight children. He graduated from Fertile High School in 1929
and, from 1929 to 1933, he attended Luther College in Decorah,
Iowa, earning a bachelors degree in liberal arts. While at Luther
College, Eide was active in the Boy Scouts as a troop leader
and in the college band. Eide continued to support the college’s
music program many years after he graduated.

During the summer of 1937, Eide did some graduate course
work at the University of Minnesota in Minneapolis. He attended
the University of Iowa in Iowa City and earned a master’s degree
in 1939.

Eide joined the Army in 1942 and began officer training. Dur-
ing the World War II he served in the Quartermaster Corps in
Europe. After his wartime service, Eide served in the Army Re-
serves for more than 20 years, retiring as a lieutenant colonel.

Former SOA president Gilbert Fitzhugh (FCAS 1935) spon-
sored Eide when he became an Associate of the Casualty Ac-
tuarial Society in 1954. Eide was a member of the American
Academy of Actuaries and earned Fellowship in the CAS and
the SOA in 1959 and 1967, respectively. He served as the editor
of the SOA’s Statistical Bulletin for many years.

During the 1950s, Eide began a long career with Metropolitan
Life Insurance Company in New York City. He began as an ac-
tuarial clerk and by his retirement in 1977 he was assistant vice
president.

Eide left New York in 1977 to retire in Fertile. During his
retirement Eide was active in the community serving as presi-
dent of the Lion’s Club, member of the Fair Meadow Nursing
Home board, substitute math teacher for the local high school,
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and as a member of the Concordia Lutheran Church. In 1992,
Eide was honored with the Citizen of the Years Award by the
Fertile Community Club. The award is given to individuals ex-
hibiting outstanding community service over several years.

Eide is survived by two brothers, Alf of Fertile, and Arvid
of Morris, Minnesota; and three sisters, Anna Pagenhart of
Rochester, Minnesota, Alfhild O’Malley of Minneapolis, and
Agnes Cranmer of Vista, California. Two brothers, Roald and
Anders, predeceased him.
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ROBERT C. PERRY
1910–1997

Robert C. Perry died December 7, 1997 in Tucson, Arizona,
at the age of 87.

He was born October 12, 1910 in Bloomington, Illinois, and
raised in Downs, Illinois, where he attended public school. In
1932, Perry graduated from the University of Illinois.

For 43 years, Perry was employed in the home office of
the State Farm Insurance Company in Bloomington, Illinois.
Throughout his years with the company, he served as vice presi-
dent and actuary, executive vice president, and as vice chairman
and secretary. Perry retired to Tucson in 1976.

Perry became an Associate of the Casualty Actuarial Soci-
ety in 1947 and a Fellow of the Society of Actuaries in 1948.
He was also a Fellow of the Life Office Management Institute,
a Chartered Life Underwriter, and a member of the American
Academy of Actuaries. Perry was active in international life in-
surance trade associations and was past chairman of the Life
Office Management Association. He was also a member of the
Canadian Institute of Actuaries and of the Chicago Actuarial
Club.

Among his other community activities, Perry was a 32-degree
Mason and Shriner, a former member of Bloomington Chamber
of Commerce and the Skyline Chamber Commerce, and a mem-
ber of Theta Chi Fraternity.

Perry’s wife of 61 years, Harriett, preceded him in death in
1995.
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PAUL E. SINGER
1923–1998

Paul E. Singer died March 21, 1998. He was 74.

Singer was born April 26, 1923 in Chicago, Illinois, and lived
there for much of his life. He attended the University of Chicago
during the 1940s, graduating with a degree in liberal arts. He
married Jean Henkel June 19, 1948, and together they had four
children.

Singer worked for several years for Continental Casualty in
Chicago, which eventually became CNA Insurance. While work-
ing for Continental Casualty, Singer earned his Associateship in
the Casualty Actuarial Society in 1963. He then went on to be-
come assistant vice president of National Insurance Group in
1964, an actuary with Continental National American Group in
1967, vice president and actuary for CNA Insurance in 1975,
and CNA vice president in 1976. From 1977 until his retirement
in 1985, Singer was president of Illinois State Medical Insurance
Services, Inc. After retirement, Singer also lent his expertise as
an expert witness.

From the mid-1960s until well into the 1970s, Singer was an
active member of the CAS, participating in several CAS meet-
ings as a member of various panels. Some of the panels included
“Accident and Health Development” (1965), “Government Med-
ical Assistance Programs” (1967), “National Health Insurance”
(1971), and “Recognition of Anticipated Investment Income”
(1979). Singer was also active in CAS committees, serving on
the Committee on Social Insurance (1965–67), the Committee
to Study Forms of Amalgamation (1971), and the Committee
on Financial Reporting (1974–78). “He was really proud to be
a member [of the Casualty Actuarial Society],” said Singer’s
daughter, Margaret Piper. “His pride in it was obvious.”
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A bicycling and bridge enthusiast, Singer enjoyed crossword,
double crostic, and mathematical puzzles. Singer and his wife
spent many years living in Michigan after he retired.

Singer’s survivors include two daughters, Margaret of Wheat-
on, Illinois, and Elise of Philadelphia, Pennsylvania; and eight
grandchildren. Singer’s wife Jean and two sons, Martin and
William, preceded him in death.
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EMIL J. STRUG
1924–1998

Emil J. Strug died at his home in Stoughton, Massachusetts
on March 14, 1998 after a four-year battle with cancer. He was
73.

Strug was born September 2, 1924 in Mendon, Massachusetts,
and attended Cathedral High School. During World War II, Strug
served as first lieutenant and navigator with the 44th Bomb
Group of the 8th Air Corps. He flew missions over Europe from
his station in Norwich, England.

After the war, Strug attended Boston College, graduating in
1950 with a degree in mathematics. That same year he married
Eleanor M. Misiewicz on September 10. The couple had four
children.

After working briefly for Liberty Mutual Fire Insurance Com-
pany in Boston, Massachusetts, Strug began a thirty-year ca-
reer with what would become Blue Cross/Blue Shield in Boston.
He began as assistant actuary and later served as manager of
actuarial-statistical, and associate vice president and associate ac-
tuary for the company. In 1988, he became vice president and
treasurer for Benefit Management Association, Inc. in Rockland,
Massachusetts. He retired in 1991.

Strug was an active member of the Casualty Actuarial Society
and frequently attended CAS meetings, during which he forged
strong friendships with his fellow members. “He had some very
good times with the group at CAS meetings,” said Strug’s wife
Eleanor. During the evenings at CAS meetings, Strug’s friends
and colleagues would often perform musical numbers and plays
or would gather around a piano to sing.

A frequent contributor to the Proceedings, Strug’s papers in-
clude “Joint Underwriting as a Reinsurance Problem” (1972),
“Determining Ultimate Claim Liabilities for Health Insurance
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Coverages” (1980), and “The Pricing of Medi-Gap Coverage”
(1983).

Strug became an Associate of the Casualty Actuarial Soci-
ety in 1959 and a Fellow in 1970. He was also a member of
the American Academy of Actuaries, the International Actuarial
Association, the 44th Bomb Group Association, and Veterans of
Foreign Wars.

He is survived by his wife, Eleanor; three sons, Stephen J.
of Halifax, Massachusetts, Christopher G. of Westboro, Mas-
sachusetts, and Scott D. of White Plains, New York; a daughter,
Susan M. Keshian of North Andover, Massachusetts; a sister,
Laura Grant of Randolph, Massachusetts; and nine grandchil-
dren. The family requested that donations be made to Dana Far-
ber Cancer Institute in Boston.
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PAUL A. VERHAGE
1938–1998

Paul A. Verhage died September 25, 1998. He was 59.

Born November 8, 1938 in Kankakee, Illinois, Verhage at-
tended Northwest High School in Sheboygan, Wisconsin and
the University of Wisconsin in Milwaukee. He was a member of
the American Academy of Actuaries and became an Associate
of the Casualty Actuarial Society in 1962 and a Fellow in 1965.

While attending church in Vesper, Wisconsin, Verhage met
his future wife, Patricia. The two were married on September
24, 1960. Together they had two sons.

After graduation, Verhage worked briefly for Northwestern
Mutual Life in 1960 and then began working as an actuarial tech-
nician for Hardware Mutuals in Stevens Point, Wisconsin, which
eventually became Sentry Insurance Group. Verhage worked for
Sentry over 33 years, most recently as senior vice president and
chief financial officer. In his last position with Sentry he was re-
sponsible for investment management, accounting, treasury, in-
ternal audit, and strategic planning.

After Sentry, Verhage became senior manager and consulting
actuary for Arthur Andersen’s property/casualty actuarial con-
sulting group in Milwaukee, Wisconsin.

Verhage was active in the CAS as a Proceedings author (Vol-
ume LIII) and as a committee member. He served on the two sec-
tions of the CAS Education and Examination Committee from
1966 to 1975. He was also involved in the CAS Committee to
Identify Interest Areas in 1971 and the Finance Committee from
1975 to 1977.

John H. Muetterties (FCAS 1956), consulting actuary for
MBA Inc. in Mountain Lakes, New Jersey, hired Verhage out
of college for Hardware Mutuals. “He was a very bright indi-
vidual,” said Muetterties. “I’d rate him in the upper five percent
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of casualty actuaries.” Muetterties told how Verhage, who had
no background in electronics, took one of his company’s first
computers and successfully upgraded it. “That was a big step in
the 1960s!” said Muetterties.

A modest and quiet family man, Verhage stood well over six
feet tall. He was dedicated to his work and liked traveling with
family and friends. In particular, he and his wife enjoyed a trip
to London with their two sons and their daughters-in-law.

Verhage was also interested in genealogy. He was intrigued
with discovering the genealogical tie to a close friend who shared
his surname. While traveling in Holland with their wives, the
two men traced their ancestries back to the year 1698 to find a
common link.

Verhage is survived by his wife Patricia; two sons Peter of
Stevens Point and Paul Jr. of North Liberty, Iowa; mother Minnie
Verhage of Sheboygan Falls, Wisconsin; sister Annette Kashney
also of Sheboygan Falls; and one grandchild. In lieu of flowers,
the family requested that donations be given to the American
Cancer Society.
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HERBERT E. WITTICK
1903–1998

Herbert E. Wittick was born June 25, 1903 in Peoria, Illinois.
He attended Bradley Polytechnic Institute in Peoria from 1916 to
1920 and the University of Illinois from 1920 to 1924, earning a
bachelor of science degree. Wittick became an Associate of the
Casualty Actuarial Society in 1929 and a Fellow in 1931. He
was also a Fellow of the Canadian Institute of Actuaries.

From 1924 through 1931, Wittick worked at Standard Acci-
dent Insurance Company in Detroit, Michigan, in the company’s
compensation and liability underwriting department. In 1932,
Wittick moved to Canada to work for Pilot Insurance Company
in Toronto, Ontario. He would work for Pilot for over 36 years
until his retirement in 1969. While at Pilot, he held the positions
of assistant secretary, secretary, assistant general manager, and
finally vice president and general manager.

Wittick was active in the CAS—attending meetings, serving
as a committee member, and writing Proceedings papers. From
1964 to 1968, he served on the CAS Publicity Committee. A
Proceedings author in 1958 and 1964, Wittick wrote “The Cana-
dian Merit Rating Plan for Individual Automobile Risks” (PCAS
XLV) and “Estimating the Cost of Accident Insurance as a Part
of Automobile Liability Insurance” (PCAS LI). Wittick was also
a panelist for the 1966 meeting session, “Management and the
Actuary.”
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Errata for Discussion by Howard Mahler of “Retrospective Rating: 1997 Excess Loss Factors”

At the bottom of page 320, the equation for 

� 

R^ (100) is incorrect.

This example of simple dispersion is an example of a mixture with five pieces. 

The excess ratio of the mixture is a weighted average of individual excess ratios, with the weights 
the product of the means and the probabilities for each piece of the mixture.1 

If the probability of each piece of a mixture is pi, Σpi = 1, the mean of each piece of the mixture is 

mi, and Ri is the excess ratio for each piece of the mixture, then 

� 

R^ (L) = Σ pi mi Ri(L).

If each loss is divided by for example .75, then after development, the excess ratio at L is the 
same as the original excess ratio at .75 L.2  
Ri(L) is the excess ratio when the losses have all been divided by ri.
Thus Ri(L) = R(ri L). 

In the example on page 320, each mean is proportional to 1/divisor = 1/ri, and each probability is 
the same at 1/5.  Thus the weights are: (1/5)(1/ri).

The sum of the weights is: Σ (1/5)(1/ri) = (1/5)(1/.75 + 1/.833 + 1/1 + 1/1.25 + 1/1.5) = 1.3 

Thus 

� 

R^ (L) = Σ (1/5)(1/ri) R(ri L) = (1/5) Σ R(ri L) /ri.

Therefore, the corrected equation at the bottom of page 320 is:

� 

R^ (100) = (1/5){R(75)/.75 + R(83.3)/.833 + R(100)/1 + R(125)/1.25 + R(150)/1.50} 
  = (1/5){.6009/.75 + .5817/.833 + .5582/1 + .5384/1.25 + .5191/1.50} = 0.5669.

Similarly, the corrected equation at the top of page 321 is:

� 

R^ (5000) = (1/5){R(3750)/.75 + R(4165)/.833 + R(5000)/1 + R(6250)/1.25 + R(7500)/1.50} 
  = (1/5){.0157/.75 + .0070/.833 + 0/1 + 0/1.25 + 0/1.50} = 0.0059.

1 See page 154 of “Workers Compensation Excess Ratios: An Alternate Method of Estimation” by Mahler.
2 If each loss is multiplied by 1/.75 = 1.333, this is mathematically the same as uniform inflation of 33.3%.
Thus we can get the excess ratio after development, by taking the original excess ratio at the deflated value of
L/1.333 = .75 L.  Increasing the sizes of loss, increases the excess ratio over a fixed limit.
3 Mahler chose these loss divisors so that the total expected losses are unaffected.



At page 324, some of the numerical values shown in the computation of R3(2000) are mixed up, 
although the final value is correct at 0.384 as shown. 
It should have read:
R3(2000) = (1.04167)(0.9999980) - (0.04167)(0.0057148)

+ (0.1667)(0.0026029) - (0.8333)(0.999995)
+ (0.1761)(0.999987) - (0.1761)(0.0011302) = 0.384.

Also, in Table 1 the excess ratios were computed for Gamma loss divisors with shape parameter 
16.67 and inverse scale parameter 15.67.  However, the text at page 323 refers to Gamma loss 
divisors with shape parameter s = 18.67 and inverse scale parameter l = 17.67; this distribution of 
loss divisors corresponds to a mean loss development of 1 and a variance of loss development 
of 0.060, matching the simple dispersion example.  

Using the intended Gamma parameters of s = 18.67 and l = 17.67 changes the excess ratios in 
Table 1 slightly, although the pattern remains the same.



The values in the simple dispersion column of Table 1 at page 320 are revised in a similar manner 
to that for 5000. 
The values in Gamma dispersion column of Table 1 at page 320 are revised based on a shape 
parameter of s = 18.67 and inverse scale parameter of l = 17.67.

Corrected Table 1
  Excess Ratios

     No    Simple  Gamma
LIMIT Development Dispersion Dispersion
       50    .6888    .6949    .6939
     100    .5582    .5669    .5673
     500    .3012    .3080    .3069
  1,000    .1606    .1705    .1709
  2,000       .0904    .0931    .0927
  3,000    .0402    .0462    .0453
  4,000    .0100    .0194      .0182
  5,000    .0000    .0059      .0062
  6,000    .0000    .0007    .0020
  7,000    .0000    .0000    .0006
  8,000    .0000    .0000    .0002
  9,000    .0000    .0000    .0001
10,000    .0000    .0000    .0000 

As can be seen in corrected Table 1, the simple dispersion effect raises the excess ratios, 
especially at the higher limits.4 

At page 326, the formula near the bottom of page should have λ in place of X:

R(L) = (λ l/L)s-1 U(s-1, s+1-α, λ l/L).

The statement in the third paragraph of page 327 of the Discussion is backwards. 
It should have read:
As the shape parameter of the Pareto, α, gets smaller, the losses have a heavier tail and the 
multiplicative impact of the dispersion on the excess ratios at high limits decreases.

At page 331, the first equation needs parentheses around the b - a:
F(y) = (y/(b-a)) {E[R ; b/y] - E[R ; a/y]}.

4 It can be demonstrated that when dispersion has no overall effect, loss dispersion either increases an excess 
ratio or keeps it the same.  In most practical applications, the excess ratio will be increased by loss dispersion.



At page 332, lines 6 and 7, the dr is missing from the integrals:

� 

y
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DISCUSSION OF PAPER PUBLISHED IN
VOLUME LXXXIV

RETROSPECTIVE RATING: 1997 EXCESS LOSS FACTORS

WILLIAM R. GILLAM AND JOSE R. COURET

DISCUSSION BY HOWARD C. MAHLER

INTRODUCTION

This discussion will present some of the mathematical aspects
of the effect of dispersion of loss development on excess ratios.
It will be shown how the formulas developed in “Retrospective
Rating: 1997 Excess Loss Factors” fit into this more general
mathematical framework.

THE PROBLEM

Even if one included average loss development beyond fifth
report in the estimation of excess ratios, there are at least two
phenomena that would affect excess ratios that are not being
considered. First, the different sizes of claims may have varying
expected amounts of development. If larger claims had higher
average development, this would raise the excess ratios for higher
limits.

Secondly, there is a “dispersion” effect. Assume we have two
claims of $1 million each that are expected on average to develop
by 10%. It makes a difference whether we assume we’ll have two
claims each at $1.1 million or one claim at $1 million and one
claim at $1.2 million. The ratio excess of $1.1 million will differ
in the two cases.1

It is assumed for simplicity that there is no development on
average; alternatively, any average development has already been

1In the former case it is zero, since there are no dollars excess of $1.1 million. In the
latter case it is 0.1/2.2, since there are $1.2–$1.1 million = $:1 million dollars excess of
$1.1 million, and total losses of $2.2 million.
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incorporated into the size of loss distribution. However, some
individual claims will develop more than average while others
will develop less than average. In total, the average development
factor is assumed to be unity.

SIMPLE EXAMPLE

Assume we have a piece-wise linear size of accident distribu-
tion such that:2

F(0) = 0

F(100) = :90

F(1,000) = :99

F(5,000) = 1:00:

Any size of loss distribution can be approximated sufficiently
well by such an “ogive.”3 For actual applications one would
have many more intervals, but this example will illustrate the
principles involved.

The probability density function is:

f(x) =

!""""#""""$
:009 0< x! 100
:0001 100< x! 1,000

:0000025 1,000< x! 5,000
0 x> 5,000:

One can compute the average size of claim as the sum of three
integrals of xf(x):

E[X] =
% 100

0
(:009)xdx+

% 1000

100
(:0001)xdx

+
% 5000

1000
(:0000025)xdx

= 45+49:5+30 = 124:5:

2Assume everything is in units of thousands of dollars. Thus, 5,000 actually corresponds
to $5 million.
3See Hogg and Klugman [3].
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The excess ratio at limit L can be computed as:

R(L) =
% "

L
(x#L)f(x)dx=E[X]:

In this case we can compute the numerator as a sum of three
terms:% "

L
(x#L)f(x)dx

= (If L < 100)
% 100

L
(x#L)(:009)dx

+(If L < 1000)
% 1000

max[100,L]
(x#L)(:0001)dx

+(If L < 5000)
% 5000

max[1000,L]
(x#L)(:0000025)dx:

If L < 100, let

R1(L) =
% 100

L
(x#L)dx

&% 100

0
xdx

= excess ratio at L if losses are uniformly distributed
on the interval [0,100]:

Note that R1(L) = 0 if L$ 100. Then the first term above is

R1(L)
% 100

0
:009xdx= R1(L)E1[X],

where E1[X] =
' 100
0 (:009)xdx is the contribution to the overall

mean from claims in the first interval. Then, working similarly
with the other two intervals:% "

0
(x#L)f(x)dx= R1(L)E1[X]+R2(L)E2[X]+R3(L)E3[X],

R(L) =
R1(L)E1[X]+R2(L)E2[X]+R3(L)E3[X]

E1[X]+E2[X]+E3[X]
:
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Thus, the overall excess ratio can be expressed as a weighted
average of excess ratios each computed as if the losses were
uniformly distributed on an interval. The weights are the contri-
butions to the overall mean of the claims in each interval. In this
case, the weights are 45, 49.5, and 30 or 45/124.5, 49.5/124.5,
and 30/124.5.

For example, for a limit of 70, the individual excess ratios
are:4 .09, .8727, and .9767. The weighted average is

R(70) =
(45)(:09)+ (49:5)(:8727)+ (30)(:9767)

124:5
= :6149:

Further, if the losses were uniform from 100 to 1000 then the
excess ratio would be:

1
900

% 1000

100
(x#70)dx

(
1
900

% 1000

100
xdx= (550#70)=550

= 480=550 = :8727:

Table 1 shows the excess ratios for this simple example for
several limits. As can be seen, in the absence of any loss de-
velopment, the ratio excess of 5,000 is zero; there are no losses
above 5,000.

SIMPLE DISPERSION

Assume for simplicity that each accident has an equal likeli-
hood of developing in a manner such that it is divided5 by either:
.75, .833, 1, 1.25, or 1.5. Then the average development is

1
5

)
1
:75

+
1
:833

+
1
1
+

1
1:25

+
1
1:5

*
= 1:

4For losses distributed uniformly on [a,b], for b > L > a, R(L) = (b#L)2=(b2# a2); for
L < a, R(L) = 1#2L=(b+a); for L > b, R(L) = 0. For the interval [0,100] we have the
first case. For the intervals [100,1,000] and [1,000,5,000] we have the second case.
5Loss development divisors are used in order to match the presentation in “Retrospective
Rating: 1997 Excess Loss Factors.” Loss development multipliers or factors could have
been used equally well for the presentation.
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TABLE 1

EXCESS RATIOS*

No Simple Gamma
LIMIT Development Dispersion** Dispersion***

50 .6888 .6813 .6945
100 .5582 .5597 .5684
500 .3012 .2932 .3076

1,000 .1606 .1632 .1721
2,000 .0904 .0856 .0930
3,000 .0402 .0394 .0459
4,000 .0100 .0156 .0190
5,000 .0000 .0045 .0069
6,000 .0000 .0005 .0024
7,000 .0000 .0000 .0008
8,000 .0000 .0000 .0003
9,000 .0000 .0000 .0001
10,000 .0000 .0000 .0000

*For simple piece-wise linear distribution with F(0) = 0, F(100) = :9, F(1000) = :99, F(5000) = 1.
**For five possibilities, see text. Mean development = 1; Variance of development = :060.
***For a gamma loss divisor with ®= 16:67, ¸= 15:67, see text. Mean development = 1; Variance
of development = :060.

Thus, the total expected losses are unaffected. The variance of
the development is .060.

We can compute excess ratios for each of the five possibilities
and average the results together. If all the accidents were divided
by 1.25; i.e., multiplied by .8, then a limit of 100 is equivalent
to a limit of 125 without any development. So the excess ratio
for 100 for the developed losses can be computed as R(125) for
the original distribution.6

Thus, to compute the excess ratio for the developed losses for
a limit of 100:

R̂(100) = 1
5(R(75)+R(83:3)+R(100)+R(125)+R(150))

= 1
5(:6009+ :5817+ :5582+ :5384+ :5191) = :5597:

6If each of the accidents are divided by 1.25, then the ratio excess of a limit of 100
declines from .5582 to .5384. Reducing the size of accidents reduces the excess ratio
over any fixed limit.
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Similarly, we can compute the excess ratio for the developed
losses for a limit of 5,000:

R̂(5000) = 1
5(R(3750)+R(4165)+R(5000)

+R(6250)+R(7500))

= 1
5(:0157+ :0070+0+0+0) = :0045:

So the dispersion effect has now produced some losses excess
of 5,000, without affecting the total expected losses.

As can be seen in Table 1, the dispersion effect raises the
excess ratios for higher limits and alters those for lower limits.
While this example could be changed to include more than 5
possibilities, the essence of the dispersion effect has been cap-
tured. However, if the possibilities were more dispersed around
the mean; i.e., if the variance of the development were greater,
then the impact of the dispersion would be greater.

CONTINUOUS LOSS DIVISORS APPLIED TO A UNIFORM
DISTRIBUTION ON AN INTERVAL

What if, rather than five possible loss divisors, one had a
continuous probability distribution?

Assume:

1. Losses are distributed uniformly on the interval [a,b].

2. Losses will develop with loss divisors r given by a dis-
tribution H(r), with density h(r).7

Then, as shown in Appendix A, the distribution function for
the developed losses y, is given by:

F(y) = [y=(b# a)]%E(R;b=y)#E(R;a=y)&,

7It is assumed that
' "
0
(h(r)=r)dr is finite, so that the overall loss development is finite.

In the case where H is a gamma distribution, this requirement means that the shape
parameter s must be greater than one.
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where E[R;L] is the limited expected value of the distribution of
loss divisors, at a limit L.

Appendix A also shows that the density function can be writ-
ten in a number of forms, as summarized below:

f(y) =
1

b# a
% b=y

a=y
rh(r)dr

=
1

b# a%E[R;b=y]# (b=y)(1#H(b=y))#E[R;a=y]
+ (a=y)(1#H(a=y))&

=
1

b# a%E[R;b=y]#E[R;a=y]&

+
1

y(b# a)%bH(b=y)# aH(a=y)&#
1
y
:

Further, Appendix A describes how one can use the density
function and distribution function to calculate the excess ratio of
the developed losses, as follows:

R(L) =
1

b2# a2
+
b2
% b=L

0
h(r)=rdr# a2

% a=L

0
h(r)=rdr

+2aLH(a=L)#2bLH(b=L)

+L2
% b=L

a=L
rh(r)dr

,&% "

0
h(r)=rdr:

GAMMA DISPERSION APPLIED TO THE UNIFORM DISTRIBUTION

Assume that the loss divisor r is distributed according to a
gamma distribution8 with parameter s and l:

h(r) =
lsrs#1e#lr

¡ (s)
,

where ¡ (n) = (n#1)!.
8Then the loss multipliers are distributed according to an inverse gamma. We assume
s > 1, so that the overall loss development is finite.
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Then, as shown in Appendix B, based on the general formula
in Appendix A, if the losses are uniformly distributed on the
interval [a,b], after development the excess ratio for the limit L
is given by:9

R(L) =
b2

b2# a2¡ (s#1; lb=L)#
a2

b2# a2¡ (s# 1; la=L)

+
2L(s# 1)
(b2# a2)l%a¡ (s; la=L)#b¡ (s; lb=L)&

+
L2(s#1)s
(b2# a2)l2 %¡ (s+1; lb=L)#¡ (s+1; la=L)&,

where ¡ (s;y) = 1=¡ (s)
' y
0 t
s#1e#t dt is the incomplete gamma

function.

One can apply this “gamma dispersion” effect to a piece-wise
linear size of accident distribution, such as in the prior example.

The mean development is the mean of an inverse gamma,
l=(s#1). For this discussion, the average development is unity,
so we take l = s#1. The variance of the development is the vari-
ance of an inverse gamma, l2=%(s#1)2(s#2)&. For l = s# 1, the
variance is 1=s#2. Thus, if one takes s= 18:67, (and l = 17:67)
then the variance of the development is 1=16:67 = :060, which
matches that in the simple dispersion example. However, the
gamma allows extreme possibilities (with a small probability),
so one gets a somewhat different behavior than in the simple
dispersion example.

As seen in Table 1, using the gamma dispersion for very high
limits (7,000 and above) yields excess ratios that are now posi-
tive rather than zero. Gamma dispersion can have a particularly
significant impact on very high limits, particularly if the variance
is large.

9These are the formulas developed and shown in “Retrospective Rating: 1997 Excess
Loss Factors.”
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Each excess ratio is computed as a weighted average of the
excess ratios computed for losses uniformly distributed on each
of the three assumed intervals. For example, for a limit of 2,000,
the excess ratio for losses distributed uniformly from 1,000 to
5,000, with gamma dispersion with s= 18:67 and l = 17:67 is
given by the formula from Appendix B:

R3(2000)

= (1:04167)¡ (17:67;44:175)# (:04167)¡ (17:67;8:835)
+ (:1667)¡ (18:67;8:835)# (:8333)¡ (18:67;44:175)
+ (:1761)¡ (19:67;44:175)# (:1761)¡ (19:67;8:835)

= (1:04167)(:9999980)# (:04167)(:0057148)
+ (:1667)(:0011302)# (:8333)(:999987)
+ (:1761)(:999949)# (:1761)(:0026)

= :384:

Similarly, for losses uniform from 100 to 1,000, R2(2000) =
:00008. For losses uniform from 0 to 100, R1(2000) = 10

#19.
Taking a weighted average, using weights of 45, 49.5, and 30,
one obtains R(2000) = :093, as displayed in Table 1.

Note that the gamma distribution used in this example has a
large value of s, the shape parameter. Therefore, the distribution
of loss divisors is close to normal.10 The distribution of loss
divisors has a skewness of 2=

'
s, which is only .49. The skewness

of the distribution of loss multipliers is that of an inverse gamma:
4
'
(s# 2)=(s#3) = 1:12. If one were to take a different form

of distribution with a larger skewness one would have a larger
chance of extreme results. Therefore, in the case of very high
limits, the excess ratios would be even larger.

10The distribution of loss multipliers is close to an inverse normal distribution.
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DISTRIBUTION OF DEVELOPED LOSSES

The particular situations examined so far are a special case of
a more general framework. As shown in Appendix C, if losses
at latest report are distributed via G(x) and the loss divisors r are
distributed independently of x via density function h(r),11 then
the distribution for the developed losses y is given by:

F(y) =
% "

0
G(yr)h(r)dr:

GAMMA LOSS DIVISORS APPLIED TO AN EXPONENTIAL
DISTRIBUTION

For example, if G(x) is an exponential distribution G(x) =
1# e#¸x and the loss divisors are gamma distributed h(r) =
lsrs#1e#lr=¡ (s), then

F(y) = 1# ls

¡ (s)

% "

0
rs#1e#lre#¸yr dr

= 1# ls

¡ (s)
¡ (s)

(l+¸y)s
= 1#

)
(l=¸)

(l=¸)+ y

*s
:

Thus F(y) has a Pareto distribution as per Hogg and Klugman
[3], with shape parameter s and scale parameter l=¸. Thus, the
excess ratio of the developed losses is that of a Pareto distribu-
tion:

R(L) =
)

(l=¸)
(l=¸)+L

*s#1
:

MATHEMATICAL RELATION TO MIXED DISTRIBUTIONS

The calculation of the distribution of the developed losses is
the same as that used to calculate the mixed distribution in the in-
verse gamma-exponential conjugate prior.12 (An inverse gamma

11With
' "
0
(h(r)=r)dr finite.

12See Herzog [2], or Venter [4]. The mixed distribution in the case of an inverse gamma—
Exponential conjugate prior is a Pareto distribution, as obtained above.
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distributed multiplier is the same as a gamma distributed divisor.)
In general, if the loss multipliers and the loss distribution form
any of the well known pairs13 of prior distributions of the scale
parameters of the conditional distributions and conditional dis-
tributions, then the developed losses will be given by the mixed
distribution. For example, as shown in Venter [4], a Weibull loss
distribution and a transformed gamma loss divisor14 would pro-
duce a Burr distribution of developed losses. Thus, there are a
number of mathematically convenient examples that might ap-
proximate a particular real world application.

GAMMA LOSS DIVISORS APPLIED TO PARETO LOSSES

Since the Pareto distribution is often used to model losses (or
at least the larger losses), it would be valuable to be able to apply
the concept of loss divisors to the Pareto distribution.

As shown in Appendix C, one can develop the mathematics
of applying gamma loss divisors to losses distributed by a Pareto
distribution with parameters ® and ¸: F(x) = 1# (¸=(¸+ x))®. As
derived in Appendix C, the excess ratio for the developed losses
is given by:

R(L) =
)
Xl

L

*s#1
U(s# 1,s+1#®,¸l=L),

where U is a confluent hypergeometric function.15

It is also shown in Appendix C that when the average de-
velopment is unity16 then the excess ratios of the developed
losses can be approximated by replacing ¸ in the Pareto by
¸( = ¸(s# 1)=(s# (®=2)#1).

13Such as shown in Venter [4]. Venter displays a list of conjugate priors, but for the
current application there is no requirement that it be a conjugate prior situation.
14An inverse transformed gamma loss multiplier.
15See Appendix D and Handbook of Mathematical Functions [1].
16Also, we need the shape parameter of the gamma, s, to be greater than ®+1.



RETROSPECTIVE RATING: 1997 EXCESS LOSS FACTORS 327

Table 2 and Figure 1 compare the excess ratios for a Pareto
with ®= 3:5 and ¸= 1,000, for the developed losses17 with a
gamma divisor with s= 6 and l = 5, and for an approximat-
ing Pareto with ®= 3:5 and ¸= 1,000(s#1)=(s# (®=2)# 1) =
1,538. The excess ratios for the developed losses are larger than
those for the undeveloped losses. The approximation using the
rescaled Pareto yields excess ratios that are too high for the lower
limits, but it does an excellent job of approximating the excess
ratios for higher limits.

As shown in Appendix C, in the tail, the loss development18

multiplies the excess ratios by a factor of approximately:

(s#1)®#1¡ (s#®)=¡ (s#1))
)
(s#1)

()
s# ®

2
# 1

**®#1
:

In this example, this factor is: 52:5¡ (2:5)=¡ (5) = 3:1. Figure 2
shows how this adjustment factor varies as the shape parameters
of the Pareto and gamma vary. As the shape parameter of the
Pareto, ®, gets smaller, the losses have a heavier tail and the
impact of the dispersion increases. As the coefficient of variation
of the gamma19 increases, the impact of the dispersion increases.

In general, as the coefficient of variation of the loss divisors
increases, the impact of the dispersion increases. As the coef-
ficient of variation approaches zero, we approach the situation
where each claim develops by the average amount and there is
no effect of dispersion. Thus, in order to apply this technique,
one of the key inputs would be the coefficient of variation of the
loss divisors.

CONCLUSIONS

The effect of the dispersion of loss development beyond the
latest available report can be incorporated into the calculation of

17Then R(L) = (¸l=L)s#1U(s# 1,s+1#®,¸l=L) = (L=5000)#5U(5,3:5,5000=L).
18For gamma dispersion with l = s# 1 so the average development is unity.
19The coefficient of variation is the standard deviation divided by the mean. For the
gamma distribution with shape parameter s, the coefficient of variation is 1=

'
s.
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TABLE 2

EXCESS RATIOS

Undeveloped Approximating
Losses Developed
Pareto Developed Pareto

LIMIT (®= 3:5,¸= 1,000) Losses* (®= 3:5,¸= 1,538)

500 .3629 .3960 .4947
1,000 .1768 .2152 .2859
2,500 .0436 .0668 .0895
5,000 .0113 .0211 .0268
10,000 .0025 .0055 .0065
25,000 .00029 .00076 .00081
50,000 .00005 .00015 .00015
100,000 .000010 .000029 .000028

*Assuming gamma loss divisor, with s= 6 and l = 5. R(L) = (5000=L)2:5U(5,1:5;5000=L).

FIGURE 1

EXCESS RATIOS
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FIGURE 2

ADJUSTMENT FACTOR TO APPLY TO EXCESS RATIOS

excess ratios. In the case of loss dispersion which is (approxi-
mately) independent of size of loss, for many special cases one
can calculate the distribution of the developed losses in closed
form. In these cases, the excess ratios follow directly.

In other situations, one can approximate the loss distribution
via a piece-wise linear distribution and then apply the effects of
dispersion to each interval. Since on each interval the piece-wise
linear approximation is a uniform distribution, one can apply
the formulas developed in Appendix A. Then one can weight
together the excess ratios for the developed losses from the indi-
vidual intervals in order to get the excess ratio for all developed
losses.
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APPENDIX A

LOSS DIVISORS APPLIED TO A UNIFORM DISTRIBUTION ON AN
INTERVAL

Assume:

Losses are distributed uniformly on the interval [a,b]. Losses
will develop with loss divisors r given by a distribution H(r) and
density h(r).

Then:

The distribution function for the developed losses y, is given
by:

F(y) = (y=b# a)%E[R;b=y]#E[R;a=y]&,
where E[R;L] is the limited expected value of the distribution of
loss divisors, at a limit L.

Proof:

The developed losses y are the ratio of the undeveloped losses
x and the loss divisor r; y = x=r or x= yr. Thus since x is uniform
on [a,b],20 the conditional distribution of y given r is:

F(y * r) =

!""#""$
0 yr ! a

ry# a
b# a a! yr ! b
1 yr $ b:

The unconditional distribution of y can be computed by in-
tegrating the conditional distribution of y given r times the as-
sumed density function of r:

20For the uniform distribution on [a,b], F(x) = 0 if x! a, F(x) = (x# a)=(b#a) if a!
x! b, and F(x) = 1 if x$ b.
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F(y) =
% "

r=0
F(y * r)h(r)dr

=
% b=y

a=y

)
ry# a
b# a

*
h(r)dr+

% "

b=y
h(r)dr

=
y

b# a
% b=y

a=y
rh(r)dr+

a

b# a
)
H

)
a

y

*
#H

)
b

y

**
+1#H(b=y)

=
y

b# a

+% b=y

0
rh(r)dr#

% a=y

0
rh(r)dr+

a

y
H

)
a

y

*
# a
y

+
b

y
# b
y
H

)
b

y

*,

=
y

b# a

+-% b=y

0
rh(r)+

)
b

y

*
(1#H(b=y))

.

#
-% a=y

0
rh(r)+

)
a

y

*
(1#H(a=y))

.,

=
y

b# a
/
E

0
R;
b

y

1
#E

0
R;
a

y

12
:

Similarly, we can get the density function f(y). For condi-
tional density at y given r is:

f(y * r) =

!"""#"""$
0 yr ! a
r

b# a a! yr ! b

0 yr $ b:
The unconditional density at y can be computed by integrating

the conditional density at y given r times the assumed density
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function of r:

f(y) =
% "

0
f(y * r)h(r)dr

=
% b=y

a=y

r

b# ah(r)dr

=
1

b# a
% b=y

a=y
rh(r)dr:

We can put this type of integral in terms of limited expected
values, since

E[R;r] =
% r

0
rh(r)dr+ r(1#H(r))

f(y) =
1

b# a%E[R;b=y]# (b=y)(1#H(b=y))

#E[R;a=y]+ (a=y)(1#H(a=y))&

=
1

b# a%E[R;b=y]#E[R;a=y]&

+
1

y(b# a)%bH(b=y)# aH(a=y)&#
1
y
:

One can use the density function and distribution function to
calculate the excess ratio of the developed losses. The numerator
of this excess ratio is the (developed) losses excess of L:% "

L
(y#L)f(y)dy =

% "

L
yf(y)dy#L(1#F(L)):

Since f(y) = 1=(b# a)' b=ya=y rh(r)dr we have% "

L
yf(y)dy =

1
b# a

% "

y=L
y

% b=y

r=a=y
rh(r)drdy:
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Switching the order of integration:

% "

L
yf(y)dy =

1
b# a

% a=L

r=0

% b=r

y=a=r
yrh(r)dydr

+
1

b# a
% b=L

r=a=L

% b=r

y=L
yrh(r)dydr

=
1

2(b# a)
% a=L

r=0

3
b2

r2
# a

2

r2

4
rh(r)dr

+
1

2(b# a)
% b=L

r=a=L

3
b2

r2
#L2

4
rh(r)dr

=
b2

2(b# a)
% b=L

r=0
h(r)=rdr# a2

2(b# a)
% a=L

r=0
h(r)=rdr

# L2

2(b# a)
% b=L

r=a=L
rh(r)dr:

In the course of deriving the form of the distribution function
we had

F(y) =
y

b# a
% b=y

a=y
rh(r)dr+1+

a

b# aH
)
a

y

*
# b

b# aH
)
b

y

*
:

Thus

1#F(L) =

b

b# aH(b=L)#
a

b# aH(a=L)#
L

b# a
% b=L

a=L
rh(r)dr:
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Thus combining the terms, the numerator of the excess ratio
is: % "

L
yf(y)dy#L(1#F(L))

=
b2

2(b# a)
% b=L

0
h(r)=rdr# a2

2(b# a)
% a=L

0
h(r)=rdr

+
aL

(b# a)H(a=L)#
bL

b# aH(b=L)

+
L2

2(b# a)
% b=L

a=L
rh(r)dr:

The denominator of the excess ratio is:21% "

0
yf(y)dy = lim

L+0

% "

L
yf(y)dy

=
b2# a2
2(b# a)

% "

0
h(r)=rdr

=
b+ a
2

% "

0
h(r)=rdr:

Combining the numerator and denominator, the excess ratio
(of the developed losses) at L is:

R(L) =
1

b2# a2
+
b2
% b=L

0
h(r)=rdr# a2

% a=L

0
h(r)=rdr

+2aLH(a=L)#2bLH(b=L)

+L2
% b=L

a=L
rh(r)dr

,&% "

0
h(r)=rdr:

21The denominator of the excess ratio is the mean of the developed losses. It is equal to
the product of the mean undeveloped losses (b+a)=2, and the average loss development' "
0
h(r)=rdr.
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APPENDIX B

GAMMA LOSS DIVISORS APPLIED TO LOSSES UNIFORM ON AN
INTERVAL

For the situation discussed in Appendix A but for the specific
case where the distribution of the loss divisors, h(r), is a gamma
distribution with parameters s and l:% x

0
h(r)rdr =

% x

0
lse#lrrs=¡ (s)dr = (ls=¡ (s))

% x

0
e#lrrs dr

= (ls=¡ (s))(¡ (s+1)=ls+1)¡ (s+1; lx)

= (s=l)¡ (s+1; lx)

H(x) =
% x

0
h(r)dr =

% x

0
lse#lrrs#1=¡ (s)dr = ¡ (s; lx)% x

0
h(r)=rdr =

% x

0
lse#lrrs#2=¡ (s)dr

= (ls=¡ (s))(¡ (s# 1)=ls#1)¡ (s# 1; lx)

=
l

s# 1¡ (s#1; lx)% "

0
h(r)=rdr = (l=s#1)¡ (s#1;") = l(s# 1):

Thus, using the formula from Appendix A, the excess ratio
of the developed losses for limit L is in this case:

R(L) =
b2

b2# a2¡ (s#1; lb=L)#
a2

b2# a2¡ (s# 1; la=L)

+
2L(s# 1)
(b2# a2)l%a¡ (s; la=L)#b¡ (s; lb=L)&

+
L2(s#1)s
(b2# a2)l2 %¡ (s+1; lb=L)#¡ (s+1; la=L)&:

For the loss divisors given by a gamma distribution with pa-
rameters s and l, we can plug in the limited expected value for
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the gamma distribution in terms of the incomplete gamma func-
tion:22

E[R;r] =
s

l
¡ (s+1; lr)+ r[1#¡ (s; lr)]:

Thus using the formula derived in Appendix A:

F(y) =
y

b# a
/
E

0
R;
b

y

1
#E

0
R;
a

y

12
=

ys

l(b# a)
/
¡

)
s+1;

lb

y

*
#¡

)
s+1;

la

y

*2
+1+

a

b# a¡
)
s;
la

y

*
# b

b# a¡
)
s;
lb

y

*
:

Also using the formula derived in Appendix A, the probability
density function is given by:

f(y) =
1

b# a
% b=y

a=y
rh(r)dr

=
s

(b# a)l%¡ (s+1; lb=y)#¡ (s+1; la=y)&:

22See Hogg and Klugman [3, page 226].
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APPENDIX C

GAMMA LOSS DIVISORS APPLIED TO A PARETO DISTRIBUTION

Assume:

Losses are distributed (at latest report) on (0,") via a dis-
tribution function G(x). Losses will develop with loss divisors
r given by a density function h(r).23 (The distribution of r is
independent of x.)

Then:

The distribution function for the developed losses y, is given
by:

F(y) =
% "

0
G(yr)h(r)dr:

Proof:

The developed losses y are the ratio of the undeveloped losses
x and the loss divisor r; y = x=r or x= yr.

Given a value for r, the developed losses are less than y if the
undeveloped losses are less than yr. Thus:

F(y * r) =G(yr):
Integrating over all possible values of r we have

F(y) =
% "

0
F(y * r)h(r)dr =

% "

0
G(yr)h(r)dr:

In the specific case where r follows a gamma distribution with
parameters s and l and the undeveloped losses follow a Pareto
distribution with parameters ® and ¸:

G(x) = 1#
)

¸

¸+ x

*®
,

h(r) = lsrs#1e#lr=¡ (s):

23It is assumed that
' "
0
(h(r)=r)dr is finite, so that the average loss development is finite.
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Then the distribution function for the developed losses is

F(y) =
% "

0
h(r)G(yr)dr

=
% "

0

)
1#

)
¸

¸+ yr

*®*
lsrs#1e#lr=(¡ (s))dr

=
% "

0
lsrs#1e#lr=¡ (s)dr# ¸

®ls

¡ (s)

% "

0
rs#1e#lr(¸+ yr)#® dr:

The first integral is unity,24 while the second integral can be
put in terms of confluent hypergeometric functions.25

Let q= (y=¸)r, then the second integral becomes

¸s#®

ys

% "

q=0
qs#1e#¸lq=y(1+ q)#® dq

=
¸s#®

ys
¡ (s)U(s,s+1#®;¸l=y)

where U is a confluent hypergeometric function such that26

U(a,b;z) = (1=¡ (a))
% "

0
e#ztta#1(1+ t)b#a#1dt:

Thus the distribution function of the developed losses is:

F(y) = 1# ¸
®ls

¡ (s)
¸s#®

ys
¡ (s)U(s,s+1#®;¸l=y)

= 1#
)
¸l

y

*s
U(s,s+1#®;¸l=y):

Similarly one can compute the density function of the devel-
oped losses. Differentiating the distribution function one gets:

f(y) =
% "

0
rg(yr)h(r)dr:

24It is the cumulative distribution function of the gamma distribution at infinity.
25See Appendix D and Handbook of Mathematical Functions [1].
26See Equation 13.2.5 in Handbook of Mathematical Functions [1].
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In the specific case where h is gamma and g is Pareto it turns
out that the density of the developed losses is:

f(y) =
s®ls¸s

ys+1
U(s+1,s+1#®; l¸=y):

This can be obtained either by substituting the specific form
of y and h into the above integral or by differentiating F(y), and
making use of the facts that27

d

dz
U(a,b;z) =#aU(a+1,b+1;z),

U(a#1,b;z)# zU(a,b+1;z) = (a#b)U(a,b;z),

f(y) =
d

dy
F(y) =

d

dy

)
1# ¸

sls

ys
U

)
s,s+1#®; ¸l

y

**
=
¸slss

ys+1
U

)
s,s+1#®; ¸l

y

*
# ¸

sls

ys

)
¸l

y2

*
U(
)
s,s+1#®; ¸l

y

*
=
s¸sls

ys+1
%U(s,s+1#®;¸l=y)

# (¸l=y)U(s+1,s+2#®;¸l=y)&

=
s¸sls

ys+1
%(s+1)# (s+1#®)&U(s+1,s+1#®;¸l=y)

=
s®¸sls

ys+1
U(s+1,s+1#®;¸l=y):

One can use the density function and distribution function to
calculate the excess ratio of the developed losses. The numerator
of this excess ratio is the total (developed) losses excess of L:% "

L
(y#L)f(y)dy =

% "

L
yf(y)dy#L(1#F(L)),

27See Equations 13.4.21 and 13.4.18 in Handbook of Mathematical Functions [1].
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% "

L
yf(y)dy = s®¸sls

% "

L
y#sU(s+1,s+1#®;¸l=y)dy:

Letting z = ¸l=y this integral becomes

# s®
% ¸l=L

0
zsU(s+1,s+1#®;z) ¸l#z2 dz

= ¸ls®
% ¸l=L

0
zs#2U(s+1,s+1#®;z)dz:

Using the theorem from Appendix D:% "

L

yf(y)dy =
¸ls®zs#1

s®

0
U(s,s+1#®;z)+ U(s# a,s+1#®;z)

(s#1)(®# 1)

1¸l=L
Z=0

= ¸l

)
¸l

L

*s#1)
U

)
s,s+1#®; ¸l

L

*
+
U(s# 1,s+1#®;¸l=L)

(s#1)(®# 1)

*
:

Now

L(1#F(L)) = ¸sls

Ls#1
U(s,s+1#®;¸l=L):

Thus the numerator of the excess ratio is% "

L
yf(y)dy+L(1#F(L))

=
¸sls

(s#1)(®# 1)Ls#1U(s# 1,s+1#®;¸l=L):

The denominator of the excess ratio is the total (developed)
losses or the mean of the undeveloped losses times the mean loss
development. The former is the mean of the Pareto or ¸=(®#1).
The latter is the mean of the inverse gamma or l=(s# 1).
Thus the excess ratio is:

R(L) =
)
¸l

L

*s#1
U(s#1,s+1#®,¸l=L):
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Note that this compares to the excess ratio for the undeveloped
losses (given by a Pareto) of (¸=¸+L)®#1. For z small:28

U(a,b,z)) z1#b¡ (b#1)=¡ (a) b > 2:

Thus for large limits L, and s > ®+1

R(L) =
)
¸l

L

*s#1
U(s#1,s+1#®,¸l=L)

)
)
¸l

L

*s#1 ¡ (s#®)
¡ (s#1)

)
¸l

L

*®#s
=
)
¸l

L

*®#1
¡ (s#®)=¡ (s#1):

For the Pareto for large limits

R(L) = (¸=(¸+L))®#1 ) (¸=L)®#1:
Thus the ratio of the excess ratios for the developed and the

undeveloped losses is approximately: l®#1¡ (s#®)=¡ (s#1). If
the mean development is unity, then l = s#1. Then this ratio is:

(s#1)®#1=%(s#®#1) , , ,(s#2)&

)
)
(s#1)

()
s# ®

2
# 1

**®#1
:

Since for a Pareto for large limits R(L)) ¸®#1=L®#1 if one
adjusts ¸ by multiplying by a factor of (s#1)=(s# (®=2)#1),
then one will approximately multiply the excess ratios by the
desired adjustment factor.

28See Equation 13.5.6, Handbook of Mathematical Functions [1].
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APPENDIX D

CONFLUENT HYPERGEOMETRIC FUNCTIONS29

There are a number of related functions referred to as conflu-
ent hypergeometric functions. They can be usefully thought of
as generalizations of the beta and gamma functions. They can be
thought of as two parameter distributions. Let:

M(a,b,z) =
¡ (b)

¡ (b# a)¡ (a)
% 1

0
eztta#1(1# t)b#a#1dt,

U(a,b,z) =
1
¡ (a)

% "

0
e#ztta#1(1+ t)b#a#1dt:

Then M can be computed using the following power series
in z:

M(a,b;z) = 1+
az

b
+
a(a+1)z2

b(b+1)(2!
+
a(a+1)(a+2)z3

b(b+1)(b+2)(3!)
+ , , , :

U can be computed as a combination of two values of M:

U(a,b;z)

=
¼

sin¼b

3
M(a,b,z)

¡ (1+ a#b)¡ (b) #
z1#bM(1+ a#b,2#b,z)

¡ (a)¡ (2#b)

4
:

U is related to the incomplete gamma function:

U(1# a,1# a;x) = ex¡ (a;x):
Among the facts used in Appendix C are:

d

dz
U(a,b;z) =#aU(a+1,b+1;z),

U(a#1,b;z)# zU(a,b+1;z) = (a#b)U(a,b;z):
For z small and b > 2, U(a,b;z)) z1#b¡ (b#1)=¡ (a).

29See Handbook of Mathematical Functions [1].
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THEOREM%
za#3U(a,b,z)dz

=# za#2

(a#1)(b# a)
U(a#1,b,z)#U(a#2,b,z)

%(a# 2)(b+1# a)& :

Given:

dU(a,b,z)
dz

=#aU(a+1,b+1,z), and

zU(a,b+1,z)#U(a#1,b,z) = (b# a)U(a,b,z):

Proof:

Let

º = za#2(U(a# 1,b,z)#U(a#2,b,z)=%(a#2)(b+1# a)&)
dº

dz
= (a# 2)º=z+ za#2#(a# 1)U(a,b+1,z)+U(a#1,b+1,z)

(b+1# a)
= za#3%(a#2)U(a#1,b,z)#U(a#2,b,z)=(b+1# a)

# (a#1)zU(a,b+1,z)
+ zU(®#1,b+1,z)=(b+1#®)&

= za#3%(zU(®#1,b+1,z)#U(®#2,b,z))=(b+1#®)
# (a# 1)(zU(a,b+1,z)#U(®#1,b,z))#U(®#1,b,z)&

= za#3(U(a# 1,b,z)# (a#1)(b# a)U(a,b,z)#U(a# 1,b,z))
=#za#3(a#1)(b# a)U(a,b,z): Q.E.D.



Errata for Discussion by Howard Mahler of “Retrospective Rating: 1997 Excess Loss Factors”

At the bottom of page 320, the equation for 

€ 

R^ (100) is incorrect.

This example of simple dispersion is an example of a mixture with five pieces. 

The excess ratio of the mixture is a weighted average of individual excess ratios, with the weights 
the product of the means and the probabilities for each piece of the mixture.1 
If the probability of each piece of a mixture is pi, Σpi = 1, the mean of each piece of the mixture is 

mi, and Ri is the excess ratio for each piece of the mixture, then 

€ 

R^ (L) = Σ pi mi Ri(L).

If each loss is divided by for example .75, then after development, the excess ratio at L is the 
same as the original excess ratio at .75 L.2  
Ri(L) is the excess ratio when the losses have all been divided by ri.
Thus Ri(L) = R(ri L). 

In the example on page 320, each mean is proportional to 1/divisor = 1/ri, and each probability is 
the same at 1/5.  Thus the weights are: (1/5)(1/ri).

The sum of the weights is: Σ (1/5)(1/ri) = (1/5)(1/.75 + 1/.833 + 1/1 + 1/1.25 + 1/1.5) = 1.3 

Thus 

€ 

R^ (L) = Σ (1/5)(1/ri) R(ri L) = (1/5) Σ R(ri L) /ri.

Therefore, the corrected equation at the bottom of page 320 is:

€ 

R^ (100) = (1/5){R(75)/.75 + R(83.3)/.833 + R(100)/1 + R(125)/1.25 + R(150)/1.50} 
  = (1/5){.6009/.75 + .5817/.833 + .5582/1 + .5384/1.25 + .5191/1.50} = .5669.

Similarly, the corrected equation at the top of page 321 is:

€ 

R^ (5000) = (1/5){R(3750)/.75 + R(4165)/.833 + R(5000)/1 + R(6250)/1.25 + R(7500)/1.50} 
  = (1/5){.0157/.75 + .0070/.833 + 0/1 + 0/1.25 + 0/1.50} = .0059.

1 See page 154 of “Workers Compensation Excess Ratios: An Alternate Method of Estimation” by Mahler.
2 If each loss is multiplied by 1/.75 = 1.333, this is mathematically the same as uniform inflation of 33.3%.
Thus we can get the excess ratio after development, by taking the original excess ratio at the deflated value of
L/1.333 = .75 L.  Increasing the sizes of loss, increases the excess ratio over a fixed limit.
3 Mahler chose these loss divisors so that the total expected losses are unaffected.



The values in the simple dispersion column of Table 1 at page 320 are revised in a similar manner.

Corrected Table 1
  Excess Ratios

     No    Simple  Gamma
LIMIT Development Dispersion Dispersion
       50    .6888    .6949    .6945
     100    .5582    .5669    .5684
     500    .3012    .3080    .3076
  1,000    .1606    .1705    .1721
  2,000       .0904    .0931    .0930
  3,000    .0402    .0462    .0459
  4,000    .0100    .0194      .0190
  5,000    .0000    .0059      .0069
  6,000    .0000    .0007    .0024
  7,000    .0000    .0000    .0008
  8,000    .0000    .0000    .0003
  9,000    .0000    .0000    .0001
10,000    .0000    .0000    .0000 

As can be seen in corrected Table 1, the simple dispersion effect raises the excess ratios, 
especially at the higher limits.4 

At page 326, the formula near the bottom of page should have λ in place of X:
R(L) = (λ l/L)s-1 U(s-1, s+1-α, λ l/L).

 

4 It can be demonstrated that when dispersion has no overall effect, loss dispersion either increases an excess 
ratio or keeps it the same.  In most practical applications, the excess ratio will be increased by loss dispersion.



Errata for Discussion by Howard Mahler of “Retrospective Rating: 1997 Excess Loss Factors” 
 
Appended: 6 July 2009 
 
 
On page 331, the first formula, for F(y), the term y/b – a should be y/(b – a). 
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