

Severe Convective Storms (SCS) Climatology SCS Hazard Trends vs Variability SCS Losses

Severe Convective Storms (SCS)

- Almospheric Convection is the "overturning" of the atmosphere, producing:

 Tomadoes

 Hall
 Straight Line Winds

 Heavy Rain
 Predominant modes of SCS activity driven by jet stream amplification (bending and strengthening of upper-level flow)

 Driving cold air southward

 Dropping surface pressure, forcing warm most air from Gulf of Mexico towards surface low pressure

 Attendant vertical wind shear sustains long lived and intense convection

4

Significant Hazard Climatologies

Mean Number of Hail >2.00" Days per Year Within 25 Miles of a Point 1986 - 2015

Mean Number of EF2+ Tornado Days per Decade Within 25 Miles of a Point 1986 - 2015

5

	Shifts in Tornadoes and Tornado Potential	Risk Sciences	
	Tornado Report Trend Tornado Potential Trend Report Based Model Analysis	a o a stand	
		Model Analysis	
		Based	
	-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00	-100 -0.75 -0.00 -0.25 0.00 0.25 0.00 0.75 1.00	
	Proprietory and Confidential Information	Gensini and Brooks, 2018	
7			
	Large Scale: Jet Stream	RoubismaR≥ Risk Sciences	
	Jet streams are the dominant atmospheric force on m Jet wave patterns often modified by global climate sig ENSO, AO/NAO, and PDO are significant climatic models.	nid-latitude weather systems gnals odulators of North American weather	
	Arctic Signals Alouse to the North-Attadistic Pounce Pacific Pounce GuttiSubtropted Count Signals Antadetic Signals		
	Programmy and Confidential Internation		
8			

Pacific Decadal Oscillation (PDO)

- Anomalous sea surface temperatures in North Pacific
 Cold or warm phases last about 20 to 30 years.
 EINSO events typically persist for 6 18 months
 Negative POD and La Niña bring stronger northwesterly winds to the Northwest US coast as well as cold Pacific coastal ocean temperatures.

Tornado Variability

- Climate factors & SCS correlate
 No long-term trend in tornado counts, but enhanced SCS activity between 2007 and 2012 suggested from radar & tornado data
 Evidence for a cycle tied to PDO, with year-to-year variations tied to ENSO

10

Tornado Variability

- Climate factors & SCS correlate
 No long-term trend in tornado counts, but enhanced SCS activity between 2007 and 2012 suggested from radar & tornado data
 Evidence for a cycle tied to PDO, with year-to-year variations tied to ENSO

11

ENSO: Spring Impacts on Hail and Tornado Anomalies

- El Niño is related to significantly **reduced** hail and tornado potential in the Central U.S.
- La Niña is related to significantly increased hail and tornado potential in the Central U.S.

Derecho (Mesoscale Convective System)

- Large, convective system producing a damage swath over 240 miles from winds of at least 58 mph
 Often travel hundreds of miles over several hours to a couple of days.

 Propagate analogously to an ocean wave in concert with a cold front or along a stationary front
 Squalf line expands with broad and intense gust front
 Produces significant wind damage and flash flooding

14

NOAA SPC website/Dennis Cain

Derechos

2020 lowa Derecho (Progressive)

August 10-11, 2020

PCS: \$8 Billion insured total,
- \$5.2 Billion flows a
- \$1.4 Billion flows a
- \$1.4

Cold/Dry
Rear Inflow Jet

Cold Air Pool

Strong Surface Winds

Cold Air Pool

Strong Surface Winds

25

2012 Derecho vs. 2020 Derecho (Forecasts)

June 29, 2012, 1300 UTC

 SPC text: MULTIPLE STORMS ... MAY DEVELOP AND GROW ... INTO ... BOW ECHOES WITH A RISK FOR DAMAGING WINDS AND LARGE HAIL ... # August 10, 2020, 1300 UTC

26

2012 Derecho vs. 2020 Derecho (Forecasts)

June 29, 2012, 1300 UTC

 SPC text: MULTIPLE STORMS ... MAY DEVELOP AND GROW ... INTO ... BOW ECHOES WITH A RISK FOR DAMAGING WINDS AND LARGE HAIL ... August 10, 2020, 1300 UTC

 SPC text: TRENDS...SUGGEST...A BOW ECHO WITH RISK OF DAMAGING WINDS. WIDESPREAD WIND THREAT MAY ENSUE.

2012 Derecho vs. 2020 Derecho (Forecasts)

Rensissansk

June 29, 2012, 1300 UTC

SPC text: MULTIPLE STORMS ... MAY DEVELOP
AND GROW ... INTO ... BOW ECHOES WITH A RISK
FOR DAMAGING WINDS AND LARGE HAIL ...

a August 10, 2020, 1300 UTC

 SPC text: TRENDS...SUGGEST...A BOW ECHO WITH RISK OF DAMAGING WINDS. WIDESPREAD WIND THREAT MAY ENSUE.

28

2012 Derecho vs. 2020 Derecho (Forecast Updates)

June 29, 2012, 1630 UTC

 SPC Text: MCS CONTINUES TO GROW... WINDS MEASURED AT 91 MPH. EXTREMELY UNSTABLE AIR MASS...THE SYSTEM MAY CONTINUE TO THE COAST. August 10, 2020, 2000 UTC

 SPC Text: POTENTIAL EXISTS FOR A DERECHO WITH INTENSE SEVERE GUSTS AND WIDESPREAD WIND DAMAGE ACROSS CENTRAL TO EASTERN IA, NORTHERN IL AND FAR SOUTHERN WI.

29

